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Abstract

In many problems in industry and finance the problem arises that several objectives
have to be optimized concurrently. So far, the most widely used approach to compute the
solution set (the Pareto front) of such Multi-Objective Optimization roblems (MOPs) are
the Multi-Objective Avolutionary Algorithms (MOEAs).

In this thesis, we develop and investigate a new archive-based MOEA (i.e., a MOEA
equipped with an external archive in order to guarantee convergence of the search process).
For this, we will propose two new variation operators, the Shifted Polynomial Mutation
(SPM) and Biased Intermediate Crossover (BIC), which are intended to meet the requer-
iments of the archivers we are using (archivers based on the concept of ǫ-dominance).
Based on theoretical and empirical observations we construct the MOEA ELMA (Evo-
lutionary Lipschitz Multi-Objective Algorithm) which is aiming, roughly speaking, for a
good Hausdorff approximations of the Pareto front of the given MOP.

In order to evaluate and compare ELMA in a fair way, we develop further on a new
performance indicator which is measuring the averaged Hausdorff distance to the Pareto
front. The new indicator, ∆p, is composed of (slight variants) of the well-know indicators
Generational Distance (GD) and Inverted Generational Distance (IGD) and can be ap-
plied to both discrete or continuos model.

Finally, we compare ELMA against ǫ-MOEA, which is a widely used archive-based
MOEA and which can be viewed as the base algorithm of ELMA. It turns out that
ELMA outperforms the ǫ-MOEA on several benchmark models such as the ZDT models,
indicating that ELMA is a step forward in the design of fast and reliable MOEAs.
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Resumen

En muchos problemas en la industria y finanzas, se tiene el problema de minimizar más
de un objetivo, i.e., estos objetivos deben ser minimizados simultneamente. Por el mo-
mento, los métodos más utilizados para aproximar el conjunto solucin (frente de Pareto)
de un Problema de Optimizacin Multi-Objetivo (POM) son los Algoritmos Evolutivos de
Optimizacin Multi-Objetivo (AEOM).

En la presente tesis, hemos desarrollado e investigado un nuevo algoritmo evolutivo
basado en un archivo (i.e. AEOM equipados con un archivo externo con el fin de garantizar
convergencia del proceso de búsqueda). Para esto, nosotros proponemos dos operadores
variacionales, la Shifted Polynomial Mutation (SPM) y Biased Intermediate Crossover
(BIC). Estos operadores están hechos según las necesidades de los archivos que utilizamos
(archivos basados en el concepto de dominancia-ǫ). Teniendo como base aspectos teóricos
y observaciones, hemos construido un nuevo algoritmo evolutivo, ELMA (Evolutionary
Lipschitz Multi-Objective Algorithm). El objetivo de este algoritmo es obtener una buena
aproximacin, en términos de la distancia de Hausdorff, en relacin con el frente de Pareto.

Con el fin de evaluar nuestro algoritmo, ELMA, de forma justa, hemos desarrollado
un indicador que mide, en promedio, la distancia de Hausdorff con respecto al frente de
Pareto. El nuevo indicador, ∆p, esta compuesto por dos indicadores utilizados en la liter-
atura (pequeñas variantes), Generational Distance (GD) e Inverted Generational Distance
(IGD). El nuevo indicador puede ser aplicado en modelos discretos o continuos.

Finalmente, comparamos nuestro algoritmo, ELMA, contra el algoritmo ǫ-MOEA, que
es un algoritmo evolutivo basado en un archivo ampliamente utilizado. Hemos observado
que la aproximación obtenida, en diferentes modelos como ZDT, por nuestro algoritmo es
mejor que ǫ-MOEA y, además es un paso adelante en el diseño de un algoritmo evolutivo
rápido y confiable.
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Chapter 1

Introduction

In many areas like economics and engineering, complex optimization problems can not be
described by only one objective function (for one such example see [8]). As a result, the
Multi-Objective Optimization Problem (MOP) arises, which investigates the concurrent
optimization of several objective functions. The pecularity of MOPs is that the set of
optimal solutions (the Pareto set, denoted as PQ) is typically not given by only one point
as for ‘classical’ scalar optimization problems, but rather forms a (k − 1)-dimensional
object, where k is the number of objectives.

