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Abstract

Most real world problems are multiobjective. Usually, traditional nonlinear multiobjec-
tive optimization techniques are computationally expensive. Consequently, it is difficult to
obtain solutions in polynomial time if we increase the complexity of the problem. Further-
more, traditional mathematical programming techniques are normally highly susceptible to
the shape or continuity of the Pareto front. Therefore, alternative ways of thinking are
needed, new algorithms – evolutionary computation.

Particle swarm optimization (PSO) is a relatively recent evolutionary optimization
heuristic that has been found to be very successful in a wide variety of optimization tasks.
Its high speed of convergence and its relative simplicity make PSO a highly viable candidate
to be used for solving not only problems with a single objective function, but also multi-
objective optimization problems. However, PSO lacks an explicit mechanism to manage
multiple objectives.

In this dissertation, we analyze and extend the PSO algorithm to solve “efficiently”
multiobjective optimization problems. Our research is divided into three main components:
1) a proposal which extends PSO to handle multiple objectives. The main novelty of the
approach consists on using a clustering technique in order to divide the population of par-
ticles into several subswarms in variable space. Such modification, significantly improves
the quality of the Pareto fronts produced, since in each subswarm emerge a local search be-
havior. Also, in order to reduce the non-dominated set, we propose an additional approach
to decide whether a solution is accepted or not. 2) We present a mechanism to handle
constraints with PSO. Our proposal uses a simple criterion based on closeness of a particle
to the feasible region in order to select a leader. Our comparison of results indicates that
the proposed approach is highly competitive with respect to three constraint-handling tech-
niques representative of the state-of-the-art in the area. This constraint-handling approach
was implemented into our multiobjective particle swarm optimization algorithm (MOPSO).
3) Finally, in order to improve the general performance of the algorithm, we performed an
study about the MOPSO’s parameters. Then, we proposed a self-adaptation scheme to
select the best parameters’ values; such proposal was validated using several test functions
and metrics taken from the standard literature on evolutionary multiobjective optimization.
The results indicate that our approach is a viable alternative since it outperformed some of
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the best multiobjective evolutionary algorithms known to date.
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Resumen

La mayoŕıa de los problemas de mundo real son multiobjetivo. Generalmente las técnicas
tradicionales de optimización no-lineal multiobjetivo son computacionalmente costosas.
Consecuentemente, es dif́ıcil obtener soluciones en tiempo polinomial, si se incrementa la
complejidad del problema. Además, las técnicas tradicionales de programación matemática
son normalmente altamente susceptibles a la forma o continuidad del frente de Pareto. Por
lo tanto, se necesitan nuevas herramientas alternativas para abordar dichos problemas. Una
de ellas es la computación evolutiva.

La “optimización mediante cúmulos de part́ıculas” (PSO1) es una heuŕıstica evolutiva
relativamente nueva que ha sido usada para resolver exitosamente una amplia variedad de
tareas de optimización. Su alta velocidad de convergencia y su relativa simplicidad hacen
al PSO un candidato altamente viable para utilizarlo en la resolución de problemas mul-
tiobjetivo. Sin embargo, el PSO carece de un mecanismo expĺıcito para manejar objetivos
múltiples.

En esta tesis, analizamos y extendemos el PSO para resolver “eficientemente” problemas
de optimización multiobjetivo. Nuestra investigación está dividida en tres partes principales:
1) una propuesta para habilitar al PSO para que pueda manejar objetivos múltiples. La
principal novedad del enfoque consiste en el uso de una técnica de clustering para dividir
la población en diferentes sub-cúmulos (en el espacio de las variables de decisión). Dicha
modificación mejora significativamente la calidad del frente de Pareto producido, en parte,
debido a que hace emerger una búsqueda local en cada sub-cúmulo. También, para reducir
el conjunto de soluciones no-dominadas, proponemos un enfoque adicional para aceptar
soluciones. 2) Presentamos un mecanismo para manejar restricciones usando el PSO. Nues-
tra propuesta usa un criterio de selección de ĺıderes basado en la cercańıa de una part́ıcula a
la región factible. Los resultados nos indican que el algoritmo propuesto es altamente com-
petitivo con respecto a tres técnicas de manejo de restricciones representativas del estado
del arte en el área. Nuestra técnica fue también implentada en nuestro PSO multiobjetivo
(MOPSO). 3) Finalmente, para mejorar el desempeño general del algoritmo, realizamos un
estudio sobre los parámetros del MOPSO. Proponemos un esquema de auto-adaptación para
seleccionar los mejores valores de los parámetros; nuestra propuesta fue validada usando

1Por sus siglas en inglés.
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varias funciones de prueba y métricas tomadas de la literatura especializada. Los resultados
indican que nuestro algoritmo final es una alternativa viable, ya que supera el desempeño
algunos de los mejores algoritmos multiobjetivos que se conocen a la fecha.
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1
Introduction

1.1 Introduction

M
ultiobjective optimization problems (e.g., those having two or more objectives to be
optimized simultaneously) arise in all areas. Operational researchers have developed

a variety of approaches to deal with multiobjective optimization problems. However, such
approaches normally rely on specific features of the problem (e.g., some require that the ob-
jective function and the constraints are continuous), and have several limitations (i.e., most
of them generate one solution per run). This motivates the use of alternative techniques.

Evolutionary computing comprises a set of algorithms which draw inspiration from the
process of natural evolution. These algorithms present a series of suitable characteristics
to solve multiobjective optimization problems. Currently, there is an specific research area
within evolutionary computation that deals with multiobjective optimization problems:
Evolutionary Multiobjective Optimization (EMO for short) which has significantly grown
in the last few years, giving rise to a wide variety of algorithms [19].

Despite the considerable volume of research on evolutionary multiobjective optimization
(see for example [19, 24, 38, 13, 119]), until recently, little emphasis had been placed on
using efficiency as the main design goal when proposing new multiobjective evolutionary
algorithms. Another important issue generally omitted in the current literature on evolu-
tionary multiobjective optimization is on-line adaptation (i.e., the use of mechanisms, based
on information gathered during the evolutionary process, for adjusting the algorithm’s pa-
rameters).

1.2 Motivation

The main motivation of this work was precisely to design and implement new mul-
tiobjective evolutionary algorithms in which these two aspects previously indicated were
emphasized: efficiency (measured in terms of obtaining the highest quality results possible,
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with the lowest amount of fitness function evaluations) and on-line adaption (i.e., to make
it unnecessary to fine tune by hand the parameters required by the algorithms).

Our research will focus particularly on particle swarm optimization, although some of
the concepts proposed may be applicable to other multiobjective evolutionary algorithm.

1.3 Objectives

The main objectives of this work are the following:

• To gain deep knowledge on evolutionary multiobjective optimization using particle
swarm optimization.

• To gain deep knowledge on techniques to maintain diversity in the context of evo-
lutionary multiobjective optimization (mainly focused on the use of particle swarm
optimization).

• To design and implement mechanisms for self- or on-line adaptation in a multiobjec-
tive particle swarm optimization algorithm. The main idea is to produce an approach
whose parameters do not require any manual fine-tuning. Efficiency is another im-
portant design guideline for the aforementioned algorithm.

• To validate the proposed algorithm, comparisons should be performed with respect to
approaches representative of the state-of-the-art in the area, using standard metrics
and test functions.

1.4 Contributions

The expected contributions derived from this research work are the following:

• At least one new multiobjective evolutionary algorithm based on particle swarm op-
timization that doesn’t require a manual fine tuning of its parameters and whose
performance (measured both in terms of efficiency and quality of the results achieved)
is competitive with respect to algorithms representative of the state-of-the-art in the
area.

• At least one new mechanism to maintain diversity in a multiobjective particle swarm
optimization algorithm.

1.5 Document Outline

The remainder of this document is organized as follows. Chapter 2, introduces some
basic concepts necessary to understand the rest of the document and the metrics usually
adopted to allow a quantitative assessment of the performance of multiobjective optimiza-
tion algorithms. A brief description of evolutionary algorithms is presented in Chapter
3. Chapter 4 presents the main mathematical programming techniques for multiobjective
optimization and shows the state-of-the-art in evolutionary computation for multiobjective
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optimization. Chapter 5 presents an extension of the heuristic called “particle swarm op-
timization” (PSO) that is able to deal with multiobjective optimization problems. The
proposed approach uses the concept of Pareto dominance to determine the flight direction
of a particle and is based on the idea of having a set of sub-swarms instead of single par-
ticles. In each sub-swarm, a PSO algorithm is executed and, at some point, the different
sub-swarms exchange information. Our proposed approach is validated using several test
functions taken from the evolutionary multiobjective optimization literature and is com-
pared with respect to algorithms representative of the state-of-the-art in the area. Chapter
6, presents a simple mechanism to handle constraints with a particle swarm optimization
algorithm. Our proposal uses a simple criterion based on closeness of a particle to the fea-
sible region in order to select a leader. Additionally, this constraint-handling mechanism is
incorporated to a multiobjective particle swarm. In Chapter 7, we discuss self adaptation in
the context of multiobjective optimization. We propose a revised version MOPSO (devel-
oped in Chapter 5) for multiobjective optimization which does not require any parameter
fine-tuning. The new approach is validated using several test function and metrics taken
from the specialized literature and it is compared with respect to two algorithms represen-
tative of the state-of-the-art in the area. Finally, Chapter 8, gives conclusions an future
trends.
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2
Background

2.1 Introduction

T
he most important aim of this chapter is to introduce the basic concepts, definitions
and performance measures related to multiobjective optimization.

We begin by laying a conceptual and theoretical basis for both global and multiobjective
optimization in Section 2.2. Then, we introduce several concepts and definitions related to
multiobjective optimization in Section 2.3. Next, a brief review of performance measures
commonly used in evolutionary multiobjective optimization is given in Section 2.4. Finally,
definitions of several test functions taken from the specialized literature are shown.

2.2 Optimization

Many optimization problems are very complex and difficult to solve by the use of simple
common sense or by intuition. Engineers usually have to deal with problems of minimizing
or maximizing1 one or many objectives.

2.2.1 Global Optimization

The general (single-objective) global optimization problem can be stated as follows:

Definition 1 (Global optimization):

Find ~x which optimizes f(~x) (2.1)

subject to:

1Without loss of generality, in this document we will refer only to minimization problems.
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gi(~x) ≤ 0, i = 1, . . . , n (2.2)

hj(~x) = 0, j = 1, . . . , p (2.3)

where ~x is the vector of solutions ~x = [x1, x2, . . . , xr]
T , n is the number of inequality con-

straints and p is the number of equality constraints (in both cases, constraints could be linear
or nonlinear). 2

2.2.2 Multiobjective Optimization

Multiobjective optimization can be defined as the problem of finding [92]:

a vector of decision variables which satisfies constraints and optimizes a vector
function whose elements represent the objective functions. These functions form
a mathematical description of performance criteria which are usually in conflict
with each other. Hence, the term “optimize” means finding such a solution which
would give the values of all the objective functions acceptable to the decision
maker

The above definition can be stated in a formal way as follows:

Definition 2 (General Multiobjective Optimization Problem (MOP)): Find the
vector ~x∗ = [x∗

1, x
∗
2, . . . , x

∗
n]T which will satisfy the m inequality constraints:

gi(~x) ≤ 0 i = 1, 2, . . . ,m (2.4)

the p equality constraints

hi(~x) = 0 i = 1, 2, . . . , p (2.5)

and will optimize the vector function

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (2.6)

where ~x = [x1, x2, . . . , xn]T is the vector of decision variables. 2

In other words, we wish to determine from among the set F (the feasible region) of
all numbers which satisfy (2.4) and (2.5) the particular set x∗

1, x
∗
2, . . . , x

∗
n which yields the

optimum values of all the k objective functions of the problem.

2.3 Background Concepts

Decision variables: The decision variables are a set of n parameters whose values give
a solution (can be valid or not) to a problem. These parameters are denoted as
xj , j = 1, 2, . . . , n. In this work, these variables will be represented by:
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~x =











x1

x2
...
xn











(2.7)

The same can also be written as:

~x = [x1, x2, . . . , xn]T (2.8)

Constraints: Most real world optimization problems have (natural and problem depen-
dant) constraints to be satisfied (they draw up the boundaries of the feasible set).
Constraints are functions of the decision variables and can be expressed in form of
mathematical inequalities (eq.(2.9)) or equalities (eq (2.10)).

gi(~x) ≤ 0, i = 1, . . . ,m (2.9)

hi(~x) = 0, i = 1, . . . , p (2.10)

For an inequality constraint that satisfies gi(~x) = 0, then we will say that it is active
at ~x. All equality constraints hj (regardless of the value of ~x used) are considered
active at all points of F .

Objective functions: The objective functions are the evaluation criteria used to estimate
how good a solution is. As in the case of the constraints, objective functions are
functions of the decision variables. In multiobjective optimization problems there
are k (≥ 2) objective functions (f1(~x), f2(~x), . . . , fk(~x)). In this document,we will
represent ~f in the following way:

~f(~x) =











f1(~x)
f2(~x)
...
fk(~x)











(2.11)

The same can also be written as:

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (2.12)

Pareto dominance:

Definition 3 (Pareto Dominance): A vector ~x∗ = (x1, . . . , xk) is said to domi-
nate ~y∗ = (y1, . . . , yk) (denoted by ~x � ~y) if and only if x is partially less than y, i.e.,
∀i ∈ {1, . . . , k}, xi ≤ yi ∧ ∃i ∈ {1, . . . , k} : xi < yi. 2
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As an example, for the case of 2 decision vectors ~x∗, ~y∗ ∈ X,

~x∗ ≺ ~y∗ iff fi(~x
∗) < fi(~y

∗)
~x∗ strictly dominates ~y∗ for every i = 1, ..., k

~x∗ � ~y∗ iff fi(~x
∗) ≤ fi(~y

∗)
(~x∗ weakly dominates ~y∗) for every i = 1, ..., k

~x∗ ∼ ~y∗ iff fi(~x
∗) � fi(~y

∗) ∧ fi(~y
∗) � fi(~x

∗)
(~x∗ is incomparable2 to ~y∗) for every i = 1, ..., k

These definitions are analogous for maximization problems (≻,�,∼).

In Figure 2.1 we can see the difference between decision variable space and objective
function space.

A

3

1

2

1

3

4

5

2 1

1

2

f (x,y)= x−y+1

f

f2
6 B

21 2

A

B

3

1

2

x

y

A=[1,1]

f (1,1)= 1−1+1 = 11

f (1,1)= 1−1+1 = 12

B=[3,2]

f (3,2)= 9−4+1 = 62

1

because 1<2  and  1<6 
BA BA

2
f (3,2)= 3−2+1 = 2

f (x,y)= x −y +12

We say that A dominates B

Decision variable space. Objective function space.

Figure 2.1: Example that is meant to show the difference between decision variable space
(left) and objective function space (right).

To reinforce those concepts, let’s consider the following example:
~x∗ = [2.4, 5.3, 4.5]T , ~y∗ = [2.4, 5.3, 4.8]T and ~z∗ = [3.4, 5.4, 4.7]T

~x∗ ≺ ~z∗ because 2.4 < 3.4, 5.3 < 5.4 and 4.5 < 4.7,
~x∗ � ~y∗ because 2.4 ≤ 2.4, 5.3 ≤ 5.3 and 4.5 < 4.8 and
~y∗ ∼ ~z∗ because 2.4 ≤ 3.4, 5.3 ≤ 5.4 and 4.8 > 4.7.

Pareto optimal set:

Definition 4 (Pareto optimal set): The Pareto optimal set (P ∗) can be defined
as:

P ∗ = {~x∗ ∈ F | ¬∃ ~y∗ ∈ F | ~f(~y∗) � ~f(~x∗)} (2.13)

2

2~x and ~y are non-dominated vectors between themselves.
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In words, we can say that a decision vector which belongs to the feasible set F is
a Pareto optimum if there is no other decision vector ~y∗ which belongs to F and
dominates it.

The Pareto optimal set is defined in decision variable space.

��

��

��

��

��

��

��

��
��

f1

2f

1

2x

x

ZS

S

ZFeasible individuals.

Infeasible individuals.

Pareto
front

Non dominated individuals. Feasible region.
Image of S in objective function space.

Objective function space.Decision variable space.

Figure 2.2: Example that is meant to show the difference between the Pareto optimal set
(left) and the Pareto front (right).

When plotted in objective space, the non-dominated vectors are collectively known
as the Pareto front. A graphical illustration of the Pareto optimal set (i.e., decision
variable space) and the Pareto front (i.e., objective function space) of a problem is
provided in Figure 2.2. In the general case, it is impossible to find an analytical
expression of the line or surface that contains these points. The normal procedure to
generate the Pareto front is to compute the feasible points F and their corresponding
f(F). When there is a sufficient number of these, it is then possible to determine the
non-dominated points and to produce the Pareto front.

Some problems present fronts different from the true Pareto front which attract most
of the solutions. They are known as false (or local) Pareto fronts. Figure 2.3 is meant
to denote the difference between a false and a true Pareto front.

ǫ-dominance ǫ-dominance is a relaxed form of dominance. It is defined as follows:

Definition 5 (ǫ-dominance): A vector ~x∗ = (x1, . . . , xk) is said to ǫ dominate
~y∗ = (y1, . . . , yk) (denoted by ~x �ǫ ~y) if and only if (1+ǫ)·f(~x ≤ f(~y), ∀i ∈ {1, . . . , k}.
2

ǫ-approximate Pareto set:

Definition 6 (ǫ-approximate Pareto set): A decision vector ~x∗ is an ǫ-
approximate Pareto set if and only if:
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f

f

1

2

False Pareto front

True  Pareto front

Figure 2.3: Example that is meant to show the difference between a false and a true Pareto
front

~x∗ ∈ F | ¬∃ ~y∗ ∈ F | ~f(~y∗) �ǫ
~f(~x∗) (2.14)

2

2.4 Performance Measures

In order to allow a quantitative assessment of the performance of an evolutionary mul-
tiobjective optimization algorithm, three issues are normally taken into consideration [132]:

1. Minimize the distance of the Pareto front produced by our algorithm with respect to
the Pareto front (assuming we know its location).

2. Maximize the spread of solutions found, so that we can have a distribution of vectors
as smooth and uniform as possible.

3. Maximize the number of elements of the Pareto optimal set found.

Based on these notions, we adopted the following performance measures to allow a
quantitative comparison of results:

1. Success Counting (SC): We define this measure based on the idea of the measure
called Error Ratio proposed by Van Veldhuizen [117] to indicate the percentage of
solutions (from the non-dominated vectors found so far) that are not members of the
true Pareto optimal set. In this case, we count the number of vectors in the current
set of non-dominated vectors available that are members of the Pareto optimal set:

SC =

n
∑

i=1

si,
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where n is the number of vectors in the current set of non-dominated vectors available;
si = 1 if vector i is a member of the Pareto optimal set, and si = 0 otherwise. It
should then be clear that SC = n indicates an ideal behavior, since it would mean
that all the vectors generated by our algorithm belong to the true Pareto optimal set
of the problem. For a fair comparison, when we use this measure, all the algorithms
should be encouraged to obtain their final Pareto fronts with the same number of
vectors.

2. Inverted Generational Distance (IGD): The concept of generational distance
was introduced by Van Veldhuizen & Lamont [118, 120] as a way of estimating how
far are the elements in the Pareto front produced by our algorithm from those in the
true Pareto front of the problem. This measure is defined as:

GD =

√

∑n
i=1 d2

i

n
(2.15)

where n is the number of non-dominated vectors found by the algorithm being ana-
lyzed and di is the Euclidean distance (measured in objective space) between each of
these and the nearest member of the true Pareto front. It should be clear that a value
of GD = 0 indicates that all the elements generated are in the true Pareto front of the
problem. Therefore, any other value will indicate how “far” we are from the global
Pareto front of our problem. In our case, we implemented an “inverted” generational
distance measure (IGD) in which we use as a reference the true Pareto front, and we
compare each of its elements with respect to the front produced by an algorithm. In
this way, we are calculating how far are the elements of the true Pareto front, from
those in the Pareto front produced by our algorithm.

3. Spacing (SP): Here, one desires to measure the spread (distribution) of vectors
throughout the non-dominated vectors found so far. Since the “beginning” and “end”
of the current Pareto front found are known, a suitably defined metric judges how
well the solutions in such front are distributed. Schott [108] proposed such a metric
measuring the range (distance) variance of neighboring vectors in the non-dominated
vectors found so far. This metric is defined as:

S ,

√

√

√

√

1

n− 1

n
∑

i=1

(d− di)2 , (2.16)

where di = minj(| f i
1(~x) − f j

1 (~x) | + | f i
2(~x) − f j

2 (~x) |), i, j = 1, . . . , n,i 6= j ,d is the
mean of all di, and n is the number of non-dominated vectors found so far. A value of
zero for this metric indicates all members of the Pareto front currently available are
equidistantly spaced.

4. Two Set Coverage (TSC): This metric was proposed in [132], and it can be termed
relative coverage comparison of two sets. Consider X ′,X ′′ as two sets of objective



12 Background

function’s vectors. TSC is defined as the mapping of the ordered pair (X ′,X ′′) to the
interval [0, 1]:

TSC(X ′,X ′′) ,
|{a′′ ∈ X ′′;∃a′ ∈ X ′ : a′ � a′′}|

|X ′′| (2.17)

If all points in X ′ dominate or are equal to all points in X ′′, then by definition
TSC = 1. SC = 0 implies the opposite. In general, TSC(X ′,X ′′) and TSC(X ′′,X ′)
both have to be considered due to set intersections not being empty. Of course, this
metric can be used for both spaces (objective function or decision variable space), but
in this case we applied it in objective function space.

5. Improved Generational Distance (ImGD): This metric is proposed in this thesis.
Consider X ′,X ′′ as two sets of objective function’s vectors. Let d(x, Y ) be the distance
from point x to the set Y :

d(x, Y ) = min
y∈Y

d(x, y)

where d(x, y) refers to an Euclidean distance. The ImGD metric is defined as the
mapping of (X ′,X ′′) to the ordered pair (x′, x′′)

ImGD(X ′,X ′′) = (x′, x′′) (2.18)

such that:

x′ =
1

n





∑

xi∈X′

d(xi, T ) +

n
∑

i=1

d(t
′′

i ,X ′)



 (2.19)

x′′ =
1

n





∑

xi∈X′′

d(xi, T ) +

n
∑

i=1

d(t
′

i,X
′′)



 (2.20)

where t
′

i(t
′′

i ) ∈ T is the closest point from the true Pareto front to the point i from
the set X ′(X ′′). If the result obtained is (0, v) (where v is a positive value 6= 0), it
would mean that the first expression (whose solutions are contained in X ′) generated
all its solutions exactly on the true Pareto front, and these solutions also cover the
region found by the second expression (whose solutions are contained in X ′′). The
opposite holds as well. The main motivation of this metric was to overcome the main
limitations of generational distance when measuring closeness to the true Pareto front
of a problem. As we will see later on, in several cases in which generational distance
provides some misleading results, this improved generational distance returns values
that reflect, in a more accurate way, the behavior of each algorithm compared.

6. Two Set Difference Hypervolume (HV) This measure was proposed in [130].
Consider X ′,X ′′ as two sets of phenotype decision vectors. HV is defined by:

HV (X ′,X ′′) = δ(X ′ + X ′′)− δ(X ′′)
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where the set X ′ + X ′′ is defined as the non-dominated vectors obtained from the
union of X ′ and X ′′, and δ is the unary hypervolume measure. δ(X) is defined as
the hypervolume of the portion of the objective space that is dominated by X. In this
way, HV (X ′,X ′′) gives the hypervolume of the portion of the objective space that is
dominated by X ′ but not for X ′′.

In this thesis, we use the origin as the reference point to calculate the hypervolume.
So, since all the test functions have to be minimized, with this measure we obtain a
difference between the areas that dominate the analyzed Pareto fronts. In this way,
if HV (X ′,X ′′) = 0 and HV (X ′,X ′′) < 0, we say that X ′′ is better than X ′.

2.5 Test Functions

We present several test functions taken from the specialized literature below. Such test
functions were selected because each one presents a different complexity.

2.5.1 Deb 1’s Test Function

This example is a bi-objective test function proposed by Deb [23]:

Minimize f1(x1, x2) = x1 (2.21)

Minimize f2(x1, x2) = g(x1, x2) · h(x1, x2) (2.22)

where:

g(x1, x2) = 11 + x2
2 − 10 · cos(2πx2) (2.23)

h(x1, x2) =

{

1−
√

f1(x1,x2

g(x1,x2
if f1(x1, x2) ≤ g(x1, x2)

0 otherwise
(2.24)

and 0 ≤ x1 ≤ 1, −30 ≤ x2 ≤ 30.

Figure 2.4 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).

2.5.2 Deb 2’s Test Function

This example is a bi-objective test function proposed by Deb [23]:

Minimize f1(x1, x2) = x1 (2.25)

Minimize f2(x1, x2) =
g(x2)

x1
(2.26)
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Figure 2.4: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Deb 1’s test function.

g(x2) = 2.0− exp

{

−
(

x2 − 0.2

0.004

)2
}

− 0.8 exp

{

−
(

x2 − 0.6

0.4

)2
}

(2.27)

and 0.1 ≤ x1 ≤ 1.0, 0.1 ≤ x2 ≤ 1.0.

Figure 2.5 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).
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Figure 2.5: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Deb 2’s test function.

2.5.3 Kursawe’s Test Function

This test function was proposed by Kursawe [77]:

Minimize f1(~x) =
n−1
∑

i=1

(

−10 exp

(

−0.2
√

x2
i + x2

i+1

))

(2.28)

Minimize f2(~x) =

n
∑

i=1

(

|xi|0.8 + 5 sin(xi)
3
)

(2.29)
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where: −5 ≤ x1, x2, x3 ≤ 5

This problem has the Pareto front and the Pareto optimal set disconnected. Figure
2.6 shows the graphical result produced by 20,000 solutions randomly generated (left side).
The true Pareto front of the problem is shown as a continuous line (right side).
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Figure 2.6: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Kursawe’s test function.

2.5.4 DTLZ1’s Test Function

Proposed by Deb et al in [29]. The test problem presents a big search space and 115− 1
local attractors.

Minimize f1(x) = 1
2x1x2...xM−1(1 + g(xM )),

Minimize f2(x) = 1
2x1x2...(1 − xM−1)(1 + g(xM )),

...
...

Minimize fM−1(x) = 1
2x1(1− x2)(1 + g(xM )),

Minimize fM (x) = 1
2(1− x1)(1 + g(xM )),

where g(xM ) = 100
[

|xM |+
∑

xi∈xM
(xi − 0.5)2 − cos(20π(xi − 0.5))

]

subject to 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

(2.30)

Figure 2.7 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).
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Figure 2.7: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for DTLZ1’s test function.

2.5.5 DTLZ2’s Test Function

Proposed by Deb et al in [29]. The test problem presents a big search space and 115− 1
local attractors.

Minimize:
~f1 = (1 + g(xM ))(cos(x1π/2))(cos(x2π/2))...(cos(xM−2π/2))(cos(xM−1π/2)),
~f2 = (1 + g(xM ))(cos(x1π/2))(cos(x2π/2))...(cos(xM−2π/2))(sen(xM−1π/2)),
~f3 = (1 + g(xM ))(cos(x1π/2))(cos(x2π/2))...(sen(xM−2π/2)),

...
...

~fM−1 = (1 + g(xM ))(cos(x1π/2))(sin(x2π/2)),
~fM = (1 + g(xM ))(sin(x1π/2)).

with:

g(xM ) =
∑

xi∈XM

(xi − 0.5)2

M = 3,

k = 10

n = M + k − 1

y:

0 ≤ xi ≤ 1 ∀ i = 1, 2, ..., n

Figure 2.8 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).
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Figure 2.8: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for DTLZ2’s test function.

2.5.6 ZDT1’s Test Function

This test function was proposed by Zitzler et al in [135].

Minimize (f1(~x), f2(~x)) (2.31)

f1(~x) = x1

f2(~x) = g(~x)h(f1, g)

g(~x) = 1 + 9

m
∑

i=2

xi/(m− 1), h(f1, g) = 1−
√

f1/g

where m = 30, and xi ∈[0,1].

Figure 2.9 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).
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Figure 2.9: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT1’s test function.

2.5.7 ZDT2’s Test Function

This test function was proposed by Zitzler et al in [135].
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Minimize (f1(~x), f2(~x)) (2.32)

f1(~x) = x1

f2(~x) = g(~x)h(f1, g)

g(~x) = 1 + 9

m
∑

i=2

xi/(m− 1), h(f1, g) = 1− (f1/g)2

where m = 30, and xi ∈[0,1].

Figure 2.10 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).
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Figure 2.10: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT2’s test function.

2.5.8 ZDT3’s Test Function

This test function was proposed by Zitzler et al in [135].

Minimize (f1(~x), f2(~x)) (2.33)

f1(~x) = x1

f2(~x) = g(~x)h(f1, g)

g(~x) = 1 + 9

m
∑

i=2

xi/(m− 1), h(f1, g) = 1−
√

f1/g − (f1/g) sin(10πf1)

where m = 30, and xi ∈[0,1].

Figure 2.11 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).
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Figure 2.11: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT3’s test function.

2.5.9 ZDT4’s Test Function

This test function was proposed by Zitzler et al in [135].

Minimize (f1(~x), f2(~x)) (2.34)

f1(~x) = x1

f2(~x) = g(~x)h(f1, g)

g(~x) = 1 + 10(m− 1) +

m
∑

i=2

(x2
i − 10 cos(4πxi), h(f1, g) = 1−

√

(f1/g)

where m = 10, x0 ∈[0,1], and xi ∈[-5,5].

Figure 2.12 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).
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Figure 2.12: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT4’s test function.

2.5.10 ZDT6’s Test Function

This test function was proposed by Zitzler et al in [135].
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Minimize (f1(~x), f2(~x)) (2.35)

f1(~x) = 1− exp(−4x1) sin(6πx1)

f2(~x) = g(~x)h(f1, g)

g(~x) = 1 + 9((

m
∑

i=2

xi)/(m− 1))0.25, h(f1, g) = 1− (f1/g)2

where m = 10, and xi ∈[0,1].

Figure 2.13 shows the graphical result produced by 20,000 solutions randomly generated
(left side). The true Pareto front of the problem is shown as a continuous line (right side).
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Figure 2.13: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT6’s test function.

2.5.11 Kita’s Test Function

This is a bi-objective optimization problem proposed by Kita [68]:

Maximize f1(x, y) = −x2 + y (2.36)

Maximize f2(x, y) =
1

2
x + y + 1 (2.37)

subject to:

1

6
x + y − 13

2
≤ 0 (2.38)

1

2
x + y − 15

2
≤ 0 (2.39)

5

x
+ y − 30 ≤ 0 (2.40)

and 0 ≤ x ≤ 7.0, 0 ≤ y ≤ 7.0.
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Figure 2.15: Welded Beam

This test function presents a concave Pareto front. Figure 2.14 shows the graphical
result produced by 20,000 solutions randomly generated (left side). The true Pareto front
of the problem is shown as a continuous line (right side).
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Figure 2.14: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for ZDT6’s test function.

