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Abstract

This thesis addresses the velocity updating of wheeled-robots regarding the terrains’ textures

and slopes -beyond detection and avoidance of the obstacles as most current works do.

Terrain appearance recognition enables the wheeled-robots to adapt their velocity such that,

1) as speedy as possible it safely navigates, and 2) precision on vehicle localization using

odometry-based methods is improved.

Human drivers make the velocity adjusting using an estimation of the terrain’s average

appearance. When a human driver finds a new texture, he uses his experience to learn how

rough the texture is, and then sets the car’s velocity. A fuzzy neural network that allows for

mimicking the human experience by driving vehicles in outdoor terrains is deployed.

The fuzzy neural network metaclassifies data about the textures and slopes’ inclination

of terrains hence to compute the wheeled-vehicle navigation velocity; in addition, combined

with the gradient method it enables the vehicle path planning. The experimental tests

show improved robot’s performance with velocity updating: the wheels of the robot slip

very less, thus the wheeled-robot odometry errors are lower too hence precision of robot

self-localization is improved. Advances are both with respect to traveled distance and with

respect to the spent time for making the travel.

The first set of tests are performed using a small wheeled-robot which adjusts velocity

while navigating on surfaces with different classes of textures such as ground, grass, and

stones paving. The second set of tests are done using images of roads of ground, concrete,

asphalt, and loose stones, which are video filmed from a real car driven at less than 60 km/hr

of velocity; by applying the present approach the required time/distance ratio to smoothly

velocity change is granted.



Given the vehicle recognition/navigation implementation is simple and computationally

low-cost, and simulation results of the velocity updating of a car, suggests that the proposed

approach can be scaled to real vehicles.
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Resumen

En esta tesis se aborda el ajuste de velocidad de un robot con ruedas tomando en cuenta

las texturas y pendientes de los terrenos -mas allá de la detección y evasión de obstáculos

como en la mayoŕıa de los trabajos actuales se enfocan. El reconocimiento de la apariencia

de los terrenos permite a los robots con ruedas adaptar su velocidad tal que, 1) se mueva

tan rápido como pueda sin que la navegación llegue a ser peligrosa, 2) se mejora la precisión

en la localización del veh́ıculo al emplear métodos basados en odometŕıa.

En el manejo de veh́ıculos, los conductores humanos ajustan la velocidad haciendo una

estimación de la apariencia promedio del terreno. Cuando un conductor humano encuentra

una nueva textura, este emplea su experiencia para estimar que rugosa es la textura, y aśı

establecer la velocidad del carro. Se emplea una red neuronal difusa con la cual se imita la

experiencia humana para el manejo de veh́ıculos en terrenos exteriores.

Una red neuronal difusa metaclasifica la información de las texturas y de la inclinación

de las pendientes de los terrenos para calcular la velocidad de navegación del robot; además,

combinado con el método del gradiente este permite la planeación de trayectorias del veh́ıculo.

Los resultados experimentales muestran una mejora en el desempeño del robot con el ajuste

de velocidad: el deslizamiento de las ruedas del robot es menor, de esta manera el error sub-

yacente de la odometŕıa es menor y de aqúı que se mejora la precisión en el auto localización

del robot. Las mejoras son con respecto a la distancia recorrida y al tiempo de recorrido del

robot.

Un primer conjunto de experimentos son realizados empleando un pequeño robot con

ruedas el cual ajusta su velocidad mientras navega en superficies con diferentes clases de tex-

turas tales como tierra, tierra con pasto y adoqúın. El segundo conjunto de experimentos son

realizados empleando imágenes de caminos con tierra, concreto, asfalto y piedras sueltas, las

cuales son video grabadas desde un veh́ıculo real conducido a menos de 60 km/hr; al aplicar

el presente enfoque el tiempo/distancia requerido para ajustar la velocidad suavemente es



garantizado.

Dados que la implementación del reconocimiento y navegación es sencilla y computa-

cionalmente barato, y los resultados de la simulación del ajuste de velocidad de un carro, se

sugiere que el enfoque propuesto puede ser escalado a veh́ıculos de mayor tamaño.
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apoyo económico otorgado para presentar mi articulo en el International Conference on

Informatics in Control (ICINCO), en Funchal - Madeira, Portugal.

Agradezco al CINVESTAV-IPN por el apoyo económico para la inscripción y asistencia
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incluso por compartir sueños, durante mi estancia en Berĺın, Alemania (zie je in Berlijn,
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Chapter 1

Introduction

Navigation with vehicles in unknown environments is an easy task for humans, but very

difficult for robots. Giving autonomy to robots is a topic that has been extensively studied,

although still there is much to do. For autonomous navigation in outdoor terrains, the robot

must be endowed with the ability to interpret data acquired from its environment so as to

plan and follow trajectories from its current location to the desired location, considering the

features of the terrains. Most autonomous navigation works have focused on the problem

of recognition and avoidance of obstacles; however, so far, almost no attention has been

placed on the recognition of terrains’ textures and irregularities, and how they affect the

performance and safety of robots during navigation.

Current algorithms in robots’ systems for outdoor navigation or exploration have mainly

focused on the recognition and avoidance of obstacles such as stones, earth mounds [1], or

other vehicles [2]. On navigation paths the obstacles are identified in GPS images [3], or

taken by the robot’s sensors system [4], [5], such that images allow the autonomous robots’

conduction to avoid collisions [6].

Actually, by moving on outdoors, autonomous robots should avoid obstacles now and

again to maintain fine velocity control, and this issue has received broad attention [7]. How-
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ever, the robot’s velocity control regarding the terrain features has been much less attended

and it is a weakness for efficient and safe navigation nowadays. The right navigating velocity

regarding the terrain features is a requisite to keep robots away from risks of falling and

sliding due to surface slopes or smash textures [8], the vehicle velocity must be updated

according to the terrain features in order to guarantee robots safe navigation.

For wheeled-robots navigation on terrains, it is necessary to have required information

about the surface features such that automated safe navigation is ensured. One of those

features on which this work focuses is the surface roughness where the vehicle is moving on.

The robot’s velocity during real navigation depends on the terrain roughness; moreover, the

robot integrity depends on the right velocity of the robot while navigating through terrain,

it is likely that the robot has an accident if it moves in ground at the same speed as it does

on asphalt, therefore, this would not be convenient for a smooth and efficient navigation.

Outdoors autonomous robots are particularly relevant when employed in planet missions.

The terrain difficulties like dusty ground, rocks and slopes of Solar System planets -like Mars-

require in these exploration missions the usage of robots with the highest degree of autonomy

to overcome the difficulties for controlling the robots from the remote Earth. The Spirit and

Opportunity rovers spent 26 minutes to receive/send instructions from/to the Earth [9], [10].

The risk to lose information is huge due to unpredicted circumstances, so the autonomy on

robot navigation abilities is most valuable in these out of Earth missions.

In Earth exploration missions, where human life could be in danger, autonomous rovers

are required for explosive landmines search [11], deep sea exploration [12], or to determine the

eruption risk when exploring active volcano craters [13], as well others. In these dangerous

circumstances, the high autonomy of robots strengthens the robotic support to human safety.

On the other hand, by extending the robots’ abilities to recognize the terrains’ features

and then, accordingly, update the velocity while navigating, the usage of the robots’ energy

and computing resources would improve as well as the autonomy would be strengthen.
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1.1 Problem statement

Navigation with vehicles in unknown environments is an easy task for humans, but very

difficult for robots. Robotic autonomous navigation throughout outdoor terrains is highly

complex. Detection of obstacles to avoid collisions, as well as the terrain features information

acquisition to prevent sliding are both required. The information of environment needs to

be quickly and accurately processed by the robot’s navigation systems for a right displacing.

Besides, when needed information from human remote controllers is not promptly available,

the autonomous robots should be equipped for convenient reactions, particularly in front

of unpredicted circumstances. All these are tasks and actions which demand many compu-

tational resources. However, any autonomous robot has limited resources. Thereafter, for

autonomous navigation, the equation combining robot’s robust capacities to make complex

and specialized actions and the low resources use in real time need to be harmonized. This

is the current challenge.

Among the related works of navigation in rough terrains, they are mainly concentrated

on the detection and avoidance of obstacles [14], [15], [16], [17]. So far, it has not been

addressed comprehensively the problem of autonomous navigation where the robot velocity

is updated according to the terrains’ roughness, i.e. depending on the irregularities and

textures of terrains.

The recognition of terrains’ textures is not an issue that has been widely studied and

applied to autonomous navigation. There are also some works in which present texture

recognition methods of terrains. For instance, vibration-based [18], [19] and laser-ray [7],

[20], [21] methods have shown high performance; but with vibration-based methods the

robot classifies the textures until it is moving over them; and the laser-ray methods are

computationally expensive because of the intensive real-time processing of the huge quantity

data sampled from the terrains.

On the other hand, for autonomous navigation the robot must determine self-localization

21



within its environment; robot localization becomes a matter of determining coordinates and

orientation on a two dimensional floor-plan. For wheeled-robots, odometry is frequently

used to do this task [22]; but odometry inevitably accumulates errors due to causes as the

diameters of the wheels are not equal or poor wheel alignment, wheel slippage, among others

[23].

Several works have managed to reduce the odometry errors by modeling errors from the

readings of the encoders coupled to the robot wheels to improve the calculation of the robot

location. Their results show reduction of odometry errors; but all these works are assisted by

landmarks [24], laser beams [25] and artificial vision [26], among other tools [27] to compute

the robots’ location on the terrain.

So far, the reduction of wheel slippage has not been attended for the purpose of improving

the odometry-based localization of wheeled-robots.

Thus, the problems that arise are:

• To adjust the velocity of a mobile wheeled-robot while it autonomously navigates

on outdoor terrains, which contain different classes of textures, obstacles and soft

irregularities.

• The velocity setting must be performed remotely, i.e. the robot must detect and

classify soft irregularities and textures before the robot passes on them, so that the

robot disposes enough time to react and set its velocity according to the terrains’

characteristics.

• Reduce the slippage of robots’ wheels to improve the localization of the robots using

odometry-based methods.

Figure 1.1 shows a wheeled-robot moving through a surface with irregularities and dif-

ferent classes of textures; where the wheeled-robot must adjust its velocity according to the

terrains’ features in order to avoid slidings and collisions against obstacles.
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Figure 1.1: Wheeled-robot on an outdoor terrain with different classes of textures and soft

irregularities

In this thesis, a soft irregularity is defined as a slope with inclination less than or equal

to 15 degrees. During navigation, the robot can move on irregularities under the following

criteria:

• If irregularities are soft (slopes with inclination less than or equal to 15 degrees), then

the robot can move over them;

• Otherwise, the non-soft irregularities (slopes with inclination bigger than 15 degrees)

are considered as obstacles and the robot must move around them.

Basically the textures to recognize are those that can be found in outdoors, for instance,

grass, branches, paved, soil, etc. Table 1.1 shows some examples of outdoor textures.

1.2 The solution proposal

For robot velocity adaptation according to the terrain features, the current proposal sets

to imitate the human’s behavior in front of a rough terrain. Humans use a quick imprecise
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Table 1.1: Examples of outdoor textures

estimation of the terrain features, but enough to navigate without sliding or falling. For

safe navigation on irregular terrains, the human’s velocity estimation is done using imprecise

but enough recognized data about surface and texture [1]. A human being classifies terrain

features according to past experiences. When a human driver sees a new terrain texture uses

his experience to estimate how rough the texture is, then decides the car driving speed in

order to avoid slide risks.

The fuzzy logic set the modeling of abstract heuristics provided from human experts.

However, the fuzzy logic rules lack self-tuning mechanisms regarding data relationship, so it

is especially difficult to decide the membership function parameters. However, fuzzy logic

allows incorporating human experience in the form of linguistic rules. Thus, here is proposed

to compute the wheeled-robot’s trajectories through outdoor terrains with different classes of

textures and irregularities. The current proposal employs a fuzzy neural network [28], [29] to

calculate the velocity of the robot by mimicking vehicle-driving experience of expert-human

drivers on outdoor terrains.

On the other hand, to compute the wheeled-robots’ position the odometry-based methods
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are frequently used to calculate distance between the vehicle current and target position;

however, main drawback using these methods to learn the robots’ precise position is due

to the wheels slippage, which is a common circumstance during outdoor navigation. Wheel

slippage is produced mainly by low-traction terrains, extremely fast rotation of the wheels

and deformable terrain or steep slopes [8], [30].

By applying velocity updating regarding if the navigation terrain is smooth or rough,

grass or sandy soil, loose stone, paved or brick, etc., the wheel slippage is diminished and

the wheeled-robot odometry-based localization is improved.

Thus, the proposed solution is the following:

• Acquired images of the terrains’ textures, which are modeled with the Appearance-

Based Vision method [31], [32], principal components.

• A supervised neural network for texture classification, average appearance, previously

trained with images of representative textures of the environment to explore.

• A fuzzy neural network metaclassifies the textures and the soft irregularities to compute

the velocity of the robot.

• Reduce wheels’ slippage of the robots with the velocity updating approach to improve

the location of the robot using odometry-based methods.

• Implement the gradient method [33] for path planning alongside the neural networks,

supervised and fuzzy, for autonomous navigation.

Figure 1.2 shows a block diagram of the proposed approach and how the data flows

between the phases; the contribution focus on velocity estimation.

By detecting low-traction terrains, the robot should slow down, although it takes more

time to travel the path, but it prevents the robot slide. On the opposite, if a high-traction
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Figure 1.2: Autonomous navigation with velocity updating diagram. For velocity estimation

it is employed data from both texture classification and slopes’ inclination. The robot moves

along the planned path at the estimated velocity; while the robot moves, the images of

the terrain are acquired and the inclination of the slopes are measured; this information is

processed and the velocity is updated, if there are any changes in terrain roughness
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terrain is detected, then the robot can increase velocity, which leads to reduce the navigation

time but in safe conditions.

Therefore, both wheel slippage and robot sliding, and consequently the odometry errors,

are reduced with velocity updating regarding the terrains’ features. It is intended that with

velocity updating the robot adapts its velocity so it reaches the maximum velocity that

allows it to stop quick enough without sliding, and moving slowly at low-traction surfaces to

avoid wheel slippage. Precise location and target achievement can be improved this manner.

In this thesis there are performed two sets of experiments. The first set of experiments

is performed with a small wheeled-robot. The wheeled-robot adjusts its velocity while nav-

igating on outdoor terrains which contain on their surfaces ground, ground with grass, and

stones paving. The second set of experiments is performed using images of roads of ground,

concrete, asphalt, and loose stones. The images are taken from a video film that recorded

the trajectory of a moving car, driven at less than 60 km/hr of velocity.

1.3 Objectives

The general objective of this thesis is to design and develop the implementation of velocity

updating of the wheeled-robot on outdoor terrains. The algorithms must be able to adjust

the velocity of the wheeled-robot according to the different classes of textures and soft irreg-

ularities of the outdoor terrains while the wheeled-robot navigates autonomously.

Specific Objectives

1. Design the neural networks architectures for efficient roughness recognition of outdoor

terrains.

2. Adjust the velocity of the wheeled-robot based on the roughness of outdoor terrains.

3. Improve the odometry-based localization of a wheeled-robot on outdoor terrains.

27



1.4 Contributions

The summary of contributions is:

• A fuzzy neural network for wheeled-robots allows:

– Velocity updating by outdoor terrains navigation,

– Mimics the human drivers experience for roughness recognition and velocity up-

dating,

– The proposed approach can be scaled to cars, and its implementations simple and

computationally inexpensive.

• The average appearance of the terrains’ textures is a requisite for velocity updating

purpose on outdoor terrains navigation.

• The odometry-based method for localization on outdoor terrains is improved.

This thesis is organized as follows: Chapter 2 exposes the antecedents of autonomous

navigation and outdoor terrain recognition. The texture recognition is described in Chapter

3. Chapter 4 exposes the velocity updating under a neuro fuzzy approach. Chapter 5

shows the results of velocity updating experiments; the first set of experiments compares the

performance of the velocity updating approach by employing different texture recognition

methods applied to a small wheeled-robot; the second set of experiments updates the velocity

of the simulated car navigation. In Chapter 6 it is exposed how the velocity updating reduces

the underlying odometric error. Related works and discussion is exposed in Chapter 7.

Chapter 8 presents the contributions and conclusions. Finally, References and Appendixes

A and B close this thesis.
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Chapter 2

Mobile Robot Navigation

Robotic autonomous navigation on outdoor terrains has been a topic of interest recently

because autonomous robots hold a great promise for terrain exploration missions of planets

and/or Earth. On planet exploration missions, the difficulties to move through terrains with

obstacles and irregularities require the usage of robots with the highest degree of autonomy

to overcome such difficulties. In Earth exploration missions, the autonomous robots are as

well required to explore terrains where human lives may be in dangerous circumstances.

Future space missions are focused on celestial objects landing; for instance, comets. Sev-

eral scientific experiments are meant to be performed by autonomous robots. The locomotion

system plays a key role in surface exploration missions. Locomotion on extraterrestrial sur-

faces can be performed using vehicles with wheels, legs, caterpillar or hybrids. Seeni et al. [6]

make a review of different locomotion concepts available for lunar, foreign planets or another

space exploration missions.