One widely used class of algorithms to approximate PQ is given by Multi-Objective Evo-
lutionary Algorithms (MOEAs). The population approach of Evolutionary Algorithms
(EA) allows for an efficient way to find several points near to the Pareto set simultane-
ously. However, there is no algorithm which gurantees convergence toward the optimal
set with a predicted approximation quality.

The MOEAs proposed in the literature have their own biological inspiration as well
as their mechanism to maintain diversity among the population [14, 6]. Nevertheless,
the variation operators have so far been of little interest in evolutionary multi-objective
optimization. In general, most algorithms use standard operators derived from single
objective optimization.

In this work, we deal with the design of archive-based MOEAs i.e., MOEAs equipped
with an external archive. In particular, we design two variation operators (one mutation
and one crossover operator) that are tailored to a class of archiving strategies and propose
a new evolutionary algorithm ELMA, that can be viewed as a variant of ǫ-MOEA [12], a
well-known archive-based MOEA.

1
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One pecularity of ELMA, worth mentioning here, is that it aims for good Hausdorff
approximations of the Pareto front of the given MOP. Even though there exist so far a
large variety of quality indicators for the evaluation of the outcome set of a MOEA (see,
e.g. [48, 5, 6, 7, 52]), none of them can be used here, since all of them have been designed
for different purposes. Even the ‘classical’ Hausdorff distance is not an optimal choice
since stochastic search algorithms—such as ELMA—tend to generate outliers during the
search process. As a possible remedy, we suggest in this work a new indicator, ∆p, which
can be viewed as an ‘averaged Hausdorff distance’ and which is more ‘fair’ to evaluate the
outcome sets of stochastic search algorithms.

The remainder of this document is organized as follows.

Chapter 2. Background: We discuss the main concepts from multi-objective opti-
mization. One sub-class of MOEAs, archive-based MOEAs, is described, in particular the
ǫ-MOEA. We also describe other state-of-the-art MOEAs reported in the literature. A
description of the performance measures is given. Finally, we give an overview of existing
variation operators, with a special attention on the operators Simulated Binary Crossover
(SBX) and Polynomial Mutation (PM).

Chapter 3. Archive Based MOEA: We start with the investigation of a particular
algorithmic framework which we use to describe the working principle of the new vari-
ation operators. This will lead to the algorithm Evolutionary Lipschitz Multi-Objective
Algorithm (ELMA), which can be viewed as a modification of ǫ-MOEA.

Chapter 4. ∆p: A New Indicator to Measure the Averaged Hausdorff Dis-

tance to the Pareto Front: We make an investigation of two performance measure
indicators used in the literature, Generational Distance (GD) and Inverted Generational
Distance (IGD). We argue that it makes sense to use a modification of the original op-
erators. Based on these two, we propose a modification of these indicators and, a novel
indicator composed of these modifications will be defined. The last subsection of this
chapter describes an algorithm to discretize the Pareto front in a suitable way, which
speeds up the computational effort to obtain the indicator value.

Chapter 5. Numerical Results: In this chapter, we present our numerical results.
The first section describes all models used to evaluate ELMA and they are compared
against ǫ-MOEA. Further, we give an attempt to evaluate the newly developed indicator.

Chapter 6. Conclusions and Future Work: We provide the conclusion and men-
tion some of the paths for future research.

CINVESTAV-IPN Departamento de Computación



Chapter 2

Background

Multi-objective optimization deals with the concurrent optimization (minimization or
maximization) of several objectives. The pecularity of a Multi-Objective Optimization
Problem (MOP) is that the set of optimal solutions (the Pareto set) is typically not given
by only one point as for ‘classical’ scalar optimization problems but rather forms a (k−1)-
dimensional object, where k is the number of objectives.

2.1 Multi-Objective Optimization Problem

Mathematically speaking, a MOP is defined as follows:

min
x ∈ Q⊂Rn

{F (x)} (MOP)

where function F is defined as a vector of objective functions,

F : Rn → Rk, F (x) = (f1(x), . . . , fk(x)), (2.1)

and where each fi : Q → R is continuous, and, Q ⊂ Rn is the feasible set or domain
of F . Here we restrict ourselves on bound constraints, i.e., Q can be expressed by an
n-dimensional box

Q = Bl,u = {x ∈ Q : li ≤ xi ≤ ui, i = 1, . . . , n}, (2.2)

where l, u ∈ Rn with li ≤ ui, i = 1, . . . , n are the vector of lower and upper bounds for
each parameter value.