2.5.12 Welded Beam’s Test Function

This example consists of the welded beam problem shown in Figure 2.15. The problem
consists on [98] minimize the cost and minimize the end deflection beam subject to con-
straints on shear stress in weld (τ), bending stress in the beam (ρ), buckling load on the
bar (Pc), and side constraints:

Design vector:
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Minimize f1(~x) = 1.10471x2
1x2 + 0.04811x3x4(L + x2) (2.41)

Minimize f2(~x) = (4FL3)/(Ex3
3x4) (2.42)

subject to:

g1 : τ ≤ τmax (2.43)

g2 : ρ ≤ ρmax (2.44)

g3 : x1 ≤ x4 (2.45)

g4 : x1 ≤ 0.125 (2.46)

g5 : F ≤ Pc (2.47)

where:

F = 6, 000 lb

L = 14 in

E = 30× 106 psi

G = 12× 106 psi

τmax = 13, 600 psi

ρmax = 30, 000 psi

α =
1

(3Gx3x
3
4)
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I =
1

12x3x
3
4

Pc = (4013
√

EIα/L2)× (1− (x3/(2L)×
√

EI/α))

ρ = (6FL)/(x4x
2
3)

J = 2 ∗ (0.707x1x2(x
2
2/12 + ((x1 + x4)/2)

2))

R =
√

(x2
2)/4 + ((x1 + x2)/2)

2

M = F (L + x2/2)

cost = x2/(2R)

τ ′′ = MR/J

τ ′ = F/(
√

2 + x1x2)

τ =
√

(τ ′2 + 2τ ′τ ′′cost + τ ′′2)

0 ≤ x1, x4 ≤ 2

0 ≤ x2, x3 ≤ 10

This test function presents a convex Pareto front. Figure 2.16 shows the graphical result
produced by 20,000 solutions randomly generated (left side). The true Pareto front of the
problem is shown as a continuous line (right side).
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Figure 2.16: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Welded Beam’s test function.
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Figure 2.17: Plane truss used for the fourth example. The structural volume and the joint
displacement (∆) are to be minimized.

2.5.13 Speed Reducer’s Test Function

This example consists of the speed reducer problem shown in Figure 2.17. The problem
consists on minimize the stress and the weight of the speed reducer, considering the face
width (x1), the module of teeth (x2), the number of teeth on pinion (x3), the length of the
shaft 1 between bearings (x4), the length of the shaft 1 between bearings (x5), the diameter
of shaft 1 (x6) and the diameter of shaft 2 (x7).

This is defined as follows [98]:
Minimize

fweight = f1(~x) = 0.7854x1x
2
2(10x

2
3/3 + 14.933x3 − 43.0934) − 1.508x1(x

2
6 + x2

7)
+7.477(x3

6 + x3
7) + 0.7854(x4x62 + x5x72)

fstress = f2(~x) =

√
(745.0x4/x2x3)2+1.69107

0.1x3

6

(2.48)
such that

g1 :
1.0

x1x2
2x3
− 1.0

27.0
≤ 0

g2 :
1.0

x1x
2
2x

2
3

− 1.0

397.5
≤ 0

g3 :
x3

4

x2x3x4
6

− 1.0

1.93
≤ 0

g4 :
x53

x2x3x4
7

− 1.0

1.93
≤ 0

g5 : x2x3 − 40.0 ≤ 0
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g6 : x1/x2 − 12.0 ≤ 0

g7 : 5.0 − x1/x2 ≤ 0

g8 : 1.9 − x4 + 1.5x6 ≤ 0

g9 : 1.9 − x5 + 1.1x7 ≤ 0

g10 :

√

(745x4/x2x3)2 + 1.69107

0.1x3
6

≤ 1300)

g11 :

√

(745x5/x2x3)2 + 1.575108

0.1x3
7

≤ 1100)

where:

2.6 ≤ x1 ≤ 3.6

0.7 ≤ x2 ≤ 0.8

17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3

7.3 ≤ x5 ≤ 8.3

2.9 ≤ x6 ≤ 3.9

5.0 ≤ x7 ≤ 5.5

This test function presents a disconnected Pareto optimal set. Figure 2.18 shows the
graphical result produced by 20,000 solutions randomly generated (left side). The true
Pareto front of the problem is shown as a continuous line (right side).
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Figure 2.18: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Speed Reducer’s test function.
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2.5.14 Osyczka2 ’s Test Function

This example is a bi-objective test function proposed by Osyczka [93]:

Maximize f1(~x) = 25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2 (2.49)

Minimize f2(~x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 (2.50)

such that

g1 : (x1 + x2 − 2) ≥ 0

g2 : (6− x1 − x2) ≥ 0

g3 : (2− x2 + x1) ≥ 0

g4 : (2− x1 + 3 ∗ x2) ≥ 0

g5 : (4− (x3 − 3)2 − x4) ≥ 0

g6 : (x5 − 3)2 + x6 − 4 ≥ 0

where:

0 ≤ x1, x2, x6 ≤ 10

1 ≤ x3, x5 ≤ 5

0 ≤ x4 ≤ 6

This test function presents a disconnected Pareto optimal set. Figure 2.19 shows the
graphical result produced by 20,000 solutions randomly generated (left side). The true
Pareto front of the problem is shown as a continuous line (right side).
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Figure 2.19: The graphic of the left shows 20,000 solutions randomly generated, and the
graphic of the right shows the true Pareto front for Osyczka 2’s test function.
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3
Evolutionary Algorithms

3.1 Introduction

I
n this chapter, we will provide a description of evolutionary single/multiobjective opti-
mization algorithms that is based on a unifying view presenting a general scheme that

forms the common basis of all the current variations reported in the specialized literature.
The main components of an evolutionary algorithm are: an initialization process, a

parent selection mechanism, variation operators and a survivor selection mechanism. Each
of them will be briefly discussed in this chapter, and we will also explain their corresponding
role in multiobjective evolutionary algorithms.

3.2 Evolutionary Algorithms

In nature, those individuals that are best adapted to their environment have more
opportunities to compete for resources and reproduce [21]. In this process (usually known
as “the survival of the fittest”), natural selection plays the main role. However, in [21],
Darwin also identified that some rare modifications in the phenotype1 (mutations) affect
directly the performance of an individual in a given environment.

Natural evolution can be seen as an optimization problem, where the aim is to adapt
best the species to their environment. Therefore, it is not surprising that scientists have
taken inspiration from nature, since Neo-Darwinism2 has been the most important model
to explain natural evolution.

Neo-Darwinism points out that all the diversity of life in our planet can be explained
through 4 processes:

1Phenotype: The realized expression of the genotype. Genotype: The sum of inherited characters main-
tained within the entire reproducing population [35].

2Neo-Darwinism is the name given to the fusion of natural selection theory [21], Mendel’s inheritance
laws [84] and Weismann’s selectionism [123]
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• Reproduction: This mechanism ensures the inheritance of genetic material from the
current to the next generation.

• Mutation: It is produced if a copying error occurs in the genetic material (during
reproduction). A mutation is beneficial to an organism if it produces a fitness increase
in its adaptation to the environment.

• Competition: It is a natural process, in which the organisms have a continuous con-
frontation to survive and to inherit their genetic code to next generation.

• Selection: In an environment that can only host a limited number of individuals, only
the organisms that compete most effectively for resources can survive and reproduce.

Evolutionary Algorithms (EA) are able to generate solutions for difficult real world
problems, mainly because of their analogy with the Neo-Darwinism (particularly, the fact
that in nature, the populations evolve through generations using the mechanism of natural
selection and the survival of the fittest principle). The evolution of such solutions depends
on the appropriate implementation of the following points:

• The encoding of the data structures used to represent the solutions of the problem.
Each solution is known as an “individual” and a set of individuals is called a “popu-
lation”.

• Operators to modify the individual’s traits (so-called variation operators).

• A fitness function which plays the role of the environment.

• The survival of the fittest is implemented through of the use of a selection procedure
which plays the role of environmental pressure.

Nowadays, EAs are very popular in many disciplines, mainly because they present sev-
eral advantages in optimization with respect to traditional techniques, such as:

• EAs do not need any specific knowledge about the problem. However if such knowledge
is available, it can be easily incorporated.

• EAs are conceptually very simple.

• EAs have a wide applicability.

• EAs can easily exploit parallel architectures.

• EAs can usually adapt their own parameters.

• EAs are less susceptible to be trapped into a local minimum/maximum (since they
are population-based techniques).

• EAs can cooperate with other search/optimization techniques.

Traditionally, EAs have been grouped into three main paradigms:
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Algorithm 1 The general scheme of an EA
1: Initialize population with randomly generated solutions
2: Evaluate each solution
3: while stop condition is not reached do
4: Select parents for reproduction
5: Apply variation operators to the parents selected
6: Evaluate new candidates
7: Select the best individuals (among all) for the next generation (elitism)
8: end while

• Evolutionary Programming.

• Evolution Strategies.

• Genetic Algorithms.

– Genetic Programming (it is a genetic algorithm variant).

Next we will briefly describe each of them.

3.2.1 Evolutionary Programming

Lawrence J. Fogel conceived the use of a form of simulated evolution to solve problems in
the mid-1960s [36]. The technique that he developed was called Evolutionary Programming
(EP). Intelligence in this technique can be seen as an adaptive behavior. This approach
emphasizes the interactions between parents and offspring.

In EP, the crossover operator is not required, since EP is an abstraction of the evo-
lutionary process at an species level (two different species can not be recombined). EP
uses probabilistic selection (usually stochastic tournaments). Nowadays, there are several
variants of this technique.

The basic evolutionary programming algorithm is shown in Algorithm 2.

Algorithm 2 Evolutionary Programming Algorithm
1: Initialize population with randomly generated solutions
2: repeat
3: Apply mutation
4: Evaluate new candidates
5: Select those solutions which will be kept
6: Generate the new population
7: until stop condition is reached

3.2.2 Evolution Strategies

In the mid-60s Peter Bienert [6], Ingo Rechenberg [101] and Hans-Paul Schwefel [109]
developed a randomly discrete adjustment method, inspired in the mutation mechanism
that exists in nature. The technique was called Evolution Strategy (EE) and it was initially
used to solve highly complex hydrodynamical problems.
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The original version is the so-called (1 + 1) − EE and it uses a single parent which
generates a single offspring. This offspring survives to become the parent at the following
generation, only if it has a better fitness that his parent; otherwise it is eliminated (this is
called extinctive selection).

In the (1 + 1)− EE, a new individual is generated using:

xt+1 = xt + N(0, σ)

where t refers to the current generation (or iteration), and N(0, σ) is a vector of Gaussian
numbers with a zero mean and a standard deviation σ.

Evolution Strategies evolve not only the problem’s variables, but also its own parameters
(standard deviation), in a process called “self-adaptation”. Recombination is possible but it
is normally a secondary operator. The selection mechanism adopted is usually deterministic.
Its general algorithm is shown in Algorithm 3.

Algorithm 3 Evolution Strategies Algorithm
1: Initialize the population G with randomly generated solutions
2: t := 0
3: Evaluate G(t)
4: repeat
5: Select Gtemp from G(t)
6: Reproduce Gtemp to generate G(t + 1)
7: Apply mutation to G(t + 1)
8: Evaluate G(t + 1)
9: Select survivors

10: t := t + 1
11: until stop condition is reached

3.2.3 Genetic Algorithms

Genetic algorithms (GAs) (originally called reproductive plans) were introduced by John
H. Holland [53] in the early 1960s. Holland’s main interest was to study natural adaptation
in order to apply it to machine learning. Nowadays, GAs are the most popular type of
evolutionary algorithm.

The general pseudocode of a simple GA [9] is shown in Algorithm 4.

Algorithm 4 Simple Genetic Algorithm

1: Initialize the population G with randomly generated solutions
2: t := 0
3: repeat
4: Evaluate G(t)
5: Select G1(t) from G(t)
6: Apply crossover and mutation to G1(t) to generate G(t + 1)
7: t := t + 1
8: until stop condition is reached
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3.2.4 Genetic Programming

Nichal Lynn Cramer [20] and later, John R. Koza [74] proposed (in a different and
independent way) the use of a tree representation in which a crossover operator for in-
terchanging subtrees among different computer programs was implemented (with certain
constraints imposed by the syntax of the programming language used).

The basic difference between both proposals is that Cramer used an interactive fitness
function (i.e., the user had to supply (manually) the fitness value of each tree of the pop-
ulation), while Koza was able to automate it. Koza’s proposal prevailed and nowadays is
known as Genetic Programming (GP) [75].

The general algorithm of the GP [3] is shown in Algorithm 5.

Algorithm 5 Genetic Programming General Algorithm

1: Initialize the population G with randomly generated solutions
2: t := 0
3: repeat
4: Evaluate the programs of the population G(t)
5: Select G1(t) from G(t)
6: Apply genetic operators to G1(t) to generate G(t + 1)
7: t := t + 1
8: until stop condition is reached

3.2.5 Swarm Intelligence

Swarm Intelligence (SI) encompasses a group of evolutionary optimization systems in-
spired by the collective behavior of social insect colonies and other animal societies. Such
systems are made up by a population of simple agents interacting locally among them and
with their environment. The aim of Swarm Intelligence researchers is the study of collective
behavior in decentralized systems.

Particle Swarm Optimization and Ant Colony are two forms of SI. Instead of genetic
operators, in these algorithms each individual (called agent in this context) varies itself
according to its past experience and the local interaction with other agents. The interactions
among agents usually cause a global behavior.

Since this thesis will be developed around Particle Swarm Optimization, an explanation
of such approach is provided next.

3.2.5.1 Particle Swarm Optimization

Kennedy & Eberhart [65] proposed an approach called “Particle Swarm Optimization”
(PSO) which was inspired on the choreography of a bird flock. Like other evolutionary
algorithms, PSO uses a set of possible solutions which will be “evolving” until an optimal
solution or a termination criteria is reached. In this case, each solution (~x) is represented
by a particle. And, a particle swarm is a set of particles. The responsibility of evolving
(moving) the swarm to the optimal region corresponds to the velocity equation. This
equation is usually composed by three elements: a velocity inertia, a cognitive component
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(pbest) and a social component (gbest). The entire approach can be seen as a distributed
behavioral algorithm that performs (in its more general version) multidimensional search.
In the simulation, the behavior of each particle is affected by either the best local (i.e.,
within a certain neighborhood) or the best global particle.

An interesting aspect of PSO is that it allows individuals to benefit from their past ex-
periences (note that in other approaches such as the genetic algorithm, normally the current
population is the only “memory” used by the individuals). PSO has been successfully used
for both continuous nonlinear and discrete binary single-objective optimization [65].

The pseudocode of the PSO algorithm is shown in Algorithm 6. First, the particles are
initially randomly initialized through the search space. These initial positions also initialize
each particle’s pbest. Next, the fittest particle from all the particle swarm is selected and
assigned to the gbest solution. Then, the particle swarm flies the search space until certain
termination criteria is reached. This flight consists on applying to the particle swarm a
velocity equation, which updates the position and fitness of each particle. The new fitness
obtained by each particle is compared with respect to the particle’s pbest position; in case
that the new position has a better fitness, then it replaces to the pbest position. The same
procedure is performed for the gbest solution.

Algorithm 6 PSO Algorithm

1: ~gbest← ~x0

2: for i = 0 to nparticles do
3: ~pbesti ← ~xi ← initialize randomly()
4: fitnessi ← f(~xi)

5: if fitnessi < f( ~gbest) then

6: ~gbest← ~xi

7: end if
8: end for
9: repeat

10: for i = 0 to nparticles do
11: for d = 0 to ndimensions do
12: velocityid ←W × velocityid +C1×U(0, 1)× (pbestid−xid)+C2×U(0, 1)× (gbest−xid)
13: xid ← xid + velocityid

14: end for
15: fitnessi ← f(~xi)

16: if fitnessi < f( ~pbesti) then

17: ~pbesti ← ~xi

18: end if
19: if fitnessi < f( ~gbest)) then

20: ~gbest← ~xi

21: end if
22: end for
23: until Termination criterion

The PSO algorithm requires the following parameters:

• Termination criterion: it refers to the criterion adopted to conclude the execution
of the algorithm (usually the total number of generations that the algorithm will be
executed).
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• nparticles: it refers to the total number of particles that will be over-flying the search
space.

• W : it refers to the velocity inertia of the previous movement.

• C1: is the constant of the cognitive component. This constant indicates how strong
will be the attraction from its best position.

• C2: is the social component. It indicates how strong will be the attraction from the
best particle’s position found so far.

3.3 Multiobjective Evolutionary Algorithms

There are several variants of multiobjective evolutionary algorithms
(MOEAs). Recent MOEAs, however, can be classified into a general scheme. First, the ini-
tial population is filled by randomly generated solutions. Next, given the objective functions
to be minimized, the population is evaluated and ranked on the basis of non-domination
and distribution. Based on this rank, some of the best candidates are chosen to seed the
next generation by applying variation operators. Next, the non-dominated solutions from
both, the parents and offspring population are merged to become the parents for the next
population. This process is repeated until a stop condition is reached.

The main difference of recent MOEAs with respect to earlier MOEAs is the use of
elaborated forms of elitism (i.e. recent MOEAs spend a considerably part of their efforts on
the selection of the best distributed non-dominated solutions and on mechanisms aimed to
improve their convergence time). The aim of elitism is mainly to retain the non-dominated
solutions generated during the search. The general pseudocode of a MOEA is given in
Algorithm 7.

Algorithm 7 The general scheme of a MOEA
1: Initialize population with randomly generated solutions
2: Evaluate each solution
3: while stop condition is not reached do
4: Select parents for reproduction (Pareto Selection Mechanism)
5: Apply variation operators to the parents selected
6: Evaluate new candidates
7: Select the best individuals (among all) for the next generation (Survivor Selection Mechanism

and retention of Non-Dominated Solutions)
8: end while

3.3.1 Multi-Objective Evolutionary Components

This Section will provide a description of mono/multiobjective evolutionary algorithms
that is based on an unifying view presenting a general scheme that forms the common basis
of most of the current variations reported in the specialized literature.

Initialization, parent selection mechanism, variation operators and survivor selection
mechanism are the main components of an evolutionary algorithm [31]. We briefly discuss
them below, and we explain their role in MOEAs.
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3.3.2 Initialization

Like in single-objective EAs, the initial population is filled by randomly generated so-
lutions (normally, a uniform distribution is adopted). The aim of this process is to spread
solutions uniformly throughout the search space.

3.3.3 Parent Selection Mechanism

This mechanism is responsible for selecting the individuals who will become parents to
give rise to the next generation based on their quality. The parent selection mechanism is
typically probabilistic. Thus, non-dominated individuals have a higher probability of being
selected. Nonetheless, dominated individuals are often given a small (but non-zero) chance
of survival. There is evidence that indicates that the parent selection mechanism has a
significant impact on the performance of a MOEA. For example in [97] it was discovered
that the recombination of spatially dissimilar solutions tended to produce offspring that
performed relatively badly, so it was necessary that the parent selection mechanism chose
well-distributed but not spatially dissimilar solutions, for recombination purposes. The
main drawback, if we pretend to select spatially similar solutions in the parent selection
mechanism, is that it could be possible to lose promising points which are located far
away from the majority. A good solution to solve this problem is to interact with an
external archive, such that the algorithm takes the parents from here (this would avoid
losing promising points). Furthermore, a good mechanism to keep diversity and to divide
located solutions into clusters based on their spatial similarity is necessary. In this case,
clustering techniques are needed.

A good clustering technique should be able to group the solutions with respect to their
spatial similarity (as is shown in Figure 3.1).

Knowles [70] identified several features or dimensions of quality of mechanisms for pro-
moting speciation and the maintenance of diversity:

1. Time complexity – particularly in terms of the population size.

2. Selection pressure and the exploration/exploitation tradeoff.

3. What measure of diversity is adopted: genotypic vs phenotypic in EAs, and different
tradeoffs in objective space in MOEAs.

4. Accuracy and stability – how closely the method approaches the desired number of
solutions on each optimum (usually related to the fitness of the optimum) and how
steadily it maintains these numbers as selection continues i.e. in the steady state.

5. Robustness to optima of different sizes and shapes, and to optima distributed non-
uniformly in the search space.

6. Parameterization/self-adaptiveness. How much a priori knowledge is needed about
the size, position and number of optima in the solution space in order to apply the
technique, how many parameters need to be fine-tuned, and how much robustness
there is if parameters are not set accurately.
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Figure 3.1: The top figure shows the location of 4 swarms clustered in the variable space
of Kursawe’s test function (see Section 2.5.3), and the figure at the bottom shows the same
in the objective function space.
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In addition to the previous features, the parent selection mechanism should include the
following desirable characteristics:

• To interact with an external archive, with the aim of avoiding losing promissory points.

• To group and select spatially similar solutions, with the aim of avoiding the production
of offspring that perform poorly.

• To maintain enough diversity in the population, with the aim of avoiding premature
convergence.

In general, the clustering problem is to find q groups of similar elements, from a collection
of p elements, where p > q [130].

Clustering techniques are grouped into two different classes: hierarchical and partitional
clustering methods.

Hierarchical clustering techniques organize the data into a nested sequence of groups.
Partitional clustering methods generate a single partition of the data in an attempt to
recover natural groups present in the data [58]. Hierarchical clustering methods, generally
require only the proximity matrix among the objects, whereas partitional techniques expect
the data in the form of a pattern matrix.

• Hierarchical Agglomerative Clustering Algorithms: These methods start with
disjoint clustering, which places each of the n objects in an individual cluster. The pro-
cess concludes with a procedure for transforming a proximity matrix into a sequence
of nested partitions. Two algorithms belonging to this class are briefly described next.

– Johnson’s algorithm: This algorithm is a hierarchical clustering method [63].
The pseudocode of this algorithm is shown in Algorithm 8.

Algorithm 8 Single-link clustering

1: Begin with the disjoint clustering having level L(0) = 0 and sequence number m = 0.
2: repeat
3: Find the least dissimilar pairs of clusters in the current clustering, say pair (r), (s),
4: According to d[(r), (s)] = min{d[(i), (j)]} where the minimum is over all pairs of clusters in

the current clustering.
5: Increment the sequence number: m = m + 1. Merge clusters (r) and (s) into a single cluster

to form the next clustering m. Set the level of this clustering to L(m) = d[(r), (s)]
6: Update the proximity matrix, D, by deleting the rows and columns corresponding to clus-

ters (r) and (s) and adding a row and a column corresponding to the newly formed cluster.
The proximity between the new cluster, denoted (r, s) and the old cluster (k) is defined as:
d[(k), (r, s)] = min{d[(k), (r)], d[(k), (s)]}

7: until objects are not in N clusters.

– Average linkage method: Another well-known hierarchical algorithm is the
average linkage method proposed by Morse [90] which has been found successful
in practice. The pseudocode of this algorithm is shown in Algorithm 9.
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Algorithm 9 Average-linkage method
1: output
2: P̄ external set
3: N̄ external set’s maximum size
4: output
5: P̄t+1 updated external set
6: Initialize cluster set C; each individual i ∈ P̄ constitutes a distinct cluster: C =i∈P̄ {{i}}.
7: while C > N̄ do
8: Calculate the distance of all possible pairs of clusters. The distance dc of two clusters c1 and

c2 ∈ C is given as the average distance between pairs of individuals across the two clusters.
9: Determine two clusters c1 and c2 with minimal distance dc; the chosen clusters amalgamate

into a larger cluster: C = C{c1, c2}u{c1uc2}
10: end while

• Partitional clustering methods: The K-means algorithm is a well-known parti-
tional clustering method. Its methodology consists of dividing the data into K clus-
ters where K is a user-specified parameter. The K-means algorithm starts with K
centroids (K randomly selected solutions, represent the K centroids) and iteratively
performs the following steps [39]:

– assign each data instance to the cluster whose centroid is nearest to that instance;

– compute the new centroids of each cluster.

These two steps are iteratively performed until no data instance moves from one
cluster to another.

The basic idea is to cluster each solution to its nearest centroid, such that the distance
between each instance and its nearest centroid is minimized.

3.3.4 Variation Operators

The goal of variation operators is to create new non-dominated individuals derived from
the old ones. The variation operators can be used for exploration (search in an untested
region of the search space) or exploitation (search for better solutions in the vicinity of
good ones). Variation operators should be used with a strong exploration emphasis at the
beginning of the search, and with an exploitation emphasis at the end of the execution of
the evolutionary algorithm.

Variation operators vary according to the evolutionary paradigm adopted. It is also
important to note that variation operators are representation-dependent. That is, for dif-
ferent representations different variation operators have to be defined. The most widely
used variation operators are mutation and recombination.

3.3.4.1 Mutation

The mutation operator is used to create a new individual solution from an old one by
applying some kind of randomized change to the genotype. Mutation is normally used as
an exploration operator.



40 Evolutionary Algorithms

3.3.4.2 Recombination

The role of recombination is to create new individual solutions from the information con-
tained within two or more parent solutions, with the aim that each new offspring has desir-
able features from its ancestors, but different to them. Recombination is usually adopted
as an exploitation operator.

Since there are many recombination operators proposed in the specialized literature,
choosing a “good” recombination operator plays an important role when we try to solve
a specific multiobjective optimization problem. Toscano and Coello [114] found that there
are recombination operators that perform better than others in multiobjective optimization
problems (e.g. simulated binary crossover [26] performs better than arithmetical crossover
in the presence of a disjoint Pareto optimal set).

3.3.5 Survivor Selection Mechanism

The survivor selection mechanism3 is similar to the parent selection mechanism, but it
is used at a different stage of the evolutionary cycle. The survivor selection mechanism
is invoked after having created the offspring from the parents selected [31]. Since the
population size in an evolutionary algorithm is usually constant we need to decide which
individuals (from the union of parents and offspring) will be allowed to survive for the next
generation. DeJong [30] proposed a methodology that avoids a performance degradation
by copying the best individual from the parent generation to the next. This strategy is
commonly known as elitism. However, as the notion of Pareto dominance is normally used
in multiobjective optimization, then the design of an elitist mechanism becomes elusive. One
could retain all the non-dominated individuals generated (since they all are conceptually
equally good). However, this is normally impractical because of the very large number of
solutions that may be necessary to store.

A possible solution is to use a historical archive where the non-dominated solutions are
stored. Historical archives have been studied in more detail in recent years, and a number
of mechanisms have been proposed to encourage a good distribution of the solutions stored
in the archive [71, 80, 70, 66, 69].

Since it is normally the case that a bound is imposed on the size of the external
archive, an additional selection mechanism is usually necessary to discriminate among non-
dominated solutions. This additional mechanism should choose those solutions which are
better spread along the known Pareto front (It is important to note that the survivor selec-
tion mechanism should be applied in objective function space, whereas the parent selection
mechanism should be applied in design variable space).

The easiest possible implementation in this regard is a historical archive in which all
the non-dominated vectors will be stored after each generation (removing any dominated
solutions). The adaptive-grid is another algorithm commonly used [71]. It is an external
file with a diversity approach based on geographical distribution of solutions in objective
function space. ǫ-dominance proposed in [80] is a fast algorithm for maintaining the diversity
based on ǫ-dominance and ǫ-Pareto optimality [87]. Clustering techniques [39] are also
suitable to be included in the survivor selection mechanism.

3In this work, survivor selection mechanism and replacement mechanism will be used interchangeably.
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3.3.5.1 Using a Historical Archive of Solutions

The basic idea is to use an external archive to store all the solutions that are non-dominated
with respect to the contents of the archive.

The function of the external archive is to decide whether a certain solution should be
added or not to the archive. The decision-making process is the following (the same but in
pseudocode form is shown in Algorithm 10).

After the MOEA finishes one cycle, the non-dominated vectors found are extracted from
the final population and are compared (on a one-per-one basis) with respect to the contents
of the external archive. If the external archive is empty, then the current solution is accepted
(see case 1 in Figure 3.2). If this new solution is dominated by an individual within the
external archive, then such a solution is automatically discarded (see case 2 in Figure 3.2).
Otherwise, if none of the elements contained in the external population dominates the
solution wishing to enter, then such a solution is stored in the external archive (see case 3
in Figure 3.2). If there are solutions in the archive that are dominated by the new element,
then such solutions are removed from the archive (see case 4 from Figure 3.2).

Finally, the external population is normally bounded in size. If this is the case, once
the external population has reached its maximum allowable capacity, an extra mechanism
is invoked to encourage diversity in the archive (see case 5 from Figure 3.2). Otherwise, the
external archive will not accept any other solution, until a space is freed.

Algorithm 10 External archive(solution)

1: if external-archive E = φ then
2: store solution in E
3: else if solution dominates E then
4: eliminate dominated individuals
5: store solution in E
6: else if solution is not dominated by E then
7: if E is not full then
8: store solution in E
9: Call-an-additional-mechanism-to-keep-diversity

10: end if
11: end if
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4
Multiobjective Optimization
Techniques

4.1 Introduction

S
ince the economist Vilfredo Pareto introduced in 1896 the compromise solution concept
[95], several multiobjective optimization techniques have been developed.

This chapter introduces the state-of-the-art related to multiobjective optimization. The
main traditional and evolutionary multiobjective methods in current use are briefly reviewed
in Sections 4.2 and 4.3, respectively.

4.2 Traditional Techniques

The Operations Research community has developed more than 30 multiobjective opti-
mization algorithms [92, 87]. A general classification of mathematical programming tech-
niques used for multiobjective optimization is shown in Figure 4.1. The main approaches
included in this taxonomy are briefly discussed next.

4.2.1 No Preference Information

We consider within this group simple methods where the decision maker does not provide
any information regarding the type of non-dominated solutions that he or she prefers.
These methods are usually adopted when the decision maker does not have any particular
preference for certain types of solutions and is satisfied with any Pareto optimal solution
[87].

Some methods included under this category are:

• Method of the global criterion [125, 127].
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Figure 4.1: A classification of some methods used to conduct multiobjective optimization
using mathematical programming techniques

• Multiobjective proximal bundle method [83].

4.2.2 A priori Methods

In these methods the preference specification is provided before the solution process.
The main drawback of these methods is that the desirable features for the solutions of an
arbitrary problem are rarely known in advance. The most important techniques within this
class are the following:

• Value function method [64].

• Lexicographic ordering method [33].

• Goal programming [11]

4.2.3 A posteriori Methods

These methods produce a Pareto optimal set (or part of it), through the use of a com-
putationally expensive process. The decision maker selects the most preferred solution from
among all the available alternatives.

These methods can be divided into two classes: those that can find the whole Pareto
front, and those that can only generate those points which are located on each farthest end
of the Pareto front.

The main advantages of these methods are that the solutions are independent from
the decision maker’s preference. Therefore the analysis has to be performed only once.
However, they have some disadvantages such as the computational cost, which in most of
these methods tends to be prohibitively high (computationally speaking) and usually there
are too many solutions to choose from, which complicates the decision-making process.
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Some examples of this type of approach are shown below:

• Weighting method [40, 126].

• ǫ-constraint method [47].

• Method of weighted metrics [127].

• Achievement scalarizing function approach [121].