Autonomous navigation is highly complex, obstacle detection and avoidance as well as

the terrain features information for no slides, are both required. Environment data must

be accurate and quickly processed by the robot’s navigation systems. Besides, when data

from human remote controllers is not quickly available, the autonomous robots should be
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equipped for convenient reactions, particularly in front of unpredicted circumstances.

Thus, a successful autonomous navigation, on outdoor surfaces, demands to select the

adequate robot architecture [6], select the obstacle and avoidance recognition methods [34],

[35] and to control the robot’s velocity [36], [37]. Actually, beyond the obstacle location and

avoidance, the robots’ velocity control, regarding the terrain features, has been few attended

and it is a weakness for efficient and safe navigation nowadays.

In this chapter related works on navigation of wheeled-robots are reviewed, the most used

architectures of wheeled robots for autonomous navigation are exposed. It also the methods

for the recognition of outdoor terrains are reviewed.

2.1 Wheeled-robot navigation

The wheel has been by far the most popular locomotion mechanism in mobile robotics and

in man-made vehicles in general. It can achieve very good efficiencies and does so with a

relatively simple mechanism implementation [23].

In addition, balance is not usually a research problem in wheeled robot designs, because

wheeled robots are almost always designed so that all wheels are in ground contact at all

times. Thus, three wheels are sufficient to guarantee stable balance, although, two-wheeled

robots can also be stable [38], [39]. When more than three wheels are used, a suspension

system is required to allow all wheels to maintain ground contact when the robot encounters

uneven terrain [40], [41].

Instead of worrying about balance, wheeled robot research tends to focus on the problems

of traction and stability, maneuverability, and control [42], [43], [44]: can the robot wheels

provide sufficient traction and stability for the robot to cover all of the desired terrain, and

does the robot’s wheeled configuration enable sufficient control over the velocity of the robot?

There are four major wheel classes [23], see Table 2.1:
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1. Standard wheel,

2. Castor wheel,

3. Swedish wheel,

4. Spherical wheel.

The choice of wheel type has a large effect on the overall kinematics of the mobile robot.

The standard wheel and the castor will have a primary axis of rotation and are thus highly

directional. To move in a different direction, the wheel must be steered first along a vertical

axis. The key difference between these two wheels is that the standard wheel can accomplish

this steering motion with no side effects, as the center of rotation passes through the contact

patch with the ground, whereas the castor wheel rotates around an offset axis, causing a

force to be imparted to the robot chassis during steering [45], [46].

The Swedish wheel and the spherical wheel are both designs that are less constrained by

directionality than the conventional standard wheel [52]. The Swedish wheel functions as a

normal wheel, but provides low resistance in another direction as well, sometimes perpendic-

ular to the conventional direction, as in the Swedish 90◦, and sometimes at an intermediate

angle, as in the Swedish 45◦. The small rollers attached around the circumference of the

wheel are passive and the wheel’s primary axis serves as the only actively powered joint [53].

The key advantage of this design is that, although the wheel rotation is powered only

along the one principal axis, through the axle, the wheel can kinematically move with very

little friction along many possible trajectories, not just forward and backward [54].

The spherical wheel is a truly omnidirectional wheel, often designed so that it may be

actively powered to spin along any direction [55]. One mechanism for implementing this

spherical design imitate s the computer mouse, providing actively powered rollers that rest

against the top surface of the sphere and impart rotational force [56].
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Wheel class Figure

Standar wheel [47]

Castor wheel [48]

Swedish wheel at 90◦ [49]

Swedish wheel at 45◦ [50]

Spherical wheel [51]

Table 2.1: The four basic wheel types32



Regardless of what wheel is used, in robots designed for all-terrain environments and in

robots with more than three wheels, a suspension system is normally required to maintain

wheel contact with the ground [40]. One of the simplest approaches to suspension is to

design flexibility into the wheel itself. For instance, in the case of some four-wheeled indoor

robots that use castor wheels, manufacturers have applied a deformable tire of soft rubber

to the wheel to create a primitive suspension [57]. Of course, this limited solution cannot

compete with a sophisticated suspension system in applications where the robot needs a

more dynamic suspension for significantly non flat terrain [58].

The choice of wheel types for a-mobile robot is strongly linked to the choice of wheel

arrangement, or wheel geometry. The mobile robot designer must consider these two is-

sues simultaneously when designing the locomotion mechanism of a wheeled robot. Three

fundamental characteristics of a robot are governed by these choices: maneuverability, con-

trollability, and stability [23].

Unlike automobiles, which are largely designed for a highly standardized environment,

the road network, mobile robots are designed for applications in a wide variety of situations.

Automobiles all share similar wheel configurations because there is one region in the design

space that maximizes maneuverability, controllability, and stability for their standard envi-

ronment: the paved roadway. However, there is no single wheel configuration that maximizes

these qualities for the variety of environments faced by different mobile robots [59].

There is a great variety in the wheel configurations of mobile robots. In fact, few robots

use the Ackerman wheel configuration, of the automobile, Figure 2.1 , because of its poor

maneuverability, with the exception of mobile robots designed for the road system [60].

Some of the configurations are of little use in mobile robot applications. For instance, the

two-wheeled bicycle arrangement, see Figure 2.2, has moderate maneuverability and poor

controllability; like a single-legged hopping machine, it can never stand still [61], [62]. The

minimum number of wheels required for static stability is two. A two-wheel differential-drive

robot can achieve static stability if the center of mass is below the wheel axle.
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Figure 2.1: Ackerman wheel configuration

Figure 2.2: Two-wheeled bicycle arrangement
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Figure 2.3: Three-wheel ominidirectional robot

However, under ordinary circumstances such a solution requires wheel diameters that

are impractically large. Dynamics can also cause a two-wheeled robot to strike the floor

with a third point of contact, for instance, with sufficiently high motor torques from stand

still [39]. Conventionally, static stability requires a minimum of three wheels, with the

additional caveat that the center of gravity must be contained within the triangle formed by

the ground contact points of the wheels. Stability can be further improved by adding more

wheels, although once the number of contact points exceeds three, the hyperstatic nature of

the geometry will require some form of flexible suspension on uneven terrain [40].

Some robots are omnidirectional, meaning that they can move at any time in any direction

along the ground plane (x, y) regardless of the orientation of the robot around its vertical

axis, see Figure 2.3. This level of maneuverability requires wheels that can move in more

than just one direction, and so omnidirectional robots usually employ Swedish or spherical

wheels that are powered [56].

In general, the ground clearance of robots with Swedish and spherical wheels is some-

what limited due to the mechanical constraints of constructing omnidirectional wheels. An

interesting recent solution to the problem of omnidirectional navigation while solving this
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Figure 2.4: Two-wheel differential-drive robot

ground-clearance problem is the four-castor wheel configuration in which each castor wheel

is actively steered and actively translated [63].

In this configuration, the robot is truly omnidirectional because, even if the castor wheels

are facing a direction perpendicular to the desired direction of travel, the robot can still move

in the desired direction by steering these wheels. Because the vertical axis is offset from the

ground-contact path, the result of this steering motion is robot motion [64].

In the research community, other classes of mobile robots are popular which achieve

high maneuverability, only slightly inferior to that of the omnidirectional configurations.

In such robots, motion in a particular direction may initially require a rotational motion.

With a circular chassis and an axis of rotation at the center of the robot, such a robot can

spin without changing its ground footprint. The most popular such robot is the two-wheel

differential-drive robot where the two wheels rotate around the center point of the robot, see

Figure 2.4. One or two additional ground contact points may be used for stability, based on

the application specifics [65], [66].

In contrast to the above configurations, consider the Ackerman steering configuration

common in automobiles. Such a vehicle typically has a turning diameter that is larger than
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the car. Furthermore, for such a vehicle to move sideways requires a parking maneuver

consisting of repeated changes in direction forward and backward. Nevertheless, Ackerman

steering geometries have been especially popular in the hobby robotics market, where a robot

can be built by starting with a remote control race car kit and adding sensing and autonomy

to the existing mechanism. In addition, the limited maneuverability of Ackerman steering

has an important advantage: its directionality and steering geometry provide it with very

good lateral stability in high-speed turns [60].

There is generally an inverse correlation between controllability and maneuverability.

For example, the omnidirectional designs such as the four-castor wheel configuration require

significant processing to convert desired rotational and translational velocities to individual

wheel commands [46]. Furthermore, such omnidirectional designs often have greater degrees

of freedom at the wheel [53]. For instance, the Swedish wheel has a set of free rollers along

the wheel perimeter. These degrees of freedom cause an accumulation of slippage, tend to

reduce dead-reckoning accuracy and increase the design complexity [40].

Controlling an omnidirectional robot for a specific direction of travel is also more difficult

and often less accurate when compared to less maneuverable designs. For example, an

Ackerman steering vehicle can go straight simply by locking the steerable wheels and driving

the drive wheels [56]. In a differential-drive vehicle, the two motors attached to the two

wheels must be driven along exactly the same velocity profile, which can be challenging

considering variations between wheels, motors, and environmental differences [65]. With the

wheel omnidrive with four Swedish wheels, the problem is even harder because all four wheels

must be driven at exactly the same speed for the robot to travel in a perfectly straight line

[67].

In summary, there is no “ideal” drive configuration that simultaneously maximizes sta-

bility, maneuverability, and controllability. Each mobile robot application places unique

constraints on the robot design problem, and the designer’s task is to choose the most ap-

propriate drive configuration possible from among this space of compromises [23].
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2.2 Outdoor terrain recognition

The recognition of outdoor terrains is a subject of interest for autonomous navigation of

vehicles. Modeling and recognition of outdoor terrains is important and necessary to keep

track of the exploration of the terrain, but also to calculate the vehicle location and the

navigation trajectories, where the trajectories are computed as a function of terrain char-

acteristics. Within the outdoor terrains recognition works, there were reviewed the next

papers.

Krotkov and Hoffman [68] presented a terrain mapping system for robots that build

quantitative models of surface geometry. The system acquires images with a laser teleme-

ter, pre-processes and stores the images, thus builds a map with elevations at an arbitrary

resolution.

The terrain geometry is studied in [20] so as to control the robot velocity for distance

operations. The surface texture is considered as a parameter for safe navigation. The main

object is to train people, without experience, so as to control directly the robotic platform

while the robot’s integrity and mission keeps safe.

A method that enables a vehicle to acquire roughness estimation for high velocity navi-

gations is presented by Stavens and Thrun [69]. The method employs supervised learning;

the vehicle learns to detect rough terrain while it is in motion. The training data is obtained

by an analysis of inertial data filtering acquired by the vehicle. This information is used to

train a learning system that predicts the terrain texture.

The obstacle detection and local building maps algorithms, exposed in [7], are employed

for cross-country navigation. When the algorithms are used under the behavior-based archi-

tecture, they are able to control the vehicle at a higher velocity than a system that plans an

optimal path through a high resolution detailed terrain’s map.

Brooks and Iagnemma [18] use a vibration-based method for terrain classification of

foreign planet exploration missions. An accelerometer is mounted to the vehicle’s structure.
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The sensed vibrations, while it is moving, are classified according to their similarity between

the observed vibrations during the off-line supervised training. The algorithm employs signal

processing techniques, including principal components and linear discriminant analysis.

Knowing the terrain physical features around the explorer vehicle, the vehicle can exploit

its mobility potential. In [34] presents a terrain classification study for explorer rovers of

Mars-like terrains. Two color, texture and features classification algorithms are introduced,

based on probabilistic estimations and support vector machines. Besides, a vibration-based

classification method, derived between the wheel-terrain interactions, is described.

Castelnovi et al. [20] report outdoor navigation results of autonomous robots and vehicles.

Texture recognition is real-time sampled with laser rays; the objective is to control the robot

velocity depending on the captured surface features. The disadvantage with this approach is

the intensive processing of the huge quantity data acquired from the terrains, which makes

computationally high-cost this approach.

A comparison statistical method of image appearance is described in [70]. A set of

parameters of form and grayscale variations is learned from a training set. An iterative

comparison algorithm is employed in order to learn the relationship between parameter

disturbances of the model and the inducted image errors.

An artificial vision system is proposed in [71] for surface texture cast classification. The

method evaluates the surface quality that is based on two-dimension discrete Fourier trans-

form of casts for both grayscale and binary images. A Bayesian classifier is implemented and

a neural network for roughness classification according to principal discriminant derived in

space-frequency domain.

To deal with rough terrain recognition some approaches identify, quantify and localize

obstacles [2], [5]; they evaluate if terrains or obstacles are traversable or if need to be cir-

cumnavigated. On the other hand, a few works like in this thesis emphasizes the analysis

and classification of floor roughness to integrate it in the autonomous robots navigation task,

particularly for localization purposes.
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In [1] the navigation strategy assesses the terrain’s features of roughness, slopes and

discontinuity. Brooks and Iagnemma [72] focus on path planning but controlling the vehicle

velocity according to terrain roughness the rover is moving on. The roughness recognition

is by using artificial vision, the novel textures recognition is later to an off-line recognition

training from sample texture.

Pereira et al. [73] plotted maps of terrains incorporating roughness information that

is based on the measurement of vibrations occurring in the suspension of the vehicle; this

online method can recognize textures at the moment the vehicle passes over them, what is

a limitation for remote recognition.

Ward and Iagnemma [19] classify terrain using a signal recognition-based approach a sens-

ing algorithm that operates on data measured by a single suspension-mounted accelerometer

is deployed. The algorithm relies on the observation that distinct terrain types often pos-

sess distinct characteristic geometries and bulk deformability properties, which give rise to

unique identifiable acceleration signatures during interaction with a rolling tire.

Larson et al. [74] present a terrain classification technique for autonomous locomotion

over natural unknown terrains and for qualitative analysis of terrains for exploration and

mapping; which analyzes the terrain roughness by means of spatial discrimination which

then is meta-classified.

The approach in [75] at the first step a supervised neural network classifies textures; then,

the terrain’s textures are neural-net-clustered in a roughness meta-class, which matches each

terrain roughness with the corresponding velocity the vehicle safely navigates.

Within the outdoor terrain recognition methods, the methods with the best performance

are the vibration-based and laser-ray-based methods. But the vibration-based approaches

have disadvantage that classify the terrain roughness when the vehicle or robot is passing

on it. They cannot classify the surface textures before the vehicle passes over them, which

is a limiting factor to adjust the speed according to the characteristics of the terrain. The

laser-ray-based are computationally high-cost due to the intensive processing of the huge
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data acquired from the terrain.

In this chapter it has been reviewed related works on navigation of wheeled robots and

the existing methods for the recognition of outdoor terrains. It is discussed the importance in

the development of robots and autonomous navigation in outdoor terrains, where their per-

formance depends on the choice of wheel type, devices and methods for recognition of terrain

roughness. It has been found that more accurate methods are computationally expensive

and/or are not appropriate to recognize the terrains without the robot makes contact with

the surface of the terrains. Hence, in the following chapters it will be proposed a method

that recognizes terrains without making contact and at low computational cost.
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Chapter 3

Texture Recognition

The analysis of textured surfaces has been a topic of interest due to many potential applica-

tions, including classification of materials and objects from varying viewpoints, classification

and segmentation of scene images of outdoor navigation, aerial image analysis, and retrieval

of scene images from databases. However, classification of terrains’ textures for robot navi-

gation has just recently been a bit more attended [30].

The Local Binary Patterns (LBP) [76] and Advanced Local Binary Patterns with Rota-

tion Invariance (ALBPRI) [77] methods have the best performance for texture recognition.

But these works do not mention anything about recognition of new textures, that is, how

a different texture from the texture training set is classified. They just verify if the testing

textures belong to a specific class of the texture training set, i.e. they only give two result

values, false and true.

For the velocity updating purpose, it is desired to determine how similar the testing

textures and the training texture classes. Here is claimed that is not required to identify

textures at high-detail level. The Appearance Based Modeling (ABM) [78] method having

a low detailed texture recognition efficacy is good enough for the velocity updating during

outdoor navigation as results of Table 5 show in Section 5.1.
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Under the approach that humans use a quick imprecise estimation of the terrains’ textures

but enough to drive vehicles without slides. The human estimation on the velocity to safe

navigate on terrains with different classes of textures is via imprecise but enough surface

texture recognition [1]. Here is explained below that concerning terrains exploration for robot

navigation, by imitating the human velocity adaptation regarding the terrain’s textures, the

highest precision methods for texture recognition are not the adequate.

Although ABM does not take into account the fine details of textures, it captures the so

called average appearance of the textures. In other words, with a testing texture, even if it

is a new texture, the ABM method classifies it to the texture class of the training set that

resembles more, according to the average appearance.

Thus, this chapter summarizes the various texture analysis operators that may be em-

ployed in machine vision applications. It also presents the performance comparison between

the texture recognition LBP and ALBPRI methods, and ABM applied to texture recognition.

In this chapter it is claimed that although ABM does not equal the recognition performance

of LBP and ALBPRI methods, ABM is more suitable to estimate the roughness of textures.