3



4 Chapter 2

In scalar optimization, the decision if a point v is better than a point w is simply done
by looking at the objectives f(v) and f(w). This can not be done in case several objectives
are considered. In that case, the concept of dominance is typically used.

Definition 1. Let v, w, ∈ Q. Then the vector v is less than w (v <p w), if vi < wi for
all i ∈ {1, . . . , n}. The relation ≤p is defined analogously.

a) A vector y ∈ Q is dominated by a vector x ∈ Q (in short: x ≺ y) with respect to
(MOP) if F (x) ≤p F (y) and F (x) 6= F (y) (i.e., there exists j ∈ {1, . . . , n} such that
fj(x) < fj(y)).

b) A point x ∈ Rn is called Pareto optimal or a Pareto point if there is no y ∈ Q which
dominates x.

The set of Pareto optimal points are defined as:

PQ = {x ∈ Q | 6 ∃ y ∈ Q and y ≺ x} (2.3)

The image of the Pareto set F (PQ) is called the Pareto front.

Example 1. As an example of the previous definition consider the following MOP. The
function F = (f1, f2), with f1(x) = x2, f2(x) = (x − 1)2 and Q = [−1, 3]. The Pareto set
of this example is given by PQ = [0, 1]. Fig. 2.1 shows these two sets and, for every y
outside the interval [0, 1] there exists a point x ∈ PQ such that it dominates, x ≺ y.

Another concept of optimality is given by ǫ-dominance which is defined as follows [29]:

Definition 2. Let ǫ = (ǫi, . . . , ǫk) ∈ Rk
+ and x, y ∈ Q, x is said to ǫ-dominate y (in short:

x ≺ǫ y) with respect to (MOP) if

a) fi(x) − ǫi ≤ fi(y) ∀i = 1, . . . , k and

b) fj(x) − ǫj < fj(y) for at least one j ∈ {1, . . . , k}
The concept of ǫ-dominance allows a finite size representation of the Pareto front. How-

ever, it does not prevent of obtaining gaps in the approximation when the Pareto front
contains dents, or is ‘flat’, in certain regions [46]. In contrast, when using the classical
dominance relation such gaps typically do not occur, but, theoretically infinitely many
points are needed for a perfect representation.

Definition 3 ([27]).
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Figure 2.1: Multi-objective problem of Example 1, Pareto set (left), Pareto front (right).
There is a point outside the interval [0, 1], the point x = 1.5, which is not a Pareto point.

a) Let ǫ ∈ Rk
+. A set Aǫ is called an ǫ-approximate Pareto set of (MOP) if every point

x ∈ Q is ǫ-dominated by at least one a ∈ Aǫ, i.e.

∀x ∈ Q : ∃a ∈ Aǫ such that a ≺ǫ x

b A set A∗
ǫ ⊂ Q is called an ǫ-Pareto set if A∗

ǫ is an ǫ-approximate Pareto set and if
every point a ∈ A∗

ǫ is a Pareto point of (MOP).

The above definitions are represented in Fig. 2.2. Since the Pareto set of MOP is
usually not practical because of its size, the ǫ-approximate Pareto set is a better practical
solution concept as it not only represents all vectors F but also consists of a smaller
number of elements. However, an ǫ-Pareto set is more attractive as it consists of Pareto
vectors only.

2.2 Evolutionary Algorithms

Evolutionary algorithm (EA) is a search method that is inspired by natural selection and,
particularly the ‘survival of the fittest’ principle that exists in the biological world. The
idea behind this technique is described as follows: given a quality function to be maxi-
mized, we can randomly create a set of candidate solutions in the function domain. We
then apply the quality function to these candidates as an abstract fitness measure, the
higher will be the better. On the basis of these fitness values some of the better candidates
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Pareto front

Archivef2f2

f1 f1

Figure 2.2: Graphs representations the concept of ǫ-approximate Pareto front (left) and
ǫ-Pareto front (right).

are chosen to create the next generation. This is done by applying variation operators,
recombination (crossover) and mutation, Fig. 2.3 shows a diagram of this technique [16].