4.2.4 Interactive Methods

This type of method is more developed than the classes previously described. Methods
in this class work based on the hypothesis that the decision maker is unable to indicate
preference information a priori because of the complexity of the problem. Thus, the decision
maker specifies and adjusts his or her preferences at the same time as he or she is learning
more about the problem. Andersson [2] lists some advantages of this type of method:

• There is no need for a priori preference information.

• Only local preference is needed.

• It is a learning process in which the decision maker gets a better understanding of the
problem.

• As the decision maker takes an active part in the search it is more likely that he or
she accepts the final solution.

And some disadvantages:

• The solutions depend of how well the decision maker can articulate his or her prefer-
ences.

• A high effort is required from the decision maker during the whole search process.

• The solution depends of the behavior of the decision maker.

The basic algorithm for multiobjective optimization used by this type of approach [87]
can be seen in Algorithm 11.

Algorithm 11 Basic algorithm of an interactive method

Find a feasible solution
repeat

Interact with the decision maker (introduction of preferences)
Obtain a new solution according to the user’s preferences

until a solution is accepted

Some methods grouped under this category are the following:

• Interactive surrogate worth trade-off method [10].
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• Geoffrion-Dyer-Feinberg method [42].

• Sequential proxy optimization technique [105].

• Tchebycheff method [112].

• Reference point method [122].

• GUESS method [7].

• Light Beam search [59].

• Reference direction approach [73].

• NIMBUS method [88].

4.2.5 Drawbacks of the Conventional Techniques

Traditional multiobjective methods are usually computationally expensive. Consequently,
it is difficult to obtain solutions in polynomial time if we increase the complexity of the
problem. And, even when these methods reach the true Pareto front of a problem, they
generate only one solution at a time (i.e., they need to be run several times from differ-
ent starting points). Furthermore, traditional mathematical programming techniques are
normally highly susceptible to the shape or continuity of the Pareto front.

4.3 Evolutionary Techniques

The first notion about the use of evolutionary algorithms in multiobjective problems
dates back to the mid-1960s. Rosenberg’s Ph. D. thesis [102] included a suggestion about
how to use multiple properties (closeness with respect to some chemical composition) in his
simulation of genetic and the chemistry of single-cell organisms. Since his implementation
comprised a single property, he could not show a multiobjective approach in his work.
However, this work was the first indicative of the use of evolutionary algorithms to deal
with several objective functions.

The first practical implementation of a multiobjective evolutionary algorithm was per-
formed by Schaffer [106] in the mid-1980s. After this novel work, practically there was no
interest in the area until the publication of Goldberg’s book [43] in which the concept of
“Pareto ranking” was introduced. Pareto ranking is a selection scheme which basically con-
sists on selecting individuals based not on their fitness, but on Pareto dominance, in such a
way that the non-dominated individuals (i.e. the non-dominated vectors) of the population
have all the highest fitness (they all have the same fitness).

In the mid-1990s the area now called “evolutionary multiobjective optimization” had
its greatest development. It was during that period that researches proposed algorithms
that became widely used (e.g. MOGA [37], the NSGA [110] and the NPGA [55]). The last
ten years have produced more sophisticated algorithms which are both more effective and
efficient than their predecessors (e.g., the NSGA-II [110], PAES [71], SPEA [137], SPEA2
[134]).
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The area has become increasingly popular in the last few years as reflected by a consid-
erable number of publications 1.

There are several mutiobjective evolutionary algorithms in the specialized literature.
Coello [13] classifies them as follows:

• Simple approaches:

– Aggregating functions.

– Goal programming.

– Goal attainment.

– ǫ-constraint method.

• Approaches not based on the notion of Pareto optimum.

– VEGA.

– Lexicographic ordering.

– Using gender to identify objectives.

– Weighted Min/Max approach.

– Use of randomly generated weights and elitism.

• Approaches based on the notion of Pareto optimum.

– MOGA.

– NSGA and NSGA-II.

– NPGA.

– SPEA and SPEA2.

– PAES.

– MicroGA.

Next, we will provide a brief description of the most significant characteristics of the
approaches that are most representative of the area (the others are described in detail
somewhere else [13, 19]).

4.3.1 Vector Evaluated Genetic Algorithm (VEGA)

David Schaffer modified [107] the GENESIS’ [45] selection process so that it could
handle multiple objectives. The resulting algorithm was called the Vector Evaluated Genetic
Algorithm (VEGA). This algorithm is classified as a criterion selection technique. The
general idea is that, a population of size M must be subdivided into k subpopulations
(where k is the number of objectives). These subpopulations are then shuffled together
to obtain a new population of size M . Finally crossover and mutation are applied to the
resulting population. This process is performed until a stop condition is reached. The
pseudocode of this algorithm is shown in Algorithm 12.

1See the EMOO repository which contains over 2000 bibliographic references:
http://delta.cs.cinvestav.mx/˜ccoello/EMOO
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Algorithm 12 VEGA Algorithm

Initialize population with randomly generated solutions
Evaluate each solution
while stop condition is not reached do

Generate k sub-populations
Perform proportional selection to each subpopulation
Mix the individuals from the subpopulations into one population
Apply crossover
Apply mutation
Evaluate new candidates

end while

4.3.2 Multiobjective Genetic Algorithm (MOGA)

This approach was proposed by Fonseca & Fleming [37]. In this technique, the ranking
process is based on Pareto dominance (i.e. the non-dominated individuals will be assigned
rank 1, and the ranking assigned to the other individuals proportionally increases with
respect to the number of individuals that dominate them). The rank position is then given
by the following expression:

Rank(xi, t) = 1 + pt
i (4.1)

where:

xi = the ith individual.

t = current generation.

pt
i = number of individuals that dominate to the ith individual at generation t .

Fitness assignment is performed in the following way [37]:

1. Sort population according to rank.

2. Assign fitness to individuals by interpolating from the best (rank 1) to the worst (rank
n ≤ M) in the way proposed in [43], according to some function, usually linear, but
not necessarily.

3. Average the fitness of individuals with the same rank, so that all of them are sampled
at the same rate. This procedure keeps the global population fitness constant while
maintaining appropriate selective pressure, as defined by the function used.

The pseudocode of MOGA is shown in Algorithm 13.

4.3.3 Niched Pareto Genetic Algorithm (NPGA)

This approach, proposed by Horn & Nafpliotis [54], applies a Pareto dominance based
tournament selection on a subset of the whole population. The methodology consists on
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Algorithm 13 MOGA Algorithm

Initialize population with randomly generated solutions
Evaluate each solution
while stop condition is not reached do

Apply rank based on Pareto dominance
Compute niche count
Apply linearly scaled fitness
Apply shared fitness
Apply selection via stochastic universal sampling
Apply single point crossover
Apply mutation
Evaluate new candidates

end while

comparing two individuals with respect to a (randomly chosen) subset of the population
(tournament size is the parameter that indicates the size of the subset). If after this com-
parison, there is no single winner (i.e. there is a single winner only if one of the contenders
is non-dominated with respect to the subset adopted and the other is dominated.), then
fitness sharing is used to solve the tie [44, 54]. The performance of the approach may be
negatively affected if a wrong tournament size value is selected (e.g., if a very small size is
adopted). The pseudocode of the NPGA is shown in Algorithm 14.

Algorithm 14 NPGA Algorithm

Initialize population with randomly generated solutions
Evaluate each solution
while stop condition is not reached do

Apply specialized binary tournament selection
if both candidates are dominated or non-dominated then

Apply specialized fitness sharing:
Select candidate with lower niche count

end if
Apply single point crossover
Apply mutation
Evaluate new candidates

end while

4.3.4 Non-dominated Sorting Genetic Algorithm (NSGA)

The Non-dominated Sorting Genetic Algorithm was proposed by Srinivas & Deb in
1994 [110]. The NSGA is based on several layers of classifications of the individuals as
suggested by Goldberg [43]. Before selection is performed, the population is ranked on
the basis of non-domination: all non-dominated individuals are classified into one category
(with a dummy fitness value, which is proportional to the population size, in order to
provide an equal reproductive potential for these individuals). Then, this group of classified
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individuals is ignored and another layer of non-dominated individuals is considered. The
process continues until all individuals in the population are classified. The NSGA uses
fitness sharing to maintain diversity.

Since individuals in the first front have the maximum fitness value, they always get more
copies than the rest of the population. This allows to search for non-dominated regions,
and results in convergence of the population toward such regions. Figure 4.2 shows the use
of the layers in the NSGA, and Algorithm 15 shows the NSGA’s pseudocode.

f1
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��

��

��

�� Individuals from layer 1.

Individuals from layer 2.

Individuals from layer 3.

Layer 3

Layer 2

Layer 1

Figure 4.2: Graphical representation of the layers adopted by the NSGA.

A second version of this algorithm, called NSGA-II, was recently proposed by Deb et
al. [28]. This algorithm solves most of the problems of the original version [13].

The NSGA-II is more efficient (computationally speaking) than the original NSGA [110],
it uses elitism and a crowded comparison operator that keeps diversity without specifying
any additional parameters. It also incorporates elitism (through the use of (µ+λ)-selection),
a crowded comparison operator and it keeps diversity without specifying any additional pa-
rameters. It remains as one of the most competitive multiobjective evolutionary algorithms
known to date.

4.3.5 Strength Pareto Evolutionary Algorithm (SPEA)

The Strength Pareto Evolutionary Algorithm (SPEA) was proposed by Zitzler & Thiele
[137]. SPEA uses a mixture of preestablished techniques [136]. However, this algorithm
was a novelty, since it introduced the use of an external non-dominated set (which is an
archive containing non-dominated solutions previously found) to keep a historical record
of the non-dominated vectors found along the evolutionary process. To manage diversity
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Algorithm 15 NSGA Algorithm

Initialize population with randomly generated solutions
Evaluate each solution
while stop condition is not reached do

Apply rank based on Pareto dominance in each layer
Compute niche count
Apply shared fitness
Apply selection via stochastic universal sampling
Apply single point crossover
Apply mutation
Evaluate new candidates

end while

on this external set, Zitzler & Thiele used a clustering technique called “average linkage
method” [90].

The pseudocode of SPEA is shown in Algorithm 16.

A second version of this algorithm called SPEA2 was recently proposed by Zitzler et al.
[134]. The main differences of SPEA2 in comparison to SPEA are [134, 133]:

• An improved fitness assignment scheme is used, which takes into account for each
individual how many individuals it dominates and how many dominate it.

• A nearest neighbor density estimation technique is incorporated which allows a more
precise guidance of the search process.

• A new archive truncation methods guarantees the preservation of boundary solutions.

Algorithm 16 SPEA Algorithm

Initialize population P with randomly generated solutions
Evaluate each solution
Create empty external set E
while stop condition is not reached do

Copy non-dominated members of P to E
Remove elements from E which are covered by any other member of E
if maximum capacity of E has been exceeded then

Decide the elements to remove using clustering (and delete them)
end if
Evaluate individuals from P and E
Apply binary tournament selection to select individuals from P + E
Apply crossover
Apply mutation

end while
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4.3.6 Pareto Archived Evolution Strategy (PAES)

This algorithm (whose pseudocode is shown in Algorithm 17) was introduced by Knowles
& Corne [71]. PAES consists of a (1+1) evolution strategy (i.e., a single parent that gen-
erates a single offspring) in combination with a historical archive that records some of the
non-dominated solutions previously found. This archive is used as a reference set against
which each mutated individual is compared. Such a historical archive is the elitist mecha-
nism adopted in PAES. However, an interesting aspect of this algorithm is the procedure
used to maintain diversity which consists of a crowding procedure that divides objective
function space in a recursive manner. Each solution is placed in a certain grid location
based on the values of its objectives (which are used as its “coordinates” or “geographical
location”). A map of such grid is maintained, indicating the number of solutions that reside
on each grid location. Since the procedure is adaptive, no extra parameters are required
(except for the number of divisions of the objective space).

Algorithm 17 PAES Algorithm

Initialize single population parent p
Evaluate p
Add p to the archive
while stop condition is not reached do

Mutate p to produce child c and evaluate fitness
if p dominates c then

Discard c
else if dominates p then

Replace p with c, and add c to the archive
else

Determine if p or c will be the new current solution and
Determine whether to add c to the archive

end if
end while

4.3.7 Multiobjective Micro Genetic Algorithm (MicroGA)

This approach was introduced by Coello Coello & Toscano Pulido [16, 17]. A micro-
genetic algorithm is a GA with a small population size (≤ 5 individuals ) and a reinitializa-
tion process. The way in which the microGA works is illustrated in the pseudocode shown
in Algorithm 18. First, a random population is generated. This random population feeds
the population memory, which is divided in two parts: a replaceable and a non-replaceable
portion. The non-replaceable portion of the population memory never changes during the
entire run and is meant to provide the required diversity for the algorithm. In contrast, the
replaceable portion experiences changes after each cycle of the microGA.

The population of the microGA at the beginning of each of its cycles is taken (with a cer-
tain probability) from both portions of the population memory so that there is a mixture of
randomly generated individuals (non-replaceable portion) and evolved individuals (replace-
able portion). During each cycle, the microGA undergoes conventional genetic operators.
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After the microGA finishes one cycle, two non-dominated vectors are chosen2 from the final
population and they are compared with the contents of the external memory (this memory
is initially empty). If either of them (or both) remains as non-dominated after comparing
it against the vectors in this external memory, then it is included there (i.e., in the external
memory). This is the historical archive of non-dominated vectors. All dominated vectors
contained in the external memory are eliminated.

The microGA uses then three forms of elitism: (1) it retains non-dominated solutions
found within the internal cycle of the microGA, (2) it uses a replaceable memory whose
contents is partially “refreshed” at certain intervals, and (3) it replaces the population of
the microGA by the nominal solutions produced (i.e., the best solutions found after a full
internal cycle of the microGA).

Algorithm 18 MICROGA Algorithm

Generate randomly the initial population P of size N and store P in the population
memory Mr and Me

i=0
while i < GMax do

Get P t from M
repeat

Apply binary tournament selection
Apply two-point crossover
Apply uniform mutation
Apply elitism
Produce a new population

until nominal convergence is reached
Copy solutions to external memory
if i mod replacement cycle then

Apply second form of elitism
end if
i=i+1

end while

4.3.8 ǫ-MOEA

ǫ-Multiobjective Evolutionary Algorithm (ǫ-MOEA) was proposed by Deb et al [27].
ǫ-MOEA is based on the ǫ-dominance concept introduced in [79]. The core idea [27] is to
have two population co-evolving: the EA population P and the archive population E. The
procedure begins initializing the population P with random solutions. Then P feeds E with
ǫ-non-dominated solutions. Next, two solutions (p and e) are randomly selected, one from P
and one from E. After that, p and e are mated to create λ offspring solutions. Finally, each
offspring solution is compared with P and E for their possible inclusion. The mechanism to
maintain diversity lies consists of dividing the search space into a certain number of hyper-

2This is assuming that there are two or more non-dominated vectors. If there is only one, then this vector
is the only one selected.
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boxes. Such hyper-boxes will maintain the algorithm’s diversity, since each hyper-box can
be occupied by only a single solution.

A graphical illustration [27] of the ǫ-MOEA procedure is shown in Figure 4.3 while its
pseudocode is shown in Algorithm 19.

Algorithm 19 ǫ-MOEA Algorithm

Generate randomly the initial population P (0) of size N
Initialize E(0) from P (0)’s ǫ-non-dominated solutions
i=0
while i < GMax do

Select the solution p from P (i)
Select the solution e from E(i)
Apply mating to select λ offspring
P ← P ∪ λ | λ ǫ-dominates P
E ← E ∪ λ | λ ǫ-dominates E
i=i+1

end while

4.3.9 Multiobjective Particle Swarm Optimization

There have been several recent proposals to extend PSO to handle multiple objectives.
We will review next the most important of them:

• The algorithm of Moore and Chapman [89]: This algorithm was presented in an
unpublished document and it is based on Pareto dominance. The authors emphasize
the importance of performing both an individual and a group search (a cognitive
component and a social component). However, the authors did not adopt any scheme
to maintain diversity.

• The Swarm Metaphor of Ray & Liew [100]: This algorithm uses Pareto domi-
nance and combines concepts of evolutionary techniques with the particle swarm. The
approach uses crowding to maintain diversity and a multilevel sieve to handle con-
straints (for this, the authors adopt the constraint and objective matrices proposed
in some of their previous research [99]).

• The algorithm of Parsopoulos & Vrahatis [96]: This algorithm adopts an aggre-
gating function (three types of approaches were implemented: a conventional linear
aggregating function, a dynamic aggregating function and the bang-bang weighted
aggregation approach [62] in which the weights are varied in such a way that concave
portions of the Pareto front can be generated).

• Dynamic Neighborhood PSO proposed of Hu and Eberhart [56]: In this
algorithm, only one objective is optimized at a time using a scheme similar to lexico-
graphic ordering. Lexicographic ordering tends to be useful only when few objective
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Figure 4.3: Illustration of the ǫ-MOEA procedure

functions are used (two or three), and it may be sensitive to the ordering of the ob-
jectives. The idea of the dynamic neighborhood is, however, quite interesting and is
novel in this context.

• The Multiobjective Particle Swarm Optimizer (MOPSO) of Coello & Lechuga
[15]: This proposal is based on the idea of having a global repository in which every
particle will deposit its flight experiences after each flight cycle. Additionally, the
updates to the repository are performed considering a geographically-based system
defined in terms of the objective function values of each individual; this repository is
used by the particles to identify a leader that will guide the search.

This approach also uses a mutation operator that acts both on the particles of the
swarm and on the range of each design variable of the problem to be solved. The
pseudocode of MOPSO is shown in Algorithm 20.

• The approach of Fieldsend & Singh [32]: This approach incorporates an un-
constrained elite archive (in which a special data structure called “dominated tree” is
adopted) to store the non-dominated individuals found along the search process. The
archive interacts with the primary population in order to define local guides. This
approach also uses a “turbulence” operator which is basically a mutation operator
that acts on the velocity value used by PSO.
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• The algorithm of Mostaghim & Teich [91]: This approach uses a sigma method
in which the best local guides for each particle are adopted to improve the convergence
and diversity of a PSO algorithm used for multiobjective optimization. They also
use a “turbulence” operator, but applied on decision variable space. The use of the
sigma values increases the selection pressure of PSO (which was already high). This
may cause premature convergence in some cases (e.g., in multifrontal problems). In
this sort of approach, the authors provide comparisons with SPEA2 [134] and the
dominated trees of Fieldsend & Singh [32] using four test functions and the coverage
metric.

• The modified Dynamic Neighborhood of Hu et al. [57]: This approach uses
a secondary population (called “extended memory”) and introduces some further im-
provements to their dynamic neighborhood PSO approach [56]. Nevertheless, it is
worth indicating that this approach completely fails in generating the true Pareto
front of some problems (see [57] for details). Hu et al. [57] also compared their al-
gorithm with respect to the Strength Pareto Evolutionary Algorithm (SPEA) [137]
using the set coverage metric [130].

• The non-dominated Sorting PSO of Li [81]: This approach incorporates the
main mechanisms of the NSGA-II [28] into a PSO algorithm. The proposed approach
showed a very competitive performance with respect to the NSGA-II (even outper-
forming it in some cases).

• The PS-EA of Srinivas and Hou [111]: The Particle Swarm Inspired Evolution-
ary Algorithm (PS-EA), is a hybrid between PSO and an evolutionary algorithm. The
authors argue that the traditional PSO equations are too restrictive when applied to
multi-constrained search spaces. Thus, they propose to replace the PSO equations
with the so-called self-updating mechanism, which emulates the workings of the equa-
tions. Such mechanism uses an inheritance probability tree to update each individual
in the population. An interesting aspect of this approach is that the authors also
use a mechanism to dynamically adjust the inheritance probabilities in the inheri-
tance probability tree based on the status of the algorithm at a certain moment in
time. The approach uses a memory to store the elite particles and does not use a
recombination operator.

• The approach of Zhang et al. [128]: This approach attempts to improve the
selection of gbest and pbest when the velocity of each particle is updated. For each
objective function, there exist both a gbest and a pbest for each particle. In order to
update the velocity of a particle, the algorithm defines the gbest of a particle as the
average of the complete set of gbest particles. Analogously, the pbest is computed using
either a random choice or the average from the complete set of pbest values. This
choice depends on the dispersion degree between the gbest and pbest values of each
particle.

• The approach of Bartz-Beielstein et al. [4]: This approach starts from the idea of
introducing elitism (archiving) into PSO. Different methods for selecting and deleting
particles from the archive are analyzed to generate a satisfactory approximation of the
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Pareto front. The selection methods analyzed are based on the contribution of each
particle to the diversity of the Pareto front. Deleting methods are either inversely
related to the selection fitness or based on the previous success of each particle. The
authors provide some statistical analysis in order to assess the impact of each of the
parameters used by their approach.

• The approach of Baumgartner et al. [5]: This approach uses weighted sums
(i.e., linear aggregating functions) to solve multiobjective optimization problem. In
this approach, the swarm is equally partitioned into n subswarms, each of which uses
a different set of weights and evolves into the direction of its own swarm leader. The
approach adopts a gradient technique to identify the Pareto optimal solutions.

• The Multi-Species PSO of Chow and Tsui [67]: These authors proposed an
autonomous agent response learning algorithm. They propose to decompose the award
function into a set of local award functions and, in this way, to model the response
extraction process as a multiobjective optimization problem. A modified PSO called
“Multi-Species PSO” is introduced by considering each objective function as a species
swarm. A communication channel is established between the neighboring swarms for
transmitting the information of the best particles, in order to provide guidance for
improving their objective values. Also, the authors propose to modify the equation
used to update the velocity of each particle, considering also the global best particle
of its neighboring species.

• The AWPSO of Mahfouf et al. [82]: This is an enhancement of the original PSO
algorithm which aims to improve the performance of this heuristic in multiobjective
optimization problems. The approach is called the Adaptive Weighted PSO (AWPSO)
algorithm, and its main idea is to modify the velocity by including an acceleration
term which increases with the number of iterations. This aims to enhance the global
search ability of the algorithm towards the end of the run thus helping the approach
to escape from local optima. A weighted aggregating function is also used to guide the
selection of the personal and global best leaders. The authors use dynamic weights
to generate different elements of the Pareto optimal set. A non-dominated sorting
scheme is adopted to select the particles from one iteration to the next one. The
approach was applied to the design of heat treated alloy steels based on data-driven
neural-fuzzy predictive models.

There are a few things worth saying about these previous proposals. Some of them are
not based on Pareto dominance (e.g. [5, 96, 56, 82]). Others are really hybrid approaches
and deviate in an important way from the main precepts of the PSO algorithm (e.g. [67, 111,
100]). The remaining approaches adopt mechanisms that are more standard in evolutionary
multiobjective optimization (i.e., Pareto-based selection and elitism). However, some of
them haven’t been properly validated (e.g. [89, 128]), and most of them are not available in
the public-domain (except for our own MOPSO [15]), and the approach described in [91]3

against which we will compare the performance of our algorithm.

3This approach is not really in the public-domain, but we were able to obtain it from her author.
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Algorithm 20 MOPSO Algorithm

for each particle do
Initialize ~x randomly
Initialize velocity
Evaluate fitness function(~x)
Initialize pbest=~x

end for
repeat

for each particle do
Compute its speed using the following expression on each dimension:
velocity = W × velocity + random(0, 1)× (Pbest − x) + random(0, 1) × (Gbest − x)
Compute the new position using: x = x + velocity on each dimension
Evaluate the new position

end for
Update the contents of the repository REP
if ~x dominates to Pbest then

Pbest = ~x
end if

until maximum number of iterations is not reached

So, our main motivations for developing a new multiobjective particle swarm optimiza-
tion were the following:

• We had previously proposed a multiobjective particle swarm optimization algorithm
which was highly competitive and that remains as the only one (to date) published
in an specialized journal [18]. The experience gained during the development of this
approach led us to foresee the high potential of PSO to serve as a basis for more
powerful multiobjective optimizers.

• None of the existing approaches was designed with an emphasis on efficiency. Thus,
one of our design goals was to perform less than 5, 000 fitness function evaluations,
which is considerably below the number of evaluations reported by any of the other
multiobjective particle swarm optimizers in current use. In fact, as we will see later
on, we were able to design an approach that remains competitive while performing
only 2, 000 fitness function evaluations, which is the lowest number of evaluations
reported to date for any multiobjective particle swarm optimizer.

• It is a well-known fact within the PSO research community that most multiobjective
particle swarm optimizers have problems to converge in some test functions (e.g. [57,
91]), mainly due to a loss of diversity. Additionally, we realized that most researchers
in this area had underestimated the importance of the selection of leaders and the
intrinsic limitations imposed by the lack of a crossover operator in PSO. We decided
to emphasize these issues in our algorithmic design, so that our approach didn’t have
any of these limitations. In fact, as we will see later on, we introduced on approach
based on the use of subsuwarms to generate a good spread of solutions. This approach
is novel in the area, an is one of the key contributions of our proposed algorithm.
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• Finally, we realized that there were no studies available on the parameters fine-tuning
of a multiobjective particle swarm optimizer. Our previous experience in this area (see
[18]) indicated us that the studies done for single-objective particle swarm optimizers
didn’t apply for the multiobjective case. So another goal of our research was to
provide a comprehensive (empirical) analysis of the impact of the parameters in the
performance of our algorithm in an attempt to fill the gap existing in this regard.

4.3.10 Current Trends

The ranking process is one of the main drawbacks of some of the algorithms previously
described, mainly because of its computational cost (this process is O(kM2) per generation,
where k is the number of objective functions and M is the population size). Additionally,
an extra mechanism is required to preserve the population’s diversity (fitness sharing is
usually adopted, which requires a process O(M2) per generation). However, some recent
research has provided new paths to improve the efficiency of evolutionary multiobjective
optimization techniques.

Some researchers have focused on (a) decreasing the non-dominance checking and on
(b) the development of efficient mechanisms for keeping diversity.

Regarding to the first point (a), the main emphasis has been placed on using more
efficient Pareto ranking schemes [61] as well as designing algorithms in which computational
efficiency is obtained at the expense of a higher memory usage [60]. Regarding the second
point (b), the main emphasis has been on the use of clustering techniques or geographically-
based algorithms [130, 131, 71] (i.e. an adaptive grid).

Some researchers have also suggested a distributed genetic algorithm in which Pareto
dominance is only applied to the neighbors in a defined neighborhood [103]. This approach
can solve simultaneously the problems described above. In this approach, Pareto dominance
must be applied to small individual groups in parallel, and there is no need for an additional
mechanism to keep diversity, because it emerges naturally from the distributed population.
However, to take advantage of these features a parallel architecture is needed.

4.3.11 Advantages and Disadvantages of Evolutionary Algorithms for MOPs

Evolutionary algorithms are particularly suitable for multiobjective optimization mainly
because of their flexibility, adaptability and performance. These characteristics make them
suitable to solve problems whose Pareto fronts have different shapes (disconnected, convex
or concave), without any significant distinction in terms of performance. These character-
istics also allow them to locate and exploit promising zones in problems with large search
spaces (traditional techniques assume that the Pareto front is convex and that the objective
functions are differentiable and continuous). Additionally, multiobjective evolutionary al-
gorithms have the inherent ability of finding several members of the Pareto optimal set in a
single run, mainly because they are population-based techniques. Among the evolutionary
algorithms’ drawbacks are: 1) they can not guarantee neither feasible nor optimality solu-
tions, 2) as a consequence of the No Free Lunch Theorem [124], it is impossible to select a
priori the best performer algorithm for a selected problem, and 3) similar to last point, it is
impossible to select the best performer parameters’ values of an algorithm for a predefined
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problem.



5
Multiobjective Particle Swarm
Optimization

Introduction

P
article swarm optimization (PSO) is a relatively recent heuristic inspired by the chore-
ography of a bird flock which has been found to be quite successful in a wide variety

of optimization tasks [65].

Its high speed of convergence and its relative simplicity make PSO a highly viable
candidate to be used for solving not only problems with a single objective function, but also
multiobjective optimization problems [19]. However, there are important issues that have
to be dealt with when extending PSO for solving multiobjective optimization problems (e.g.
the selection of leaders).

This chapter is organized as follows: First, a simple modification to the PSO algorithm
to be able to handle multiple objectives is presented. Next, the approach is modified
to generate multiple solutions in a single run. Then, in order to reduce the number of
solutions and increase the distribution of the solutions obtained we add an adaptive grid,
the ǫ-dominance concept, and a hyper-plane distribution. Next, the algorithm is modified
to maximize the spread of the solutions along the true Pareto front. As a final result, we
present an efficient1 MOEA, whose performance is compared with respect to approaches
representative of the state-of-the-art in the area, using standard metrics and test functions,
reported in the specialized literature.

1where “efficiency” refers to keeping a low number of fitness function evaluations without decreasing
performance.
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5.1 Multiobjective Particle Swarm Optimization

PSO seems particularly suitable for multiobjective optimization mainly because of the
high speed of convergence that the algorithm presents for single-objective optimization [65].
Based on such behavior, one would expect a multiobjective PSO (MOPSO) to be very
efficient computationally speaking. However, there is no standard (unique) version of a
MOPSO algorithm that had been adopted in the specialized literature.

Next, we present a new proposal developed from scratch to extend the PSO algorithm
to deal with several objectives. In order to propose a competitive algorithm, the entire
design was directed by the MOP’s goals. Based on such goals, three main modifications
were performed to the original PSO algorithm.

1. Modify the algorithm to handle multiple objectives and produce a set of non-dominated
solutions in a single run.

2. Modify the algorithm to obtain a good distribution of solutions.

3. Modify the algorithm to maximize the spread of the non-dominated solutions.

5.2 Handling multiple objectives

Replacing the comparison operator (to determine whether a solution a is better than a
solution b) is a natural modification to a PSO algorithm aimed handle multiple objectives.

The analogy of particle swarm optimization with evolutionary algorithms makes evident
the notion that using a Pareto ranking scheme [43] could be the straightforward way to
extend the approach to handle multiobjective optimization problems. However, if we merge
a Pareto ranking scheme with the PSO algorithm a set of non-dominated solutions will
be produced (by definition, all non-dominated solutions are equally good). Having several
non-dominated solutions implies the inclusion into the algorithm of both: an additional
criteria to decide whether a new non-dominated solution is pbest or gbest and a strategy to
select the guide particles (pbest and gbest).

In order to manage properly the inclusion of a Pareto ranking scheme into the PSO
algorithm, the modifications shown below were performed:

pbest ← ~newpos iff ~newpos � pbest. If the current particle’s position is non-dominated
with respect to its pbest position, then the current value of the pbest position is
replaced with the current solution.

GBEST ← newpos ∪ GBEST iff ¬∃ ~y∗ ∈ GBEST | ~f(~y∗) � ~f(newpos). A new position
belongs to the gbest set if there is no solution in the GBEST set that dominates it.