3.1 State of the art

Texture is observed in the patterns of a wide variety of synthetic and natural surfaces (e.g.

wood, metal, paint and textiles). If an area of a textured image has a large intensity variation

then the dominant feature of that area would be texture. If this area has little variation in

intensity then the dominant feature within the area is tone. This is known as the tone-texture

concept and helps to form many of the approaches to texture analysis.

The texture is an intrinsic property of the surface of objects, however, despite the large

amount of work and research relating to the subject that has been developed in recent

decades, there is no precise definition of texture. The main object of analysis of images as

texture areas in it are precisely the texture. Human beings have an intuitive understanding
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of what a texture is, we can distinguish, separate and classify them however we cannot

formulate a precise definition of the term.

Literature, for its part contains a variety of definitions that are set depending on the

particular problem that researchers want to solve. Tuceyran and Jain [79] produce a catalog

of the various definitions contained in the research on computer vision and demonstrate the

great diversity of ideas on the subject mentioned. Some examples of definitions are listed

below:

• “We can see a texture as what constitutes a macroscopic region. Its structure is simply

given by repetitive patterns in which elements or primitives are sorted according to a

rule of positioning” [80],

• “The texture can be described as the spatial distribution pattern of different intensities

or colors” [81].

In any image we can find textures, from the microscopic captured in a medical laboratory

to remote sensing imagery from satellites. In every scene, features of the textures acquired

different connotations, they can represent different varieties of forest land or to lesions in the

skin, hence the analysis and interpretation of images taking into account the areas of texture

and features, they are widely used in various branches of scientific research and industry.

One of the problems that arise when performing texture analysis is the formulation

of a model capable of providing an overview of quantitative and efficient to facilitate the

change, comparison and processing of textures using mathematical operations. Most of

the algorithms in the industry based its operation at an earlier stage of feature extraction

of texture features in the image, which may condition their classification and detection of

patterns and objects.

Although a precise formal definition of texture does not exist, it may be described sub-

jectively using terms such as coarse, fine, smooth, granulated, rippled, regular, irregular and

linear. These features are used extensively in manual region segmentation.
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There are two main classification strategies for texture: statistical and structural analysis.

The statistical approach is suited to the analysis and classification of random or natural

textures. A number of different techniques have been developed to describe and analyze

such textures [82], a few of which are introduced in this Chapter. The structural approach

is more suited to textures with well defined repeating patterns. Such patterns are generally

found in a wide range of manufactured items [83]. Below presents the most important

methods for characterizing textures.

3.1.1 Edge density

This is a simple technique in which an edge detector or high pass filter is applied to the

textured image. The result is then thresholded and the edge density is measured, i.e. the

average number of edge pixels per unit area. 2-D or directional filters/edge detectors may

be used appropriate. This approach is easy to implement and computationally inexpensive,

although it is dependent on the orientation and scale of the sample images.

3.1.2 Auto-Correlation function

Auto-Correlation Function (ACF) derives information about the basic 2-D tonal pattern

that is repeated to yield a given periodic texture. The ACF is defined as follows:

A(δx, δy) =

∑
i,j I(i, j)× I(i+ δx, j + δy)∑

i,j I(i, j)2

where I(i, j) is the image matrix. The variables (i, j) are restricted to lie within a

specified window outside of which the intensity is zero. Incremental shifts of the image are

given by (δx, δy). As the ACF and the power spectral density are Fourier transforms of each

other, the ACF can yield information about the spatial periodicity of the texture primitive.

Although useful at times, the ACF has severe limitations. It cannot always distinguish

between textures, since many subjectively different textures have the same ACF. As the
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ACF captures a relatively small amount of texture information, this approach has not found

much favour in texture analysis.

3.1.3 Fourier spectral analysis

The Fourier spectrum is well suited to describing the directionality and period of repeated

texture patterns, since they give rise to high energy narrow peaks in the power spectrum.

Typical Fourier descriptors of the power spectrum include: the location of the highest peak,

mean, variance and the difference in frequency between the mean and the highest value of the

spectrum. Using a number of additional Fourier features outlined by Liu and Jernigan [84]

it is possible to get high rates of classification accuracy for natural textures. This approach

to texture analysis is often used in aerial/satellite and medical image analysis. The main

disadvantage is that the procedures are not invariant, even under monotonic transforms of

its intensity.

3.1.4 Histogram features

A useful approach to texture analysis is based on the intensity histogram of all or part

of an image. Common histogram features include: moments, entropy dispersion, mean

(an estimate of the average intensity level), variance (this second moment is a measure of

the dispersion of the region intensity), mean square value or average energy, skewness (the

third moment which gives an indication of the histograms symmetry) and kurtosis (cluster

prominence or “peakness”). For example, a narrow histogram indicates a low contrast region,

while two peaks with a well-defined valley between them indicates a region that can be readily

separated by simple thresholding.

Texture analysis, based solely on the grey scale histogram, suffers from the limitation

that it provides no information about the relative position of pixels to each other. Consider

two binary images, where each image has 50% black and 50% white pixels. One of the images
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might be a chessboard pattern, while the second one may consist of a salt and pepper noise

pattern. These images generate exactly the same grey level histogram. Therefore, we cannot

distinguish them using first order, histogram, statistics alone.

3.1.5 Gray level difference method

First-order statistics of local properties, based on absolute differences between pairs of grey

levels, can also be used for texture analysis. For any given displacement d = (δx, δy) where

δx, δy are integers: f ′(x, y) = |f(x, y)− f(x+ δx, y+ δy)|. Let P ′ be the probability density

function of f ′. If the image has m grey levels, this has a form of an m-multidimensional vector

whose ith component is the probability that f ′(x, y) will have value i. P ′ can be computed by

counting the number of times each value of P ′(x, y) occurs. Coarse textures with relatively

small values in P ′ will be gathered near i = 0 whereas fine textures tend to be more spaced

out. Features derived from this approach are simple to compute, produce good overall

results in discriminating textures and capture useful texture information. A number of Gray

Level Difference Method features are contrast CON =
∑
i2 × P ′(i), angular second moment

ASM =
∑
P ′(i)2, entropy ENT = −

∑
P ′(i)× logP ′(i), mean MEAN = 1

m

∑
i× P ′(i),

inverse difference moment IDM =
∑ P ′(i)

i2+1
.

3.1.6 Co-occurrence analysis

The co-occurrence matrix technique is based on the study of second-order grey level spatial

dependency statistics. This involves the study of the grey level spatial interdependence of

pixels and their spatial distribution in a local area. Second order statistics describe the way

that grey levels tend to occur together in pairs and therefore provide a description of the

type of texture present. While this technique is quite powerful, it does not describe the

shape of the primitive patterns making up a given texture.

The co-occurrence matrix is based on the estimation of the second order joint conditional
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probability density function, f(p, q, d, a) , for angular displacements, a, equal to 0, 45, 90

and 135 degrees. Let f(p, q, d, a) be the probability of going from one pixel with grey level p

to another with grey level q, given that the distance between them is d and the direction of

travel between them is given by the angle a. A 2-D histogram of the spatial dependency of

the various grey level picture elements within a textured image is created, for Ng grey levels,

the size of the co-occurrence matrix will be Ng ×Ng.

Since the co-occurrence matrix also depends on the image intensity range, it is common

practice to normalize the textured image’s grey scale prior to generating the co-occurrence

matrix. This ensures that the first-order statistics have standard values and avoids confusing

the effects of first- and second-order statistics of the image. A number of texture measures,

also referred to as texture attributes, have been developed to describe the co-occurrence ma-

trix numerically and allow meaningful comparisons between various textures [82]. Although

these attributes are computationally expensive and rotation variant, they are simple to im-

plement and have been successfully used in a wide range of applications. They tend to work

well for stochastic textures and for small window sizes. Rotation-invariance can be achieved

by accumulation of the matrices, but this increases the computational cost of the approach.

3.1.7 Fractal analysis

The fractal approach to texture analysis is based on the observation that natural objects such

as clouds, mountains, coastlines or water surfaces can be accurately described and generated

using fractal objects [85]. This has led to the use of fractal geometry in the analysis of

textures, especially natural textures which exhibit a high degree of randomness. A key

attribute in the fractal analysis of textures is the fractal dimension, a non-integer number,

and consequently many algorithms have been developed to compute its value. Mandelbrot

[85] observed that the length Lε of a curve C would depend on the size ε of measuring tool

used. If ε tends to zero for a curve with finite length, the value Lε represents the actual
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length of the curve C. This does not happen with the fractal curves. In this case the smaller

ε the finer the structure it passes over and Lε tends to infinity. The fractal dimension D of

the curve C is given by D(C) = limε→0

(
1− logLε

log ε

)
.

For a fractal curve, D is a non-integer number larger than the immediate geometrical

dimension of the curve. The fractal dimension can be determined using a range of geometrical

and stochastic algorithms [86]. One approach to the calculation of the fractal dimension is the

box-counting method. An arbitrary grid of boxes of size s is first defined and then one counts

the number of necessary boxes N(s) to cover the curve. The grid size is reduced by 50%

and the process repeated. While this can continue indefinitely, we generally only implement

a small number of iterations. The fractal dimension is given by D = 1− lims→0
logN(s)
log s

.

A log = N(s) versus log s characteristic is then plotted and the best-fit line between the

points is estimated. If the slope of this line is m the equation becomes D = 1−m.

A number of applications of fractal models in texture classification and segmentation

have been developed [87], [88] although fractal geometry is predominantly used for image

compression and coding tasks. The fractal dimension is relatively insensitive to image scaling

and shows a strong correlation with the human judgement of surface roughness [88]. While

it can characterise textures with a relatively small set of measures, the features require

significant computation.

3.1.8 Textural energy

This involves the convolution of the original image with a set of kernels [83]. The textural

properties are then obtained by examining the statistics of the convoluted images. The

resultant image is processed with a non-linear filter, usually the squared or absolute values

of the convoluted images. Consider the input image I and kernels g1, g2, . . . , gn The energy

image corresponding to the nth kernel is Sn = 1
49

∑i=3
i=−3

∑j=3
j=−3 |Jn(r + i, c + j)|, where

Jn = I ∗ gn is the convolved image. Therefore for each pixel (r, c) it is obtained a feature
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vector S1(r, c) . . . Sn(r, c). The dimension of the kernels are usually small (3 × 3, 5 × 5 and

7× 7) and they give a strong response for vertical or horizontal edges or lines.

3.1.9 Spatial/Frequency methods

The properties of Gabor Filters [89] make them well suited for texture analysis. The Gabor

functions are among the earliest and one of the most popular texture models. The approach

is biologically motivated and minimizes the joint uncertainty in space and frequency. It has

tuneable parameters of orientation and scale and can capture underlying texture information.

It supports frequency analysis, large masks, and spatial pattern approaches, small masks.

A multi-channel filtering approach was used by Bovik et al. [90] in texture segmentation

tasks. They obtained a multi-channel image by convolving the original image with the bank

of Gabor filters. After the amplitude of each channel is smoothed, the channel with the

largest amplitude is used to label the texture. A key disadvantage is that the outputs of the

filter bank are not mutually orthogonal which may result in a significant correlation between

texture features. As well as been computationally expensive, the selection of features is not

always a straightforward task.

3.1.10 Structural approaches to texture analysis

Certain textures are deterministic in that they consist of identical texels, basic texture ele-

ments, which are placed in a repeating pattern according to some well-defined but unknown

placement rules. To begin the analysis, a texel is isolated by identifying a group 01 pixels

having certain invariant properties, which repeat in a given image. A texel may be defined

by its: grey level, shape, or homogeneity of some local property, such as size or orienta-

tion. Texel spatial relationships may be expressed in terms of adjacency, closest distance

and periodicities. This approach has a similarity to language with both image elements and

grammar. Arising from this a syntactic model can be generated.
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A texture is labeled strong if it is defined by deterministic placement rules, while a weak

texture is one in which the texels are placed at random. Measures for placement rules include:

edge density, run lengths of maximally connected pixels and the number of pixels per unit

area showing grey levels that are locally maxima or minima relative to their neighbors.

3.1.11 Local Binary Patterns

LBP [76] is a gray-scale invariant texture primitive statistic. For each pixel in an image, a

binary code is produced by thresholding its neighborhood with the value of the center pixel.

A histogram is created to collect the occurrences of different binary patterns. LBP can be

regarded as a micro-texton operator, such that, at each pixel, it detects the best matching

local binary pattern representing different types of curved edges, spots, flat areas, etc. After

scanning the whole image to be analyzed, each pixel will have a label corresponding to one

texton in the vocabulary. The histogram of labels computed over a region is then used for

texture description.

The image pixels are first labeled by thresholding the difference between the center pixel

and its neighbors using the step function u(x), i.e. u(x) = 1 when x ≥ 0 and u(x) = 0

otherwise. The concatenation of the neighboring labels is then used as a unique descriptor

for each pattern.

The patterns are uniform if the transitions between “0” and “1” are less than or equal

to two. For example, “01100000” and “11011111” are uniform patterns. The histogram of

the uniform patterns in the whole image is used as the feature vector [91]. Each pattern in

the image is assigned a unique label by the following equation:

LBP (p,R) =

p−1∑
i=0

u(ti − tc)2i (3.1)

where p denotes the number of neighboring pixels with respect the center pixel, R repre-

sents the distance from the center pixel to each of the neighboring pixels, tc is the intensity
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Figure 3.1: Local Binary Patterns

of the center pixel, ti is the intensity of the neighbor i and u(x) is the step function.

From Figure 3.1, it is shown an example of LBP, where p = 8 and R = 1: (a) the

original 3 × 3 neighborhood, where tc = 3 and ti = {2, 5, 4, 1, 1, 7, 4, 3}, i = 0, . . . , 7; (c)

LBP weights; (d) the values in the thresholded neighborhood (b) are multiplied by the LBP

weights,u(ti − 3)2i, (c), given the corresponding pixels. The elements are then summed to

form the value of this textured unit, LBP (8, 1) =
∑7

i=0 u(ti−3)2i = 2+4+32+64+128 = 230.

3.1.12 Advanced Local Binary Patterns with Rotation Invariance

Conventional LBP only considers the uniform patterns in the images. It discards important

pattern information for images whose dominant patterns are no uniform patterns. ALBPRI

[77] proposes a new rotation invariant texture classification method by extending the conven-

tional LBP approach to reflect the dominant pattern information contained in the texture

images and capturing the spatial distribution information of dominant patterns.

To formally define the “uniform” patterns, it is introduced a uniformity measure U(pattern),

which corresponds to the number of transitions, bitwise 0/1 changes in the “pattern”. For

example, patterns “00000000” and “11111111” have U value of 0, while patterns “01111111”

and “00000011” have a U value of 2 as there are exactly two 0/1 transitions in the pattern.

For ALBPRI, it is designated patterns that have U value of at most 2 as “uniform” and

proposed the following operator for rotation invariant texture description:
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ALBPRI(p,R) =


∑p−1

i=0 u(ti − tc) if U(LBPp,R) ≤ 2

p+ 1 otherwise
(3.2)

where

U(LBPp,R) = |u(tp−1 − tc)− u(t0 − tc)|+
p−1∑
i=1

|u(ti − tc)− u(ti−1 − tc)|

By definition, exactly p+ 1 uniform binary patterns can occur in a circularly symmetric

neighbor set of p pixels. Equation 3.2 assigns a unique label to each of them corresponding

to the number of “1” bits in the pattern (0→ p) while the nonuniform patterns are grouped

under the label (p+ 1) [91].

The final texture feature employed in texture analysis is the histogram of the operator

outputs, i.e. pattern labels, accumulated over a texture sample. The reason why the his-

togram of uniform pattern provides better discrimination in comparison to the histogram of

all individual patterns comes down to differences in their statistical properties. The relative

proportion of nonuniform patterns of all pattern accumulated into a histogram is so small

that their probabilities cannot be estimated reliably.

The LBP and LBPRI methods are widely used because they have the highest performance

of texture classification of the Columbia Utrecht Reflectance and Texture Database (CUReT)

[92], which is the most common and difficult benchmark used to test texture recognition

algorithms [76], [77], [93].

CUReT has the largest number of texture classes; it contains 61 different real-world

textures, each texture class under more than 200 different viewing directions. Therefore, it

is very difficult to classify such large number of textures because it can have small inter-class

distances in the feature space. This database actually is used to test how precise the features

of each approach can describe the texture images.

On the other hand, texture recognition has been also studied for manufacturing processes.

Surface roughness estimation of work pieces plays a key role for manufacturing industry.
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Manufacturing systems focus to increase production, quality and to reduce costs and time so

as to produce a product. The surface roughness is a quality indicator of machined products

that are influenced by the cutting parameters. The texture classification methods focused on

the manufacturing industry are not very convenient because they require a highly controlled

environment; for example, a strict distance between the camera and the item to be tested,

always put the item in the same position, among others [94], [95], [96].

Despite the important advances in the recognition of textures, very little has been done

to develop algorithms focused on autonomous navigation of robots in outdoor terrain. For

the purposes of autonomous navigation of robots it is convenient to use the best method to

classify this kind of textures.