There are three main paradigms within evolutionary algorithms: evolutionary program-
ming (EP), evolution strategy (ES), and genetic algorithm (GA). In the following, we give
a brief description of them.

Evolutionary programming was proposed by Lawrence J. Fogel [30], who originally
adopted finite state machines as predictors and evolved them. The parent selection in
EP is deterministic and every member of the population creates exactly one offspring via
mutation. The crossover in EP is not used, as the members of the population are viewed
as part of a specific species rather than members of the same species.

Evolution strategies were proposed by Ingo Rechenberg and Hans-Paul Schwefel [47],
and it is normally used for continuous parameter optimization, adopting the mutation
operator as the main means of creating offspring. The mutation operator is based on a
normal (Gaussian) distribution (requiring the mean and the standard deviation as pa-
rameters). The mutation parameters are usually changed during a run of the algorithm,
allowing a good exploration at the beginning and a better exploitation of solutions by the
end of the evolutionary process.

Genetic algorithm was initially proposed by John Holland in his book Adaptation in
Natural and Artificial Systems [22]. Genetic algorithms were originally encoded as bi-
nary strings, fitness proportionate selection, a low probability of mutation, and a higher
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Initialization

Recombination

Mutation

Termination

Offspring

Parent selection

Survivor selection

Parents

Population

Figure 2.3: General scheme of an evolutionary algorithm.

probability of crossover. This is commonly refered to as the simple genetic algorithm. In
this study, we will develop two variation operators, the so called crossover and mutation.
The operators are based on a probability distribution function, this allows a real numbers
representation, whereas the simple genetic algorithm allows binary representaion. In this
work we use real numbers encoding for the decision variables.

2.3 Multi-Objective Evolutionary Algorithms

One widely used class of algorithm to approximate PQ is given by Multi-Objective Evolu-
tionary Algorithms (MOEAs). Evolutionary algorithms use a selection based on fitness.
Moreover, most of these MOEAs use the concept of dominance in their search. One
advantage of MOEAs is that they are population-based and are thus able to find several
candidate solutions in a single run.

This procedure is practical because the user gets an opportunity to investigate a num-
ber of other trade-off solutions before choosing an optimal solution. This feature has
attracted numerous researchers to develop different MOEAs. Some of the most popular
MOEAs in current use are: NSGA-II [23], SPEA2 [15] and ǫ-MOEA [12].

The goal of a MOEA is to obtain an approximation of the solution set with a good
quality. To generate such solutions, a MOEA uses a population. They generate new
candidates at each iteration using variation operators called crossover and mutation. So
far no state-of-the-art MOEA can guarantee convergence toward the set of interest.
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There have been many approaches to multi-objective optimization using evolutionary
algorithms (EAs), beginning with Schaffer’s, vector-evaluated genetic algorithm (VEGA)
[40]. In this algorithm, the population is randomly divided into sub-populations that are,
each them, assigned a fitness (and subject to selection) according to a different objective
function, but the parent selection and recombination were performed globally.

Later, Goldberg suggested the use of fitness based on dominance rather than absolute
objective scores [18], coupled with niching and/or speciation methods to preserve diver-
sity1. This breakthrough threw a dramatic increase in research activity in this area. Now,
there are several Multi-Objective Evolutionary Algorithms. We will discuss the most rep-
resentative of them.

1. Fonseca and Fleming’s Multi-Objective Genetic Algorithm (MOGA) [4]. This
assigns a raw fitness to each solution equal to the number of members of the current
population that it dominates, plus one. It uses fitness sharing amongst solutions
of the same rank, coupled with fitness proportional selection to help to promote
diversity.

2. Srinivas and Deb’s Nondominated Sorting Genetic Algorithm (NSGA) [32].
This works in a similar way, but assigns fitness based on dividing the population
into a number of ‘fronts’ of equal domination. Each point in a given front gets as
its raw fitness the number af all solutions in inferior fronts.

3. Horn et al.’s Niched Pareto Genetic Algorithm (NPGA) [20]. This algorithm
differs in that it uses a modified version of tournament selection rather than fitness
proportionate with sharing. The tournament operator works by comparing two
solutions first on the basis of whether they dominate each other, and then second
on the number of similar solutions already in the new population.