However, by applying these changes, the selection of an “appropriate” leader becomes a
difficult problem, since there can be more than one leader in the GBEST set. Therefore, an
additional strategy to select one of the multiple gbest to use in the PSO’s velocity formula is
still necessary. Some possible leader selection strategies for this sake are the following: (1)
randomly (a leader is randomly selected—no constraints are imposed on what sort of leader
can a particle choose—), (2) the closest (a particle picks as a leader to the geographically
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closest leader), and (3) one at a time (in this case a single leader is selected by all the
particles at each generation). The third selection strategy has two variants, (3a) particles
follow the leader selected unless a new particle’s position dominates the current leader, then
the new particle becomes the leader to be followed. And (3b), particles follow the leader
selected unless they discover a new non-dominated position.

The four schemes were implemented into the PSO algorithm and executed 30 times
each in 8 test functions. The outputs of the algorithms are presented in Appendix A.
Furthermore, six statistics were measured at each generation.

An analysis from the approaches’ results and statistics by test function (See Section 2.5)
is performed next:

ZDT1’s test function : In Figure A.1 we can see that scheme 2 was the only approach
which could reach the true Pareto front. However, scheme 1 was the approach which
performed best since the solutions discovered were in a narrower range. Figure A.2
shows the algorithms’ behavior. The approach that found more non-dominated solu-
tions (on average) was scheme 2. This algorithm also improved its performance more
frequently than the others.

ZDT2’s test function : In this test function, three algorithms (see Figure A.3) could
reach at least once the true Pareto front (schemes 1, 2 and 3b). However, scheme
1 placed solutions closer to the true Pareto front than the others. This scheme was
trapped in a false Pareto front in only two occasions, while the other algorithms were
attracted by a false Pareto front more frequently.

Figure A.4 shows that a pbest position was updated in almost 1 out of 2 particles in
each generation. It also shows that scheme 1 was the algorithm that converged faster
and could store more solutions.

ZDT3’s test function : From Figure A.6, it is easy to see that the algorithm 2 could
not converge. It seems that if it had had more generations to iterate, it would had
improved its results more than the others, since the other algorithms seem to have
already converged. In Figure A.5, we can see that scheme 1 was the algorithm that
performed best.

ZDT6’s test function : In this test function the four algorithms could reach the true
Pareto front (see Figure A.7). However, in some executions, the algorithms converged
to a single solution.

Kursawe’s test function : Figure A.9 shows that scheme 2 was the algorithm which
performed best, since it was the algorithm that reached more frequently the true
Pareto front, and it stored most of its solutions in a narrower range than the others.
In Figure A.10, we can see that Algorithm 2 had the best performance (it placed more
non-dominated solutions).

Deb1’s test function : In Figure A.11 we can see that all the algorithms had no problems
to reach the true Pareto front of this test function. Figure A.12 shows that the four
algorithms had similar performance. This figure also shows that they converged to
the true Pareto front at an early stage of the search.
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Deb2’s test function : The four algorithms tested placed only a few solutions on the true
Pareto front (see Figure A.13). This occurs, mainly because the algorithms converged
faster and were trapped in a false Pareto front. Figure A.14 shows that scheme 2 was
the algorithm that performed best, since it converged closer to the true Pareto front
and stored more non-dominated solutions.

In general, the approaches that performed best were schemes 1 and 2. On the one hand,
it is evident that the fact of performing a random selection of a gbest (scheme 1) improves
the diversity of the particles and therefore finds more solutions in a single execution. On the
other hand, when solutions follow to the closest leader, they improve their position more
frequently (they do not spend time flying from one far side of the search space to another).

Since schemes 1 and 2 were the approaches that performed best, we propose to use the
union of both (i.e. an algorithm that uses a flip to decide whether to select a random leader
or the closest particle as its gbest). Results from this algorithm are shown in Appendix A.
In Figure A.15, we can see that this algorithm performed best than any of the two separate
schemes that originated it. Algorithm 21 shows the pseudo-code of this proposal.
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Algorithm 21 MOPSO - Step 1
Require: nparticles, dimensions, W, C1 and C2
1: ~gbest← ~x0

2: GBEST ← ∅
3: for i = 0 to nparticles do
4: ~pbesti ← ~xi ← initialize randomly()
5: fitnessi ← f(~xi)
6: velocityid ← 0
7: if ¬∃ ~y∗ ∈ GBEST | ~f(~y∗) � ~f( ~fitnessi) then
8: GBEST ← GBEST ∪ ~xi

9: end if
10: end for
11: repeat
12: for i = 0 to nparticles do
13: if flip(0.5) then
14: gbest← GBESTU(0,|GBEST |)

15: else
16: gbest← y|y ∈ GBEST∪ 6 ∃ z ∈ GBEST |z − xi < y − xi

17: end if
18: for d = 0 to ndimensions do
19: velocityid ←W × velocityid +C1×U(0, 1)× (pbestid−xid)+C2×U(0, 1)× (gbest−xid)
20: xid ← xid + velocityid

21: end for
22: fitnessi ← f(~xi)

23: if fitnessi is ∼ to f( ~pbesti) then

24: ~pbesti ← ~xi

25: end if
26: if ¬∃ ~y∗ ∈ GBEST | ~f(~y∗) � ~f( ~fitnessi) then
27: GBEST ← GBEST ∪ ~xi

28: end if
29: end for
30: until Termination criterion
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Figure 5.1: Graphical representation of the insertion of a new element in the adaptive grid
when the individual lies within the current boundaries of the grid.

5.3 Improving the distribution

The previous Section presented a multiobjective particle swarm optimization which is
able to produce several non-dominated solutions in a single execution. However, in some
occasions this algorithm finds an excessive quantity of non-dominated solutions (since it
does not impose a bound on the total number of solutions). One of the main purposes of
any approach that can manage (optimize) multiple objectives is to simplify the work of the
decision maker. Therefore, it is necessary to deliver to the decision maker a well distributed
set of non-dominated vectors found along the search process.

In order to reduce the non-dominated set, researchers have traditionally used a histor-
ical archive to store the non-dominated solutions found during the evolutionary process
(see Chapter 3). Such archive needs to have an additional algorithm to decide whether a
solution is accepted or not. In this thesis, two main approaches to maintain distribution
are implemented, evaluated and discussed: Adaptive Grid and ǫ- dominance. Additionally,
a novel methodology to maintain a non-dominated set is proposed.

5.3.1 Adaptive Grid

The basic idea is to use an external archive to store all the solutions that are non-
dominated with respect to the contents of the archive. Into the archive, objective function
space is divided into regions as shown in Figure 5.1. Note that if the individual inserted
into the external population lies outside the current bounds of the grid, then the grid has
to be recalculated and each individual within it has to be relocated (see Algorithm 5.2).

The adaptive grid is really a space formed by hypercubes. Such hypercubes have as
many components as objective functions has the problem to be solved. Each hypercube
can be interpreted as a geographical region that contains an n number of individuals. The
main advantage of the adaptive grid is that its computational cost is lower than niching
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Figure 5.2: Graphical representation of the insertion of a new element in the adaptive grid
when this lies outside the previous boundaries of the grid.

(see [71] for a detailed complexity analysis). The only exception would be if the grid had to
be updated at each generation. In such case, the computational complexity of the adaptive
grid would be the same as niching (i.e., O(N2) where N is the population size).

The adaptive grid is used to distribute in a uniform way the largest possible number
of hypercubes. In order to achieve this goal, it is necessary to provide and obtain certain
information which is problem-dependent (e.g., the number of grid subdivisions).

Next, a brief description of the information needed is provided, indicating in each case
how this information is obtained:

Grid boundaries: These are the dimensions of the region that the grid must cover. Such
dimensions are defined by the best and worst fitness values existing in the current
contents of the grid. The upper bound of each component of this region is given by
equation 5.1 (Mini, is the lowest fitness for objective i), and the lowest is defined by
equation 5.2 (Maxi is the largest fitness for objective i).

Mini ← fi(x) | ~x∗ ∈ P and ¬∃ ~y∗ ∈ P s.t. fi(~y∗) < fi(~x
∗) (5.1)

Max← fi(x) | ~x∗ ∈ P and ¬∃ ~y∗ ∈ P s.t. fi(~y∗) > fi(~x
∗), i = 1, 2, . . . , k (5.2)

where:

k = Total number of objectives.

P ∗ = Pareto optimal set found.
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A modification in the adaptive grid in order to reduce the number of updates required
was proposed in [14]. The modifications consisted in adding some extra room to each
grid component. Such extra room is equal to the dimensions of a hypercube, as shown
in Figure 5.3 (the length of each hypercube component is divided by two to allow some
extra room in both grid boundaries).
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Figure 5.3: Graphical representation of the adaptive grid. In this case, we used two objective
functions for ease of understanding (assuming minimization).

Hypercube dimensions: The subdivision (component) size i of each region sizeDivi) is
obtained using the following expression:

sizeDivi ←
Maxi −Mini

nDivs− 1
; i = 1, 2, . . . , k (5.3)

where: k = Total number of objectives.
nDivs = Number of subdivisions of the objective function space.

Region Identification The region (LOCs) to which the solution s belongs is obtained
using:

LOCs =

k,1
∑

i=1,j=k

f(x)i −Mini

sizedivi
∗ ndivsj (5.4)

where:
k = Number of objectives.
f(~x)i = Fitness of the individual ~x with respect to objective i.
sizedivi = Subdivision size for objective i.
and ndivs= Number of subdivisions used.

The pseudo-code of the adaptive grid is shown in Algorithm 22.
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Algorithm 22 Adaptive grid

1: input ~x
2: y ← z|z
3: for all i ∈ 1, ..., m do
4: bi ← log fi

log(1+ǫ)

5: end for
6: b← (b1, ..., m)
7: OUTPUT b{box, index vector}

5.3.2 ǫ-dominance

This is a relaxed form of dominance proposed by Laumanns et al. [80]. The so-called
ǫ-Pareto set is an archiving strategy that maintains a subset of generated solutions. It
guarantees convergence and diversity according to well-defined criteria i.e., ǫ-dominance
and ǫ-Pareto optimality. The general idea is to divide the objective space into boxes of size
ǫ. Each box can be interpreted as a geographical region that contains a single solution.
The approach accepts a new solution into the ǫ-Pareto set if 1) it is the only solution in the
box which it belongs to, 2) it dominates to other(s) solution(s) or 3) it competes against
other non-dominated solution inside the box, but it is closer to the origin vertex of the
box. This algorithm is very attractive both from a theoretical and from a practical point of
view. However, in order to achieve the best performance, it is necessary to provide the size
of the box (the ǫ parameter) which is problem-dependent. Algorithm 23 shows the update
function for the ǫ-Pareto set, and Algorithm 24 shows the function box algorithm.

Algorithm 23 Update function for the ǫ-Pareto set
x

1: input A, f
2: D ← {f ′ ∈ A|box(f) ≺ box(f ′)}
3: if D 6= 0 then
4: A′ ← A ∪ {f}\D
5: else if ∃f ′ : (box(f ′) = box(f)andf ≺ f ′) then
6: A′ ← A ∪ {f}\{f ′}
7: else if ∃f ′ : (box(f ′) = box(f)orf ≺ f ′) then
8: A′ ← A ∪ {f}
9: else

10: A′ ← A
11: end if
12: output A′

Algorithm 24 function box
1: input f
2: for all i ∈ 1, ..., m do
3: bi ← log fi

log(1+ǫ)

4: end for
5: b← (b1, ..., m)
6: OUTPUT b{box, index vector}
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5.3.3 Hyper-plane distribution

The core idea of this proposal is to perform a good distribution of the hyper-plane
space defined by the minima (assuming minimization) from the objectives, and use such
distribution to select a representative subset from the whole set of non-dominated solutions.

The complete pseudo-code is described in Algorithm 25. In words, the algorithm works
as follows: First it accepts a set of non-dominated vectors and a number n of solutions
of the desirable subset as its input. Then, the algorithm selects those vectors which have
the minimum and maximum value of each objective, and it groups them into two sets, the
minima set (called MIN), and the maxima set (called MAX). Using MIN, the algorithm
creates a hyper-plane, and distributes its space into n−1 fixed-size sub hyper-planes. After
that, it computes lines on each subdivision; such lines are perpendicular to the hyper-plane.
Finally, the algorithm returns the closest vectors to each line.

Algorithm 25 Hyper-plane distribution
1: input A, n
2: for all i ∈ 1, ..., o do
3: MIN ←MIN ∪ f(x) | ~x∗ ∈ A and ¬∃ ~y∗ ∈ A s.t. fi(~y∗) < fi(~x

∗)
4: MAX ←MAX f(x) | ~x∗ ∈ A s.t. ¬∃ ~y∗ ∈ A | fi(~y∗) > fi(~x

∗)
5: end for
6: for all i ∈ 1, ..., o do
7: ∆i ← MAX i−MIN i

n−1

8: DIV i
0 ←MIN 0

9: end for
10: for all i ∈ 2, ..., n do
11: DIVi ← DIVi−1 + ∆i

12: end for
13: N ← |MIN 2

2
−MIN2

1

MIN 1

2
−MIN1

1

|
14: m← −1

N

15: for all x ∈ A do
16: for all y ∈ DIV do
17: b← distance(x, y, m)
18: B ← B ∪ b| ¬∃ b∗ = distance(x∗, y, m) | b∗ < b
19: end for
20: end for
21: OUTPUT B

Algorithm 26 distance from a point x to a straight
1: input x, y, m

2: d← (x2−y1−m×(x1−y2)√
(1.0+m2)

)

3: OUTPUT d

In Figure 5.4 we can see an example that aims to clarify the algorithm’s description.
In this example, two objective functions are used. Five non-dominated solutions need to
be selected. So, the hyper-plane (a line in this case) formed by the minima of objective 1
and objective 2 is divided into 4 line segments. Then, each vertex is projected towards the
Pareto front. Finally, the solutions closest to those projected points are selected.
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Figure 5.4: Graphical representation of the hyper-plane distribution.
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5.3.4 Experiment 1

Algorithm 21 described before was independently executed 30 times in several test func-
tions. The parameters of the algorithm were: C1=1.4962, C2= 1.4962, W=0.7298, 40
particles, 50 cycles of execution (150 for Kursawe’s test function).

Such parameters were empirically derived after performing an exhaustive set of experi-
ments.

These parameters result in a total of 2,000 fitness function evaluations (6,000 fitness
function evaluations for Kursawe’s test function). The fitness function evaluations were
increased for this experiment since we wanted to measure an specific aspect (the spread of
solutions) rather than assessing its performance.

The three implementations previously described to select the best distributed non-
dominated individuals were executed on the non-dominated vectors previously found. The
three algorithms were intended to select 50 non-dominated solutions. The scheme based on
the ǫ-Pareto set needed an extra parameter (ǫ). This parameter was calculated in each test
function as follows: Algorithm 21 was executed using a total number of iterations of 200;
the rest of the parameters remained the same as before. Then, the ǫ values were manually
fine-tuned to find an average of 40 non-dominated solutions in each of the 30 executions.

Since, there is no metric specifically designed to measure the distribution of a non-
dominated set over the true Pareto front, we tested the Spacing [108] metric. Such a metric
measures how well-distributed the non-dominated vectors are themselves.

In order to measure the coverage of each algorithm, the Hyper Volume metric [130] was
used. This metric was applied on each algorithm’s execution as follows: Since the vectors to
which the distribution algorithms were applied are the same, we intended to use this metric
to measure if an algorithm loses the solutions that are on each of the function’s extremes.

Tables 5.1 and 5.2 show the results obtained by the three algorithms tested using the
Hyper Volume and the Spacing metrics, respectively. We think that graphical results would
say best the behavior of each approach. In Figures 5.5, 5.6 and 5.7 we can see a graphical
comparison among the three algorithms for the test functions ZDT1, ZDT2, and ZDT3. The
output’s execution shown was randomly selected. From Figures 5.5, 5.6 and 5.7, it is easy
to see that the three algorithms had problems in disconnected test functions. The adaptive
grid did not produce a very good distribution of the solutions. ǫ-dominance presents several
disadvantages in convex (see Figure 5.5) and disconnected (see Figure 5.7) Pareto fronts.
Its main advantage is its efficiency. However its performance depends on the choice of the
ǫ parameter which is difficult to set a priori.Hyper-plane distribution was the algorithm
which could generate the best distribution of solutions. Also, it did not lose the extremes
of the Pareto front.
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Func. Alg. Adap-Grid ǫ-P H-D

ZDT1 Adap-Grid ——— 0.0027987513 0.002989896
ǫ-P 0.0076577354 ——— 0.003893796
H-D 0.021349466 0.0174119706 ———

ZDT2 Adap-Grid ——— 0.0015273106 0.001391825
ǫ-P 0.0039846446 ———- 0.0020386273
H-D 0.003689114 0.00187874 ———

ZDT3 Adap-Grid ——— 0.0011442646 0.0011813402
ǫ-P 0.0017984955 ——— 0.0013139349
H-D 0.0726156017 0.0720935426 ———

ZDT4 Adap-Grid ——— 0.000364429 0.0
ǫ-P 0.0 ——— 0.0
H-D 4.8003428453 4.7961221483 ———

ZDT6 Adap-Grid ——— 0.0099886303 0.0169291256
ǫ-P 0.0068796153 ——— 0.0188726704
H-D 0.0062245308 0.0102926341 ———

Kursawe Adap-Grid ——— 0.1248326433 0.1797871
ǫ-P 0.4396478 ——— 0.2516026666
H-D 0.3867131 0.1434585766 ———

Deb Adap-Grid ——— 0.00329479 0.0032775870
ǫ-P 0.0076676150 ——— 0.0037843980
H-D 0.0075041325 0.0039599973 ———

Deb2 Adap-Grid ——— 0.04056185 0.05473879
ǫ-P 0.047844055 ——— 0.065993434
H-D 0.0490543256 0.0533195066 ———

Table 5.1: Comparison of results of the approaches used to provide a good distribution
of solutions (adaptive grid, ǫ-dominance and hyper-plane distribution) with respect to the
Hyper Volume metric.

Function Adap-Grid ǫ-P H-D
ZDT1 0.029328003 0.036398970 0.032798373
ZDT2 0.015502297 0.018568336 0.092338194
ZDT3 0.042628383 0.059142866 0.038913323
ZDT4 10.97824470 14.87368026 23.79822963
ZDT6 0.373819456 0.024635113 0.045158286
Kursawe 0.224578100 0.239040166 0.225306533
Deb 0.028016396 0.031930420 0.032364046
Deb2 0.257862066 0.391271666 0.185809133

Table 5.2: Comparison of results of the approaches used to proved a good distribution of
solutions (adaptive grid, ǫ-dominance and hyper-plane distribution) with respect to Spacing
metric.
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Figure 5.5: Pareto fronts produced by a) adaptive grid, b) ǫ-Pareto, and c) hyper-plane
distribution, for the ZDT1’s test function.
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Figure 5.6: Pareto fronts produced by a) adaptive grid, b) ǫ-Pareto, and c) hyper-plane
distribution, for the ZDT2’s test function.
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distribution, for the ZDT3’s test function.
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Figure 5.8: Graphical representation of the insertion of a new element in the adaptive grid
when the individual lies within the current boundaries of the grid.

5.3.5 Experiment 2

Think of the following scenario: Algorithm 21 has discovered a set of n non-dominated
solutions. Most of the n solutions are grouped very closely of each other, while the remaining
solutions are distributed along the known Pareto front (see Figure 5.8). It seems obvious
that at each generation, the algorithm is more likely to select more random solutions (to
be used as gbest) from the most crowded solutions. In our last experiment (see Section
5.3.4), we introduced three algorithms to select a subset of well distributed non-dominated
solutions. However, these approaches did not contribute to improve the performance of
the algorithm in terms of efficacy. One could expect that if the number of non-dominated
solutions is reduced at each generation to a well-distributed subset, there will be a faster
improvement of solutions, since the followers will no longer spend more of their search efforts
exploring a single region.

The aim of this experiment is to replace at each generation the set of non-dominated
solutions (GBEST set) with a bounded and well distributed subset. The pseudocode of
this proposal is given in Algorithm 27. To analyze the behavior of this algorithm, the
test functions previously tested were used again. The algorithm using each of the schemes
previously described to select distributed solutions was run for a total of 30 executions on
each test function. Since, the aim of this experiment was to observe if the inclusion of
an algorithm to preserve distribution improves the convergence of the MOPSO algorithm,
the results were compared with respect to those solutions obtained by the algorithms used
in experiment 1 (Section 5.3.4), using the Inverted Generational Distance described in
Chapter 3. The aim of this metric is to measure the distance from the true Pareto front
towards the Pareto front obtained by the approach. In Table 5.3 we can see that the
Hyper-plane Distribution approach outperform most of the time to the Adaptive Grid and
the ǫ-Dominance approaches. It seems that the Hyper-plane Distribution outperforms the ǫ-
Dominance approach mainly because of its property of selecting a fixed number of solutions
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(while we can only estimate the total number of solutions when using ǫ-Dominance). Table
5.4 shows the average of non-dominated solutions found in the last generation by each
approach.

Algorithm 27 MOPSO - Step 2
Require: nparticles, dimensions, W, C1 and C2
1: ~gbest← ~x0

2: GBEST ← ∅
3: for i = 0 to nparticles do
4: ~pbesti ← ~xi ← initialize randomly()
5: fitnessi ← f(~xi)
6: velocityid ← 0
7: if ¬∃ ~y∗ ∈ GBEST | ~f(~y∗) � ~f( ~fitnessi) then
8: GBEST ← GBEST ∪ ~xi

9: end if
10: end for
11: repeat
12: for i = 0 to nparticles do
13: if flip(0.5) then
14: gbest← GBESTU(0,|GBEST |)

15: else
16: gbest← y|y ∈ GBEST∪ 6 ∃ z ∈ GBEST |z − xi < y − xi

17: end if
18: for d = 0 to ndimensions do
19: velocityid ←W × velocityid +C1×U(0, 1)× (pbestid−xid)+C2×U(0, 1)× (gbest−xid)
20: xid ← xid + velocityid

21: end for
22: fitnessi ← f(~xi)

23: if fitnessi is ∼ to f( ~pbesti) then

24: ~pbesti ← ~xi

25: end if
26: if ¬∃ ~y∗ ∈ GBEST | ~f(~y∗) � ~f( ~fitnessi) then
27: GBEST ← GBEST ∪ ~xi

28: end if
29: end for
30: GBEST ← approach− to− distribute− solutions(GBEST )
31: until Termination criterion
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Approach
Function Adap-Grid Adap-Grid-b ǫ-P ǫ-P-b H-D H-D-b

ZDT1 0.002713902 0.002855236 0.002544098 0.001492487 0.002549523 0.002029507
ZDT2 0.030849775 0.031790172 0.030796822 0.033058091 0.026445812 0.023006512
ZDT3 0.007221936 0.007237485 0.007233594 0.005816599 0.007181607 0.005786199
ZDT4 2.837542600 2.763645000 2.837542600 2.903810666 0.050004300 2.715304000
ZDT6 0.000209901 0.000224374 0.000231870 0.000186435 0.000389685 0.000197410
Kursawe 0.010552736 0.009648260 0.008594080 0.008716252 0.007743489 0.007975956
Deb 0.001043389 0.001454523 0.000958621 0.001606147 0.000857324 0.000475256
Deb2 0.009588622 0.009424353 0.009587181 0.009346694 0.009581715 0.009427080

Table 5.3: Comparison of results of the approaches to maintain a good distribution of non-
dominated solutions (adaptive grid, ǫ-dominance and hyper-plane distribution) with respect
to the Inverted Generational Distance metric.

Approach
Function Adap-Grid-b ǫ-P-b H-D-b
ZDT1 39 37 40
ZDT2 24 19 27
ZDT3 38 29 37
ZDT4 2 2 2
ZDT6 40 42 39
Kursawe 40 33 39
Deb 40 36 40
Deb2 39 34 37

Table 5.4: Comparison of results of the approaches to maintain a good distribution of non-
dominated solutions (adaptive grid, ǫ-dominance and hyper-plane distribution) with respect
to the Inverted Generational Distance metric.
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5.4 Maximizing the Spread

It is known that several difficult multiobjective optimization problems have a discon-
nected decision variable space. This issue is particularly important when using PSO, because
it could be the case that a particle tries to follow a leader that resides in a disconnected
region away from it. In this case, a lot of search effort would be wasted and the algorithm
might not be able to converge to the true Pareto front of the problem. Other problem
presented in disconnected fronts is the possibility to converge only to a single disconnected
region. Algorithm 27 presents these problems. A natural way to solve these problems is the
use of neighborhoods (i.e. groups of particles each of which overflies a different region) or
several swarms. Kursawe’s test function clearly illustrates this situation. Figure 3.1 shows
the Pareto optimal set (up) and the Pareto front (down) of this test function.

Algorithm 21 was modified to perform a subselection of the well distributed non-dominated
solutions. Four subset sizes were selected (n = 40, 20, 10 or 5). The methodology for select-
ing is the following: First we reduce the GBEST set to a well distributed non-dominated
bounded subset. Next, we randomly select a solution from GBEST. Finally, we select its
n− 1 closer solutions. These solutions will be the GBEST solutions used by the algorithm.
The aim is to explore a different region of the non-dominated set at each generation.

The algorithm was also modified to use a different number of particles m (m = 40, 20,
10, 5). The particles are in an inner loop, where they iterate to a total of 40/m cycles.
Table 5.5 summarizes the average value of the inverted generational distance applied to
each of combinations of number of particles and size of the GBEST subset.
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Gbest set
Function Part. 40 20 10 5

ZDT1 40 0.008740401 0.008766247 0.007857118 0.011171814
20 0.007731990 0.007585521 0.011522186 0.011875909
10 0.010431674 0.009868152 0.014293828 0.016896183
5 0.020298789 0.020027336 0.020777738 0.028044723

ZDT2 40 0.039022653 0.039221400 0.039529012 0.037630835
20 0.059041604 0.059020294 0.058229974 0.058419296
10 0.083991033 0.083838263 0.084064560 0.088129146
5 0.115027300 0.115547496 0.115645843 0.113714746

ZDT3 40 0.020925614 0.020307261 0.021428732 0.020545984
20 0.019615418 0.017401076 0.020407710 0.023908489
10 0.019973149 0.019807940 0.026367473 0.032713004
5 0.025688653 0.026204582 0.033566385 0.046927730

ZDT4 40 3.565314333 3.565314333 3.565314333 3.373635000
20 3.301662000 3.301662000 3.301662000 3.216313000
10 2.829766333 2.829766333 2.829766333 .2.792272666
5 3.055342000 3.055342000 3.055342000 3.033530333

ZDT6 40 0.000423042 0.000396722 0.000388150 0.000317162
20 0.003980978 0.003902585 0.003923901 0.003908334
10 0.003867982 0.003834408 0.003845233 0.007505861
5 0.029082076 0.029054262 0.025504887 0.018247513

Kursawe 40 0.009770807 0.010016194 0.012020978 0.011947436
20 0.009839589 0.009682690 0.010303000 0.010419360
10 0.012550338 0.011943884 0.015411651 0.014242191
5 0.020899986 0.023561950 0.017872546 0.020147175

Deb 40 0.003670332 0.004207282 0.005605497 0.009291181
20 0.001859000 0.003408800 0.004473308 0.007287329
10 0.006968124 0.007708419 0.007584672 0.008808798
5 0.016466266 0.015835591 0.013815201 0.018362347

Deb2 40 0.009501995 0.009556906 0.009569795 0.009311628
20 0.009740814 0.010006768 0.009921843 0.009868808
10 0.009809276 0.009951781 0.009904942 0.009715037
5 0.009856391 0.009914928 0.009886514 0.009754674

Table 5.5: Comparison of results of the approaches to maintain a good distribution of non-
dominated solutions (adaptive grid, ǫ-dominance and hyper-plane distribution) with respect
to Inverted Generational Distance metric.



82 Multiobjective Particle Swarm Optimization

5.4.1 Using Subswarms to Improve the Spread

In this experiment, several swarms (each with a fixed size) are used to solve the problem
described above. Each swarm overflies an specific region of the non-dominated set (i.e.,
decision variable space), and has its own niche of particles and particle guides. To associate
leaders within a swarm any clustering algorithm can be adopted. In the implementation of
this algorithm, the hierarchical single-connected clustering algorithm [63] was used.

The appropriate selection of leaders is essential for the good performance of PSO when
applied to multiobjective optimization problems. If the particle chooses an inappropriate
leader (i.e., a leader who is too far away in the search space) then most of the flight will
be fruitless because the particle will not be traversing promissory regions of the search
space. In this algorithm, we propose to use not one but several swarms to avoid this type
of problem.

The algorithm with sub-swarms is shown in Algorithm 28.

The complete execution process of our algorithm can be divided in two stages: initial-
ization and flight.

At the first stage, every sub-swarm is initialized. Each sub-swarm creates and initializes
its own particles and generates the leaders set among the particle swarm set by using Pareto
ranking. In the second stage is where the algorithm performs its strongest effort.

First, it performs the execution of the flight of every swarm; next, it applies a clustering
algorithm to put together the leading particles. This is performed until reaching a total
of GMax iterations. The execution of the flight of each swarm can be seen as an entire
PSO process (with the difference that it will only optimize an specific region of the search
space). First, each particle will select a leader to which it will follow. At the same time,
each particle will try to outperform its leader and to update its position. If the updated
particle is not ǫ-dominated by any member of the leaders set, then it will become a new
leader. The execution of the swarm will start again until a total of sgmax iterations is
reached.

Once all the swarms have finished their flights, a clustering algorithm takes the control
by grouping the closest particle guides into nswarms swarms. These particle guides will
try to outperform each swarm in the next iteration. This is mainly done by grouping the
leaders of all the swarms into a single set, and then splitting this set among nswarms groups
(clustering is done with respect to closeness in decision variable space). Each resulting
group will be assigned to a different swarm.

Since the right number of clusters for each problem is not known in advance, Table
5.6 summarizes the average values of inverted generational distance of 30 executions of the
algorithm 28 on several test functions. We can see that there is not an unique number of
clusters which performed best for all the test functions adopted.

Frans van den Bergh [116] discovered a potentially dangerous property in PSO: if xi =
pbesti = gbesti then the value will depend only on WiVi(t) (i.e. if the position of the
particles coincides with gbest, then it will move away from the gbest if wivi is non-zero).
This may lead the algorithm to premature convergence (i.e. all the particles will converge
to the gbest particle, which usually is a local minimum).