3.2 Appearance-Based Vision

ABM is a method employed mainly for object [97], [98] and face recognition [78]. The ABM

method gets the principal components of image distribution, namely, the eigenvectors of the

covariance matrix of the object images set [99]. The ordered eigenvectors fashion the features

accounting and charactering the variation among the different images.

The ABM has the advantage of reducing the dimensionality of high dimensional data

with a minimal loss of precision. This is suitable for processing high resolution images at

low computational cost.

Furthermore, both object and face recognition is different to texture recognition because,

for object and face recognition, it is not necessary to have high-detail data. As for texture

features, it is required to obtain their features at high-detail level. Specialized methods of

texture recognition found in the state of the art are very efficient, but its computational cost

is high, which can be a disadvantage.

However, as shown in the following chapters, for the purpose of velocity updating under

the proposed approach, there is no need to make an analysis with a high level of detail for
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the classification of textures. It is sufficient to classify the textures only on their appearance.

In a similar way as humans do, in the following chapters it is analyzed this statement.

The use of ABM for object recognition involves the next list of operators and operations:

1. Let {I1, . . . , IN} ⊂ Rn×m the set of training texture images, where n and m are the

number of rows and columns, respectively, of the images and N is the number of

training images,

2. each training image is stacked and placed into the set of vectors {φ1, . . . , φN} ⊂ Rn·m,

3. all the vectors are normalized by φ̃i = φi/‖φi‖, and placed into the set {φ̃1, . . . , φ̃N} ⊂

Rn·m×N ,

4. the average vector C = 1
N

∑N
i=1 φ̃i is computed,

5. the matrix Φ = [φ̃1 −C, . . . , φ̃N −C] is calculated,

6. the covariance matrix Ω = ΦΦT is computed,

7. the eigenvalues and eigenvectors of the covariance matrix are calculated as follows:

(a) the covariance matrix is transposed ΩT = ΦTΦ,

(b) the eigenvalues and eigenvectors are computed using the equation ΩTvi = λivi,

where λi is the ith eigenvalue and vi is the ith eigenvector,

(c) the eigenvectors are decreasing ordered according to their eigenvalues and placed

as columns of the matrix Λ = [v1, . . . ,vN ],

8. The eigenspace Ψ = ΦΛ is computed,

9. The eigenspace where each training image Ii is projected into γi = ΨT (φ̃i − C), i =

1, . . . , N .
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For texture classification, it is trained a Supervised Neural Network (SNN) using the set

of hand-labeled pairs {(γ1, class), . . . , (γN , class)}, where γi is each of the training images

projections to the eigenspace and class is the corresponding texture class number. After

training, the SNN classifies the textures to be recognized by assigning a number of texture

class that most resembles. Following ABM the test texture image It is stacked and normalized

into ϕ̃t, then projected to ωt = ΨT (ϕ̃t −C) into the eigenspace Ψ; then the SNN compares

the with the classes of training textures, and the SNN output number indicates the class

number of the texture.

It is important to remark that the calculation of eigenvalues and eigenvectors is compu-

tationally very expensive because of the covariance matrix size. For instance, if images

would have a resolution of 480 × 640 pixels, then the covariance matrix size would be

307200 × 307200. Therefore, eigenvectors would be 307200-elements vectors so does the

projections of images to the eigenspace.

However, the size of the covariance matrix is significantly reduced, and therefore also the

computational costs, by a linear algebra theorem presented in [78], which states that the

eigenvalues of Ω = ΦΦT and ΩT = ΦTΦ are the same. Therefore, the eigenvectors of Ω

and ΩT are the same; thus, the covariance matrix size is N ×N .

Hence, the dimension of eigenvectors is N ; therefore the size of Λ is N×N . So, the images

projections to the eigenspace are vectors of dimension N . Therefore, the input dimension of

the data that feeds the SNN for recognition is N . Hence, it is concluded that the dimension

of vectors is a function of training set size; independently of the images’ resolution.

The broad ABM usage in computer vision has introduced the term Appearance-Based

Vision (ABV) [31], which is used in the rest of this thesis.
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3.3 Experiments

To compare the texture recognition performance of LBP, ALBPRI and ABV, experiments

were performed, similar as were carried out in [76] and [77]. There were selected 20 classes

of textures from CUReT, with 30 training images per texture class with a view angle less

than 60 degrees, see Table 9 of Appendix A. The images for the training, and test, set were

selected by taking every alternate image and computing the average accuracy.

For texture classification using the ABV approach, it was employed a SNN. The SNN has

two layers, the first layer has 600 neurons and the second layer has 20 neurons. The activation

functions are hyperbolic tangent and sigmoid in the first and second layers, respectively. The

SNN was trained with the feed-forward backpropagation algorithm [100]. The experiments

were implemented using the image processing and neural network Matlab’s toolboxes.

With LBP and ALBPRI the histograms modeled each texture and in classification each

sample from the test set was assigned to the class of the closest model histogram. In both

LBP and ALBPRI, the number of neighboring pixels with respect the center pixel is p = 8

and the distance from the center pixel to each of the neighboring pixels is R = 1. In the

classification phase, it was evaluated the dissimilarity of sample and model histograms as a

test of goodness-of-fit, which is measured with a nonparametric statistical test. By using a

nonparametric test, it was avoided making any, possibly erroneous, assumptions about the

feature distributions.

For comparing the histograms in LBP and ALBPRI, the log-likelihood statistic L(S,M) =∑B
b=1 Sb logMb was employed, where B is the number of bins, Sb and Mb correspond to the

sample and model probabilities at bin b, respectively. Table 3.1 shows a performance com-

parative between related works and our approach for texture recognition using CUReT image

database.

The texture recognition results of Table 3.1 show that ABV method performance is not

as good as LBP and ALBPRI. A high-detail texture classification with ABV is difficult
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Method Efficiency

LBP 97.54%

ALBPI 99.64%

ABV 75%

Table 3.1: Performance of texture recognition methods

because, due to it is used texture appearance-based data; there are textures similar in their

appearance. In other words, the images projections, feature vectors, of similar appearance

textures to the eigenspace are very close to each other. So, it is very difficult for a SNN

classify appearance similar textures.

3.4 Methods comparison

From the results of Table 3.1, it can be seen that ABV method had the lowest performance

from the three methods. The low performance of the ABV method of texture recognition is

that the textures are not analyzed with a high-detail level, but it gets the average appearance

of textures. In the classification stage, the testing texture is defined as the class of texture

that most closely resembles in appearance.

In other words, different texture classes, similar in their appearance, were identified as

if they were the same texture class. For instance, the appearance of textures “29-01” and

“31-01”, see Table 9 from Appendix, are similar because their feature vectors are close to

each other. Therefore both textures were identified as if they were the same texture class.

In spite of the low performance of ABV for CUReT images recognition, ABV method

is good enough for the velocity updating during outdoor navigation as results have shown

in Section 5.1. For the purpose of autonomous navigation on outdoor terrains it is not

required to recognize textures at a high detail level. The most precise details recognition
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methods are not adequate, because they fail to support robot navigation. LBP and ALBPRI

methods recognize patterns with lines, dots or borders, but fails for recognizing different

depicted appearances. For detailed recognition, ABM is not so exhaustive but provides the

enough capabilities for the recognition of terrain average appearance that it is the recognition

requisite for outdoor navigation.

For velocity updating, here is proposed to imitate the humans’ perception for texture

recognition, in order to strength the robot navigation abilities. Humans classify textures

according to past experience; when a human finds a new texture, he employs his experience

to determine to which texture class the new texture is more appearance similar. When

humans drive vehicles, they do not inspect the terrain textures with a magnifying glass nor

take a look at a small distance to account details of particular lines, dots or borders; they

just estimate the texture roughness basing on previous pattern recognition experience while

driving [1].

To imitate the human experience during texture classification for navigation, it is clever

to pay attention in convenient methods for recognizing the surface average appearance, such

that not lost in unnecessary details for the outdoors navigation purpose.

Moreover, frequently the recognition of surfaces’ details is computationally high-cost

and it should be avoided for autonomous navigation. Hence, there were implemented the

algorithms of LBP and ALBPRI methods in order to compute their execution time alongside

the ABV algorithms. The microprocessor employed for the algorithms’ testing is a Centrino

Core 2 Duo at 2 GHz and 1.99 Gb RAM.

It was measured the time the processor takes to run the algorithms of the ABV, LBP and

ALBPRI methods, to process and classify a 480×640 pixel image in grayscale. It was found

that the processor takes 0.13 seconds with ABV, 3.13 seconds with LBP and 8.62 seconds

with ALBPRI. Therefore, it can easily be concluded that LBP and ALBPRI methods are

computationally expensive, while the ABV method is cheaper than LBP and ALBPRI.

Chapter 5 shows that ABV advantages LBP and ALBPRI for outdoor navigation of
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robots; thus, the ABV method is good enough for the velocity updating during outdoor

navigation.

Next chapter presents the velocity updating approach; by using fuzzy logic the human

process for identifying the terrain roughness can be modeled in such a way to be used by

the robot to mimic this human ability. It is shown that what is needed is to estimate the

roughness level of textures instead of to know if the textures are correctly classified.

The texture roughness is a fuzzy concept, where it is assumed that textures with similar

appearance have similar level of roughness. With the help of an expert human driver and

following his criteria, the textures are labeled with a roughness value and then ordered

depending on their roughness value. As well as the expert driver establishes the terrain

roughness-velocity relationship through the inference system.

An important feature to take care for both texture modeling and recognition is illumina-

tion, because ABV is light sensitive. Therefore, the better illumination is the better texture

model and recognition is. Changes in illumination should be avoided; bright and uniform

lighting during navigation is required to guaranty consistent texture recognition. The pres-

ence of shadows, which treatment is a hard task to pattern recognition [101] is out of the

scope of this work.

In summary, this chapter presents the state of the art methods for texture recognition. It

was found that LBP and ALBPRI methods have the highest performance for texture classi-

fication. ABV method was tested for classification of textures, which had poor performance

compared to methods LBP and ALBPRI. However, it is claimed that for autonomous nav-

igation purposes the ABV method is more suitable for texture recognition. This statement

is discussed in Chapter 5, although it is necessary to go through Chapter 4 to understand

how to estimate the velocity of the robot, taking into account the roughness of the terrain.
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Chapter 4

Velocity Updating

For the purpose of autonomous navigation on rough terrains the detailed recognition of

textures is not a requisite. As is shown below, the high precision methods for the recognition

of details are not the adequate, because they fail for supporting robots navigation, strongly

some times. In addition, the detailed recognition of surfaces is computationally expensive,

but a low consume of resources is much recommended for the autonomous navigation [75].

Here is proposed to imitate the human perception by employing a neuro-fuzzy approach

for velocity updating. In this chapter it is explained how a neuro-fuzzy approach can be a

useful tool for the velocity updating purpose. Hence, to imitate the human experience for

terrain recognition and the corresponding velocity adjustments when driving, the choice of

an adequate method for recognizing the surface average appearance, without lost in unnec-

essary terrain details, is clever for outdoors navigation. The ABV method, having a low of

detailed texture recognition efficacy, see Table 3.1, is applied to recognize terrains’ average

appearance; ABV effectively support the velocity updating throughout outdoor navigation

as is shown in Section 5.1.

Artificial Neural Networks (ANN) are an automatic processing paradigm inspired by the

animals nervious systems, implemented for training artificial learning-based systems. NN
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is a system connecting neurons that work together to produce emerging behaviors. The

connections are weighted, succsessively updated and trained in order to achieve the desired

behaviors. The NN are non-model systems, and are organized in a way to simulate the cells

functioning of human neural system -or one of the diverse alive beings. ANN learn from the

underlying relationships of data and have self -learning and -tuning capabilities, without the

need of previous knowledge about data relationship.

The Fuzzy Logic set the modeling of abstract heuristics provided from human experts.

However, the fuzzy logic rules lacks of self-tuning mechanisms regarding data relationships,

so it is especially difficult to decide the membership function parameters. However, Fuzzy

Logic allows incorporating human experience in the form of linguistic rules. Thus, the

ANN patterns recognition complements the Fuzzy Logic modeling of human driving into the

artificial vision for the velocity control of outdoor navigation.

The robot velocity adaptation obeys fuzzy logic rules which are designed accordingly to

a roughness-velocity relationship; the prior roughness grading is based on a ANN textures

classification. The robot’s navigation system will adapt its velocity according to the terrain’s

roughness, and will also indicate if the robot is able to climb certain slopes or it should move

around them.

For this thesis, it is considered the following:

• It is employed a wheeled-robot,

• the terrains’ irregularities are slopes:

– if the slope inclination is less than or equal to 15 degrees, then the robot can pass

on the slope;

– Otherwise, the irregularity is defined as an obstacle and the robot must move

around it.

• Neither illumination intensity nor illumination angle vary, i.e. it is assumed that the
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terrains are uniformly illuminated.

4.1 Neural networks for roughness recognition

ANN are a knowledge system and automatic processing paradigm inspired by the animals

nervious systems. It is a system with connections between neurons in a network that work

together so as to produce a stimulus. Normally, the ANN has a defined number of elements

or neurons connected between them. The connections are an array between neurons and

their nature is determined by the network’s structure. The connections weights are set or

trained in order to achieve the behavior desired. ANN can be classified by their structure or

learning algorithms [100]. ANN are divided in two kinds: unidirectional ANN and recurrent

ANN [102].

In a unidirectional ANN, the neurons are grouped in layers. The signals flow from the

input layer to the output layer; the neurons are connected from a layer to the next layer,

but not in the same layer. Multilayer perceptron is an example of a ANN. Most of the

unidirectional ANN do a static mapping between the input space and the output space.

In recurrent ANN’s the outputs from some neurons feedback themselves. Thus, signals

flows frontward and backward. Hopfield network or Elman network are two examples of

recurrent ANN. Recurrent ANN have dynamic memory: their outputs show the actual inputs,

besides the previous inputs and outputs [103].

ANN are trained, mainly, with two kinds of learning algorithms: supervised and unsu-

pervised learning algorithms. Besides, there is a third kind, reinforcement learning, that can

be considered as a special supervised learning algorithm [104].

The supervised learning algorithm sets the strength or weight connections between neu-

rons according to the difference between the desired output values and the current output

values. Thus, supervised learning needs a teacher or a supervisor in order to show the desired

output values. Some supervised learning algorithms are the delta rule or backpropagation
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algorithm [105].

Unsupervised learning algorithms do not need to know the desired output values. During

training, only the input patterns are presented to the ANN that, automatically, adapts the

neurons weight connections so as to put the input patterns into groups of similar features.

Some unsupervised learning algorithms are the Kohonen algorithm or competitive learning

algorithm [106].

During outdoors navigation, human drivers estimate the convenient vehicle velocity by

regarding their previous experience when driving on similar terrain textures. In other words,

human drivers estimate how rough, in average, the terrain is, instead if specific texture

details are recognized.

Human drivers that navigate on uneven terrains do not need to learn, or to know, about

specific details but on the textures average appearance. Hence, for texture classification it

is necessary the help of an expert driver to order the textures and to establish the texture-

class relationship. Thus, a supervised neural network is suitable for the current purpose.

The following sections show and explain the architectures of the ANN employed for texture

classification, roughness and velocity estimation.

4.2 Fuzzy logic for roughness estimation

For the purpose of texture recognition, and then to estimate the roughness of outdoor ter-

rains, it can be employ the LBP and ALBPRI. The disadvantage with these methods is that

they only have two possible outcomes, false and true, i.e. they indicate whether textures

have been identified or not. For velocity updating it can be too restrictive to use such classi-

fication methods. Moreover, what matters is to determine the roughness degree of textures.

By using only an ANN for texture classification it may cause that the robot takes wrong

decisions if a new class of texture is found.

Here is claimed that it is not necessary identify textures at a high-detail level for velocity
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updating. For instance, when humans are walking, they do not inspect the textures with a

magnifying glass nor take a look at a small distance, they just estimate the roughness of the

new texture [1]; then they decide how fast they can walk without sliding. Usually human

beings do not need precise, numerical information to make a decision, but they are able to

perform adaptive actions, because there is a fuzzy concept in human knowledge.

Fuzzy logic is known to be an organized method for dealing with imprecise knowledge. Us-

ing linguistic rules, the fuzzy logic system simulates human decision making to deal unclearly

expressed concepts, to deal with imprecise or imperfect data, and to improve knowledge

representation and uncertainty reasoning. Fuzzy logic offers a framework for representing

imprecise, uncertain knowledge [29], [107]. They make use of human knowledge in the form

of linguistic rules. The robot velocity adaptation obeys Fuzzy logic rules, which are designed

accordingly to a roughness-velocity relationship.

The current proposal mimics the humans’ experience for terrain recognition with Fuzzy

logic [24], [28]. With Fuzzy logic, an expert human driver classifies and arranges represen-

tative data of specific environments, and according to the arranged data, sets the proper

velocity the robot can navigate safely.

By using Fuzzy logic the human perception sense is imitated to identify the robot’s

environment. A Fuzzy logic approach establishes ”how rough” the textures are by meta-

classifying them in roughness fuzzy sets. Thus, for autonomous navigation, it is advisable

to estimate the terrains’ roughness instead of whether the textures are recognized or not.