To determine how often this behavior occurred in our algorithm, we count how many
times particle’s position was the same that the gbest position in all the executions for all
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Algorithm 28 MOPSO - step 3
Require: nsubswarms, nparticles, dimensions, W, C1 and C2
1: ~gbest← ~x0

2: GBESTfinal ← ∅
3: for s = 0 to nsubswarms do
4: GBEST s ← ∅
5: for i = 0 to nparticles/nsubswarms do

6: ~pbestsi ← ~xs
i ← initialize randomly()

7: fitnesss
i ← f( ~xs

i )
8: velocitys

id ← 0

9: if ¬∃ ~y∗ ∈ GBEST s | ~f(~y∗) � ~f( ~fitnesss
i ) then

10: GBEST s ← GBEST s ∪ ~xs
i

11: end if
12: end for
13: end for
14: repeat
15: GBESTtemp ← ∅
16: for s = 0 to nsubswarms do
17: for i = 0 to nparticles do
18: if flip(0.5) then
19: gbest← GBEST s

U(0,|GBEST s|)
20: else
21: gbest← y|y ∈ GBEST s∪ 6 ∃ z ∈ GBEST s|z − xs

i < y − xs
i

22: end if
23: if xs is equal gbest then
24: turbulence (xs)
25: end if
26: for d = 0 to ndimensions do
27: velocitys

id ←W ×velocitys
id+C1×U(0, 1)×(pbestsid−xs

id)+C2×U(0, 1)×(gbest−xs
id)

28: xs
id ← xs

id + velocitys
id

29: end for
30: fitnesss

i ← f( ~xs
i )

31: if fitnesss
i is ∼ to f( ~pbestsi ) then

32: ~pbestsi ← ~xs
i

33: end if
34: if ¬∃ ~y∗ ∈ GBEST s | ~f(~y∗) � ~f( ~fitnesss

i ) then

35: GBEST s ← GBEST s ∪ ~xs
i

36: end if
37: end for
38: GBESTfinal ← GBESTfinal ∪GBEST s

39: end for
40: GBESTfinal ← approach− to− distribute− solutions(GBESTfinal)
41: group GBESTfinal into nsubswarms
42: for s = 0 to nsubswarms do
43: GBESTs ← randomly select a group formed in last step
44: end for
45: until Termination criterion



84 Multiobjective Particle Swarm Optimization

Clusters
Function 1 2 4 8 20

ZDT1 0.009455527 0.009035658 0.006762290 0.004711227 0.003304528
ZDT2 0.034038000 0.040171617 0.031527797 0.034350482 0.034291232
ZDT3 0.024068386 0.027907103 0.015640700 0.013451196 0.015259319
ZDT4 2.896320000 2.928153000 3.058703000 3.441940666 3.453936666
ZDT6 0.000505861 0.000658532 0.000605209 0.000349758 0.000370221
Kursawe 0.036275200 0.034403426 0.035801300 0.032868496 0.030700593
Deb 0.086719610 0.008664331 0.006428156 0.005138733 0.005102338
Deb2 0.009684859 0.008918948 0.009142833 0.009558412 0.008997162

Table 5.6: Comparison of results of the approaches to maintain a good distribution of non-
dominated solutions (adaptive grid, ǫ-dominance and hyper-plane distribution) with respect
to Inverted Generational Distance metric.

the test functions. In Table 5.4.1 we can see the results of this experiment. We can see
that this property is usually presented by the algorithm. Frans van den Bergh proposed
a new parameter to address this issue. However, this proposal becomes hard to adopt in
a multiobjective approach using Pareto ranking, since, it implies the use of several “best”
solutions. Therefore, his online-adaptive approach will become very unstable. Instead of
using this approach, we propose the use of the turbulence operator proposed in [115]. This
operator has a behavior comparable to that of Frans van den Berg’s proposal and it has
been tested in a multiobjective scenario.

The turbulence consists of an alteration to the flight velocity of a particle.2 This modi-
fication is performed in all the dimensions (i.e., in all the decision variables), such that the
particle can move to a completely isolated region (something much more difficult to achieve
by the mere use of the velocity adjustment formula described before). This mechanism
aims to perturb the swarm as to avoid that the particles get trapped in local optima. The
turbulence operator acts based on a probability that considers the current generation and
the total number of iterations to be performed. The idea is to have a much higher proba-
bility to perturb the flight of the particles at the beginning of the search. Over time, this
probability will be decreased as we progress in the search.

The turbulence can be seen as a mutation operator and it is based on the following
expression:

temp = current generation/total generations

probturbulence = temp1.7 − 2.0 ∗ (temp) + 1.0 (5.5)

(5.6)

where temp is used as a temporary variable, current generation is the current genera-
tion number, total generations is the total number of generations and probturbulence refers
to the probability of affecting the flight of a particle using the turbulence operator. The
values used for this expression were empirically derived after a set of experiments.

After incorporating our methodology into the algorithm, we executed the experiment
again. Table 5.8 summarizes the results obtained. After the modification we found that by

2This mechanism is inspired on [32].
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Statistics Particle GBest
Mean 104.8119227539
Best 2
Worst 729
St.dev. 110.5998308335
Median 74

Table 5.7:

Clusters
Function 1 2 4 8 20

ZDT1 0.004820567 0.005645242 0.004388993 0.0028531300 0.003191553
ZDT2 0.0347598000 0.013606517 0.017762557 0.0125824133 0.013187440
ZDT3 0.016337620 0.017927403 0.017630486 0.0087873916 0.011176582
ZDT4 4.536191000 3.445736000 3.276966000 3.7399510000 3.762421666
ZDT6 0.00333742300 0.000509384 0.000472352 0.0003349334 0.000431701
Kursawe 0.0695214000 0.041491300 0.043504603 0.0498330600 0.042813556
Deb 0.034178800 0.009745156 0.007927125 0.0071140263 0.008663098
Deb2 0.009801385 0.009445994 0.008891579 0.008950303 0.009510023

Table 5.8: Comparison of results of MOPSO with respect to Inverted Generational Distance
metric.

using 8 subswarms, the algorithm exhibited its best performance in 5 out of 8 test functions.
We think, that the use of this value can be beneficial most of the time. Therefore, we
adopted it as the default value for the number of subswarms. It is important to note that
this experiment was performed using 40 particles, which means that each subswarm will
have 5 particles. This also has relevance, since, the authors of the PSO algorithm have
claimed that 5 particles are enough to reach convergence in any problem
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Algorithm MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.993475 0.0168072
NSGA-II 0.260602 ———- 0.0796734
ǫ-MOEA 0.305217 1.11986 ———-

Table 5.9: Comparison of results of the MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Two Set Coverage metric for Kursawe’s test function.

Algorithm MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.476471 0.323529
NSGA-II 0.932642 ———- 0.756477
ǫ-MOEA 0.95 0.846875 ———-

Table 5.10: Comparison of results of the MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Hyper Volume metric for the Kursawe’s test function.

5.5 MOPSO’s Comparison of Results

In the following examples, the NSGA-II was run using a population size of 40, a crossover
rate of 0.8 (uniform crossover was adopted), tournament selection, and a mutation rate of
1/N , where N = number of variables (real representation was adopted), a distribution
index of 15 for real-coded crossover, a distribution index of 20 for real-coded mutation. The
ǫ-MOEA was run using a population size of 40, a crossover rate of 0.8 (uniform crossover
was adopted), distribution index of 15 for real-coded crossover and distribution index of 20
for real-coded mutation. MOPSO used 40 particles, and a total of 8 swarms.

The total number of fitness function evaluations was set to 2, 000 for all the algorithms
compared (50 generations).

5.5.1 Kursawe’s Test Function

Figure 5.9 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA and c)
our MOPSO for Kursawe’s test function. The true Pareto front of the problem is shown as
a continuous line. The solutions displayed correspond to the median result with respect to
the inverted generational distance metric. Tables 5.10, 5.9 and 5.11, show the comparison
of results among the three algorithms considering hyper volume, two set coverage, inverted
generational distance, and success counting metrics. It can be seen that the ǫ-MOEA
performed best with respect to HV, TSC, IGD and SC by far. Our MOPSO was the
algorithm which performed worst.
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Figure 5.9: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, and c) MOPSO, for Kur-
sawe’s test function.

Metric Statistics MOPSO NSGA-II ǫ-MOEA

IGD Best 0.0102315 0.0588314 0.00405783
Worst 0.0216605 0.117137 0.00973392
Mean 0.0150202 0.0825022 0.00602655
St. dev. 0.00327527 0.021286 0.00161515
Median 0.0145841 0.078836 0.00546673

SC Best 5 22 49
Worst 0 8 33
Mean 2.13333 15.5 40.5667
St. dev. 1.35782 4.84056 5.69139
Median 2 20 43

Table 5.11: Comparison of results of the MOPSO, NSGA-II and our ǫ-MOEA with respect
to the Inverted Generational Distance (IGD) and Success Counting (SC) for Kursawe’s test
function.
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a) b)

c)

Figure 5.10: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, and c) MOPSO, for the
ZDT1’s test function.

Algorithm MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.0402313 0.0461881
NSGA-II 0 ———- 0.0164115
ǫ-MOEA 5.1006e-05 0.0110925 ———-

Table 5.12: Comparison of results of the MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Two Set Coverage metric for ZDT1’s test function.

5.5.2 ZDT1’ Test Function

Figure 5.10 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA and c)
our MOPSO for the ZDT1’s test function. The true Pareto front of the problem is shown as
a continuous line. The solutions displayed correspond to the median result with respect to
the generational distance metric. Tables 5.13, 5.12 and 5.14, show the comparison of results
among the three algorithms considering hyper volume, two set coverage, inverted genera-
tional distance and success counting metrics. It can be seen that our MOPSO performed
best with respect to all the metrics proved.
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Algorithm MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 1 1
NSGA-II 0 ———- 0.359375
ǫ-MOEA 0.0535714 0.946429 ———-

Table 5.13: Comparison of results of the MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Hyper Volume metric for ZDT1’s test function.

Metric Statistics MOPSO NSGA-II ǫ-MOEA

IGD Best 0.000792374 0.00261635 0.00640436
Worst 0.00101281 0.0169496 0.0379035
Mean 0.000882652 0.00676222 0.0227843
St. dev. 5.29644E-05 0.0045472 0.00851036
Median 0.000874956 0.0049536 0.0240974

SC Best 23 2 1
Worst 5 0 0
Mean 14.7667 0.0666667 0.0666667
St. dev. 4.60647 0.365148 0.253708
Median 17 0 0

Table 5.14: Comparison of results of the MOPSO, NSGA-II and our ǫ-MOEA with respect to
Inverted Generational Distance (IGD) and Success Counting (SC) for ZDT1’s test function.
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Figure 5.11: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, and c) MOPSO, for
ZDT2’s test function.

Algorithm MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.0619725 0.0332476
NSGA-II 0 ———- 0.00145575
ǫ-MOEA 0 0.0277186 ———-

Table 5.15: Comparison of results of the MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Two Set Coverage metric for ZDT2’s test function.

5.5.3 ZDT2’s Test Function

Figure 5.11 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA and
c) our MOPSO for ZDT2’s test function. The true Pareto front of the problem is shown as
a continuous line. The solutions displayed correspond to the median result with respect to
the generational distance metric. Tables 5.16, 5.15 and 5.17, show the comparison of results
among the three algorithms considering hyper volume, two set coverage, inverted genera-
tional distance and success counting metrics. It can be seen that our MOPSO performed
best with respect to HV, TSC, IGD, and SC by far.
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Algorithm MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 1 1
NSGA-II 0 ———- 0.276596
ǫ-MOEA 0 1 ———-

Table 5.16: Comparison of results of the MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Hyper Volume metric for ZDT2’s test function.

Metric Statistics MOPSO NSGA-II ǫ-MOEA

IGD Best 0.000783849 0.00560298 0.00200895
Worst 0.000873722 0.0573697 0.0514464
Mean 0.000807004 0.0322927 0.0166433
St. dev. 2.19975E-05 0.0188163 0.0143003
Median 0.000800601 0.0294469 0.0130747

SC Best 13 0 0
Worst 41 0 0
Mean 32.5333 0 0
St. dev. 9.533 0 0
Median 37 0 0

Table 5.17: Comparison of results of the MOPSO, NSGA-II and our ǫ-MOEA with respect
to the Inverted Generational Distance (IGD) and Success counting (SC) for ZDT2’s test
function.
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5.6 Conclusions

We have presented a new proposal to extend particle swarm optimization to handle
multiobjective problems using sub-swarms, Pareto ranking and clustering techniques. The
proposed approach was validated using the standard methodology currently adopted in
the evolutionary multiobjective optimization community. The results indicate that our
approach is a viable alternative since it outperformed some of the best multiobjective evo-
lutionary algorithms known to date.



6
A Constraint-Handling Mechanism for
PSO

6.1 Introduction

S
ince most real-world applications have constraints, multiobjective optimizers must have
a mechanism to incorporate them. The Particle Swarm Optimization, like most other

evolutionary algorithms, lacks an explicit mechanism to incorporate constraints.

This chapter presents a mechanism to handle constraints with a multiobjective parti-
cle swarm optimization algorithm However, the definition of a good constraint-handling
mechanism requires that we step back and retake a single-objective version of PSO. This is
necessary in order to validate our constraint-handling mechanism, since a well-established
benchmark exists for that sake (unfortunately, we can’t say the same regarding constrained
multiobjective optimization). Thus we will proceed to develop a constraint-handling mech-
anism for single-objective PSO, following 3 steps. First, a criterion based on closeness of
a particle to the feasible region in order to select a leader when dealing with constrained
search spaces is implemented in a single-objective PSO (Section6.3). As a second step, and
in order to know how competitive is the proposed approach, we tested our approach using
a single-objective optimization benchmark proposed in [104] (Section 6.4). Our comparison
of results indicates that the proposed approach is highly competitive with respect to two
constraint-handling techniques representative of the state-of-the-art in the area. Next, our
third step was to include the proposed approach is included into the MOPSO algorithm
proposed in Chapter 4. The resulting approach is compared against other approaches
representative of the state-of-the-art in the area. Results indicate that the approach is
competitive solving constrained multiobjective optimization problems.
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6.2 Related Work

When incorporating constraints into the fitness function of an evolutionary algorithm,
it is particularly important to maintain diversity in the population and to be able to keep
solutions both inside and outside the feasible region [19, 85]. Several studies have shown
that, despite their popularity, traditional (external) penalty functions, even when used with
dynamic penalty factors, tend to have difficulties to deal with highly constrained search
spaces and with problems in which the constraints are active in the optimum [19, 76, 104].
The random generation of solutions until reaching the feasible region is another possible way
to handle constraints (in fact, this approach has been used by some researchers when using
the PSO algorithm [56, 57]). However, this sort of approach may become too expensive
(computationally speaking) when dealing with highly constrained search spaces. Motivated
by this fact, a number of constraint-handling techniques have been proposed for evolutionary
algorithms [86, 19]. However, this topic has been only scarcely explored by PSO researchers
[56, 12, 94, 57, 96].

6.3 Constrained Particle Swarm Optimization

Algorithm 29 CPSO Algorithm

1: ~gbest← ∅
2: for i = 0 to nparticles do
3: ~pbesti ← ~xi ← initialize randomly()
4: fitnessi ← f(~xi)

5: if (
∑nconst

0 violation(~xi) <
∑nconst

0 violation( ~gbest))||(∑nconst

0 violation(~xi) ==
∑nconst

0 violation( ~gbest) ∪ fitnessi < f( ~gbest)) then

6: ~gbest← ~xi

7: end if
8: end for
9: repeat

10: for i = 0 to nparticles do
11: for d = 0 to ndimensions do
12: velocityid ←W × velocityid +C1×U(0, 1)× (pbestid−xid)+C2×U(0, 1)× (gbest−xid)
13: xid ← xid + velocityid

14: end for
15: turbulence (xid)
16: fitnessi ← f(~xi)

17: if (
∑nconst

0 violation(~xi) <
∑nconst

0 violation( ~pbesti))||(
∑nconst

0 violation(~xi) ==
∑nconst

0 violation( ~pbesti) ∪ fitnessi < f( ~pbesti)) then

18: ~pbesti ← ~xi

19: end if
20: if (

∑nconst

0 violation(~xi) <
∑nconst

0 violation( ~gbest))||(∑nconst

0 violation(~xi) ==
∑nconst

0 violation( ~gbest) ∪ fitnessi < f( ~gbest)) then

21: ~gbest← ~xi

22: end if
23: end for
24: until Termination criterion
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Figure 6.1: Graphical representation of our example that explains the constraint-handling
mechanism incorporated into our PSO algorithm.

Figure 29 shows the PSO algorithm adopted for our study.
The algorithm is basically a simple PSO implementation, except for three aspects: the

way in which the velocity is computed, the turbulence operator (see Section 5.4.1) and the
mechanism adopted to handle constraints. These aspects are discussed in the following
subsections.

6.3.1 Mechanism to Handle Constraints

The mechanism that we propose in this chapter to handle constraints is applied when
selecting a leader. What we did was to perform a small change in the fitness function such
that if we compare two feasible particles, the particle that has the highest fitness value wins.
If one of the particles is infeasible and the other one is feasible, then the feasible particle
wins. If both particles compared are infeasible, then the particle that has the lowest value
in its total violation of constraints (normalized with respect to the largest violation of each
constraint achieved by any particle in the current population) wins. The idea is to choose
as a leader to the particle that, even when infeasible, lies closer to the feasible region. To
understand better this idea, let’s consider the following example:

Let’s consider 3 particles and 2 constraints: particle 1 violates in 30 units the first
constraint and in 40 units the second constraint. Particle 2 does not violate the first
constraint, but it violates in 100 units the second constraint. Finally, particle 3 violates in
130 units the first constraint, but it does not violate the second constraint. Furthermore,
with respect to the total population, the largest violation of the first constraint is 200 and
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the largest violation of the second constraint is 120. Thus, the fitness of particle 1 is
30/200 + 40/120 = 0.48333. The fitness of particle 2 is 0 + 100/120 = 0.83333. The
fitness of particle 3 is 130/200 + 0 = 0.65000. So, particle 1 has a better fitness than
particle 2 and particle 3 (let’s keep in mind that in this case, a smaller value indicates
that the particle is closer to the feasible region), despite the fact that this particle violated
the 2 constraints of the problem and the two other particles only violate one of them. This
behavior is graphically depicted in Figure 6.1.

6.4 Test Functions

To evaluate the performance of the proposed approach we used the 13 test functions
described in [104]. The test functions chosen contain characteristics that are representative
of what can be considered “difficult” global optimization problems for an evolutionary
algorithm. Their expressions are provided next.

1. g01:
Minimize: f(~x) = 5

∑4
i=1 xi − 5

∑4
i=1 x2

i −
∑13

i=5 xi subject to:

g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(~x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(~x) = −8x1 + x10 ≤ 0

g5(~x) = −8x2 + x11 ≤ 0

g6(~x) = −8x3 + x12 ≤ 0

g7(~x) = −2x4 − x5 + x10 ≤ 0

g8(~x) = −2x6 − x7 + x11 ≤ 0

g9(~x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12) and
0 ≤ x13 ≤ 1. The global optimum is at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where
f(x∗) = −15. Constraints g1, g2, g3, g4, g5 and g6 are active.

2. g02:

Maximize: f(~x) =

∣

∣

∣

∣

P

n

i=1
cos4(xi)−2

Q

n

i=1
cos2(xi)√

P

n

i=1
ix2

i

∣

∣

∣

∣

subject to:

g1(~x) = 0.75 −
n

∏

i=1

xi ≤ 0

g2(~x) =
n

∑

i=1

xi − 7.5n ≤ 0

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The global maximum is unknown; the
best reported solution is [104] f(x∗) = 0.803619. Constraint g1 is close to being active
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(g1 = −10−8).

3. g03:
Maximize: f(~x) = (

√
n)

n ∏n
i=1 xi

subject to:

h(~x) =
∑n

i=1 x2
i − 1 = 0

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). The global maximum is at x∗
i = 1/

√
n

(i = 1, . . . , n) where f(x∗) = 1.

4. g04:
Minimize: f(~x) = 5.3578547x2

3 + 0.8356891x1x5 + 37.293239x1 − 40792.141
subject to:
g1(~x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0
g2(~x) = −85.334407 − 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0
g3(~x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2

3 − 110 ≤ 0
g4(~x) = −80.51249 − 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2

3 + 90 ≤ 0
g5(~x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0
g6(~x) = −9.300961 − 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5). The optimum solution
is x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) where f(x∗) = −30665.539.
Constraints g1 y g6 are active.

5. g05

Minimize:f(~x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2

subject to:
g1(~x) = −x4 + x3 − 0.55 ≤ 0
g2(~x) = −x3 + x4 − 0.55 ≤ 0
h3(~x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8 − x1 = 0
h4(~x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8 − x2 = 0
h5(~x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55, and −0.55 ≤ x4 ≤ 0.55.
The best known solution is x∗ = (679.9453, 1026.067, 0.1188764, −0.3962336) where
f(x∗) = 5126.4981.

6. g06
Minimize: f(~x) = (x1 − 10)3 + (x2 − 20)3
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subject to:
g1(~x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
g2(~x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is x∗ = (14.095, 0.84296)
where f(x∗) = −6961.81388. Both constraints are active.

7. g07
Minimize: f(~x) = x2

1 +x2
2 +x1x2− 14x1− 16x2 +(x3− 10)2 +4(x4− 5)2 +(x5− 3)2 +

2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to:
g1(~x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0
g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0
g4(~x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0
g5(~x) = 5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0
g6(~x) = x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0
g7(~x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0
g8(~x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global optimum is x∗ = (2.171996,
2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092,
8.375927) where f(x∗) = 24.3062091. Constraints g1, g2, g3, g4, g5 and g6 are ac-
tive.

8. g08

Maximize: f(~x) = sin3(2πx1) sin(2πx2)
x3

1
(x1+x2)

subject to:
g1(~x) = x2

1 − x2 + 1 ≤ 0
g2(~x) = 1− x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum solution is located at x∗ =
(1.2279713, 4.2453733) where f(x∗) = 0.095825.

9. g09
Minimize: f(~x) = (x1 − 10)2 + 5(x2 − 12)2 + x4

3 + 3(x4 − 11)2 + 10x6
5 + 7x2

6 + x4
7 −

4x6x7 − 10x6 − 8x7

subject to:

g1(~x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(~x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(~x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0
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g4(~x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The global optimum is x∗ = (2.330499, 1.951372,
−0.4775414, 4.365726, −0.6244870, 1.038131 , 1.594227) where f(x∗) = 680.6300573.
Two constraints are active (g1 and g4).

10. g10
Minimize: f(~x) = x1 + x2 + x3

subject to: g1(~x) = −1 + 0.0025(x4 + x6) ≤ 0
g2(~x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0
g3(~x) = −1 + 0.01(x8 − x5) ≤ 0
g4(~x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0
g5(~x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0
g6(~x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, (i = 2, 3), 10 ≤ xi ≤ 1000, (i = 4, . . . , 8).
The global optimum is: x∗ = (579.19, 1360.13, 5109.92, 182.0174, 295.5985, 217.9799,
286.40, 395.5979), where f(x∗) = 7049.25. g1, g2 and g3 are active.

11. g11
Minimize: f(~x) = x2

1 + (x2 − 1)2

subject to:
h(~x) = x2 − x2

1 = 0

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum solution is x∗ = (±1/
√

2, 1/2)
where f(x∗) = 0.75.

12. g12

Maximize: f(~x) = 100−(x1−5)2−(x2−5)2−(x3−5)2

100
subject to:
g1(~x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 9. The feasible region of
the search space consists of 93 disjointed spheres. A point (x1, x2, x3) is feasible if and
only if there exist p, q, r such the above inequality (12) holds. The global optimum is
located at x∗ = (5, 5, 5) where f(x∗) = 1.

13. g13

Minimize: f(~x) = ex1x2x3x4x5

subject to:

g1(~x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

g2(~x) = x2x3 − 5x4x5 = 0
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Problem n Function ρ LI NI LE NE

g01 13 quadratic 0.0003% 9 0 0 0

g02 20 nonlinear 99.9973% 1 1 0 0

g03 10 nonlinear 0.0026% 0 0 0 1

g04 5 quadratic 27.0079% 0 6 0 0

g05 4 nonlinear 0.0000% 2 0 0 3

g06 2 nonlinear 0.0057% 0 2 0 0

g07 10 quadratic 0.0000% 3 5 0 0

g08 2 nonlinear 0.8581% 0 2 0 0

g09 7 nonlinear 0.5199% 0 4 0 0

g10 8 linear 0.0020% 3 3 0 0

g11 2 quadratic 0.0973% 0 0 0 1

g12 3 quadratic 4.7697% 0 93 0 0

g13 5 nonlinear 0.0000% 0 0 1 2

Table 6.1: Values of ρ for the 13 test problems chosen.

g3(~x) = x3
1 + x3

2 + 1 = 0 where −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2 (i =
3, 4, 5). The optimum solution is x∗ = (−1.717143, 1.595709, 1.827247, −0.7636413,
−0.763645) where f(x∗) = 0.0539498.

To get an estimate of the difficulty of randomly finding feasible solutions for each of these
problems, a ρ metric (as suggested by Michalewicz and Schoenauer [76]) was computed using
the following expression: ρ = |F |/|S| where |F | is the number of feasible solutions and |S|
is the total number of solutions randomly generated. In this work, S = 1, 000, 000 random
solutions.
The different values of ρ for each of the functions chosen are shown in Table 6.1, where n
is the number of decision variables, LI is the number of linear inequalities, NI the number
of nonlinear inequalities, LE is the number of linear equalities and NE is the number of
nonlinear equalities.

6.5 Comparison of Results

We evaluated the performance of our PSO algorithm using the turbulence operator
and the constraint-handling mechanism described before. We performed 30 independent
runs of our approach for each test function, and we compared our results with respect
to three constraint-handling techniques that are representative of the state-of-the-art in
the area: Stochastic Ranking (SR) [104], the Homomorphous Maps (HM) [76], and the
Adaptive Segregational Constraint Handling Evolutionary Algorithm (ASCHEA) [48]. Our
comparison of results is presented in Tables 6.2, 6.3 and 6.4.

Comparing our CPSO approach with respect to the Homomorphous Maps (see Ta-
ble 6.2), the CPSO technique was able to improve the “best” results in several problems
(remarkably in g05, which could not be solved by the homomorphous maps). In the re-
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g07 24.306000 24.351100 24.620000 25.355771 24.826000 27.316800 25.069000
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Best Result Mean Result Worst Result

Problem Optimal PSO SR PSO SR PSO SR

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000
g02 0.803619 0.803432 0.803515 0.790406 0.781975 0.750393 0.726288
g03 1.000000 1.004720 1.000000 1.003814 1.000000 1.002490 1.000000
g04 -30665.539000 -30665.500000 -30665.539000 -30665.500000 -30665.539000 -30665.500000 -30665.539000
g05 5126.498000 5126.640000 5126.497000 5461.081333 5128.881000 6104.750000 5142.472000
g06 -6961.814000 -6961.810000 -6961.814000 -6961.810000 -6875.940000 -6961.810000 -6350.262000
g07 24.306000 24.351100 24.307000 25.355771 24.374000 27.316800 24.642000
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.630000 680.638000 680.630000 680.852393 680.656000 681.553000 680.763000
g10 7049.330700 7057.590000 7054.316000 7560.047857 7559.192000 8104.310000 8835.655000
g11 0.750000 0.749999 0.750000 0.750107 0.750000 0.752885 0.750000
g12 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
g13 0.053950 0.068665 0.053957 1.716426 0.057006 13.669500 0.216915
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Best Result Mean Result Worst Result

Problem Optimal PSO ASCHEA PSO ASCHEA PSO ASCHEA

g01 -15.000000 -15.000000 -15.000000 -15.000000 -14.840000 -15.000000 NA
g02 0.803619 0.803432 0.785000 0.790406 0.590000 0.750393 NA
g03 1.000000 1.004720 1.000000 1.003814 0.999890 1.002490 NA
g04 -30665.539000 -30665.500000 30665.500000 -30665.500000 30665.500000 -30665.500000 NA
g05 5126.498000 5126.640000 5126.500000 5461.081333 5141.650000 6104.750000 NA
g06 -6961.814000 -6961.810000 -6961.810000 -6961.810000 -6961.810000 -6961.810000 NA
g07 24.306000 24.351100 24.332300 25.355771 24.660000 27.316800 NA
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 NA
g09 680.630000 680.638000 680.630000 680.852393 680.641000 681.553000 NA
g10 7049.330700 7057.590000 7061.130000 7560.047857 7193.110000 8104.310000 NA
g11 0.750000 0.749999 0.750000 0.750107 0.750000 0.752885 NA
g12 1.000000 1.000000 NA 1.000000 NA 1.000000 NA
g13 0.053950 0.068665 NA 1.716426 NA 13.669500 NA
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maining test functions, there is practically a match between the CPSO approach and the
homomorphous maps. Regarding average and worst results, the approach proposed here is
better than the homomorphous maps in several problems (remarkably, in g05 and g06). No
comparisons were made with respect to function g13 because such results were not available
for HM.

With respect to Stochastic Ranking (see Table 6.3), CPSO was able to match most
of their “best” results. However, stochastic ranking found slightly better results in some
problems (remarkably in g10 and g13, which are some of the most difficult test functions
from this benchmark). The average and worst results of stochastic ranking are also better
than those of the CPSO approach in some problems.

Compared against the Adaptive Segregational Constraint Handling Evolutionary Algo-
rithm (see Table 6.4), CPSO was able to improve the “best” results in several problems
(remarkably, in g02 and g10). ASCHEA produced slightly better results only in g03, g05,
g07 and g11. We did not compare the worst results because they were not available for
ASCHEA. We did not perform comparisons with respect to ASCHEA using functions g12
and g13 for the same reason.

As we can see, our approach showed a very competitive performance with respect to
these three state-of-the-art approaches.

The proposed approach can deal with moderately constrained problems (g04), highly
constrained problems, problems with low (g06, g08), moderated (g09) and high (g01, g02,
g03, g07) dimensionality, with different types of combined constraints (linear, nonlinear,
equality and inequality) and with very large (g02), very small (g05 and g13) or even disjoint
(g12) feasible regions. Also, the algorithm is able to deal with large search spaces (based
on the intervals of the decision variables ) and with a very small feasible region (g10).
Furthermore, the approach can find the global optimum in problems where such optimum
lies on the boundaries of the feasible region (g01, g02, g04, g06, g07, g09).

Note that our approach does not require any parameters. In contrast, the homomor-
phous maps require an additional parameter (called v) which has to be found empirically
[76]. Stochastic ranking requires the definition of a parameter called Pf , whose value has
an important impact on the performance of the approach [104]. ASCHEA also requires the
definition of several extra parameters, and in its latest version, it uses niching [25], which
is a process that also has at least one additional parameter [48].

The computational cost measured in the number of evaluations of the objective function
(FFE) performed by our approach is lower than the other techniques with respect to which
it was compared. Our approach performed 340, 000 FFE (we used 40 particles running for
8500 generations), the Stochastic Ranking performed 350, 000 FFE, the Homomorphous
Maps performed 1, 400, 000 FFE, and ASCHEA required 1, 500, 000 FFE.

6.6 A Constraint-Handling Mechanism for MOPSO

A relatively simple constraint-handling mechanism for choosing leaders in the particle
swarm optimization algorithm has been presented. The proposed approach does not use any
special mechanism to deal with constrained search spaces in which the global optimum lies
on the boundaries between the feasible and the infeasible regions, despite the fact that such
type of problems are the main target of the most competitive constraint-handling techniques
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proposed in the specialized literature [104, 48, 76]. Additionally, our CPSO approach does
not require any user-defined parameters and it performs less objective function evaluations
than any of the other approaches with respect to which it was compared. Despite all of the
above reasons, the results obtained by the proposed approach are highly competitive, and
in some cases, even improve on the results obtained by much more elaborate approaches
such as the homomorphous maps [76] and ASCHEA [48].