It is important to point that for textures and irregularities modeling, the most represen-

tative ones must be chosen depending on the kind of terrain to explore. For example, in a

wooded terrain the robot can find grass, leafs or branches, instead of sand or ice which can

be found on desert or glacier terrains respectively.
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4.3 Neuro-Fuzzy approach

By mimicking the human perception for terrains’ roughness setting and velocity estimation

with Fuzzy logic approach, the robot will be able to move through terrains by adapting its

velocity according to the textures and soft irregularities it finds on its way, and deciding

whether it is able to climb a huge slope.

Fuzzy logic offers a framework for representing imprecise, uncertain knowledge. They

make use of human knowledge in the form of linguistic rules. But the disadvantages are

that fuzzy logic needs highly abstract heuristics, needs expert for rule discovery with data

relationships, especially, as it lacks of self-organizing and self-tuning mechanisms. This

results in difficulties to decide the parameters of membership functions.

Another drawback is the lack of a systematic procedure to transform expert knowledge

into the rule base. This results in many redundant rules in the rule base. On the other

hand, ANN are nonmodel systems that are organized in a way to simulate the cells of

human brain. They learn from the underlying relationships of data. ANN have self-learning

capability, self-tuning capability, without the need to know data relationship, and can be

used to model various systems. Therefore, fuzzy logic and ANN are combined to estimate

the robot’s velocity by regarding the terrains’ roughness.

The difference between conventional fuzzy logic and neuro-fuzzy methods, this thesis

takes advantage, is that neuro-fuzzy methods need much less rules, while conventional fuzzy

logic needs a large number of rules. This simplifies the structure of the neuro-fuzzy model by

reducing the number of the hidden layer neuron, and reduces the computational time [108].

Thus, the proposed methodology is the following. A set of the most representative

textures of the navigation environment are modeled with the ABV method; a SNN is trained

with the set of the representative textures, principal components, for classification. The SNN

is trained with the texture-class relationship established by the human expert driver.

A Fuzzy Neural Network (FNN) is trained to determine the velocity regarding the texture
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Figure 4.1: Block diagram of the proposed approach for velocity updating

classes as well as the inclination angle of slopes. The robot moves at the estimated velocity

and acquires new images of the terrain; the cycle repeats while the robot is moving, see

Figure 4.1.

In summary, the offline and online steps of the algorithms for velocity updating regarding

the terrains roughness are next described:

Roughness identification (off-line training)

1. Select representative images of the terrain textures, where the robot moves on.

2. Characterize the texture using the ABV method, which computes the principal com-

ponentes of the images.

3. Train the SNN with the texture-class relationship established by the human expert

driver.

4. Train the FNN to determine the velocity regarding the texture classes as well as the

inclination of slopes, according to the expert driver’s directives, make the fuzzy sets

and the inference IF-THEN rules system.
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Figure 4.2: Slope detection employing two infrared sensors. The infrared rays extend until

them “touch” a terrain irregularity, thus, a virtual right triangle is drawn, where the rays

play the role of cathetus and the irregularity as hypotenuse. The angle is computed with

simple trigonometric operations

Velocity updating and robot’s moving (on-line steps)

5. Acquisition of terrain images with the robot’s camera.

6. The SNN classifies the texture, this data is forwarded to the FNN.

7. The FNN inputs are both, the texture class and the slope inclination angle (to deter-

mine if the robot can pass on the slope, or should move around it).

8. With the texture roughness meta-classification and slope inclination data, the FNN

updates the velocity. The robot’s mechanical control system adjust the velocity.

9. The cycle is repeated as the robot moves, and the velocity is cycle updated.

For irregularities detection, two infrared sensors are mounted on the robot. The sensors

are located in the frontal part of the robot. The first infrared sensor projects its ray parallel

to the robot’s motion; the second infrared projects its ray directly to the floor, in other

words, perpendicular to the first sensor. The inclination angle of irregularities is computed

by trigonometric operations. Figure 4.2 shows how the inclination angle of slopes is computed

by employing the infrared sensors data.
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4.4 Fuzzy neural network architecture

The network proposed is a five-layer FNN. The FNN has two inputs x (texture class) and

y (slope inclination), and one output f (robot’s velocity). Figure 4.3 illustrates the cor-

responding FNN architecture where a first-order Sugeno fuzzy model is proposed, and the

nodes of the same layer have similar functions, as described next. Here it is denoted the

output of the ith node in layer l as Oi,l.

The textures are meta-classified into the roughness categories high (H), medium (M) and

low (L), see Figure 4.4.

The slope inclination is divided into the fuzzy sets: plain (Pl), slightly plain (SP), slightly

sloped (SS), moderato sloped (MS), high slope (HS) and very high (VH), see Figure 4.5.

The neuro-fuzzy output values are high velocity (HV), moderate velocity (MV), low

velocity (LV) and stop (ST), see Figure 4.6. The fuzzy-making procedure maps the crisp

input values to the linguistic fuzzy terms with membership values in [0, 1].

The rule base stores the rules governing the input-output relationship. Taking A, B, C

as variables of the respective predicates, the form of inference rules is:

IF Slope angle is A AND Texture roughness is B THEN Velocity is C.

The fuzzy logic inference rules are listed in Table 4.1. Below are explained each layer of

the FNN.

Layer 1: Every node i in this layer is an adaptive node with a node function:

O1,1 = µr(L) O1,4 = µs(Pl) O1,7 = µs(MS)

O1,2 = µr(L) O1,5 = µs(SP ) O1,8 = µs(HS)

O1,3 = µr(L) O1,6 = µs(SS) O1,9 = µs(V H)

where x (or y) is the input to nodes into a linguistic label {L, M, H} (or {Pl, SP, SS,

MS, HS, VH}); µr and µs are the roughness and slope membership functions, respectively.

Parameters in this layer are referred as premise parameters.
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Figure 4.3: Fuzzy neural network architecture. The FNN has five layers, the first layer has

two inputs, the slope inclination and the texture class, the second layer sets the terms of

input membership variables, the third one sets the terms of the rule base, the fourth sets

the term of output membership variables, and in the fifth layer, the output is the robot’s

velocity
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Figure 4.4: Texture roughness membership function

Figure 4.5: Slopes membership function

Figure 4.6: Velocity membership function
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Rule No. Input Output

Slope angle Texture roughness Velocity

1 Pl L HV

2 Pl M HV

3 Pl H HV

4 SP L MV

5 SP M HV

6 SP H HV

7 SS L MV

8 SS M MV

9 SS H HV

10 MS L LV

11 MS M MV

12 MS H MV

13 HS L LV

14 HS M LV

15 HS H MV

16 VH L ST

17 VH M ST

18 VH H LV

Table 4.1: If-Then rules of the FNN’s inference system
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Layer 2: Every node in this layer is a fixed node label Π, whose output is the product of

all the incoming signals, O2,i = ωi, i = 1, . . . , 18, where:

ω1 = µr(L)µs(Pl) ω7 = µr(L)µs(SS) ω13 = µr(L)µs(HS)

ω2 = µr(M)µs(Pl) ω8 = µr(M)µs(SS) ω14 = µr(M)µs(HS)

ω3 = µr(H)µs(Pl) ω9 = µr(H)µs(SS) ω15 = µr(H)µs(HS)

ω4 = µr(L)µs(SP ) ω10 = µr(L)µs(MS) ω16 = µr(L)µs(V H)

ω5 = µr(M)µs(SP ) ω11 = µr(M)µs(MS) ω17 = µr(M)µs(V H)

ω6 = µr(H)µs(SP ) ω12 = µr(H)µs(MS) ω18 = µr(H)µs(V H)

Each node output represents the firing strength of a rule. The T-norm operator employed

is the algebraic product.

Layer 3: Every node in this layer is a fixed node label N. The ith node calculates the

radio of the ith rule’s strength to the sum of all rules’ firing strengths:

O3,i = $i =
ωi∑18
j=1 ωj

, i = 1, . . . , 18.

The outputs of this layer are called normalized firing strengths.

Layer 4: Every node k in this layer is an adaptive node with a node function:

O4,k = ω̂k(pkx+ qky + rk), k = 1, . . . , 4.

Where {pk, qk, rk : k = 1, . . . , 4} is the parameter set of this node. Parameters in this

layer are referred to as consequent parameters. Hence, the consequent parameters are:

ω̂1 = $1 +$2 +$3 +$5 +$6 +$9,

ω̂2 = $4 +$7 +$8 +$11 +$12 +$15,

ω̂3 = $10 +$13 +$14 +$15,

ω̂1 = $16 +$17.
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Layer 5: The single node of this layer is a fixed node labeled Σ, which computes the

overall output as the summation of all the incoming signals (center of area defuzzification

method):

O5,1 =
4∑

k=1

ω̂kfk.

The defuzzification procedure maps the fuzzy output from the inference mechanism to a

crisp signal. The formula for computing the robot velocity is v = Vmax ·VFNN , where Vmax is

the maximum allowable vehicle speed and VFNN is the FNN output, a value in the interval

[0, 1].

For FNN training it is applied the hybrid learning algorithm. It is observed that when

the values of the premise parameters are fixed, the overall output can be expressed as a

linear combination of the consequent parameters [29]. The hybrid learning algorithm, which

combines steepest descent and the least-square estimator for fast identification of parameters,

identifies these linear parameters by least-square method.

The output f in Figure 4.3 can be rewritten as:

f = ω̂1f1 + ω̂2f2 + ω̂3f3 + ω̂4f4,

f = ω̂1(p1x+ q1y + r1) + ω̂2(p2x+ q2y + r2) + ω̂3(p3x+ q3y + r3) + ω̂4(p4x+ q4y + r4).

Hence:

f = (ω̂1)p1 + (ω̂1y)q1 + (ω̂1)r1 + (ω̂2)p2 + (ω̂2y)q2 + (ω̂2)r2

+ (ω̂3)p3 + (ω̂3y)q3 + (ω̂3)r3 + (ω̂4)p4 + (ω̂4y)q4 + (ω̂4)r4

which is a linear in the consequent parameters {pk, qk, rk : k = 1, . . . , 4}.

So, the training data pairs are ordered to form the m × 12 matrix A, called the design

matrix, and the m× 1 output vector y , then it is obtained matrix equation:

Aθ = y
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where θ is an 12 × 1 unknown vector whose elements are parameters {pk, qk, rk : k =

1, . . . , 4}. This is a standard linear least-squares problem, and the best solution for θ, which

minimizes ‖Aθ − y‖2, is the least-squares estimator θ∗:

θ∗ = (ATA)−1ATy,

where (ATA)−1AT is the pseudoinverse of A if ATA is nonsingular. It can be also

employed the recursive least-squares estimator formula to calculate θ∗. Specifically, let the

ith row vector of design matrix A be aT
i and the ith element of y be yTi ; then θ can be

calculated iteratively as follows:

θi+1 = θi + Pi+1ai+1(y
T
i+1 − aT

i+1θi)

Pi+1 = Pi −
Piai+1a

T
i+1Pi

1+aT
i+1Piai+1

.

The initial conditions needed are θ0 = 0 and P0 = γI, where γ is a positive large number

and I is the identity matrix.

In summary, this Chapter presents the conditions of the terrains on which this work

focuses. It is proposed a neuro-fuzzy approach to estimate the velocity of the robot as a

function of the characteristics of the terrains. It is proposed that the velocity updating is

performed by mimicking the human vehicle driving as well the estimation of terrain rough-

ness. Humans estimate the roughness of the terrains, based on their experience and without

complex mathematical calculations. Hence, the neuro-fuzzy approach is proposed to mimic

the behavior of human beings to update the velocity of vehicles in the navigation in outdoor

terrains with different classes of textures and irregularities.

The FNN has five layers, the first layer inputs are the slope inclination and the texture

class, the second layer sets the terms of input membership variables, the third one sets the

terms of the rule base, the fourth sets the term of output membership variables, and in

the fifth layer, the output is the robot’s velocity. The starting parameters values for FNN

training are provided by human expert drivers. When the robot finds a slope steeper than the
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allowed threshold, it stops, and evaluates which movement to make, whose decision concerns

to path planning. The gradient method [33] is integrated to present proposal, as addressed

in Chapter 6.
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Chapter 5

Experiments and Simulations for

Velocity Updating

This chapter presents two set of experiments and their results employing the neuro-fuzzy

approach. In the first set of experiments, there were recorded the estimated velocities using

the LBP, ALBPRI and ABV methods, and a method based on discrete Fourier transform,

for the texture recognition of the terrains. The textures where the robot is tested are ground,

grass and paving stone. The results indicate that the ABV method is best suited for velocity

updating, for navigation on outdoor terrains. It is given a brief description of the robotic

platform used for experiments.

The second set of experiments consists of simulating the velocity updating of a car. For

these experiments there was placed a video camera on a car, with a similar perspective to the

driver, which recorded the road with different classes of textures when the car was in motion.

The velocity estimation was made using images of the videotaped roads. The videotaped

textures were loose stones, ground with grass, ground, concrete and asphalt. It is shown

that the proposed approach is computationally inexpensive, which suggests the feasibility of

being implemented in a real vehicle.
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Figure 5.1: Wheeled-robot employed for testing

5.1 Terrain recognition supporting navigation

For the autonomous navigation experiments a wheeled-robot from Bioloid transformer kit

is used [109]. Bioloid is an all-around robot kit that can be assembled in any way the user

wants. It is similar to a block toy, but whereas the user of an ordinary block toys is only

free to set the physical appearance of the toy, the user of a Bioloid can not only manipulate

the physical appearance but also set certain behavior patterns.

The robot uses a processing unit, four servomotors for power transmission to the wheels,

two infrared sensors located in the robot front, and a wireless camera on top-front of the

robot. It is easy to see in Figure 5.1 where all these devices are located on the robot. For

testing, it has been employed a wheeled-robot. The robot dimensions are 9.5 cm width per

15 cm length.
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In this platform it is used a personal computer (PC) and the processor of the robot,

to form a master-slave architecture, wirelessly communicated. On the PC are implemented

and executed the path planning and velocity estimation algorithms. The robot, on one

hand, reports to the PC the sensors readings and wirelessly transmits the images captured

by the camera. On the other hand, the robot performs the movements in accordance with

instructions that the PC communicates it.

For these experiments, the training images texture images from the terrain shown in

Figure 1.1. The garden ground texture is covered by a thin coat of dust and dispersed little

rocks; the grass is about 2 cm height and dry; the paving stone contains leafs, tree branches

with a thin dust cover. In the training phase, there were used 30 images per texture class

and there were performed eight runs on the mentioned textures.

It is important to mention that the terrain where the tests were conducted does not

contain obstacles, as it has not been implemented any path planning algorithm. Thus, the

robot only performs straight line trajectories. What matters in these set of experiments is to

compare the performance of texture recognition methods for adjusting velocity of the robot

that moves in outdoor terrains, under the neuro-fuzzy approach proposed.

While navigating, images of terrain’s textures are acquired with the camera mounted on

it, then the robot sends the images to the computing unit to classify the terrain’s textures,

then it receives the instruction to update its velocity considering the current terrain fea-

tures, hence the robot navigates as fast and safe as possible. As quick as terrain roughness

significant change is detected, the robot receives the instruction for velocity updating.

For the detection and measurement of slopes inclination, an infrared sensor located in

the frontal part of the robot does parallel ray projection to the robot’s motion; the other

sensor projects its ray directly to the floor perpendicular to the first sensor. Figure 4.2 shows

the infrared rays extended until they “touch” a terrain irregularity, a virtual right triangle is

drawn with the rays as the cathetus and the terrain line as the hypotenuse, see Figure 4.2.

The slope angle of irregularities is computed by trigonometric operations. Remember that
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the maximum angle of inclination that is allowed to pass on a slope is 15 degrees.

For comparison purposes the LBP and ALBPRI methods with the best performance on

detailed recognition are tested by using outdoors images for training. The terrain textures are

respectively modeled with ABV, LBP, ALBPRI methods, as well as with the discrete Fourier

transform for cast surface recognition (FCS) [71]. The FCS method is a two-dimensional

Fourier transform deserved to assess the cast surface quality, which it has showed high

performance in such application.

The log-likelihood statistic L(S,M) =
∑B

b=1 Sb logMb was employed as the classifying

method for LBP and ALBPRI methods, where B is the number of bins, Sb and Mb correspond

to the sample and model probabilities at bin b, respectively. For ABV method, it was used a

two-hidden layer SNN for texture classification; the first layer has 90 neurons and the second

layer has three neurons. The activation functions are hyperbolic tangent and sigmoid in the

first and second layers, respectively. With the FCS method it was employed a SNN as a

classifier, trained with the backpropagation rule [100].

The expected behavior is that the wheeled-robot moves faster in paving stone, in second

place on ground and third place on grass. That is, it is defined the paving stone as a high

roughness texture, the grass as a medium roughness texture and grass as a low roughness

texture.