Since the aim of this chapter is to introduce a constraint-handling mechanism for our
MOPSO, the approach shown in the Algorithm 29 was added into the MOPSO algorithm
developed in Chapter 4. In Algorithm 30, the resulting algorithm is shown.
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Algorithm 30 CMOPSO
Require: nsubswarms, nparticles, nconst, dimensions, W, C1 and C2
1: ~gbest← ~x0

2: GBESTfinal ← ∅
3: for s = 0 to nsubswarms do
4: GBEST s ← ∅
5: for i = 0 to nparticles/nsubswarms do

6: ~pbestsi ← ~xs
i ← initialize randomly()

7: fitnesss
i ← f( ~xs

i )
8: velocitys

id ← 0

9: if (
∑nconst

0 violation(~xi) <
∑nconst

0 violation( ~gbest))||(∑nconst

0 violation(~xi) ==
∑nconst

0 violation( ~gbest) ∪ (¬∃ ~y∗ ∈ GBEST s | ~f(~y∗) � ~f( ~fitnesss
i ))) then

10: GBEST s ← GBEST s ∪ ~xs
i

11: end if
12: end for
13: end for
14: repeat
15: GBESTtemp ← ∅
16: for s = 0 to nsubswarms do
17: for i = 0 to nparticles do
18: if flip(0.5) then
19: gbest← GBEST s

U(0,|GBEST s|)
20: else
21: gbest← y|y ∈ GBEST s∪ 6 ∃ z ∈ GBEST s|z − xs

i < y − xs
i

22: end if
23: if xs is equal gbest then
24: turbulence (xs)
25: end if
26: for d = 0 to ndimensions do
27: velocitys

id ←W ×velocitys
id+C1×U(0, 1)×(pbestsid−xs

id)+C2×U(0, 1)×(gbest−xs
id)

28: xs
id ← xs

id + velocitys
id

29: end for
30: fitnesss

i ← f( ~xs
i )

31: if (
∑nconst

0 violation(~xi) <
∑nconst

0 violation( ~pbestsi))||(
∑nconst

0 violation(~xi) ==
∑nconst

0 violation( ~pbestsi ) ∪ fitnesss
i ∼ f( ~pbestsi )) then

32: ~pbestsi ← ~xs
i

33: end if
34: if (

∑nconst

0 violation(~xi) <
∑nconst

0 violation( ~gbest))||(∑nconst

0 violation(~xi) ==
∑nconst

0 violation( ~gbest) ∪ (¬∃ ~y∗ ∈ GBEST s | ~f(~y∗) � ~f( ~fitnesss
i ))) then

35: GBEST s ← GBEST s ∪ ~xs
i

36: end if
37: end for
38: GBESTfinal ← GBESTfinal ∪GBEST s

39: end for
40: GBESTfinal ← approach− to− distribute− solutions(GBESTfinal)
41: group GBESTfinal into nsubswarms
42: for s = 0 to nsubswarms do
43: GBESTs ← randomly select a group formed in last step
44: end for
45: until Termination criterion
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Algorithm CMOPSO NSGA-II ǫ-MOEA

CMOPSO ———- 1.79072 0.123801
NSGA-II 0.00125807 ———- 0.0239883
ǫ-MOEA 0.0126029 1.15491 ———-

Table 6.5: Comparison of results of the CMOPSO, NSGA-II, and ǫ-MOEA with respect to
Hyper Volume metric for Kita’s test function.

Algorithm CMOPSO NSGA-II ǫ-MOEA

CMOPSO ———- 0.951662 0.969789
NSGA-II 0.350427 ———- 0.74359
ǫ-MOEA 0.449438 0.865169 ———-

Table 6.6: Comparison of results of the CMOPSO, NSGA-II, and ǫ-MOEA with respect to
Two Set Coverage metric for Kita’s test function.

6.7 CMOPSO’s Comparison of Results

In the following examples, the NSGA-II was run using a population size of 40, a crossover
rate of 0.8 (uniform crossover was adopted), tournament selection, and a mutation rate of
1/N , where N = number of variables (real representation was adopted), a distribution
index of 15 for real-coded crossover, a distribution index of 20 for real-coded mutation. The
ǫ-MOEA was run using a population size of 40, a crossover rate of 0.8 (uniform crossover
was adopted), distribution index of 15 for real-coded crossover and distribution index of 20
for real-coded mutation. CMOPSO used 40 particles and a total of 8 swarms.

The total number of fitness function evaluations was set to 3, 000 for all the algorithms
compared (75 generations).

6.7.1 Kita’s Test Function

Figure 6.2 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA and
c) our MOPSO in Kita’s test function. The true Pareto front of the problem is shown as
a continuous line. The solutions displayed correspond to the median result with respect to
the generational distance metric. Tables 6.5, 6.6 and 6.7, show the comparison of results
among the three algorithms considering hyper volume, two set coverage, inverted genera-
tional distance, generational distance and success counting metrics. It can be seen that our
MOPSO performed best with respect to HV, TSC, IGD and SC.
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Figure 6.2: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, and c) CMOPSO, for
Kita’s test function.

Metric Statistics CMOPSO NSGA-II ǫ-MOEA

IGD Mean 0.00632531 0.189393 0.0117331
Best 0.00534285 0.145067 0.00844853
Worst 0.00816045 0.250597 0.0174223
St. dev. 0.000754439 0.0393162 0.00332792
Median 0.00604803 0.179181 0.010696

SC Mean 15.6333 12.4 11.3667
Best 21 9 8
Worst 9 18 16
St. dev. 3.30604 2.37225 3.02271
Median 15.5 14 16

Table 6.7: Comparison of results of the CMOPSO, NSGA-II and ǫ-MOEA with respect to
inverted generational distance (IGD) and Success Counting(SC) for Kita’s test function.
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Figure 6.3: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, and c) CMOPSO, for the
Speed Reducer test function.

Algorithm CMOPSO NSGA-II ǫ-MOEA

CMOPSO ———- 564.319 76326.8
NSGA-II 3593.99 ———- 79488.3
ǫ-MOEA 183.015 331.954 ———-

Table 6.8: Comparison of results of the CMOPSO, NSGA-II, and ǫ-MOEA with respect to
Hyper Volume metric for the Speed Reducer test function.

6.7.2 Speed Reducer’s Test Function

Figure 6.3 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA and c)
our MOPSO in the speed reducer test function. The true Pareto front of the problem is
shown as a continuous line. The solutions displayed correspond to the median result with
respect to the generational distance metric. Tables 6.8, 6.9 and 6.10, show the comparison
of results among the three algorithms considering hyper volume, two set coverage, inverted
generational distance, generational distance and success counting metrics. In this test
function, our MOPSO, could cover best the true Pareto front (it obtained the best result
with respect to the TSC metric). However, it can be seen that our MOPSO performed worst
with respect to TSC, and SC. With respect to IGD the NSGA-II and ǫ-MOEA performed
best, in this metric, MOPSO occupied the second place.
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Algorithm CMOPSO NSGA-II ǫ-MOEA

CMOPSO ———- 0.490196 0.584314
NSGA-II 0.885572 ———- 0.81592
ǫ-MOEA 0.883721 0.860465 ———-

Table 6.9: Comparison of results of the CMOPSO, NSGA-II, and ǫ-MOEA with respect to
Two Set Coverage metric for the Speed Reducer test function.

Metric Statistics CMOPSO NSGA-II ǫ-MOEA

IGD Mean 6.69717 29.2915 1.50202
Best 2.12326 2.60441 1.08238
Worst 89.5434 100.719 1.83362
St. dev. 16.0311 39.3283 0.208184
Median 2.3702 3.06353 1.55295

SC Mean 19.4667 27.9333 34.8333
Best 29 39 42
Worst 6 21 0
St. dev. 5.60008 6.26393 8.28411
Median 21 25 37.5

Table 6.10: Comparison of results of the CMOPSO, NSGA-II and ǫ-MOEA with respect to
inverted generational distance (IGD) and Success counting(SC) for the Speed Reducer test
function.
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Figure 6.4: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, and c) CMOPSO, for
Osyczka 2’s test function.

Algorithm CMOPSO NSGA-II ǫ-MOEA

CMOPSO ———- 528.381 591.783
NSGA-II 5.08483 ———- 108.539
ǫ-MOEA 2.40862 126.178 ———-

Table 6.11: Comparison of results of the CMOPSO, NSGA-II, and ǫ-MOEA with respect
to Hyper Volume metric for Osyczka 2’s test function.

6.7.3 Osyczka 2’s Test Function

Figure 6.4 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA and c)
our MOPSO in Osyczka 2’s test function. The true Pareto front of the problem is shown
as a continuous line. The solutions displayed correspond to the median result with respect
to the generational distance metric. Tables 6.11, 6.12 and 6.13, show the comparison of
results among the three algorithms considering hyper volume, two set coverage, inverted
generational distance, generational distance and success counting metrics. It can be seen
that our MOPSO performed best with respect to HV, TSC, IGD, and SC.



112 A Constraint-Handling Mechanism for PSO

Algorithm CMOPSO NSGA-II ǫ-MOEA

CMOPSO ———- 0.823899 0.886792
NSGA-II 0.47619 ———- 0.77381
ǫ-MOEA 0.392157 0.627451 ———-

Table 6.12: Comparison of results of the CMOPSO, NSGA-II, and ǫ-MOEA with respect
to Two Set Coverage metric for Osyczka 2’s test function.

Metric Statistics CMOPSO NSGA-II ǫ-MOEA

IGD Mean 0.237056 0.468132 0.259819
Best 0.0784418 0.138079 0.189955
Worst 1.18076 1.1167 0.318806
St. dev. 0.223725 0.329838 0.0536878
Median 0.186781 0.413686 0.265964

SC Mean 0.0333333 0 0
Best 1 0 0
Worst 0 0 0
St. dev. 0.182574 0 0
Median 0 0 0

Table 6.13: Comparison of results of the CMOPSO, NSGA-II and ǫ-MOEA with respect
to inverted generational distance (IGD) and Success counting(SC) for Osyczka 2’s test
function.
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Figure 6.5: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, and c) CMOPSO, for the
Welded Beam test function.

Algorithm CMOPSO NSGA-II ǫ-MOEA

CMOPSO ———- 0.0203806 0.00786607
NSGA-II 2.39609e-05 ———- 0.00371345
ǫ-MOEA 3.19206e-05 0.0153286 ———-

Table 6.14: Comparison of results of the CMOPSO, NSGA-II, and ǫ-MOEA with respect
to Hyper Volume metric for the Welded Beam test function.

6.7.4 Welded Beam’s Test Function

Figure 6.5 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA and c)
our MOPSO in the welded beam function. The true Pareto front of the problem is shown
as a continuous line. The solutions displayed correspond to the median result with respect
to the generational distance metric. Tables 6.14, 6.15 and 6.16, show the comparison of
results among the three algorithms considering hyper volume, two set coverage, inverted
generational distance, generational distance and success counting metrics. It can be seen
that our MOPSO performed best with respect to HV, TSC, IGD and SC by far. In figure 6.5
it can be seen that our MOPSO produced solutions that out performed the other approaches.
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Algorithm CMOPSO NSGA-II ǫ-MOEA

CMOPSO ———- 0.966667 1
NSGA-II 0.388889 ———- 0.814815
ǫ-MOEA 0.214286 0.75 ———-

Table 6.15: Comparison of results of the MOPSO, NSGA-II, and ǫ-MOEA with respect to
Two Set Coverage metric for the Welded Beam test function.

Metric Statistics CMOPSO NSGA-II ǫ-MOEA

IGD Mean 0.0243134 0.0383617 0.107524
Best 0.0090833 0.015111 0.0891251
Worst 0.0635246 0.05969 0.205429
Stdev 0.0162971 0.0150994 0.0273268
Median 0.0136304 0.0362782 0.0917293

SC Mean 15.5333 9.56667 2.4
Best 31 16 5
Worst 3 2 0
Stdev 9.4202 4.77554 2.31338
Median 20 16 4

Table 6.16: Comparison of results of the CMOPSO, NSGA-II and ǫ-MOEA with respect to
inverted generational distance (IGD) and Success counting(SC) for the Welded Beam test
function.
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6.8 Conclusions

We have presented a relatively simple constraint-handling mechanism for choosing lead-
ers in the particle swarm optimization algorithm. The proposed approach does not use
any special mechanism to deal with constrained search spaces in which the global opti-
mum lies on the boundaries between the feasible and the infeasible regions, despite the
fact that such type of problems are the main target of the most competitive constraint-
handling techniques proposed in the specialized literature [104, 48, 76]. Additionally, our
constraint-handling approach does not require any user-defined parameters and it performs
less objective evaluations than any of the other approaches with respect to which it was
compared (for global optimization). Despite all of the above reasons, the results obtained
by our approach are highly competitive, and in some cases, even improve on the results
obtained by much more elaborate approaches such as the homomorphous maps [76] and
ASCHEA [48]. This constraint-handling mechanism was adapted into our MOPSO. Re-
sults indicate that our MOPSO was able to successfully solve several test functions taken
from the multiobjective optimization literature.
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7
Parameter Control in Multiobjective
Particle Swarm Optimization

7.1 Introduction

T
he behavior of an EA for a given problem is directed by both the operators (crossover,
mutation, etc), and the values selected for the parameters of the algorithm. The issue of

setting the values of the parameters plays a key role on the performance of an EA. Tuning
well these parameters is a hard problem, since they can usually take several values, and
therefore, the number of possible combinations is usually very high.

So, we can say that there is an additional optimization problem to solve: parameter
tuning. It is only natural to expect that an evolutionary or adaptive scheme is adopted
to solve this additional optimization problem (this is called self-adaptation in evolutionary
computation). However, parameter control is one of the research topics that has been only
scarcely covered in the current literature on evolutionary multiobjective optimization [19].

The parameter adaptation problem is an important issue since evolutionary multiobjec-
tive optimization techniques usually require more parameters than a traditional evolutionary
algorithm (e.g., a niche radius or sharing threshold). In this chapter we focus on the use
of adaptive processes to adjust parameters. First, we begin by giving a short explanation
about adaptation, and parameter adaptation. Next, we revise the previous related work.
Then, we perform an analysis of the parameters of our MOPSO. After that, we propose
a parameter adaptation scheme for our MOPSO. We validate this proposal by comparing
our adaptation scheme with respect to a fixed selection of the parameters (derived from
the parameter analysis). Then, we compare our results with respect to those obtained by
NSGA-II and ǫ-MOEA. Finally, we validate our proposal using several test functions and
metrics, and we provide some conclusions.
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7.2 Tuning or Adapting Parameters

Parameter tuning refers to the selection of good values for the parameters before the
run of the algorithm (these values remain fixed along the run of the algorithm). This is
a commonly used approach. However to select the best parameters’ settings for several
problems, it is necessary to perform experiments with a wide variety of values for such
parameters. This methodology is very expensive (computationally speaking), since it is a
very time-consuming activity. Furthermore, a set of parameters that behave well on some
problems can behave very badly on others.

Adaptation is a process usually invoked to improve the overall performance of an EA.
In general, there are two types of adaptation [41]:

• Adaptation to problems

• Adaptation to evolutionary processes

The first issue refers to performing a modification of one or more components of an EA
(i.e., variation operators, selection or representation), in order to solve faster and with more
accuracy a given problem. The second issue refers to modifying the values of the parameters
with the aim of avoiding any fine tuning from the user. “Adaptation to problems” refers to
an ad-hoc modification of an EA to a particular problem, and “adaptation to evolutionary
processes” refers to modifications to the evolutionary process itself with the aim to perform
better (i.e. to the variation operators). The second issue has been studied extensively in
the literature.

Adaptation to evolutionary processes can be divided into the following classes [49]:

• Adaptive parameters settings

• Adaptive genetic operators

• Adaptive selection

• Adaptive representation

• Adaptive fitness function

Parameter adaptation has been the most studied class in the last few years, since Davis
[22] and Grefenstette [46] found that the mutation rate, crossover rate and population size
have an important role on the performance of an evolutionary algorithm (specifically on a
genetic algorithm).

7.3 Parameter Adaptation

The key factor to increase the performance of an EA is to choose an appropriate trade-
off between exploitation and exploration. However, if we want to perform a good balance
of them on a particular EA, it is necessary to use a set-and-test approach. Nevertheless,
the values obtained are usually (in most EAs) dependant of the specific problem at hand.
Therefore, if we want to increase the performance of an EA on a wide variety of problems
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we have to modify the values of the exploitation and exploration by using a deterministic
rule, taking feedback information from the current state of the search (on-line adaptation
mechanism), or employing a self-adaptive mechanism [51, 41, 49]:

• Deterministic adaptation refers to a modification of a parameter using a deterministic
rule (i.e. the mutation rate is decreased gradually over time).

Several researchers have used deterministic adaptation in the past [34, 50, 52]. How-
ever, they have used it only on parameters whose behavior is well known.

• Online-adaptation refers to a modification performed on the value of a parameter
whose direction and magnitude is determined by some information taken from the
evolutionary process.

An example of this type of adaptation is the 1
5 success rule proposed by Rechenberg

to adapt the standard deviation in an evolution strategy [101].

• Self-adaptation refers to a modification of a parameter directed by the evolutionary
process. In this case, the parameters are encoded into the chromosome string, and
the variation operators are applied to them.

This type of adaptation can be used to control the application of different variation
operators.

7.4 Related Work

There have been very few attempts in the literature to produce an evolutionary multiob-
jective optimization technique that adapts its parameters during the evolutionary process
and that, therefore, does not require any fine-tuning from the user. One of the earliest
attempts to incorporate self-adaptation mechanisms in evolutionary multiobjective opti-
mization was Kursawe’s proposal of providing individuals with a set of step sizes for each
objective function such that his multiobjective evolution strategy could deal with a dynamic
environment [77]. Laumanns et al. [78] showed that a standard self-adaptive evolution
strategy had problems to converge to the true Pareto set of a multiobjective optimization
problem and proposed alternative self-adaptation mechanisms that, however, were applied
only to an aggregating fitness function. Tan et al. [113] proposed the incrementing mul-
tiobjective evolutionary algorithm (IMOEA), which uses a dynamic population size that
adapts based on the tradeoffs produced so far and the desired population distribution den-
sity. The IMOEA relies on a measure of convergence based on population domination
and progress ratio [117]. The IMOEA also uses dynamic niches (i.e., no sharing factor
needs to be defined). Another interesting proposal is the idea of Büche et al. [8] of using
self-organizing maps of Kohonen [72] to adapt the mutation step size of an evolutionary
multiobjective optimization algorithm. The authors also define a recombination operator
using self-organizing maps (something similar to intermediate recombination). Abbass [1]
recently proposed a differential evolution algorithm used to solve multiobjective problems
that self-adapts its crossover and mutation rates. Zhu and Leung [129] proposed an asyn-
chronous self-adjustable island genetic algorithm in which certain information about the
current search status of each island in a parallel evolutionary algorithm is used to focus the
search effort into non-overlapping regions.
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7.5 MOPSO: Parameter’s Analysis

The PSO has three parameters that play a key role in the algorithm’s behavior (see
Chapter 3):

1. W: velocity inertia

2. C1: cognitive component

3. C2: Social Component

The fact that a MOEA converges to a set of solutions rather than to a single value,
makes it difficult to perform an statistical analysis such as the analysis of variance, which
can determine how sensitive is an algorithm to its parameters. Nevertheless, we will perform
a very thorough analysis of parameters (similar to an analysis of variance), with the aim of
finding the best possible parameter configuration for our approach (considering the set of
test functions adopted).

It is worth indicating that the parameters settings that have been previously proposed
(see for example [65]) for the original (unconstrained single-objective) PSO, do not provide a
good performance in the context of multiobjective optimization and therefore the motivation
to perform the thorough analysis reported in this chapter.

In order to analyze the impact of the parameters on our proposed approach, we consid-
ered several configurations, and performed a comprehensive number of runs. The configu-
rations adopted are:

W = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
C1 = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0}
C2 = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0}

(7.1)

For all our experiments, we adopted 40 particles. However, we analyzed three different
performance scenarios:

1. Experiment 1: Use of a randomly generated initial population and a low number
of fitness function evaluations (we used Gmax = 25, which gives us a total of 1000
fitness function evaluations).

2. Experiment 2: Use a good approximation of the Pareto front in the initial popula-
tion. This approximation, although hasn’t converged to the true Pareto front. This
approximation was selected by hand based on a visual analysis of different runs. In
all the experiments performed in this case, the same approximation was fed to the
algorithm in its initial generation. In this case, we only performed 600 fitness func-
tion evaluation (Gmax = 15), since we were interested in analyzing the capability (or
possible difficulties) of our algorithm to reach the true Pareto front of a problem once
a good (and sufficiently close) approximation has been produced.

3. Experiment 3: Use of a large number of fitness function evaluations (Gmax =
250, which gives a total of 10, 000 fitness function evaluations) in order to assess the
performance of our approach in the long term.
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We adopted eleven test functions for Experiment 1 and Experiment 2. Due to the
high CPU time required by each run, we only adopted six test functions for Experiment
3.

Since we needed to assess performance in each case, a metric had to be adopted. We
chose inverted generational distance (see Chapter 2) because it can measure both closeness
to the true Pareto front and spread of solutions.

An obvious problem with so many experiments was how to present the results in a
compact form. For that sake, we adopted a set of squares (called “mosaics”), such that each
of them has a color that corresponds to the mean value of the inverted generational distance
over 30 independent runs, produced from one combination of W,C1,C2 (all the possible
combinations were adopted, considering the sets of possible values previously defined for
these three parameters).

The mean results are normalized between zero and 255 (where zero is the best possible
value and 255 is the worst). So, a mosaic that is completely black represents the best
possible mean values, and a mosaic completely white represents the worst possible mean
values. The results of each of the three above experiments are briefly discussed next, to
avoid having a chapter excessively long, the mosaics have been moved to Appendix B.

7.5.1 Experiment 1

Figures B.1, B.2, B.3, B.4, B.5, B.6, B.7, B.8, B.9, B.10, B.11 show the mosaic for
the test functions of Kursawe, Deb1, Deb2, ZDT1, ZDT2, ZDT3, ZDT6, Kita, Welded
Beam, Ozyczka2 and Speed reducer respectively (see Section 2.5, for each test function
description).

Summarizing the graphical results, we can say the following:

• As expected (as a consequence of the No Free Lunch Theorem [124]), no single set of
parameters was found to be the best over all the test functions adopted.

• However, the region surrounding C1=1.4, C2=1.4 and W=0.2 (this includes the fol-
lowing: C1 can vary from 1.2 to 2.0, C2 can vary from 1.2 to 2.0 and W can vary
from 0.1 to 0.4) shows a good performance in most cases.

• It is worth noticing that Figures B.4, B.5, B.6 and B.7 show an behavior that is
the opposite from the one observed in the other figures. The reason is that the test
functions illustrated in these figures have their true Pareto front located in the lower
bound of all the decision variable. Thus, any decision variable values above the lower
bound cause a disruptive behavior in the algorithm.

7.5.2 Experiment 2

Figures B.12, B.13, B.14, B.15, B.16, B.17, B.18, B.19, B.20, B.21 and B.22 show the
mosaic for the test functions of Kursawe, Deb, Deb2, ZDT1, ZDT2, ZDT3, ZDT6, Kita,
Welded Beam, Ozyczka2 and Speed reducer respectively (see Section 2.5, for each test
function description).

Our conclusions from the second experiment are the following:



122 Parameter Control in Multiobjective Particle Swarm Optimization

• Again, no single combination of parameters produced the best possible results for all
the test functions adopted.

• However, we found a narrow range of values for which reasonably good results are
obtained: C1 and C2 should be within 1.0 and 1.2, and W within 0.1 and 0.2 (see
Figures B.12, B.13, B.14, B.20 and B.21)

• There is also (as in the previous experiment) a set of test functios for which the results
are inconclusive (see Figures B.15, B.16, B.17, B.18, B.19 and B.22).

7.5.3 Experiment 3

Figures B.23, B.24, B.25, B.26, B.27 and B.28 show the mosaic for the test functions of
Kursawe, Deb2, ZDT3, Kita, Welded Beam and Ozyczka2 respectively (see Section 2.5, for
each test function description for all the test functions adopted).

The main conclusions derived from the third experiment are the following:

• Practically all combinations of parameters produce a good performance, which indi-
cates that our approach is able to converge to the true Pareto front of all the problems
if given a sufficiently long time.

• Although this experiment indicates in general, that our approach has no real sensi-
tivity to the values of C1 and C2 when performing a high number of fitness function
evaluations, we found that our approach is sensitive to values of W above 0.8.

7.5.4 Conclusions from the Experiments

After combining the results from the three experiments, we concluded the following:

• The best range for C1 and C2 is from 1.2 to 2.0. From within this range, we can say
that C1=C2=1.4 provides the best overall performance.

• The best values for W are those less or equal to 0.5.

• Note, however, that the above values don’t produce the best possible performance in
all cases. This is precisely what motivated us to propose a mechanism to self-adapt the
parameters of our approach so that it automatically adjusts the parameters according
to the characteristics of the search space being explored.



7.6 Self-Adaptation Mechanism 123

7.6 Self-Adaptation Mechanism

The results obtained from the experiments reported in the previous section led us to
propose a self-adaptation mechanism which is described in this section.

We proposed the use of a traditional proportional selection mechanism to select the most
appropriate combination of parameters values to be adopted. We adopted roulette-wheel
selection [43] for that sake. Rather than computing fitness for each combination of values,
we count the number of non-dominated solutions generated by each combination of values.

Let’s assume that the parameter W can take 3 possible values: 0, 0.5, 1.0. So, at
the beginning of the search, each value has a 33% probability of occurring (see Figure 7.1
(a)). At generation zero, each possible value has a “fitness” of one. Now, let’s assume
that after one generation, W=0.5 generated 2 and W=1 did not contribute with any new
non-dominated solution. Thus, we reward the “fitness” of W=0.5 by increasing its value in
0.4 (we increase fitness in 0.1 for each new non-dominated solution produced). So, W=0.5
now has a fitness of 1.4. Analogously, W=0 has a fitness of 1.2 and W=1 remains with a
fitness of 1.0. The new share in the roulette wheel for each value is shown in Figure 7.1
(b). Since the total fitness is now 3.6 (1.4+1.2+1.0), the share of each value is: W=0.5
(1.4/3.6), W=0 (1.2/3.6) and W=1 (1.0/3.6).

After generation two, W=0.5 generated one new non-dominated solution. the same
happened with W=1.0 and W=0 didn’t produce any new non-dominated solutions. So,
W=0.5 now has a fitness of 1.5, W=1.0 has a fitness of 1.1 and W=0 remains with a fitness
of 1.2. Thus, the total fitness is now 3.8, and the share of each value is: W=0.5 has 1.5/3.8,
W=1 has 1.1/3.8 and W=0 1.2/3.8 (see Figure 7.1 (c)).

To validate our proposal, we compare it against two parameter selection proposals: a)
deterministic selection and b) random selection.

Deterministic selection : C1, C2 and W are deterministically set to 1.4, 1.4 and 0.2,
respectively (these values are the center of the region which performed best from the
experiments reported in the previous section).

Random selection : C1, C2 and W pick their values randomly from an interval from 1.2
to 2 for C1 and C2 and from the range from 0.0 to 0.4 for W (this is the range of
values which performed best in the experiments reported in the previous section).
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Figure 7.1: Roulette Wheel Selection example at the a) first, b) second and c) third gener-
ation.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.000325975 0.000322839 0.00100099 0.000343704
Best 0.000205887 0.000219512 0.000534565 0.000246475
Worst 0.0005185 0.000559256 0.00184197 0.000503136
St. dev. 8.09051E-05 7.93461E-05 0.000369327 6.84881E-05
Median 0.000308359 0.000311513 0.000950674 0.000332008

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.000276673 0.000256187 0.000395132 0.000343704
Best 0.000210781 0.000200151 0.000230807 0.000246475
Worst 0.000427433 0.000403939 0.000578551 0.000503136
St. dev. 5.64173E-05 3.64836E-05 .46397E-05 6.84881E-05
Median 0.000260992 0.000255322 0.000396123 0.000332008

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.000244526 0.000246204 0.00023809 0.000250122
Best 0.00020898 0.000214326 0.000161674 0.000189423
Worst 0.000260916 0.000270411 0.000294859 0.000263756
St. dev. 1.12059E-05 1.24811E-05 3.2749E-05 1.37935E-05
Median 0.000245691 0.000248583 0.000240319 0.000251664

Table 7.1: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Generational Distance metric for Deb1’s test function. In this comparison, 50, 100, and 250
iterations of the algorithm performed.

7.6.1 Deb1’s Test Function

Figures C.1, C.2 and C.3 show the graphical results produced by a) fixed adaptation, b)
random adaptation, c) self-adaptation and d) self-adaptation using half of the parameters’
range in Deb1’s test function. The solutions displayed correspond to the merge of the final
results obtained from all the executions performed. Tables 7.1 and 7.2 show the comparison
of results among the four algorithms considering the generational distance and the success
counting metrics, respectively. We can see that in this test function, the fixed and random
methodologies to adapt the parameters were the approaches that performed best.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 22.4667 20.8667 12.4333 19.7333
Best 30 29 20 25
Worst 15 13 5 12
St. dev. 4.2486 4.31304 3.58813 2.82761
Median 21 22 15 19

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 26.9667 27.9667 18.8 26.9333
Best 34 36 27 34
Worst 14 20 13 20
St. dev. 4.57492 4.36667 3.12278 3.37264
Median 28 27 19 26.5

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 37.6667 37.6667 29.7333 37.3667
Best 41 41 36 41
Worst 33 31 24 31
St. dev. 2.17086 2.35377 3.37264 2.44221
Median 38 38 30 37

Table 7.2: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Success Counting metric for Deb1’s test function. In this comparison, 50, 100, and 250
iterations of the algorithm performed.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.281854 0.205165 0.137337 0.209693
Best 0.0154214 0.00119245 0.00146099 0.00149948
Worst 0.390221 0.414155 0.409451 0.582554
St. dev. 0.105455 0.146787 0.1553 0.161553
Median 0.304469 0.302041 0.0383962 0.301602

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.085119 0.152535 0.0291952 0.133702
Best 0.00108132 0.00120821 0.00112473 0.00111747
Worst 0.371893 0.415602 0.342749 0.358148
St. dev. 0.129034 0.162967 0.0804286 0.145663
Median 0.0201443 0.0316255 0.00166208 0.0317042

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.0118809 0.0114155 0.00293867 0.0249622
Best 0.000948934 0.000979696 0.00109274 0.00102406
Worst 0.304198 0.304024 0.0347976 0.354865
St. dev. 0.0552553 0.05527 0.00670915 0.0830927
Median 0.00118685 0.00120164 0.00128125 0.00127768

Table 7.3: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Generational Distance metric for Deb2’s test function. In this comparison, 50, 100, and 250
iterations of the algorithm performed.