It can be easily deduced why it is established this roughness order to these textures. The

paving stone is a high-traction texture, which allows a vehicle to stop quickly to sudden

braking when the vehicle is moving at high speeds, i.e. the vehicle suffers minimal slippage

such that it does not compromise its integrity. Ground is less rough than paving stone but

has greater traction than grass. The ground texture has on its surface a thin layer of dust,

making the vehicles susceptible to slide more easily than on paving stone. For the grass,

the texture is defined as low-traction favoring wheel slippage due to its soft consistency.

Velocities for navigation on the outdoor textures in Figure 1.1 are shown in Table 5.1.

From Table 5.1, LBP and FCS methods strongly failed because they do not follow the
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Method/Texture Grass Ground Paving Stone

ABV 2.64 5.42 6.86

ALBPRI 4.28 5.81 7.02

LBP 7.02 7.31 7.71

FCS 2.58 0.65 1.30

Table 5.1: Velocities estimated under the neuro-fuzzy approach by employing the ABV,

ALBPRI, LBP and FCS methods for texture classification. The velocities are estimated in

meter per minute units

expected behavior. The method ALBPRI presents the expected behavior, although the

estimated velocity for grass is close to the estimated for ground. With the method ABV, it

meets the expected behavior. With lower velocity estimation made with the LBP method,

but with ABV the velocities assigned to each texture class can more easily distinguish.

On the recognition phase based on ALBPRI and LBP methods using images from a low

roughness wall (near to terrain in Figure 1.1) together with terrain images, occurred that

both ALBPRI and LBP failed to recognize the textures and misclassify all the images as

wall-texture; the wall images were interpreted by LBP and ALBPRI as noise instead of useful

data.

A likely explanation for this fail is that ALBPRI and LBP recognition are based on the

presence of borders, edges and dots that need to be detected to ensure these methods well

recognition performance. The wall images are uniformly plain and, perhaps, the required

graphical elements for these methods to perform well are not present, causing that LBP and

ALBPRI missed to recognize surfaces not clearly marked with lines, borders or dots. As a

consequence, the induced velocity updating is wrong during the terrain navigation.

Actually, humans at driving vehicles do not inspect the terrain textures with a magnifying

glass nor take a look at a small distance to account details of particular lines, dots or borders;
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they just estimate the texture roughness basing on previous pattern recognition experiences

while driving [1].

On the other hand, the ABV method does properly recognize the outdoors terrain tex-

tures changes, and accordingly the robot’s velocity of navigation is updated. ABV method

advantages LBP and ALBPRI to recognize what can be called the average appearance in

the images of outdoors surfaces. In reported experiments the ABV method recognized well

the wall average appearance, as well as the average appearance of grass, ground or paved

-whereas LBP and ALBPRI stay away or fail.

Likely, recognition of the average appearance supports the robots navigation on out-

doors terrains. Actually, regarding the terrain average appearance is how humans drive the

wheeled vehicles. Car drivers update velocity by regarding the terrain average appearance,

i.e. velocity adjustments are according to the terrain texture average variations, which are

relevant to human drivers during navigation, and disregarding the irrelevant specific lines,

dots or borders.

In the FCS method the two-dimensional Fourier transform deserves to assess the cast

surface quality. This method shows high performance in classification by recognizing polished

surfaces like glass, steel or plastics, and such that images are very closely taken (9 cm). FCS

applied to Figure 1.1 terrain images failed hardly. All the obtained results were wrong;

the method missed to classify the terrain’s textures as low roughness textures, see Table

5.1. The plausible explanation is that this method works on polished texture that requires

high precision recognition. Furthermore, it also misses on rough surfaces like grass, ground,

soil or pave that not demand so high precision during textures recognizing -but an average

appearance recognition.

Hence, to imitate the human behavior of terrain recognition to adjust velocity during

driving, the choice of the right method for recognizing the surface appearance average, with-

out lost in unnecessary terrain details, is clever. Moreover, the surfaces details recognition

is computational expensive and waste of computing resources must be avoided through au-
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tonomous navigation.

Based on the experiments, the ABV is the best pattern recognition method for supporting

the velocity updating of wheeled-robots navigation. ABV recognition algorithms successfully

classify terrain textures by regarding the average of the appearance. The high-detailed

recognition algorithms success in recognizing patterns depicted with lines, dots or borders,

but they fail for recognizing patterns where the average appearance is required. As human

driving experience shows, the assessment of the average appearance is needed for velocity

updating during navigation on outdoor terrains.

The more the terrain roughness is the more the vehicle’s velocity, as it is shown in the

results of these experiments; the velocity differences between navigating on ground and on

paving stone roads is fewer than between ground and grass roads. Results are consistent with

the expert driver recommendation, and, at a first glance, useful for real robotic displacement

on outdoors.

It is important to mention that the wireless camera captures 30 frames per second. For

our purpose, only one image is used from the 30 captured images, i.e., an image is processed

per second. That is because the maximum speed of the robot is 8.32 meters per minute and

at this velocity, the vehicle would have traveled 0.0046 meters in 1/30 seconds; from the

perspective of the camera the difference between the first and second images is negligible. In

addition, the robot does not always reach its maximum speed but it usually moves slower;

therefore, the robot travels are of short distances hence the surface images captured on these

condition are not truly different each other.

5.2 Simulations at real car velocities

The proposed method is not limited to be applied to small vehicles but can be extrapolated

to vehicles of different sizes, with particular characteristics which define the appropriate

rules of the vehicle operation. The algorithm is scalable to different vehicles by using as
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parameters their particular features such as, weight, size, motor power, tires material, tire

tread, among others.

In this set of tests, terrain textures images are taken from video films with a camera

placed two meters above the floor on a truck’s roof, this camera films the road in front of

the vehicle, with a visual field similar to that of a person driving a real car, see Table 5.2.

The images are of outdoor terrains textures -most of them are real roads- such as ground,

ground with grass, concrete, asphalt and loose stones, on which the truck moves through.

These video images are employed to train the SNN and the FNN; the ABV method is used

to model the textures of both phases: training and recognition. The sampling time of tests

is one image per second.

Again, a human driver’s experience allows defining the classes of textures that can be

found in specific environments, e.g. in desert or mud environments, and then the right

speed a car can safely navigate is established. The textures classes are due by the SNN and

they are the FNN training input to identify roughness, therefore, via the inference rules the

corresponding velocity the vehicle can deploy on each terrain texture is assigned.

To implement the velocity updating algorithms in cars, it is important that the cars

have enough time to react to changes in roughness in the terrain while they are navigating.

Thus, it is important to take into account the computing capacity of the available hardware

to process the images captured by the video camera, in order to determine the maximum

velocity the car can reach. That is, the maximum velocity of the car must be set as a function

of the computing capacity of hardware. Car simulation tests are carried out with the vehicle

at a maximum speed of 60 km/hr.

It can be easily deduced why it is established this texture-velocity relationship to these

textures. The texture of asphalt is a material specially designed for the motion of vehicles.

Hence, for this kind of texture is expected the FNN calculates the maximum velocities. In

the texture of concrete, its use is similar to asphalt, but this texture is often more slippery

than asphalt. Therefore, it is expected that the estimated velocities for concrete are less
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Texture Image

Loose stones

Ground with grass

Ground

Concrete

Asphalt

Table 5.2: Videotaped textures in outdoor terrains from the perspective of a driver in a car
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than on asphalt.

The ground texture is more slippery than asphalt and concrete, because on the surface

of this texture there is a thin layer of dust, which facilitates the cars skid. Therefore, the

estimated velocity for ground must be less than on asphalt and concrete. As for the grass with

ground texture, due to the soft consistency of grass, it makes the cars slip easily. Therefore,

the estimated velocity for ground and grass must be less than the estimated for sole ground.

Finally, the lowest velocity should be estimated for loose stones, since stones do not allow

the wheels of the vehicles to make proper contact with the floor and thus, the vehicles skid

more easily.

Therefore, the expected behavior is that the velocities magnitudes are estimated, from

low to high, in the following order:

1. Loose stones, the smallest velocities are estimated for this texture class;

2. Ground with grass, the velocities estimated for this texture class are bigger than on

loose stones but smaller than on ground;

3. Ground, the velocities estimated for this texture class are bigger than on ground with

grass but smaller than on concrete;

4. Concrete, the velocities estimated for this texture class are bigger than on ground

stones but smaller than on asphalt;

5. Asphalt, the highest velocities are estimated for this texture class.

The videos last approximately 8 minutes; there were used 30 training images per texture

class, which were obtained from videos. Training images are images of the first 30 seconds

of each video; the testing images are obtained after the second 30 of each video. After the

second 30 of each video, it is extracted an image at every second in the videos for testing,

giving a total of 420 testing images. The results of this experiment are shown in Table 5.3.
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Texture Velocity (km/hr)

Loose stones 10.56

Ground with grass 18.47

Ground 27

Concrete 43.79

Asphalt 48.91

Table 5.3: Velocity updating results by employing the texture classes shown in Table 5.2

A likely proportional roughness-velocity emerges at some extent: the estimated velocities

magnitude increase as the textures are rougher. However, this ratio can vary up to the

particular terrain conditions, e.g., being affected by the weather conditions.

Actually, the velocities of Table 5.3 are the average of the ones resulting in specific

experiments. The minimum and maximum velocities recorded for loose stones are 10.56

km/hr and 18.91 km/hr, respectively; the velocity difference is 8.35 km/hr implying an

acceleration of 2.32m/s2 -which is the 23.65% of gravity acceleration. A vehicle that moves

on the texture of loose stones must move slowly because the stones favor the vehicle skids

and, if the vehicle moves at high speeds it can suffer severe vibrations.

The velocities estimated for ground with grass are slightly higher. Mostly the velocity

remains at 18.11 km/hr. Ground with grass texture is less abrupt than loose stones. The

grass does not cover the entire surface but there are holes with ground, usually small, even

so a car can pass over them at low-speed motion while avoiding damage due to vibrations

in the vehicle. Even when the grass is a texture that favors slides, unlikely the loose stones,

the wheels surfaces of the car have grater contact with the ground, thus the risk of slip is

smaller, but higher than in the next textures.

For ground textures, the velocity estimation behavior is similar to that of ground with

grass; the velocity remains constant at 27.61 km/hr in almost the entire path. The surface of
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ground texture is covered with dust and very small stones, and is almost flat, so the vehicle

can move fast without being affected by strong vibrations, even the small stones and dust

in the surface could make the car to slide.

Velocity for concrete texture remains constant at 44.44 km/hr in almost the entire path,

-with 8.35% and 4.95% of gravity acceleration. Finally, the velocities estimated for asphalt

remain without changes, 48.91 km/hr throughout the entire path. The textures of concrete,

paving city streets, and asphalt covering roads are very similar. These covering materials

create a uniform surface, without holes and slopes, avoiding car slides.

An additional aspect to consider concerns the vehicle’s computing capacities to process

texture images and update velocity in real time. Computing capacities support or restrict

the process efficiency, and need to be considered as is next explained.

5.3 Cycle time: vision processing and velocity updat-

ing

The acquired images have a resolution of 480 × 640 pixels and are converted to grayscale.

The microprocessor employed during the algorithms test is a Centrino Core 2 Duo at 2 GHz

and 1.99 Gb RAM. If the vehicle moves at 60 km/hr, the mentioned processor takes 0.3

seconds for both image processing and velocity estimation to update the vehicle velocity.

Actually, there are two aspects to be considered for efficient velocity control:

• determine the range of the camera to capture surface images and

• the sampling time given the progress of the vehicle.

Concerning the sampling time, the video system captures 30 frames per second. However,

as above mentioned, it is not necessary -even not possible- to process all the 30 images pic-
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Figure 5.2: Car vision/recognition system. The camera must process the next 5-meter road

segment before the vehicle passes over. That is, when the vehicle moves the first 5-meter

stretch, the computer processes the image of the posterior 5-meter stretch. When the second

stretch processing is finished, the vehicle would have started to move in the second stretch.

This cycle is successively repeated

tured in a second because several will be very similar among them, with negligible differences

given the vehicle acceleration on the mentioned roads.

Considering the 0.3 seconds that takes to process roughness recognition and velocity

updating, and assuming that the maximum speed is around 60 km/hr, the vehicle will

advance 5 meters, as shown in Figure 5.2.

The sampling time is an aspect that should be defined considering the hardware com-

puting capacity and the maximum speed the vehicle can reach. If the vehicle moves at low

speed, e.g. 3 km/hr, and 30 frames per second are sampled, it will result that the captured

images are almost the same. Thus, it makes no sense to process the 30 images sampled at

every second but is enough to process just a few images. But if the vehicle moves at a higher

speed, e.g. 60 km/hr, as the vehicle travels more terrain in less time it is necessary to get

data from the surface more frequently, such that vehicle has enough time to react to changes

in roughness. The sampling time must be longer, hence the captured images processing is

intense, and it is mandatory to process the 30 frames captured per second.
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Therefore, it is relevant to consider the computing capacity of available hardware to

set the maximum sampling time and thus the speed the vehicle can reach. It is desirable

to adjust the sampling time as a function of vehicle speed, but this is beyond the scope

of this article. It is important to observe that in order to test the algorithms of texture

recognition and velocity updating at real scenarios, no representative benchmarks, or data

sets, or specific procedures for evaluating and comparing different systems [1] are available.

In summary, in this chapter there were compared the performance of texture classification

methods LBP, ALBPRI, ABV and FCS, applied to velocity updating under the proposed

neurofuzzy approach. It was concluded that the ABV method is best suited to update the

velocity of the robot basing on the terrains’ features. ABV method classifies the terrain

textures by regarding the average of the appearance. LBP and ALBPRI methods success

in recognizing patterns depicted with lines, dots or borders, but they fail for recognizing

patterns where the average appearance is required.

Simulation was carried out adjusting speed of a car, using images of roads, which were

acquired from the videotapes of the road where the car moved. Simulation results show

that this approach can be scaled to large vehicles. The results indicate that given the low

computational cost of the neurofuzzy approach and depending on the computing capacity of

the hardware used, it can allow vehicles to reach high speeds.
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Chapter 6

Odometry-Based Localization

Improvement

Autonomous navigation requires calculating the location of wheeled-robots. To compute

the wheeled-robots’ position the odometry-based methods are frequently used to calculate

distance between the current and target positions of the wheeled-robot; however, the draw-

back using these methods to learn the wheeled-robots’ precise position is due to the wheels’

slippage, which is a common circumstance during outdoor navigation. In other words, the

autonomous wheeled-robots that use odometry to compute their own location have the dis-

advantage of generating errors due to wheels’ slippage.

Most of the works, that employ odometry, are aided by landmarks or other devices to

improve the calculation of the robots’ location [22], [24], [110]. The drawback of these ap-

proaches is the high computing cost. The current proposal reduces the wheels’ slippage by

using the robot velocity updating regarding the terrains’ roughness [75]; hence, the right ve-

locity displacement prevents the wheeled-robots from slipping, which is a relevant advantage

for odometry-based robot localization methods, so common for this purpose.

The results of this chapter show the localization improvement of wheeled-robots by ap-
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Figure 6.1: Robot navigation competences

plying robot velocity updating regarding the terrains’ roughness. If the navigation terrain

is smooth or rough, grass or sandy soil, loose stone, paved or brick, the wheels’ slippage is

diminished and the wheeled-robot odometry-based localization is improved.

6.1 Autonomous wheeled-robots localization

For autonomous navigation the robot must determine its own localization within the envi-

ronment; robot localization becomes a matter of determining coordinates and orientation on

a two dimensional floor-plan. Robot navigation can be defined as the combination of the

next robot competences, see Figure 6.1:

1. Self-localization,

2. Path planning,

3. Map-building and

4. Map-interpretation.

Self-localization denotes the robot’s competence to establish its own position within a

frame of reference. Path planning as an extension of localization requires determine the
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robot’s current position as well as the goal location position, both within the same frame of

reference. Map denotes any one-to-one mapping of the world onto an internal representation.

Map-building covers any notation describing locations within the frame of reference. The

map charts explored territory within the frame of reference. Finally, to use a map, the ability

to interpret the map is needed.

For wheeled-robots, odometry is frequently used for self-localization [22]; but odometry

inevitably accumulates errors due to causes as the diameters of the wheels are not equal or

poor wheel alignment, wheel slippage, among others [23]. Wheel slippage is produced mainly

by [8], [30]:

• low-traction terrains,

• extremely fast rotation of the wheels,

• deformable terrain or steep slopes.

Most of the works on robotic autonomous navigation over outdoors have included limited

terrains’ features information in their proposals [5], [18], [20], [111]. One of the reasons is the

expensive computing cost for processing terrains’ roughness. The lack of terrains’ roughness

information makes difficult to compute a precise localization of autonomous robots as well

as to achieve the target position while the robot navigates over outdoor terrains.

Several works have managed to reduce the odometry errors by modeling errors from the

readings of the encoders coupled to the robot wheels to improve the robot self-localization.

Their results show reduction of odometry errors; but all these works are assisted by land-

marks [24], laser beams [25] and artificial vision [26], among other tools to identify the

terrains’ references [27]. This involves more information processing and, thus, increases the

computational cost.