7.6.2 Deb2’s Test Function

Figures C.4, C.5 and C.6 show the graphical results produced by a) fixed adaptation, b)
random adaptation, c) self adaptation and d) self-adaptation using half of the parameters’
range in Deb2’s test function. The solutions displayed correspond to the merge of the final
results obtained from all the executions performed. Table 7.3 shows the comparison of
results among the four algorithms considering the generational distance metric. In this test
function, fixed and self-adaptive were the approaches which performed best.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.00798041 0.00887023 0.0287635 0.0100363
Best 0.00515281 0.00646239 0.0142215 0.00704959
Worst 0.010944 0.0140615 0.0704334 0.0137772
St. dev. 0.00165173 0.00174998 0.0120881 0.00192299
Median 0.00765617 0.00829771 0.0265748 0.00973348

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.0060196 0.00622204 0.0113361 0.00661385
Best 0.00461587 0.00510085 0.00801492 0.00520072
Worst 0.00722763 0.00910346 0.0162751 0.00849508
St. dev. 0.00070381 0.000901342 0.00233548 0.000856513
Median 0.006001 0.00604657 0.0110073 0.00645687

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.00585674 0.00597782 0.00661119 0.00568906
Best 0.00503107 0.00508054 0.00525094 0.00516091
Worst 0.00757255 0.0103294 0.00834815 0.00705431
St. dev. 0.000542949 0.00106411 0.000792981 0.000414757
Median 0.00574721 0.00568223 0.00652533 0.00567236

Table 7.4: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Generational Distance metric for Kursawe’s test function. In this comparison, 50, 100, and
250 iterations of the algorithm performed.

7.6.3 Kursawe’s Test Function

Figures C.7, C.8 and C.9 show the graphical results produced by a) fixed adaptation, b)
random adaptation, c) self-adaptation and d) self-adaptation using half of the parameters’
range in Kursawe’s test function. The solutions displayed correspond to the merge of the
final results obtained from all the executions performed. Tables 7.4 and 7.5 show the
comparison of results among the four algorithms considering the generational distance and
the success counting metrics, respectively. We can see that in this test function, the fixed
and self-adaptive methodologies were the best performers. For 50 and 100 iterations, the
fixed methodology perform best. However, for 250, the self-adaptive (using half of the whole
range) approach outperformed the other methodologies.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 15.8333 12 2.43333 9.56667
Best 24 19 7 18
Worst 9 7 0 4
St. dev. 3.78822 3.55256 2.02882 3.74795
Median 16.5 15 2 4.5

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 23.8 22.2 7.93333 19.3667
Best 33 30 15 29
Worst 18 13 1 12
St. dev. 3.37741 4.78071 3.21562 4.24657
Median 24.5 22 5 19

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 30.6 30.7667 21.0333 30.3667
Best 37 36 26 36
Worst 22 24 11 22
St. dev. 3.44013 2.82456 3.90829 3.1237
Median 31 30 21 31

Table 7.5: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Success Counting metric for Kursawe’s test function. In this comparison, 50, 100, and 250
iterations of the algorithm performed.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.0879494 0.07316 0.125552 0.0860936
Best 0.00482195 0.00440464 0.00487845 0.00438719
Worst 0.753995 0.351501 0.815724 0.894258
St. dev. 0.169574 0.102575 0.168681 0.198588
Median 0.0168816 0.0224311 0.0672385 0.025054

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.0909219 0.084916 0.113282 0.0743991
Best 0.00397045 0.00427523 0.00582636 0.00388963
Worst 0.989896 1.33762 1.28782 0.570475
St. dev. 0.214879 0.239521 0.236216 0.136491
Median 0.0174579 0.0280449 0.0310777 0.0202444

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.045679 0.0713936 0.0828661 0.0478608
Best 0.00475388 0.00409998 0.00461058 0.00429014
Worst 0.444079 0.69912 0.734926 0.76521
St. dev. 0.0931111 0.17094 0.154571 0.13693
Median 0.00917924 0.0130802 0.0343496 0.0170105

Table 7.6: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Generational Distance metric for Kita’s test function. In this comparison, 50, 100, and 250
iterations of the algorithm performed.

7.6.4 Kita’s Test Function

Figures C.10, C.11 and C.12 show the graphical results produced by a) fixed adaptation,
b) random adaptation, c) self adaptation and d) self-adaptation using half of the parameters’
range in Kita’s test function. The solutions displayed correspond to the merge of the final
results obtained from all the executions performed. Tables 7.6 and 7.7 show the comparison
of results among the four algorithms considering the generational distance and the success
counting metrics, respectively. We can see that in this test function, the fixed and self-
adaptive methodologies were the best performers. For 50 and 100 iterations, the fixed
methodology performed best. However, for 250, the self-adaptive (using half of the whole
range) approach outperformed the other methodologies.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 10.0667 9.5 4.13333 8.26667
Best 18 18 8 15
Worst 2 4 1 3
St. dev. 4.1683 3.20291 2.22421 2.89986
Median 16 6 4 5

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 13.9 12.5333 7.8 13.3333
Best 23 19 13 20
Worst 3 3 3 6
St. dev. 4.59648 3.27723 2.8211 3.62304
Median 16 13 5.5 14

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 19.7667 19.1 11.6667 18.5667
Best 30 30 19 25
Worst 8 5 6 6
St. dev. 5.30896 5.70753 3.39709 4.09106
Median 22 21 13.5 19

Table 7.7: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Success Counting metric for Kita’s test function. In this comparison, 50, 100, and 250
iterations of the algorithm performed.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.0366011 0.00314461 0.000917618 0.00139146
Best 0.0033862 0.0016411 0.000654515 0.000949446
Worst 0.128655 0.0153514 0.00129093 0.00194027
St. dev. 0.031028 0.00286637 0.000158416 0.000273769
Median 0.035668 0.00220733 0.000888994 0.00139852

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.00248134 0.00111711 0.000713258 0.000900094
Best 0.00104509 0.000877039 0.00055484 0.000718813
Worst 0.00959323 0.00155976 0.000837561 0.00112768
St. dev. 0.00190083 0.000188505 5.64943E-05 9.28948E-05
Median 0.00192676 0.00107593 0.000713413 0.000889186

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.000885911 0.000722293 0.000669619 0.000690558
Best 0.000690418 0.000606415 0.000627206 0.000660934
Worst 0.00145514 0.000882852 0.00069318 0.000746049
St. dev. 0.000167184 5.18389E-05 1.52374E-05 2.28605E-05
Median 0.000833629 0.000720251 0.000670696 0.000687627

Table 7.8: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Generational Distance metric for ZDT1’s test function. In this comparison, 50, 100, and
250 iterations of the algorithm performed.

7.6.5 ZDT1’s Test Function

Figures C.13, C.14 and C.15 show the graphical results produced by a) fixed adaptation,
b) random adaptation, c) self adaptation and d) self-adaptation using half of the parameters’
range in ZDT1’s test function. The solutions displayed correspond to the merge of the final
results obtained from all the executions performed. Tables 7.8 and 7.9 show the comparison
of results among the four algorithms considering the generational distance and the success
counting metrics, respectively. We can see that in this test function, the self-adaptive
methodology was the best performer.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 1.4 5.3 19.0667 9.9
Best 9 13 31 20
Worst 0 0 10 6
St. dev. 2.37225 3.09783 4.6752 3.4074
Median 0 4 18.5 6

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 5.86667 9.9 25.6 16.5
Best 19 17 32 22
Worst 0 4 17 6
St. dev. 4.09148 3.67048 4.07346 4.19153
Median 4 10.5 25 18

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 13.1667 23.2333 34.7 26.6667
Best 23 32 40 33
Worst 6 11 28 14
St. dev. 4.69103 5.10364 2.94958 4.06273
Median 14.5 23.5 35 27.5

Table 7.9: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Success Counting metric for ZDT1’s test function. In this comparison, 50, 100, and 250
iterations of the algorithm performed.



134 Parameter Control in Multiobjective Particle Swarm Optimization

50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.00129201 0.00116102 0.00060177 0.00105732
Best 0 0.000221067 0.000486076 0.000214616
Worst 0.00636153 0.00333243 0.0011321 0.00398105
St. dev. 0.00168527 0.000899109 0.000125183 0.000770421
Median 0.00028753 0.00101155 0.000566384 0.000727372

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Best 0.000208664 0.000252649 0.000513262 0.000518098
Worst 0.0106404 0.00124342 0.000695098 0.000955088
Mean 0.000998943 0.0006525 0.000554823 0.000623259
St. dev. 0.00190153 0.000237816 3.61986E-05 0.000118351
Median 0.000544656 0.000600113 0.000545395 0.000564439

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Best 0.000499733 0.000525243 0.000534474 0.00053733
Worst 0.000901211 0.000673453 0.000560556 0.000595716
Mean 0.000613502 0.000571093 0.000545045 0.000556936
St. dev. 8.77564E-05 3.32668E-05 6.45714E-06 1.76145E-05
Median 0.000580094 0.000559791 0.000545105 0.000551748

Table 7.10: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Generational Distance metric for ZDT2’s test function. In this comparison, 50, 100, and
250 iterations of the algorithm performed.

7.6.6 ZDT2’s Test Function

Figures C.16, C.17 and C.18 show the graphical results produced by a) fixed adaptation,
b) random adaptation, c) self adaptation and d) self-adaptation using half of the parameters’
range in ZDT2’s test function. The solutions displayed correspond to the merge of the
final results obtained from all the executions performed. Tables 7.10 and 7.11 show the
comparison of results among the four algorithms considering the generational distance and
the success counting metrics, respectively. In this test function, the approach that behave
best was the Self-adaptive, since it outperformed the others in most of the statistics.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 18.6333 17.9 32.8333 23.7
Best underline40 underline40 40 underline40
Worst 1 1 14 4
St. dev. 16.7836 14.8657 8.71417 13.9189
Median 33 36 35.5 37

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 22.9667 23.1667 36.1 30.9667
Best 40 40 40 40
Worst 1 5 17 11
St. dev. 14.0135 11.0643 5.3842 10.427
Median 36 29.5 37.5 35.5

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 23.2 32.0667 39.1667 35.4
Best 38 underline40 40 40
Worst 7 18 36 25
St. dev. 8.3806 5.66863 1.93129 5.42408
Median 24 32 40 37.5

Table 7.11: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Success Counting metric for ZDT2’s test function. In this comparison, 50, 100, and 250
iterations of the algorithm performed.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.0469277 0.00337089 0.00130207 0.00283484
Best 0.00128216 0.000845646 0.000961234 0.000989847
Worst 0.159038 0.0136354 0.00257293 0.0236592
St. dev. 0.0437315 0.00263124 0.00038585 0.00404143
Median 0.042308 0.00260087 0.00116183 0.00192842

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.00838771 0.00160257 0.00111052 0.00137749
Best 0.000932991 0.00104869 0.000796095 0.00100488
Worst 0.0443346 0.00329232 0.0014914 0.00179113
St. dev. 0.0102217 0.000470434 0.000146541 0.000190331
Median 0.00320439 0.0014143 0.00111442 0.00140797

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.00118112 0.00105378 0.000995126 0.00098538
Best 0.000906703 0.000903995 0.000836458 0.000862196
Worst 0.00148058 0.00120019 0.00109687 0.00107781
St. dev. 0.000166797 6.71042E-05 4.80638E-05 4.96751E-05
Median 0.00117058 0.0010517 0.000986394 0.000987349

Table 7.12: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Generational Distance metric for ZDT3’s test function. In this comparison, 50, 100, and
250 iterations of the algorithm performed.

7.6.7 ZDT3’s Test Function

Figures C.19, C.20 and C.21 show the graphical results produced by a) fixed adaptation,
b) random adaptation, c) self adaptation and d) self-adaptation using half of the parame-
ters’ range in ZDT3’s test function. The solutions displayed correspond to the merge of the
final results obtained from all the executions performed. Tables 7.12 and 7.13 show the com-
parison of results among the four algorithms considering the generational distance and the
success counting metrics, respectively. In this test function, the self-adaptive methodology
was the approach that produced the best results.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.5 2.26667 7.26667 3.1
Best 4 6 13 8
Worst 0 1 1 0
St. dev. 1.00858 1.50707 2.98194 1.74889
Median 0 1.5 6 3

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 1.86667 4.03333 13.8667 6.03333
Best 10 11 26 13
Worst 0 1 5 2
St. dev. 2.56949 2.45628 5.62466 3.0341
Median 1 3 17.5 4.5

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 10.5 14.1333 20.8667 17.8667
Best 22 20 26 27
Worst 2 6 16 11
St. dev. 4.95323 3.45147 2.58288 3.30864
Median 21 14 21 18

Table 7.13: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Success Counting metric for ZDT3’s test function. In this comparison, 50, 100, and 250
iterations of the algorithm performed.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.197208 0.157905 0.15285 0.218335
Best 0.000217578 0.000200907 0.000164541 0.000174668
Worst 0.671328 0.684974 1.15015 1.08311
St. dev. 0.170137 0.159985 0.284782 0.260298
Median 0.132875 0.119427 0.000227409 0.169256

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.118331 0.180459 0.154155 0.191904
Best 0.000150442 0.000192441 0.000162983 0.000170195
Worst 0.360862 0.650162 1.23347 0.731475
St. dev. 0.10547 0.171686 0.292953 0.205481
Median 0.0804339 0.172421 0.000217733 0.156286

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.0468028 0.097265 0.152427 0.103105
Best 0.000195265 0.000183633 0.000171729 0.000178926
Worst 0.272685 0.526762 0.89369 0.640128
St. dev. 0.0678927 0.139964 0.258548 0.167601
Median 0.0127627 0.0190864 0.000216973 0.000224342

Table 7.14: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Generational Distance metric for ZDT6’s test function. In this comparison, 50, 100, and
250 iterations of the algorithm performed.

7.6.8 ZDT6’s Test Function

Figures C.22, C.23 and C.24 show the graphical results produced by a) fixed adaptation,
b) random adaptation, c) self adaptation and d) self-adaptation using half of the parameters’
range in ZDT6’s test function. The solutions displayed correspond to the merge of the
final results obtained from all the executions performed. Tables 7.14 and 7.15 show the
comparison of results among the four algorithms considering the generational distance and
the success counting metrics, respectively. In this test function, the best behavior was
shared by the fixed and the self-adaptive approaches.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 23.2333 24.6 26.5667 24.2667
Best 36 36 36 38
Worst 12 10 9 10
St. dev. 6.07246 7.41201 8.23652 7.75012
Median 22 26.5 30.5 25

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 26.4333 24.5333 26.4 24.3333
Best 35 33 37 34
Worst 13 11 10 8
St. dev. 5.69745 6.60059 7.88101 7.08244
Median 26.5 24.5 30 27

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 28.8 29.1667 26.5667 27.2
Best 36 36 36 33
Worst 13 16 9 10
St. dev. 5.94457 5.47145 8.23652 6.01951
Median 31 30 30.5 30.5

Table 7.15: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Success Counting metric for ZDT6’s test function. In this comparison, 50, 100, and 250
iterations of the algorithm performed.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.194347 0.085628 0.0209355 0.0719164
Best 0.0111299 0.00178059 0.00162807 0.00143289
Worst 0.464535 0.449933 0.0999722 0.399702
St. dev. 0.175667 0.131092 0.0274426 0.117621
Median 0.101435 0.0182097 0.00808533 0.0151489

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.133814 0.0631828 0.025962 0.0668184
Best 0.0011115 0.000376051 0.00052514 0.000563104
Worst 0.383953 0.313176 0.341498 0.392752
St. dev. 0.156396 0.100886 0.0659602 0.123076
Median 0.0428005 0.0135748 0.00301419 0.00514221

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.0680538 0.0825331 0.0150598 0.0454222
Best 0.000447409 0.000437696 0.00036197 0.000488802
Worst 0.379767 0.384567 0.232387 0.348925
St. dev. 0.122755 0.143884 0.0453287 0.102489
Median 0.0088608 0.00437517 0.00131789 0.00404749

Table 7.16: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Generational Distance metric for the Welded Beam test function. In this comparison, 50,
100, and 250 iterations of the algorithm performed.

7.6.9 Welded Beam Test Function

Figures C.25, C.26 and C.27 show the graphical results produced by a) fixed adaptation,
b) random adaptation, c) self adaptation and d) self-adaptation using half of the parameters’
range in the Welded Beam test function. The solutions displayed correspond to the merge
of the final results obtained from all the executions performed. Tables 7.16 and 7.17 show
the comparison of results among the four algorithms considering the generational distance
and the success counting metrics, respectively. Both self-adaptive approaches were the
methodologies which behaved best in this test function.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 1.56667 1.86667 1.6 1.76667
Best 2 5 3 3
Worst 1 1 1 1
St. dev. 0.504007 0.937102 0.723974 0.678911
Median 2 2 1 2

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 2.06667 2.43333 2.2 2.46667
Best 4 6 4 5
Worst 1 1 1 1
St. dev. 0.52083 1.04 0.886683 0.860366
Median 2 2 2 2

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 2.46667 2.53333 3.26667 2.96667
Best 6 5 7 7
Worst 2 2 2 2
St. dev. 0.937102 0.899553 1.41259 1.29943
Median 2 2 3 3

Table 7.17: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Success Counting metric for the Welded Beam test function. In this comparison, 50, 100,
and 250 iterations of the algorithm performed.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 2.03861 2.13542 2.11281 1.54764
Best 0.642933 0.548188 0.193383 0.196416
Worst 4.92499 5.74446 5.55049 4.94761
St. dev. 1.23967 1.25894 1.90638 1.36253
Median 1.55246 1.72205 0.984932 0.960847

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 1.17476 0.819187 0.840237 0.916743
Best 0.291657 0.123535 0.116173 0.178783
Worst 4.08389 2.46626 3.55097 3.40832
St. dev. 0.888326 0.504245 0.855718 0.896507
Median 0.918393 0.7161 0.556836 0.63004

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.736474 0.945802 0.752102 0.723455
Best 0.133017 0.150762 0.119501 0.157419
Worst 3.06422 3.2337 3.46239 3.11708
St. dev. 0.63374 1.02559 0.800209 0.792617
Median 0.510297 0.449116 0.542298 0.492164

Table 7.18: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Generational Distance metric for Osyczka2’s test function. In this comparison, 50, 100, and
250 iterations of the algorithm performed.

7.6.10 Osyczka2’s Test Function

Figures C.28, C.29 and C.30 show the graphical results produced by a) fixed adaptation,
b) random adaptation, c) self adaptation and d) self-adaptation using half of the parameters’
range in Osyczka2’s test function. The solutions displayed correspond to the merge of the
final results obtained from all the executions performed. Tables 7.18 and 7.19 show the
comparison of results among the four algorithms considering the generational distance and
the success counting metrics, respectively. In this test function, all the algorithms seem to
have a similar behavior.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0 0.0333333 0.433333 0.366667
Best 0 1 2 2
Worst 0 0 0 0
St. dev. 0 0.182574 0.626062 0.614948
Median 0 0 0 0

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.133333 0.266667 0.866667 0.566667
Best 2 3 7 3
Worst 0 0 0 0
St. dev. 0.434172 0.691492 1.4077 0.935261
Median 0 0 0 0

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.266667 0.433333 1.9 1.5
Best 3 2 5 7
Worst 0 0 0 0
St. dev. 0.691492 0.678911 1.56139 1.85231
Median 0 0 2 1

Table 7.19: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Success Counting metric for Osyczka2’s test function. In this comparison, 50, 100, and 250
iterations of the algorithm performed.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 1.84155 1.97117 2.04406 1.54913
Best 0.383413 0.0750232 0.0917061 0.641903
Worst 3.68453 6.23119 9.23048 2.45544
St. dev. 0.817318 1.2602 1.75107 0.489508
Median 1.71813 1.89949 1.69158 1.65093

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 1.2537 1.15029 0.937352 0.903529
Best 0.515482 0.491596 0.0620102 0.283415
Worst 2.13084 2.51154 1.90621 2.61298
St. dev. 0.347702 0.441866 0.369458 0.436752
Median 1.27737 1.13153 0.904365 0.811053

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0.559094 0.468305 0.558566 0.415296
Best 0.23213 0.197503 0.184375 0.240033
Worst 1.10088 1.22586 1.34691 1.32692
St. dev. 0.238506 0.238177 0.272548 0.195451
Median 0.481325 0.403037 0.471071 0.396541

Table 7.20: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Generational Distance metric for the Speed Reducer test function. In this comparison, 50,
100, and 250 iterations of the algorithm performed.

7.6.11 Speed Reducer Test Function

Figures C.31, C.32 and C.33 show the graphical results produced by a) fixed adaptation,
b) random adaptation, c) self adaptation and d) self-adaptation using half of the parameters’
range in the Speed Reducer test function. The solutions displayed correspond to the merge
of the final results obtained from all the executions performed.

Tables 7.20 and 7.21 show the comparison of results among the four algorithms consid-
ering the generational distance and the success counting metrics, respectively. In this test
function, Fixed produced the best results with respect to the generational distance metric.
However, the self-adaptive (half of the range) produced the best results for the Success
counting metric.
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50 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0 0 0 0
Best 0 0 0 0
Worst 0 0 0 0
St. dev. 0 0 0 0
Median 0 0 0 0

100 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0 0 0 0
Best 0 0 0 0
Worst 0 0 0 0
St. dev. 0 0 0 0
Median 0 0 0 0

250 iterations

Approaches

Statistics Fixed Random Self-adaptive
Self-adaptive

half of the range

Mean 0 0.0333333 0 0
Best 0 1 0 0
Worst 0 0 0 0
St. dev. 0 0.182574 0 0
Median 0 0 0 0

Table 7.21: Comparison of results of the approaches for parameter tuning (fixed, random,
self-adaptive and self-adaptive using half of the parameters’ range) with respect to the
Success Counting metric for the Speed Reducer test function. In this comparison, 50, 100,
and 250 iterations of the algorithm performed.
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7.6.12 Conclusions from the Experiment

Although the results obtained from this experiment seem inconclusive, we argue that the
use of a self-adaptation mechanism for adjusting the parameters gives a better performance
in a wider range of functions. In this experiment, most of the time, the approach which
performed best for the 25 generations, was also the best performer when adopting 50 and
250 generations. So, we argue, that the proposal to self-adapt the parameters improved the
overall performance of the algorithm. Thus, we advise to use this sort of self-adaptation
mechanism, if dealing with an unknown problem. However, if the best values for W, C1,
and C2 are known in advance for a certain problem, then obviously they must be used
instead. Since the self-adaptation that uses a half of the range methodology had the best
performance in our study, we decided to adopt this methodology as part of our algorithm.

After introducing this last component (i.e., the self-adaptation mechanism), the final
version of our proposed algorithm is shown in Algorithm 31. This approach does not
require any manual fine-tuning of its PSO parameters.
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Algorithm 31 MOPSO - final step
Require: nsubswarms, nparticles, nconst and dimensions
1: WSET ← {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
2: C1SET ← C2SET ← {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0}
3: WSUM ← C1SUM ← C2SUM ← {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}
4: ~gbest← ~x0

5: GBESTfinal ← ∅
6: for s = 0 to nsubswarms do
7: GBEST s ← ∅
8: for i = 0 to nparticles/nsubswarms do

9: ~pbestsi ← ~xs
i ← initialize randomly()

10: fitnesss
i ← f( ~xs

i )
11: velocitys

id ← 0

12: if (
∑nconst

0 violation(~xi) <
∑nconst

0 violation( ~gbest))||(∑nconst

0 violation(~xi) ==
∑nconst

0 violation( ~gbest) ∪ (¬∃ ~y∗ ∈ GBEST s | ~f(~y∗) � ~f( ~fitnesss
i ))) then

GBEST s ← GBEST s ∪ ~xs
i

13: end for
14: end for
15: repeat
16: GBESTtemp ← ∅
17: for s = 0 to nsubswarms do
18: for i = 0 to nparticles do
19: indC1← indC2← indW ← 0
20: randtemp← U(0,

∑|C1SUM|
0 C1SUM)

21: while randtemp > 0 do randtemp← randtemp− C1SUMindC1++

22: randtemp← U(0,
∑|C2SUM|

0 C2SUM)
23: while randtemp > 0 do randtemp← randtemp− C2SUMindC2++

24: randtemp← U(0,
∑|WSUM|

0 WSUM)
25: while randtemp > 0 do randtemp← randtemp−WSUMindW++

26: if flip(0.5)then gbest← GBEST s
U(0,|GBEST s|)

27: else gbest← y|y ∈ GBEST s∪ 6 ∃ z ∈ GBEST s|z − xs
i < y − xs

i

28: if xs is equal gbest then turbulence (xs)
29: for d = 0 to ndimensions do
30: velocitys

id ← WSETindW × velocitys
id + C1SETindC1 × U(0, 1) × (pbestsid − xs

id) +
C2SETindC2 × U(0, 1)× (gbest− xs

id)
31: xs

id ← xs
id + velocitys

id

32: end for
33: fitnesss

i ← f( ~xs
i )

34: if (
∑nconst

0 violation(~xi) <
∑nconst

0 violation( ~pbestsi ))||(
∑nconst

0 violation(~xi) ==
∑nconst

0 violation( ~pbestsi ) ∪ fitnesss
i is ∼ to f( ~pbestsi )) then ~pbestsi ← ~xs

i

35: if (
∑nconst

0 violation(~xi) <
∑nconst

0 violation( ~gbest))||(∑nconst

0 violation(~xi) ==
∑nconst

0 violation( ~gbest)∪(¬∃ ~y∗ ∈ GBEST s | ~f(~y∗) � ~f( ~fitnesss
i ))) then GBEST s ←

GBEST s ∪ ~xs
i

36: end for
37: GBESTfinal ← GBESTfinal ∪GBEST s

38: end for
39: GBESTfinal ← approach− to− distribute− solutions(GBESTfinal)
40: group GBESTfinal into nsubswarms
41: for s = 0 to nsubswarms do GBESTs ← randomly select a group formed in last step
42: until Termination criterion
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TSC MOPSO Mostaghim’s MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.340986 0.454932 0.29932
Mostaghim’s MOPSO 0.240833 ———- 0.42 0.196667
NSGA-II 0.479167 0.5225 ———- 0.513333
ǫ-MOEA 0.575125 0.556761 0.671536 ———-

Table 7.22: Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
ǫ-MOEA with respect to the Two Set Coverage metric for Kursawe’s test function.

7.7 Comparison of Results

In this section, we compare the results of the final version of our algorithm against the
NSGA-II, ǫ-MOEA and against another multiobjective particle swarm optimizer (Mostaghim’s
MOPSO [91]).

In the following examples, the NSGA-II was run using a population size of 40, a crossover
rate of 0.8 (uniform crossover was adopted), tournament selection, and a mutation rate of
1/N , where N = number of variables (real representation was adopted), a distribution
index of 15 for real-coded crossover, a mutation rate of 1/L, and a mutation rate of 1/N ,
where N = number of variables, a distribution index of 20 for real-coded mutation. The
ǫ-MOEA was run using a population size of 40, a crossover rate of 0.8 (uniform crossover
was adopted), distribution index of 15 for real-coded crossover and distribution index of 20
for real-coded mutation. Mostaghim’s MOPSO was run using a maximum number of cycles
of 50, a population size of 40, an archive size of 40, a number of parameters of 30 and a
turbulence factor of 0.01. Our MOPSO used 40 particles and a total of 8 swarms. Two
versions of our MOPSO were used in this comparison, one of which uses self-adaptation.

The total number of fitness function evaluations was set to 2, 000 for all the algorithms
compared (50 generations). Since Mostaghim’s approach doesn’t have a constraint-handling
technique (and in order to avoid any bias in the comparison of results), we only compared
results with respect to this approach in unconstrained test functions.

7.7.1 Kursawe’s Test Function

Figure 7.2 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA, c)
Mostaghim’s MOPSO and d) our MOPSO in the first test function chosen. The true Pareto
front of the problem is shown as a continuous line. The solutions displayed correspond to
the merge of the final results obtained from all the executions performed. Tables 7.22, 7.23
and 7.24, show the comparison of results among the three algorithms considering two set
coverage, hyper volume, inverted generational distance and the success counting metrics.
In this test function, ǫ-MOEA performed better than the others. However, it is important
to note that our MOPSO was the only algorithm which could discover the (-20,0) point.
This is important, because it is quite difficult for most MOEAs to generate isolated point
is quite difficult to be reach by any multi-objective evolutionary algorithm (in fact, neither
the NSGA-II nor ǫ-MOEA could generate this point), which is a good indicative of the
capabilities of our approach to reach disconnected regions of a Pareto front.
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Figure 7.2: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, c) Mostaghim’s MOPSO
and d) MOPSO, for Kursawe’s test function.

HV MOPSO Mostaghim’s MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.188373 1.01789 0.170263
Mostaghim’s MOPSO 0.0571032 ———- 0.894887 0.0717263
NSGA-II 0.0537395 0.111614 ———- 0.0796734
ǫ-MOEA 0.0774617 0.111677 1.11986 ———-

Table 7.23: Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
ǫ-MOEA with respect to the Hyper Volume metric for Kursawe’s test function.

Approaches
Statistics MOPSO Mostaghim’s MOPSO NSGA-II ǫ-MOEA

IGD Mean 0.00801815 0.02533 0.0825022 0.00602655
Best 0.00681556 0.00757799 0.0588314 0.00405783
Worst 0.011734 0.0753964 0.117137 0.00973392
St. dev. 0.0011151 0.02107 0.021286 0.00161515
Median 0.00753431 0.0182831 0.078836 0.00546673

SC Mean 9.56667 8.8 15.5 40.5667
Best 18 19 22 49
Worst 4 0 8 33
St. dev. underline3.74795 6.5147 4.84056 5.69139
Median 4.5 16 20 43

Table 7.24: Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II and
ǫ-MOEA with respect to the inverted generational distance (IGD) and Success counting
(SC) for Kursawe’s test function.
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Figure 7.3: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, c) Mostaghim’s MOPSO
and d) MOPSO, for ZDT1’s test function.

TSC MOPSO Mostaghim’s MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 1 1 0.983333
Mostaghim’s MOPSO 0 ———- 0 0.0607407
NSGA-II 0 1 ———- 0.169062
ǫ-MOEA 0.00605144 0.993949 0.202723 ———-

Table 7.25: Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
ǫ-MOEA with respect to the Two Set Coverage metric for ZDT1’s test function.

7.7.2 ZDT1’s Test Function

Figure 7.3 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA,
Mostaghim’s MOPSO and d) our MOPSO in ZDT1’s test function. The true Pareto front
of the problem is shown as a continuous line. The solutions displayed correspond to the
merge of the final results obtained from all the executions performed. Tables 7.25, 7.26 and
7.27, show the comparison of results among the three algorithms considering the following
metrics: two set coverage, hyper volume, inverted generational distance and the success
counting. In this test function, our MOPSO was the algorithm which performed best with
respect to all metrics.
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HV MOPSO Mostaghim’s MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.406051 0.0402556 0.0461719
Mostaghim’s MOPSO 0 ———- 0 2.37284E-06
NSGA-II 0 0.362969 ———- 0.0164115
ǫ-MOEA 1.04759e-05 0.253873 0.0110925 ———-

Table 7.26: Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
ǫ-MOEA with respect to the Hyper Volume metric for ZDT1’s test function.

Approaches
Statistics MOPSO Mostaghim’s MOPSO NSGA-II ǫ-MOEA

IGD Mean 0.000984289 0.0601869 0.00676222 0.0227843
Best 0.000826707 0.028702 0.00261635 0.00640436
Worst 0.00118531 0.0877538 0.0169496 0.0379035
St. dev. 9.26088E-05 0.0125145 0.0045472 0.00851036
Median 0.000978502 0.0623778 0.0049536 0.0240974

SC Mean 9.9 0 0.0666667 0.0666667
Best 20 0 2 1
Worst 6 0 0 0
St. dev. 3.4074 0 0.365148 0.253708
Median 6 0 0 0

Table 7.27: Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II and
ǫ-MOEA with respect to the inverted generational distance (IGD) and Success counting
(SC) for ZDT1’s test function.
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Figure 7.4: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, c) Mostaghim’s MOPSO
and d) MOPSO, for ZDT2’s test function.

TSC MOPSO Mostaghim’s MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 1 0.995726 0.987179
Mostaghim’s MOPSO 0 ———- 0 0
NSGA-II 0 0.788618 ———- 0.0704607
ǫ-MOEA 0 0.864826 0.603198 ———-

Table 7.28: Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
ǫ-MOEA with respect to the Two Set Coverage metric for ZDT2’s test function.

7.7.3 ZDT2’s Test Function

Figure 7.4 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA, c)
Mostaghim’s MOPSO and d) our MOPSO in ZDT2’s test function. The true Pareto front
of the problem is shown as a continuous line. The solutions displayed correspond to the
merge of the final results obtained from all the executions performed. Tables 7.28, 7.29 and
7.30, show the comparison of results among the three algorithms considering the following
metrics: two set coverage, hyper volume, inverted generational distance and the success
counting. In this test function, our MOPSO was the algorithm which performed best with
respect to all metrics.
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HV MOPSO Mostaghim’s MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.355323 0.0636189 0.034894
Mostaghim’s MOPSO 0 ———- 0 0
NSGA-II 0 0.23358 ———- 0.00145575
ǫ-MOEA 0 0.296025 0.0277186 ———-

Table 7.29: Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II, and
ǫ-MOEA with respect to the Hyper Volume metric for ZDT2’s test function.

Approaches
Statistics MOPSO Mostaghim’s MOPSO NSGA-II ǫ-MOEA

IGD Mean 0.00261164 0.0672163 0.0322927 0.0166433
Best 0.000783843 0.0520029 0.00560298 0.00200895
Worst 0.0329462 0.0931413 0.0573697 0.0514464
St. dev. 0.00650816 0.0117475 0.0188163 0.0143003
Median 0.000911632 0.0634132 0.0294469 0.0130747

SC Mean 23.7 0 0 0
Best 41 0 0 0
Worst 4 0 0 0
St. dev. 13.9189 0 0 0
Median 37 0 0 0

Table 7.30: Comparison of results of our MOPSO, Mostaghim’s MOPSO, NSGA-II and
ǫ-MOEA with respect to the inverted generational distance (IGD) and Success counting
(SC) for ZDT2’s test function.
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Figure 7.5: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, and c) MOPSO, for the
Welded Beam test function.

TSC MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.438863 0.699526
NSGA-II 0.0433333 ———- 0.5925
ǫ-MOEA 0 0.139241 ———-

Table 7.31: Comparison of results of our MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Two Set Coverage metric for the Welded Beam test function.

7.7.4 Welded Beam Test Function

Figure 7.5 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA and c)
our MOPSO in the Welded Beam test function. The true Pareto front of the problem is
shown as a continuous line. The solutions displayed correspond to the merge of the final
results obtained from all the executions performed. Tables 7.31, 7.32 and 7.33, show the
comparison of results among the three algorithms considering the following metrics: two
set coverage, hyper volume, inverted generational distance and the success counting. In
this test function, our MOPSO was the algorithm which performed best with respect to all
metrics.
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HV MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.0217217 0.0210309
NSGA-II 2.19062e-05 ———- 0.0063767
ǫ-MOEA 0 0.00391661 ———-

Table 7.32: Comparison of results of our MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Hyper Volume metric for the Welded Beam test function.

Approaches
Statistics MOPSO NSGA-II ǫ-MOEA

IGD Mean 0.00710279 0.0106717 0.0365222
Best 0.00243346 0.00469789 0.017034
Worst 0.0188052 0.0196519 0.0625128
St. dev. 0.00454798 0.00497636 0.0167276
Median 0.00482416 0.00989811 0.0358428

SC Mean 1.76667 0 0
Best 1 0 0
Worst 3 0 0
St. dev. 0.678911 0 0
Median 2 0 0

Table 7.33: Comparison of results of our MOPSO, NSGA-II and ǫ-MOEA with respect to
the inverted generational distance (IGD) and Success counting (SC) for the Welded Beam
test function.
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Figure 7.6: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, and c) MOPSO, for Kita’s
test function.

TSC MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.592593 0.674264
NSGA-II 0.275833 ———- 0.6025
ǫ-MOEA 0.320423 0.545775 ———-

Table 7.34: Comparison of results of our MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Two Set Coverage metric for Kita’s test function.

7.7.5 Kita’s Test Function

Figure 7.6 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA and
c) our MOPSO in Kita’s test function. The true Pareto front of the problem is shown
as a continuous line. The solutions displayed correspond to the merge of the final results
obtained from all the executions performed. Tables 7.35, 7.34 and 7.36, show the comparison
of results among the three algorithms considering the following metrics: two set coverage,
hyper volume, inverted generational distance and the success counting. In this test function,
our MOPSO was the algorithm which performed best with respect to all metrics.
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HV MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.171587 0.192213
NSGA-II 0.00474455 ———- 0.115128
ǫ-MOEA 0.00739919 0.0940972 ———-

Table 7.35: Comparison of results of our MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Hyper Volume metric for Kita’s test function.

Approaches
Statistics MOPSO NSGA-II ǫ-MOEA

IGD Mean 0.00785754 0.0828163 0.03697
Best 0.00593717 0.00936987 0.0134287
Worst 0.0132567 0.197385 0.0833982
St. dev. 0.00161361 0.0721825 0.0310189
Median 0.00734665 0.119276 0.0203783

SC Mean 8.26667 11 7.2
Best 15 15 14
Worst 3 7 4
St. dev. 2.89986 3.2056 3.63318
Median 5 11 5

Table 7.36: Comparison of results of our MOPSO, NSGA-II and ǫ-MOEA with respect to
the inverted generational distance (IGD) and Success counting (SC) for Kita’s test function.
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Figure 7.7: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, and c) MOPSO, for Speed
reducer’s test function.

TSC MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.362543 0.481959
NSGA-II 0.354167 ———- 0.670833
ǫ-MOEA 0.409982 0.465241 ———-

Table 7.37: Comparison of results of our MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Two Set Coverage metric for the Speed Reducer test function.

7.7.6 Speed Reducer Test Function

Figure 7.7 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA and c)
our MOPSO in the Speed Reducer test function. The true Pareto front of the problem is
shown as a continuous line. The solutions displayed correspond to the merge of the final
results obtained from all the executions performed. Tables 7.37, 7.38 and 7.39, show the
comparison of results among the three algorithms considering the following metrics: two set
coverage, hyper volume, inverted generational distance and the success counting metrics.
In this test function, our MOPSO produced the best results with respect to the two set
coverage
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HV MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 3646.23 52758
NSGA-II 933.867 ———- 46972.6
ǫ-MOEA 34.1542 41.9211 ———-

Table 7.38: Comparison of results of our MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Hyper Volume metric for the Speed Reducer test function.

Approaches
Statistics MOPSO NSGA-II ǫ-MOEA

IGD Mean 1.77744 9.41548 6.65309
Best 0.56863 2.01383 5.5782
Worst 19.2329 17.222 10.3793
St. dev. 3.80189 6.49236 1.59788
Median {underline0.703888 9.61791 5.62359

SC Mean 0 0 0
Best 0 0 0
Worst 0 0 0
Stdev 0 0 0
Median 0 0 0

Table 7.39: Comparison of results of our MOPSO, NSGA-II and ǫ-MOEA with respect to
the inverted generational distance (IGD) and Success counting (SC) for the Speed Reducer
test function.
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Figure 7.8: Pareto fronts produced by a) NSGA-II, b) ǫ-MOEA, and c) MOPSO, for Osy-
czka2’s test function.

TSC MOPSO NSGA-II ǫ-MOEA

MOPSO ———- 0.454274 0.548708
NSGA-II 0.0175 ———- 0.26
ǫ-MOEA 0.0498339 0.548708 ———-

Table 7.40: Comparison of results of our MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Two Set Coverage metric for Osyczka2’s test function.

7.7.7 Osyczka2’s Test Function

Figure 7.8 shows the graphical results produced by a) the NSGA-II, b) ǫ-MOEA and c)
our MOPSO in Osyczka2’s test function. The true Pareto front of the problem is shown
as a continuous line. The solutions displayed correspond to the merge of the final results
obtained from all the executions performed. Tables 7.40, 7.41 and 7.42, show the comparison
of results among the three algorithms considering the following metrics: two set coverage,
hyper volume, inverted generational distance and the success counting. In this test function,
our MOPSO was the algorithm which performed best with respect to all metrics.

7.8 Conclusions

Based on the analysis of the experiments and comparisons performed in this chapter,
we conclude that the use a self-adaptive scheme to modify the parameter’s values of our
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HV MOPSO NSGA-II ǫ-MOEA

MOPSO ——— 370.676 1269.45
NSGA-II 10.945 ———- 733.396
ǫ-MOEA 0.270441 26.6716 ———-

Table 7.41: Comparison of results of our MOPSO, NSGA-II, and ǫ-MOEA with respect to
the Hyper Volume metric for Osyczka2’s test function.

Approaches
Statistics MOPSO NSGA-II ǫ-MOEA

IGD Mean 0.973828 1.60855 2.02818
Best 0.277941 0.575352 1.19288
Worst 4.72277 5.03231 6.40672
St. dev. 0.782608 1.42304 1.76107
Median 0.760223 1.12498 1.27526

SC Mean 0.366667 0 0
Best 2 0 0
Worst 0 0 0
St. dev. 0.614948 0 0
Median 0 0 0

Table 7.42: Comparison of results of our MOPSO, NSGA-II and ǫ-MOEA with respect to
the inverted generational distance (IGD) and Success counting (SC) for Osyczka2’s test
function.

MOPSO turns out to be beneficial in most cases, and only marginally harmful when the
problem is very simple to solve. Note however, that since the difference is almost negligible,
we recommend to use self-adaptation with our MOPSO in all cases.
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8
Final Remarks

There were the main steps that we followed to reach the final version of our algorithm:

• We proposed an extension of the particle swarm optimization algorithm to handle
multiobjective problems. The proposal uses sub-swarms, Pareto ranking and cluster-
ing techniques. This first version of the algorithm only handled unconstrained test
problems, and was properly validated (using standard test functions and metrics).

• We developed a constraint-handling technique that was initially validated in a single
objective version of the particle swarm optimization algorithm. Then, this constraint-
handling technique was incorporated into our multiobjective particle swarm optimizer
and the new version of the algorithm was validated again.

• In our final step, we performed a comprehensive study of the three most critical
parameters of our multiobjective particle swarm optimization algorithm. Our study
suggested that the design of a self-adaptation mechanism was the best choice in order
to automatically adjust the parameters of our approach. This was the final version of
our proposed algorithm, which was again validated using standard test functions and
metrics.

8.1 Conclusions

Our main conclusions are the following:

• The particle swarm optimization algorithm is a viable alternative to solve multiobjec-
tive optimization problems.

• The selection of leaders was found to play a very significant role in the performance of
our multiobjective particle swarm optimizer. This led us to experiment with different
strategies for leader selection.
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• We found that the use of subswarms promotes local search as an emergent behavior
in our multiobjective particle swarm optimizer. Consequently, the performance of
our approach was improved by the use of subswarms, particularly in the presence of
disconnected Pareto fronts.

• The use of a relatively simple constraint-handling technique was sufficient to solve
even problems in which the global optimum lies on the boundary between the feasible
and the infeasible region.

• In general, we found that it is quite difficult to find fixed values for the three most
significant parameters of our approach (W,C1 and C2). It is worth indicating that
the comprehensive study of parameters done as part of this thesis is the first of its
type (in the context of multiobjective particle swarm optimization). So, we designed
a self-adaptation mechanism for these parameters, and we found this to be a good
alternative to facilitate the use of our approach.

• The use of a perturbation mechanism in our multiobjective particle swarm optimizer
was found to be critical to control its high selection pressure, as to avoid premature
convergence.

• It is worth emphasizing that the final version of our proposed approach produced very
competitive results while performing only 2, 000 fitness function evaluations. This is
the lowest number of evaluations reported by any other multiobjective particle swarm
optimizer to date.

8.2 Future Work

Some possible paths to extend this work are the following:

• Experiment with other PSO’s models and with different interconnection topologies.

• Study alternative methods for the survivor selection mechanism.

• Study alternative (perhaps more elaborate) constraint-handling mechanisms.

• Study alternative mechanisms to accelerate convergence while keeping the same qual-
ity of results achieved in this thesis. Such an approach would be very useful to deal
with real-world applications.



A
Four strategies to select one of the multiple gbest to apply in the PSO’s velocity formula

were proposed in Chapter 5, Section 4. This Appendix summarizes the results of such
proposals in seven test functions [131]. Each algorithm were executed 30 times. The results
from each strategy in each test function are graphically presented. Furthermore, six behavior
statistics were taken at each generation of each algorithm’s execution. Such statistics are:
a) the total of non-dominated solutions, b) the occurrences of strong dominance, c) total
of replacements of a leader by the new particle’s position, d) total of pbest replacements,
e) the total of particles which were dominated and f) the quantity of new non-dominated
particles. These statistics are meat to analyze the behavior of each gbest selection strategy.

A.1 ZDT1’s test function

This test function is described in Section 2.5.6.
Figure A.1 shows the graphical results produced by each gbest selection strategy in

ZDT1’s test function. The true Pareto front of the problem is shown as a continuous line.
Figure A.2 shows the statistics previously described for this test function.

A.2 ZDT2’s test function

This test function is described in Section 2.5.7.
Figure A.3 shows the graphical results produced by each gbest selection strategy in

ZDT2’s test function. The true Pareto front of the problem is shown as a continuous line.
Figure A.4 shows the statistics previously described for this test function.

A.3 ZDT3’s test function

This test function is described in Section 2.5.8.
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Figure A.1: Pareto fronts produced by schemes a) 1, b) 2, c) 3a and d) 3b for ZDT1’s test
function.
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Figure A.2: Plots that indicate a) the total of non-dominated solutions, b) the occurrences
of strong dominance, c) total of replacements of a leader by the new particle’s position,
d) total of pbest replacements, e) the total of particles which were dominated and f) the
quantity of new non-dominated particles for ZDT1’s test function.
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Figure A.3: Pareto fronts produced by schemes a) 1, b) 2, c) 3a and d) 3b for ZTD2’s test
function.
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Figure A.4: Plots that indicate a) the total of non-dominated solutions, b) the occurrences
of strong dominance, c) total of replacements of a leader by the new particles’ position,
d) total of pbest replacements, e) the total of particles which were dominated and f) the
quantity of new non-dominated particles, for ZDT2’s test function.



170

a) b)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

fu
nc

tio
n 

2

function 1

Pareto front

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

fu
nc

tio
n 

2

function 1

Pareto front

c) d)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

fu
nc

tio
n 

2

function 1

Pareto front

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

fu
nc

tio
n 

2

function 1

Pareto front

Figure A.5: Pareto fronts produced by schemes a) 1, b) 2, c) 3a and d) 3b for ZTD3’s test
function.

Figure A.5 shows the graphical results produced by each gbest selection strategy in
ZDT3’s test function. The true Pareto front of the problem is shown as a continuous line.
Figure A.6 shows the statistics previously described for this test function.

A.4 ZDT6’s test function

This test function is described in Section 2.5.10.
Figure A.7 shows the graphical results produced by each gbest selection strategy in

ZDT6’s test function. The true Pareto front of the problem is shown as a continuous line.
Figure A.8 shows the statistics previously described for this test function.

A.5 Kursawe’s test function

This test function is described in Section 2.5.3.
Figure A.9 shows the graphical results produced by each gbest selection strategy in

Kursawe’s test function. The true Pareto front of the problem is shown as a continuous
line. Figure A.10 shows the statistics previously described for this test function.

A.6 Deb’s test function

This test function is described in Section 2.5.1.
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Figure A.6: Plots that indicate a) the total of non-dominated solutions, b) the occurrences
of strong dominance, c) total of replacements of a leader by the new particle’s position,
d) total of pbest replacements, e) the total of particles which were dominated and f) the
quantity of new non-dominated particles, for ZDT3’s test function.
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Figure A.7: Pareto fronts produced by schemes a) 1, b) 2, c) 3a and d) 3b for ZTD6’s test
function.
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Figure A.8: Plots that indicate a) the total of non-dominated solutions, b) the occurrences
of strong dominance, c) total of replacements of a leader by the new particle’s position,
d) total of pbest replacements, e) the total of particles which were dominated and f) the
quantity of new non-dominated particles, for ZDT6’s test function.
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Figure A.9: Pareto fronts produced by schemes a) 1, b) 2, c) 3a and d) 3b for Kursawe’s
test function.
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Figure A.10: Plots that indicate a) the total of non-dominated solutions, b) the occurrences
of strong dominance, c) total of replacements of a leader by the new particle’s position,
d) total of pbest replacements, e) the total of particles which were dominated and f) the
quantity of new non-dominated particles, for Kursawe’s test function.
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Figure A.11: Pareto fronts produced by schemes a) 1, b) 2, c) 3a and d) 3b for Deb’s test
function.

Figure A.11 shows the graphical results produced by each gbest selection strategy in
Deb1’s test function. The true Pareto front of the problem is shown as a continuous line.
Figure A.12 shows the statistics previously described for this test function.

A.7 Deb2’s test function

This test function is described in Section 2.5.2.
Figure A.13 shows the graphical results produced by each gbest selection strategy in

Deb2’s test function. The true Pareto front of the problem is shown as a continuous line.
Figure A.14 shows the statistics previously described for this test function.

A.8 Schema 4



A.8 Schema 4 177

a) b)

 0

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20  25

av
er

ag
e

generations

schema1
schema2

schema3a
schema3b

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  5  10  15  20  25

av
er

ag
e

generations

schema1
schema2

schema3a
schema3b

c) d)

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20  25

av
er

ag
e

generations

schema1
schema2

schema3a
schema3b

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  5  10  15  20  25

av
er

ag
e

generations

schema1
schema2

schema3a
schema3b

e) f)

 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25

av
er

ag
e

generations

schema1
schema2

schema3a
schema3b

 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25

av
er

ag
e

generations

schema1
schema2

schema3a
schema3b

Figure A.12: Plots that indicate a) the total of non-dominated solutions, b) the occurrences
of strong dominance, c) total of replacements of a leader by the new particle’s position,
d) total of pbest replacements, e) the total of particles which were dominated and f) the
quantity of new non-dominated particles, for Deb’s test function.
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Figure A.13: Pareto fronts produced by schemes a) 1, b) 2, c) 3a and d) 3b for Deb2’s test
function.
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Figure A.14: Plots that indicate a) the total of non-dominated solutions, b) the occurrences
of strong dominance, c) total of replacements of a leader by the new particle’s position,
d) total of pbest replacements, e) the total of particles which were dominated and f) the
quantity of new non-dominated particles, for DEB2’s test function.
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Figure A.15: Pareto fronts produced by the schema 4 for test functions
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Figure B.1: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Kursawe’s test function.
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Figure B.2: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Deb1’s test function.
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Figure B.3: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Deb2’s test function.
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Figure B.4: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT1’s test function.
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Figure B.5: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT2’s test function.
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Figure B.6: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT3’s test function.
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Figure B.7: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT6’s test function.
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Figure B.8: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Kita’s test function.
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Figure B.9: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of the Welded beam test function.
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Figure B.10: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Osyczka2’s test function.



192

Figure B.11: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of the Speed Reducer test function.
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B.2 Experiment 2



194

Figure B.12: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Kursawe’s test function.
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Figure B.13: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Deb1’s test function.
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Figure B.14: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Deb2’s test function.
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Figure B.15: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT1’s test function.
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Figure B.16: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT2’s test function.
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Figure B.17: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT3’s test function.
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Figure B.18: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT6’s test function.
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Figure B.19: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Kita’s test function.
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Figure B.20: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of the Welded Beam test function.
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Figure B.21: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Osyczka2’s test function.
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Figure B.22: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of the the Speed Reducer test function.
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Figure B.23: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Kursawe’s test function.
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Figure B.24: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Deb2’s test function.
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Figure B.25: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of ZDT3’s test function.
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Figure B.26: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Kita’s test function.
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Figure B.27: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of the Welded Beam test function.
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Figure B.28: Each square in the mosaic represents the average of inverted generational
distance applied to 30 executions of Osyczka2’s test function.
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Figure C.1: Solutions produced using 50 iterations (2,000 fitness function evaluations) by
our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d) self-
adaptation (using half of the parameters’ range) mechanisms for Deb1’s test function.
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Figure C.2: Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for Deb1’s test function.
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Figure C.3: Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for Deb1’s test function.
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Figure C.4: Solutions produced using 50 iterations (2,000 fitness function evaluations) by
our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d) self-
adaptation (using half of the parameters’ range) mechanisms for Deb2’s test function.
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Figure C.5: Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for Deb2’s test function.
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Figure C.6: Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for Deb2’s test function.
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Figure C.7: Solutions produced using 50 iterations (2,000 fitness function evaluations) by
our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d) self-
adaptation (using half of the parameters’ range) mechanisms for Kursawe’s test function.



221

a) b)

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F
un

ct
io

n 
2

Function 1

Pareto front

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F
un

ct
io

n 
2

Function 1

Pareto front

c) d)

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F
un

ct
io

n 
2

Function 1

Pareto front

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F
un

ct
io

n 
2

Function 1

Pareto front

Figure C.8: Solutions produced using 100 iterations (4,000 fitness function evaluations) by
our MOPSO using parameter selection by a fixed , b random, c self-adaptation and d self-
adaptation (using half of the parameters’ range) mechanisms for Kursawe’s test function.



222

a) b)

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F
un

ct
io

n 
2

Function 1

Pareto front

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F
un

ct
io

n 
2

Function 1

Pareto front

c) d)

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F
un

ct
io

n 
2

Function 1

Pareto front

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

F
un

ct
io

n 
2

Function 1

Pareto front

Figure C.9: Solutions produced using 250 iterations (10,000 fitness function evaluations) by
our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d) self-
adaptation (using half of the parameters’ range) mechanisms for Kursawe’s test function.
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Figure C.10: Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for Kita’s test function.
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Figure C.11: Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for Kita’s test function.
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Figure C.12: Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for Kita’s test function.
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Figure C.13: Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for ZDT1’s test function.
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Figure C.14: Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for ZDT1’s test function.
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Figure C.15: Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for ZDT1’s test function.
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Figure C.16: Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for ZDT2’s test function.
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Figure C.17: Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for ZDT2’s test function.
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Figure C.18: Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for ZDT2’s test function.
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Figure C.19: Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for ZDT3’s test function.
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Figure C.20: Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for ZDT3’s test function.
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Figure C.21: Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for ZDT3’s test function.
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Figure C.22: Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for ZDT6’s test function.
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Figure C.23: Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for ZDT6’s test function.
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Figure C.24: Solutions produced using 250 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for ZDT6’s test function.
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Figure C.25: Solutions produced using 50 iterations (2,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for the Welded Beam test
function.
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Figure C.26: Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for the Welded Beam test
function.
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Figure C.27: Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for the Welded Beam test
function.
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Figure C.28: Solutions produced using 50 iterations (2,000 fitness function evaluations) by
our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d) self-
adaptation (using half of the parameters’ range) mechanisms for Osyczka 2’s test function.
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Figure C.29: Solutions produced using 100 iterations (4,000 fitness function evaluations) by
our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d) self-
adaptation (using half of the parameters’ range) mechanisms for Osyczka 2’s test function.
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Figure C.30: Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation,
d) self-adaptation (using half of the parameters’ range) mechanisms for Osyczka 2’s test
function.
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Figure C.31: Solutions produced using 50 iterations (2,000 fitness function evaluations) by
our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d) self-
adaptation (using half of the parameters’ range) mechanisms for the Speed Reducer test
function.
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Figure C.32: Solutions produced using 100 iterations (4,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for the Speed Reducer
test function.
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Figure C.33: Solutions produced using 250 iterations (10,000 fitness function evaluations)
by our MOPSO using parameter selection by a) fixed , b) random, c) self-adaptation, d)
self-adaptation (using half of the parameters’ range) mechanisms for the Speed Reducer
test function.
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tive Optimization. In Erick Cantú-Paz et al., editor, Genetic and Evolutionary
Computation—GECCO 2003. Proceedings, Part I, pages 37–48. Springer. Lecture
Notes in Computer Science Vol. 2723, July 2003.

[82] Mahdi Mahfouf, Min-You Chen, and Derek Arturh Linkens. Adaptive Weighted
Particle Swarm Optimisation for Multi-objective Optimal Design of Alloy Steels. In
Parallel Problem Solving from Nature - PPSN VIII, pages 762–771, Birmingham, UK,
September 2004. Springer-Verlag. Lecture Notes in Computer Science Vol. 3242.
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forschung inder strömungstechnik. Dipl.-Ing. thesis, 1965. (in German).

[110] N. Srinivas and Kalyanmoy Deb. Multiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms. Evolutionary Computation, 2(3):221–248, Fall 1994.

[111] Dipti Srinivasan and Tian Hou Seow. Particle Swarm Inspired Evolutionary Algo-
rithm (PS-EA) for Multiobjective Optimization Problem. In Proceedings of the 2003
Congress on Evolutionary Computation (CEC’2003), volume 4, pages 2292–2297,
Canberra, Australia, December 2003. IEEE Press.

[112] R. E. Steuer. Multiple Criteria Optimization: Theory, Computation, and Application.
John Wiley, New York, 1986.

[113] K.C. Tan, T.H. Lee, and E.F. Khor. Evolutionary Algorithms with Dynamic Popula-
tion Size and Local Exploration for Multiobjective Optimization. IEEE Transactions
on Evolutionary Computation, 5(6):565–588, December 2001.

[114] Gregorio Toscano Pulido and Carlos A. Coello Coello. The Micro Genetic Algorithm
2: Towards Online Adaptation in Evolutionary Multiobjective Optimization. In Car-
los M. Fonseca, Peter J. Fleming, Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele,
editors, Evolutionary Multi-Criterion Optimization. Second International Conference,
EMO 2003, pages 252–266, Faro, Portugal, April 2003. Springer. Lecture Notes in
Computer Science. Volume 2632.



BIBLIOGRAPHY 257

[115] Gregorio Toscano-Pulido and Carlos A. Coello Coello. A Constraint-Handling Mecha-
nism for Particle Swarm Optimization. In Proceedings of the Congress on Evolutionary
Computation 2004 (CEC’2004), volume 2, pages 1396–1403, Piscataway, New Jersey,
June 2004. Portland, Oregon, USA, IEEE Service Center.

[116] Frans van den Bergh. An Analysis of Particle Swarm Optimization. PhD thesis,
Faculty of Natural and Agricultural Science, University of Petoria, Pretoria, South
Africa, November 2002.

[117] David A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD thesis, Department of Electrical and Com-
puter Engineering. Graduate School of Engineering. Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, May 1999.

[118] David A. Van Veldhuizen and Gary B. Lamont. Multiobjective Evolutionary Algo-
rithm Research: A History and Analysis. Technical Report TR-98-03, Department
of Electrical and Computer Engineering, Graduate School of Engineering, Air Force
Institute of Technology, Wright-Patterson AFB, Ohio, 1998.

[119] David A. Van Veldhuizen and Gary B. Lamont. Multiobjective Evolutionary Algo-
rithms: Analyzing the State-of-the-Art. Evolutionary Computation, 8(2):125–147,
2000.

[120] David A. Van Veldhuizen and Gary B. Lamont. On Measuring Multiobjective Evo-
lutionary Algorithm Performance. In 2000 Congress on Evolutionary Computation,
volume 1, pages 204–211, Piscataway, New Jersey, July 2000. IEEE Service Center.

[121] A. P. Wierzbicki. Basic properties of scalarization functionals for multiobjective opti-
mization. Mathematische Operationsforshung and Statistick, Ser. Optimization, 8(No.
1):55–60, 1977.

[122] A. P. Wierzbicki. The Use of Reference Objectives in Multiobjective Optimization.
In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making Theory and
Application, pages 469–486. Springer-Verlag, New York, 1980.

[123] August Wismann. The Germ Plasm: A Theory of Heredity. Scott, London, UK.
United Kingdom, 1893.

[124] David H. Wolpert and William G. Macready. No Free Lunch Theorems for Optimiza-
tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82, April 1997.

[125] P. L. Yu. A class of solutions for group decision problems. Management Science,
19(No. 8):936–946, 1973.

[126] L. A. Zadeh. Optimality and Nonscalar-Valued Performance Criteria. IEEE Trans-
actions on Automatic Control, AC-8(1):59–60, 1963.

[127] M. Zeleny. Compromise Programming. In M. K. Starr and M. Zeleny, editors, Mul-
tiple Criteria Decision Making. University of South Carolina Press, Columbia, South
Carolina, 1973.



258 BIBLIOGRAPHY

[128] L.B. Zhang, C.G. Zhou, X.H. Liu, Z.Q. Ma, and Y.C. Liang. Solving Multi Objective
Optimization Problems Using Particle Swarm Optimization. In Proceedings of the
2003 Congress on Evolutionary Computation (CEC’2003), volume 4, pages 2400–
2405, Canberra, Australia, December 2003. IEEE Press.

[129] Zhong-Yao Zhu and Kwong-Sak Leung. Asynchronous Self-Adjustable Island Genetic
Algorithm for Multi-Objective Optimization Problems. In Congress on Evolutionary
Computation (CEC’2002), volume 1, pages 837–842, Piscataway, New Jersey, May
2002. IEEE Service Center.

[130] Eckart Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland, November 1999.

[131] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results. Technical Report 70, Computer Engi-
neering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH)
Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland, December 1999.

[132] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–
195, Summer 2000.

[133] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich,
Gloriastrasse 35, CH-8092 Zurich, Switzerland, May 2001.

[134] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. In K. Giannakoglou, D. Tsahalis, J. Periaux, P. Pa-
pailou, and T. Fogarty, editors, EUROGEN 2001. Evolutionary Methods for Design,
Optimization and Control with Applications to Industrial Problems, pages 95–100,
Athens, Greece, 2002.

[135] Eckart Zitzler, Marco Laumanns, Lothar Thiele, Carlos M. Fonseca, and Viviane
Grunert da Fonseca. Why Quality Assessment of Multiobjective Optimizers Is Dif-
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