The wheeled robot’s location control problem is a topic widely studied, due to the the-

oretical nature of the problem and its practical importance. Instead of building a control
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problem where the robot requires a priory trajectory, in [35] formulates a velocity field track-

ing problem. Specifically, a velocity field is developed by the robot’s restricted trajectory,

and a differential controller is formulated in order to test the global asymptotic velocity

field. The kinetic controller developed is added inside the adaptive controller that foments

the global asymptotic tracking.

Wheeled robots have been employed for hazard environments such as the lunar surface.

Velocity estimation is important for lunar rovers because they navigate on rough terrain.

The wheel and terrain dynamic effects, like wheel slip, make difficult to real-time estimate

the vehicle’s velocity. Besides, it is difficult to observe the acceleration sensed data because

lunar rovers move at very low velocities. Song et al. [37] propose a kinematic-based method

for lunar rovers’ velocity estimation, using encoders and gyrometers. The kinematic model

is determined with the closed-velocity-chain theory. The velocity estimation is computed by

solving the vehicle’s kinematics.

In [8] is proposed a longitudinal wheel slip estimation-based model and immobility con-

ditions detection of autonomous mobile robots. It presents a new wheel model so as to

compute the dynamic forces of the rover. The rover’s external forces and velocity estimation

are obtained employing encoders, inertial measures and GPS. The experimental results show

that the technique detects immobility conditions while estimates the robot velocity during

a normal excursion.

Here is proposed that the robot adapts its velocity so it reaches the maximum velocity that

allows it to stop quickly enough without sliding, and moving slowly at low-traction surfaces

to avoid wheels’ slippage. Both wheels’ slippage and robot sliding, and consequently the

odometry errors, are reduced with velocity updating regarding the terrains’ features. Precise

location and target achievement can be improved this manner.
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6.2 Odometry

Navigation as a challenging competence of mobile robots requires the competence to deter-

mine their own position in the environment. A well known way to calculate the location of

wheeled-robots is through odometry, by using readings of encoders coupled to the wheels

of the robot. The robot’s location is determined by calculating the robot’s traveled dis-

tance from initial to target position. However, odometry is susceptible to accumulate errors

during the robot course; the longer the trip is, the bigger the odometry error is. Mobile

wheeled-robots employ diverse techniques to reduce odometry errors in localization.

To overcome this difficulty, all mobile robot works are assisted by other devices, such as

electronic compasses [27], sonar sensors [4], GPS [112], among others. Thus, autonomous

robots’ proposals have focused on getting more information from the environment, but the

problem of reducing wheel slippage has not been fully addressed [30]. The works that use

odometry along with other devices to compute the location of the robots, report the error

rates with respect to their final location, i.e. how far the robots were located from the desired

position. Below are cited some related works on odometry-based localization methods.

Martinelli et al. [25] present a method allowing simultaneous robot localization and

odometry error estimation. The estimation of the systematic components is carried out

through an augmented Kalman filter, which estimates a state containing the robot config-

uration and the parameters characterizing the system component of the odometry error. It

uses encoder readings as inputs and the readings from a laser range finder as observations.

The filters are integrated in a coherent framework allowing autoing-calibrating the odometry

system while localizing during the robot navigation.

In [26], the robot odometry-based localization uses a memory of horizontal bearings

to landmarks. The method does not need internal representation of the robot’s position,

which is updated by alternating motion and sensor updates, and it does not depend on

distance measurements, which often are inaccurate when obtained by the size of far-distant
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landmarks. The approach works on a buffer of observations and the history of the robot’s

odometry. Robot’s position is directly estimated by this data without alternating sensor and

motion updates.

O’Kane [113] presents a robot localization technique with linear and angular odometers,

whose configuration is composed from position and orientation, in a fully-known environment

by alternating rotations and forward translations. In the robot’s information space it is a

discrete-time planning problem. Localization by odometry is limited to simply-connected,

bounded polygonal symmetries environment.

In [114] the results of navigation of a mobile robot in outdoors shown position error rate

of 1% in 300 meters paths. In this work is used the visual odometry to estimate frame-to-

frame motion from stereo cameras and integrate the incremental motion with GPS. It uses

a bundle adjustment over multiple frames, which reduces the error while it is still operating

in real-time. The usage of stereo vision to estimate the motion provides more stability than

with a monocular camera. However, the computational cost of processing the real-time

stereo vision is of more computing and integration expensive as well [115].

Santana et al. [110] propose a localization system where the robot navigates in an

unknown environment, and the floor lines are used as landmarks and are identified. The

prediction phase using the extended Kalman filter is performed using the odometry model

of the robot. During the update phase, the proposal approach uses the parameters of the

lines detected by the Hough transform algorithm to correct the robot’s space.

Seraji and Werger [27] present several algorithms to calculate the location of a mobile

robot. The Weight average with local priority (WAL) and Peak-with-high-neighbors (PHN)

methods showed the best results in trajectories of 13 meters (measured in a straight line

between start and end points), with location error rates of 4% and 3.92% for PHN and WAL,

respectively. The approach combines data from both wheel odometry and the electronic

compass mounted on the robot. This scheme continuously decomposes all motion commands

into short straight-line segments. The compass is employed to orient the robot to the proper

98



direction at the beginning of each segment, and to correct for deviation from this heading

at the end of each segment. The straight-line distance traveled is computed with wheel

odometry, and the segment information is continuously accumulated to provide position

information. The location error is very similar to that obtained with our approach. But in

[27] an electronic compass to correct the underlying error of odometry is needed.

The mentioned works concentrated on reducing the underlaying odometric errors by

employing mathematical methods or using other devices to calculate the location of the robot;

but they need more computing power to process all the information they have acquired.

Actually, here proposed robot localization would be improved by combining velocity

updating with other localization methods, besides odometry, as those mentioned before. In

addition, the current proposal is easy to implement, computationally low-cost and does not

require sophisticated hardware, it just requires a video camera and two infrared sensors,

which is common equipment on wheeled-robots.

6.3 The navigation algorithm

Nowadays, beyond the detection and avoidance of obstacles, the velocity control of wheeled-

robots regarding the terrains’ features has not been attended exhaustively [4], [14], [30]; this

fact is a weakness for efficient navigation on outdoor terrains. Exploration robots in general

and particularly wheeled-robots need enough information about terrains’ features to ensure

efficient navigation. Moreover, to ensure precision on achieving the target, data of terrains’

roughness is an essential requisite.

The autonomous navigation of robots on outdoor terrains requires the concurrent opera-

tion of path planning and velocity estimation algorithms hence both harmonizing, see Figure

6.2.

99



Figure 6.2: Scheme integration of path planning and velocity estimation algorithms for

autonomous navigation

6.3.1 Path planning and velocity updating

The first step is to create a virtual map of the robot’s navigation space. The surface is

discretized by diving it into squares, where the amount of squares depends on the dimension

they occupy in real world, and the provided details of space model. The greater detail

the more computational resources are demanded for calculation of trajectories. The known

locations of obstacles, partial or complete, are recorded in the virtual map. It follows to

compute the optimal path between initial and goal locations with the gradient method.

Each time the virtual map is updated a new trajectory is calculated.

Then, the texture recognition algorithm is turned on to classify textures. The texture

classes alongside the slopes’ inclination are processed by the FNN to update the robot

velocity. Hence, the robot receives the instruction to move at the estimated velocity in the

prior determined trajectory. If during the travel the sensors detect an obstacle, or slopes with

inclination greater than 15 degrees, the robot stops and the velocity estimation algorithm is

turned off. The obstacle is registered, a new path to the goal location is recalculated and
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the robot moves around the obstacle.

After that, the velocity estimation algorithm is turned on and the robot moves towards

the goal location in the new trajectory at the estimated velocity; otherwise, if the sensors do

not detect obstacles, the velocity is updated while the robot moves in the prior trajectory.

Note that the velocity estimation algorithm does not run all the time; it is turned off

when the robot finds an obstacle. At this circumstance, the camera captures images of the

obstacle instead of capturing the texture of the surface. If the velocity estimation algorithm

would not be turned off, the velocity would be estimated based on images of the obstacle’s

texture. Furthermore, the relevant in this case is that the robot overcomes the obstacle with

specific movements and not velocity changes.

The robot stops when it determines it has reached the goal location, by computing the

distance it has traveled from the initial location to its current location. The following list

summarizes the steps, see Figure 6.3:

1. Create a virtual map of robot space navigation, surface discretization,

2. Define the robot’s initial and goal locations,

3. Compute the path with the gradient method,

4. Texture recognition algorithm is turned on,

5. Velocity is estimated with surface data from textures classes and slopes,

6. Robot receives the order to advance along the path, at the estimated velocity,

7. Robot’s velocity is updated when a change in texture is recognized, or sensors detect

a slope on the surface, or both events occur,

8. If sensors detect an obstacle or slope inclination greater than 15 degrees, then the

robot stops and texture recognition algorithm is turned off; return to step 3; otherwise,

velocity is updated, and return to 7,
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Figure 6.3: Flow diagram of the navigation algorithm, where the path planning and veloc-

ity updating algorithms are integrated to work harmonized for autonomous navigation on

outdoor terrains

9. The robot stops when it has reached the goal location or destination.

6.3.2 The gradient method

The path planning algorithms for mobile robots differ among depending on the robot appli-

cation: exploration of unknown territory [1], car navigation on roads [2], planet exploration

[116], indoor navigation [19], or if the environment is dynamic [111] or static [117] The al-

gorithms that use more data from environment are more accurate but more expensive and

difficult to implement too [23].

For the current purpose, a path planning algorithm that is suitable for an environment
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that we assume is partially or totally unknown which is static and with obstacles of various

sizes, and computationally low-cost is picked. The robot must travel on the estimated path

by updating its velocity depending on the characteristics of the surface.

The path planning algorithm of gradient method [33] recalculates the paths in real time

every time it encounters an obstacle and it is suitable for static environments; this method

is the most convenient to support path planning in present proposal. The gradient method

uses a navigation function to generate a gradient field that represents the optimum path to

the destination point at each point of the workspace.

The gradient of the navigation function represents the direction of the path with the

lowest cost at each point in space. The method requires a discrete configuration of space

navigation in which the path cost function is sampled. A navigation function is calculated in

the local space of the robot, such that the gradient of the function represents the direction

of the path with the lowest cost at each point in space.

The optimum path to the destination point is calculated continuously. The concept of

optimal cost is derived from assigning costs to paths basing on their length and proximity to

obstacles, as well as any other criteria one may choose. The gradient method can lead the

path with the lowest cost in static and completely unknown environments, and it is efficient

for real time monitoring of movements of mobile robots, being equipped with laser beams.

Thus, the gradient method is described as follows. A path is represented by an ordered

set of points in the sample space P = {p1, p2, . . . }, where the set of points re contiguous

(either diagonally or rectilinearly), and no point repeats. The last point on the path must

be a goalset point, and no other point can be. A path that starts at point k is abbreviated

as Pk.

In general, the cost of a path is an arbitrary function of the (discretized) path, F (P ).

But such cost functions are difficult to deal with, and then it is made the assumption that

the path cost is separable into the sum of an intrinsic cost of being at a point, along with

an adjacency cost of moving from one point to the next: F (P ) =
∑

i I(pi) +
∑

iA(pi, pi+1).
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Both I and A can be arbitrary functions. For typical situations, I represents the cost of

traversing through the given point, and is set according to the domain characteristics, e.g.,

a high cost will be assigned to being near an obstacle. Other possibilities are to have higher

costs or unknown regions, slippery regions, etc.

The path length is taken into account by assigning A to be proportional Euclidean dis-

tance the robot travels between the two points; then the sum of A gives a cost proportional

to the path length.

A navigation function N is the assignment of potential field value to every element of

the configuration space, such that the goalset is always downhill no matter where the robot

is in the space. Navigation functions, unlike potential field methods in general, have the

characteristic that it is impossible to get stuck in a local minimum, and no search is required

to determine direction to go arrive at the goalset.

The key idea behind the gradient method is to assign the navigation function at a point

to be the cost of the minimal cost path that starts at that point. Mathematically,

Nk = min
Pk

F (Pk),

where as before, the path Pk starts at point k. If the intrinsic costs are zero, then the

navigation function just represents the distance to the nearest goalset point. Traveling in

the direction of the gradient of N yields the fastest reduction of path cost, i.e. the minimum

distance to a goalset point. In the general case, traveling along the gradient is a minimum

cost path to the goalset.

Computing the values of Nk at every point is difficult, since the size of the configuration

space can be large, and finding the minimal cost path in a näıve manner involves iteration

over all paths from the point. Simple navigation functions for small-dimension spaces have

been computed by a wavefront algorithm [118]. The goalset points are assigned a value

of 0. At each iteration, the points with value n are expanded to their nearest (rectilinear)
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neighbors, giving them a value of n+1 if they are not already assigned, and are not obstacles.

The process repeats until all points have been assigned. It takes time of the order of the

number of points in the space. The wavefront computes the minimal Manhattan distance

free-space path to the goalset.

The naive application of the wavefront algorithm to the navigation function of Nk does

not work, because the value of the function can change arbitrarily from one point to the next.

Instead, it is used a linear programming algorithm that is a generalization of the wavefront

algorithm, which it is called LPN. The cost of LPN is again the order of the number of points

in the space, and it reduces to the wavefront algorithm under the appropriate conditions on

the navigation function.

Initially it is assigned all goalset points a value 0, and every other point an infinite cost.

The goalset points are punt in an active list of points. At each iteration of the algorithm,

it is operated on each point on the active list, removing it from the list and updating its

neighbors. Consider an arbitrary point p that just has been assigned a value. This point is

surrounded by 8 neighbors on a regular grid. For any of the neighbors q, it can be computed

the cost to extend the path from p to this point, using the cost metric F (P ). If the new

cost at q is smaller than its own cost, then it is replaced with the new cost, and q is added

to the new list of active points that constitute the wavefront. The process repeats until the

active list becomes empty.

One of the problems with the original wavefront algorithm was that it produced paths

that grazed obstacles. Other variations place the path as far as possible from obstacles.

The LPN algorithm computes a generalized form of the navigation function that minimizes

the cost of the path, and so the path behavior around obstacles can be controlled by the

assignment of intrinsic costs, in the following way.

Suppose the obstacles in the workspace are given by a set of obstacle points. Let d(p) be

the distance of the point p to the nearest obstacle point. Then assign I(p) = Q(d(p)), where

Q is a decreasing function of its argument. In practice the intrinsic costs can be assigned
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Figure 6.4: Outdoor terrain employed for autonomous navigation testing

in the following way. Given a set of obstacle points, each point is labeled with the distance

to the nearest obstacle point using the LPN algorithm, with the goalset being the obstacle

points, all intrinsic costs at zero and the adjacency cost set to Euclidean distance. Then,

the q function converts the distance at each point to an intrinsic cost.

6.4 Experiments

This section presents the experiments and results obtained from the navigation tests of a

small four wheeled-robot on a terrain that is assumed unknown and static. The experiments

are performed in the environment shown in Figure 6.4, whose area is 2.25 m2, covered with

dust, soil, leaves, branches and 2 cm-high grass; it also contains rocks, small earth-mounds

and trees.

The goal point is located 2.12 meters in a straight line from the initial location of the

robot. Two rocks lie in the middle of the straight line from the initial location of the robot
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Figure 6.5: Typical robot path, dot line, during navigation on the surface shown in Figure

6.4. Black dots represent the two obstacles located in the straight line between the start and

goal locations of the robot

to the goal point, see 6.5.

There were conducted 30 tests divided (combining path planning) into three parts:

• 10 tests were performed at medium constant velocity (6.95 cm/s),

• 10 tests were done at the maximum velocity the robot can reach (13.88 cm/s),

• 10 tests were performed with velocity updating.

To test and evaluate the current proposal, there were searched surface models in related

works of outdoors navigation that are employed as benchmarks for evaluating the perfor-

mance of the algorithms. But there was no specific environment to be used as benchmark.

The surfaces used for the experiments of [1], [2], [27], [119], [120] do not follow a standard
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model because there is no one to serve as reference; thus, each work proposes its own en-

vironment. Being their main focus the autonomous navigation of robots on Mars, they try

to reproduce the conditions of Mars’ terrains, which are covered with sand and stones of

various sizes scattered throughout the terrains.

The Martian surface can be considered as a special case of the current approach, because

the Martian surface is covered with sand and rocks. That is, the Martian surface has this class

of texture. Our approach proposes that the robot moves over surfaces with different classes

of textures to make navigation more versatile than the mentioned works. This flexibility

regarding terrains’ features sets a better precision on target achievement. In spite of no

surface benchmarks criteria to evaluate the robots’ performance a set of standard evaluation

criteria are defined [4], [112]:

1. accurate position estimation of the robot,

2. rapid and accurate detection of the robot environment,

3. and reliable routes planning to move from one place to another without colliding with

obstacles in unfamiliar environments.

This is true for this proposal and adds the following:

• The total time it takes the robot to make the route and,

• Comparing between the initial and goal locations.

Detection of the robot’s environment and path planning are reinforced with velocity

updating. By adjusting the velocity according to the characteristics of the surface, safety

is increased and/or the travel time of robot is decreased. That is, if the robot detects that

the floor roughness is low then it slows down, although the robot spends more time to reach

its destination the probability that the robot suffers an accident decreases. In contrast,
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Constant velocity Velocity updating

Medium Maximum

Navigation velocity 6.94cm/s 13.88cm/s 8.65cm/s (average)

Navigation distance 225.5cm 111.29cm 220.33cm

Distance traveled percentage 107.72% 52.46% 103.86%

Distance error percentage 7.72% 47.54% 3.85%

Navigation time 43.10seg 19.08seg 32.55seg

Table 6.1: Results obtained from the set of experiments of autonomous navigation on the

terrain shown in Figure 6.4

if it is detected that the surface roughness is high then the robot moves faster, therefore,

the travel time is reduced. Thus, by comparing the robot traveling time with and without

velocity updating, the robot performance is improved by using information about surface

characteristics.

From Table 6.1 it is observed that at medium constant velocity the robot approached

the final location, but it is located 16.5 cm from the final point, accounting for 7.72% error

(compared to the straight line distance between the initial and goal locations). For maximum

constant velocity, the robot goes only halfway. The final position of the robot is located 100.7

cm from the final point, which represents a 47.54% error. With velocity updating, the robot

is located 8.33 cm from the end point, which represents 3.85% error.

When the robot moves at maximum velocity, the robot’s wheels slide. Along the way,

the robot moves on low-traction surfaces. As the robot moves on textures such as soil, the

wheels do not make proper contact between the floor and the surface of the wheels, giving

as result the wheels slippage and, therefore, odometry errors are generated.

At constant medium velocity the robot has a better performance than at maximum

velocity. The robot improves its final location regarding the defined location. However, at
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this velocity, wheel slippage is still generated in low-traction surfaces, thus, the robot should

move more slowly.

With velocity updating, the robot had less odometry errors, because it had less slippage

on its wheels. The robot diminished its velocity in low-traction surfaces, giving more time

for the wheels to make better contact with the floor. Although travel time did not decreased,

the computation of the location of the robot was more accurate.

By adjusting the velocity according to surface characteristics, safety is increased and/or

the travel time of the robot is decreased. That is, if it is detected that the surface roughness

is low then the robot slows down, although the robot spends more time to reach the goal

location, the probability the robot has an accident decreases.

Considering as 100% the distance between the end point and the initial location of robot,

when the robot moves at medium constant velocity (6.94 cm/seg), it runs 107.72% of the

path between the initial and goal locations. The travel distance is increased because of the

obstacle avoidance and the location estimation errors generated by wheels’ slippage.

On the other hand, when the robot moves at maximum constant velocity (13.88 cm/seg),

it runs, on average, 52.46% of the path. The plausible explanation is that when the robot

moves at maximum velocity the wheels slip more frequently and therefore the location esti-

mation of the robot becomes very imprecise.

With velocity updating the robot travels the 103.86% of the path distance between the

initial and goal locations. In this case the distance is less than with medium constant velocity

because the wheel slippage is less frequent.

By adapting the velocity the robot moves slower in areas that favor the wheels’ slippage,

for instance loose soil. Because of there are fewer slips, the location estimation of the robot

is more accurate and consequently the robot approaches the goal location.

The navigation time with velocity updating is 32.41% less and 41.38% higher than

medium and maximum constant velocity, respectively. It is noted that with medium con-

stant velocity the robot travels a path with good accuracy but spends more time doing the
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traveling.

With maximum constant velocity the traveling is fast but the accuracy to travel the path

is very bad. With velocity updating performance is improved because the precision of the

robot in the traveling of the trajectory is good and is performed in less time, i.e., the robot

moves at optimum velocity, depending on surface characteristics to avoid wheel slippage.

With our approach the average velocity represents 62.13% of the maximum velocity the

robot can reach.

For robot localization with velocity updating usage an error rate of 3.92% is obtained;

although this error rate is similar to that reported in related works it is a promising result

considering that only odometry is used. Wheel slippage occurs less often and the drift errors

are small with velocity updating.

In summary, this chapter shows results of autonomous navigation of a wheeled-robot

in outdoor terrain with irregularities and different classes of textures. The odometry-based

localization is commonly used in wheeled robots, but has the drawback of accumulating errors

due to wheel slippage during movement of the robot. All the related works on wheeled-robot

using odometry to estimate the robots’ location are aided by other devices to reduce the

underlying odometric error.

Rarely have been addressed the problem of decreasing the wheel slippage to improve

the localization of the robot using odometry-based methods. The results show that, with

velocity updating, the calculation of the robot can be improved, as the robot slows down

in low-traction surfaces, leading to the robot’s wheels have less slippage and thus fewer

odometric errors are accumulated.
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Chapter 7

Discussion

7.1 Beyond the personal velocity updating

For vehicle velocity updating on outdoor terrains, the driver’s experience on this kind of

terrains is used as a fundament. However, it is fairly a personal experience, not an absolute

at all. In spite of that, it is possible to well identify ranges of velocity for a right vehicle

control, beyond the individual experience.

To characterize these ranges of velocity/roughness relationship, from the vehicle mechan-

ical analysis, there are quantifiable data that allow determining the needed power to displace

the car to a certain velocity on a particular surface. The friction forces that occur among

the vehicle’s wheels at rolling and the surface of navigation can be quantified.

For a full analysis on velocity updating regarding the terrain of navigation, the friction

conditions between the terrain textures and the wheels material need to be added. Each

class of texture has a friction coefficient that is needed to compute the power that the

motors should supply to move the robot at specific velocity. The friction coefficients values

are experimentally obtained and they are recorded on catalogs of mechanics issues [121].

In this thesis, during the robot’s movement analysis it is assumed that wheels are rigid,
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no deformable, without tire grooves; as well, that the surfaces are no deformable. For these

conditions the motion equation is, Jω̇(t) = −rf + τ(t), with τ(t) the applied torque, f the

friction force, r the wheel radius, ω̇(t)he wheel’s angular acceleration and J the inertia of

wheel, is the equation for modeling the wheeled-robot moving.

Observe that acceleration -thus velocity- is a function of torque, friction and the wheel

radius. As the friction force changes due to the surfaces textures where the robot is moving,

the torque needs to be updated by robot driving at desired velocity.

On the other hand, if the robot would move on deformable outdoors surfaces, for instance

soil, then the last equation should include the additional terrain parameters for the dynamic

analysis, as cohesion, the angle which the wheel first makes contact with the terrain, the angle

which the wheel loses contact with the terrain, the stress region created at the wheel-terrain

interface, among others [30], [122], [123]. The formal account is a non-linear differential

equation, beyond this thesis scope.

In the presence of rigid/deformable terrains, the terrain force estimation is used to infer

the robot required ability to climb or tow a load independent of the underlying terrain model

[124]. When the terrain model is available, physical soil properties and stress distribution

parameters concerning mobility are inferred from the vehicle terrain forces using a model

that includes multiple estimations, e.g., terrain force and parameter estimation that require

accelerometers, rate gyros, wheel speeds, motor currents and ground speed.

7.2 Odometry-based methods improving

7.2.1 Scalability

As shown in Section 5.3, the current approach is not limited to small-size robots; it can

be extrapolated to real cars, with their own particular features which define the adequate

rules of the cars operation. The algorithm is scalable to vehicles of different by using as
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parameters their particular features such as, weight, size, motor power, tires material, tire

tread, among others.

Before the velocity updating algorithms’ are implemented in cars, it is mandatory to take

into account the computing capacity of the available hardware to process the images captured

by the video camera and compute the maximum velocity the cars can reach. That is, the

maximum velocity of the car, along with the experts’ directives, must be set considering the

computing capacity of hardware. The processing time should be small enough such that

when the process ends the car begins to move forward on the analyzed surface and smoothly

adjust its velocity.

To process 480×640-pixel images with the microprocessor Centrino Core 2 Duo at 2GHz

and 1.99 Gb RAM, the algorithms’ processing time of images is relatively small, 0.3 seconds.

It leads to deduce that vehicles with these computer capacities have enough time to react or

to break on the next 5 meters, as soon as they are moving at 60 km/hr, which is a standard

velocity on principal roads [75].

Within the algorithms testing, we have simulated the path of a truck. These tests con-

sisted of placing a camera on the roof of the truck. The truck moves on various types of

terrains. During the truck’s trips, the camera recorded the surfaces, similar to a driver’s

visual field. Then, texture images are extracted from video recordings, which are processed

by the algorithms.

7.2.2 Autonomous Navigation

Navigation of autonomous robots throughout outdoor terrains is highly complex, obstacle

detection and avoidance for no collision as well as the terrain features information for no

slides are both required. For instance, the exploration missions of planets, like Mars, demand

the usage of robots with the highest degree of autonomy to overcome the terrains’ difficulties

such as rocks and slopes [116]. In Earth, the autonomous rovers are as well required; for
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instance, exploration of arctic seafloor [12] or volcano craters [13], or detection and location

of antipersonnel land mines [11].

The path planning algorithms focus to compute paths and adjust the speed of the robot

in terms of the obstacles’ location that exists in their environment. Selekwa et al. [5] and

Ward and Zelinsky [125] addressed the navigation and path planning of an autonomous

robot which varies the velocity according to the proximity of obstacles detected by infrared

sensors.

In [14], by regarding the environment perception, a probabilistic modeling is used to avoid

or to mitigate eventual collisions for updating a vehicle braking action. A fuzzy potential

energy is proposed to build a map that facilitates planning robot tasks for real paths [126].

The potential field designates obstacle positions as repulsive potential and a goal position

as the minimum location of an attractive potential well in unobstructed environment. Both

repulsive and attractive potentials are combined to facilitate obstacle avoidance for real-time

control.

For a successful autonomous navigation, is important to ensure that the vehicle reaches

accurately the desired locations, but it also maintains its integrity. With velocity updating

both accuracy and security can be achieved. The results indicate that the robot improves

the calculation of its location, but on the other hand, the runs are safer as it reduces its

speed by regarding low-traction surfaces.

Actually, it is claimed that, for velocity updating, the experience of human drivers is

mimicked by using the inference system of the fuzzy neural network, which model the opera-

tion of the vehicle based on the driver’s experience. There are works that model the vehicles

driving with differential equations [8], [35], [127], but this approach is difficult because, in

general, differential equations are nonlinear and their solution is hard to obtain.

On the other hand, in an effort to boost the development of autonomous robots, the

robotic soccer tournament RoboCup was created in 1997 [129]. RoboCup has fortified several

areas such as autonomous agents, pattern recognition, learning systems, among others [128],
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[121]. In RoboCup tournament there are different categories that depend on the robots’ size;

for instance, small-size, middle-size and humanoid leagues. The small-size league games have

been distinguished by the high speed of the robots. The small-size league environment is

described as follows.

One of the goals of the RoboCup is to perform a soccer match between a robotic team

and a human team [129]. Achieving this goal involves to solve several problems that still

have not been addressed; for instance, adjust the velocity of the robots depending on surface

conditions. If small-size robots were used in a real game field, the more likely it is that

robots would not have good performance because in their design the characteristics of the

field, where game fields are not always flat and the features of grass can vary in different

parts of the field, were not included. If this information were taken into account, without a

doubt it would be a step towards achieving the goal of the RoboCup.
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Chapter 8

Conclusions and Contributions

The summary of conclusions and contributions are listed below.

Conclusions

• Regardless of the complexity by wheeled-robots navigating on outdoor terrains, the

fuzzy neural network uses a truly small number of if-then rules; that is likely explained

by the prior neural networks terrain data relationships which are later used by the

fuzzy logic rules.

• Appearance-Based recognition algorithms successfully classify terrain textures by re-

garding the average appearance.

• The high-detailed recognition algorithms that success in recognizing patterns depicted

with lines, dots or borders, they fail for recognizing the average appearance patterns

required for wheeled-vehicles navigation.

• The Appearance-Based Vision combined with the Gradient method allows robot path

planning for autonomous navigation.

• The algorithms are computationally inexpensive and easy implementation.
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• The proposed approach can be scaled to be used in cars.

• The low computational cost to process the information acquired from the environment

allows establishing that a car, at a certain speed, can have enough time to react to the

roughness changes of the terrain.

• The odometry-based method for localization on outdoor terrains is improved.

Contributions

• The fuzzy neural network for wheeled-robots allows a meta-classification of textures

and soft irregularities used for the terrains’ roughness recognition.

• The fuzzy neural network allows velocity updating by outdoor terrains navigation.

• The human drivers experience for roughness recognition and velocity updating is mod-

eled by applying a fuzzy neural network, which is implemented for wheeled-robots

outdoor navigation.

• The average appearance of the terrains’ textures, according to experimental results, is

the requisite for velocity updating purpose on outdoor terrains navigation.

• By applying robot velocity updating by regarding the terrains’ roughness, the experi-

mental results show the precision improvement for localization.

• Whenever the velocity is updated by regarding the terrains features, the wheel slippage

is significantly reduced, hence improving the precision to achieve the goal position. In

addition, the risk that the robot has an accident also decreases.
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Appendix A

CUReT Texture Images for

Experiments
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Texture image Texture class Texture image Texture class

04-01 07-01

13-01 14-01

16-01 17-01

23-01 25-01

31-01 32-01

08-01 10-01

37-01 28-01

19-01 22-01

26-01 29-01

35-01 36-01

Table A.1: CUReT images employed for experiments
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Appendix B

Published Articles

B.1 Journals in ISI Web (Journal Citation Report)

• “Wheeled Vehicles’ Velocity Updating by Navigating on Outdoor Terrains”, Neu-

ral Computing and Applications, Springer Verlag, First online papers published (doi:

10.1007/s00521-010-0429-x), and hardcopy to appear in Vol. 19, No. 7, 2010.

• “Localization Improvement by Velocity Updating in Wheeled-Robots Outdoor Navi-

gation”, under review in Robotics and Autonomous Systems, Elsevier Science.

B.2 Proceedings conference indexed in ISI Web

• “Wheeled-Robot Navigation with Velocity Updating on Rough Terrains”, International

Conference on Informatics in Control, Automation and Robotics, ICINCO 2010, Spe-

cial Session: Workshop on Intelligent Vehicle Control and Intelligent Transportation

Systems, Vol. 1, pp. 277-284, 2010.

• “Efficient Roughness Recognition for Velocity Updating by Wheeled-Robots Naviga-

tion”, Mexican Conference on Pattern Recognition, MCPR 2010, Advances in Pattern
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Recognition, Lecture Notes on Computer Science, Vol. 6256, Springer Verlag, Septem-

ber, pp. 80-89, 2010.
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[116] M. Alvarado and F. Garćıa, “Wheeled vehicles’ velocity updating by navigating on

outdoor terrains,” Neural Computing and Applications, vol. 19, p. to appear, 2010.

[117] M. Wang and J. Liu, “Behavior-blind goal-oriented robot navigation by fuzzy logic,”

Proceedings of Knowledge-Based Intelligent Information and Engineering Systems:

Lecture Notes in Artificial Intelligence, vol. 3681, pp. 686–692, 2005.

137



[118] R. Arkin, “Integrating behavioral, perceptual and world knowledge in reactive naviga-

tion,” Robotics and Autonomous Systems, vol. 6, pp. 105–122, 1990.

[119] A. Hait, T. Simeon, and M. Taix, “Algorithms for rough terrain trajectory planning,”

Advanced Robotics, vol. 16, no. 8, pp. 673–699, 2002.

[120] I. Rekleitis, J. Bedwani, and E. Dupuis, “Over-the-horizon, autonomous navigation

for planetary exploration,” IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp. 2248–2255, 2007.

[121] R. Wolfson and J. Pasachoff, Physics. Little, Brown and Company, 1987.

[122] C. Brooks, K. Iagnemma, and S. Dubowsky, “Visual wheel sinkage measurement for

planetary rover mobility characterization,” Autonomous Robots, vol. 21, no. 1, pp. 55–

64, 2006.

[123] K. Iagnemma and S. Dubowsky, Mobile Robot in Rough Terrain. Springer Tracts in

Advanced Robotics, 2004.

[124] L. Ray, “Autonomous terrain parameter estimation for wheeled vehicles,” SPIE - The

International Society for Optical Engineering, pp. 6962–6974, 2008.

[125] K. Ward and A. Zelinsky, “Acquiring mobile robot behaviors by learning trajectory

velocities,” Autonomous Robots, vol. 9, no. 2, pp. 113–133, 2000.

[126] K. Tu and J. Baltes, “Fuzzy potential energy for a map approach to robot navigation,”

Robotics and Autonomous Systems, vol. 54, no. 7, pp. 574–589, 2006.

[127] Y. Kim, K. Min, K. Yun, Y. Byun, and J. Mok, “Steering control for lateral guidance

for an all wheel steered vehicle,” International Conference on Control, Automation and

Systems, pp. 24–28, 2008.

138



[128] X. Cheng, J. Zhang, and J. Ke, “Robocup is a stage which impulse the research of basic

technology in robot,” IEEE International Conference on Robotics and Biomimetics,

pp. 965–970, 2006.

[129] “Robocup federation,” http://www.robocup.org, 2010.

139