4. Zitzler and Thiele’s Strength Pareto Evolutionary Algorithm (SPEA) [53].
At each generation all the nondominated individuals are copied into an external
archive. All of them have a strength value, which is equal to the number of solution
that the individual dominates. The diversity in the algorithm is governed by a
clustering technique called average linkage method [31].

During the 1990’s much work was done elsewhere in the EAs research community, devel-
oping methods for reducing dependence on parameter settings. Theoretical breakthroughs

1Diversity of a population is a measure of the number of different solutions present [16].
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were achieved showing that elitism2 was required in order to keep progress of a MOEA. In
the light of this research Deb proposed the revised NSGA-II [23], which achieves elitism
using an explicit diversity maintenance scheme, and has a reduced dependence on its pa-
rameters.

Another prominent algorithm, is the Strength Pareto Evolutionary Algorithm 2 (SPEA2)
[15], which achieves the elitist effect by using an archive containing a fixed number of non-
dominated points discovered during the search process. It maintains a fixed archive and
considers the number of archived points close to a new solution, as well as dominance
information, when updating the archive.

2.3.1 Archives

MOEAs can be viewed as particular stochastic search algorithms. A general stochastic
search algorithm was presented in [27], and is described in Alg. 2.1.

Algorithm 2.1 Generic Stochastic Search Algorithm

1: P0 ⊂ Q drawn at random
2: A0 = ArchiveUpdate(P0, ∅)
3: for j = 0, 1, 2, . . . do

4: Pj+1 = Generate(Pj)
5: Aj+1 = ArchiveUpdate(Pj+1, Aj)
6: end for

Here, Pj represents the candidate set (Population), Aj contains a ‘suitable’ subset of
the obtained data (Archive) at iteration j, Generate is a procedure that creates new so-
lutions at each iteration, and ArchiveUpdate determines a new archive based on the old
archive and the new population.

Remarkably, so far all existing convergence results have been done on archive based
MOEAs (e.g., [37, 38, 27, 26, 45, 43, 46]). On the other hand, development of algo-
rithms such as adaptation of variation operators to the particular needs in order to speed
up the convergence, is relatively scarce but mandatory to obtain fast and reliable MOEAs.

Laumanns et al. [27] proposed two archiving strategies which keep progress towards the
Pareto optimal set mantaining archives consisting of mutually nondominated solutions.

2Elitism is called to the fact of retaining intact the best individual in each generation.

CINVESTAV-IPN Departamento de Computación



10 Chapter 2

Moreover, the archive guarantees an upper bound of archive sizes which can be adjusted
a priori. However, no convergence of sequence of archives is guaranteed for continuous
problems (albeit for discrete problems). An extension to the continuous case was given
by Schütze et al. [45, 46].

2.4 ǫ-Multi-Objective Evolutionary Algorithm

The ǫ-MOEA is a steady-state3 MOEA based on the ǫ-dominance, [12]. The image space
is divided into a number of grids (or hyper-boxes) and diversity is maintained by ensur-
ing that a grid or hyper-box can be occupied by only one solution. A block diagram of
ǫ-MOEA is depicted in Fig. 2.4.

Generate

Offspring Include AInclude P

o1 or o2

Population Archive

p a

o1 or o2

Figure 2.4: A block diagram of ǫ-MOEA.

In the proposed MOEA, there are two populations: (1) a population that contains
either dominated or nondominated solutions Pj, and (2) an archive population Aj, with
only nondominated solutions, the index j is the iteration counter. A pseudo-code is shown
in Alg. 2.2.

ǫ-MOEA begins with an initial population P0 drawn at random. An archive A0, is
assigned with the nondominated solutions of P0. Note, until line number 2 of Alg.

3Steady state refers to a scheme in which every offspring is compared with the parent population as
soon as it is created, in contrast with the generational evolutionary algorithm in which all offspring are
created before comparing them with the population [16].
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Algorithm 2.2 ǫ-MOEA

1: P0 ⊂ Q drawn at random
2: A0 = {p′ ∈ P0 | ∄p ∈ P0\{p′} p ≺ p′}
3: for j = 0, 1, . . . do

4: for some p ∈ Pj and a ∈ Aj

5: O = Generate(p, a)
6: Pj+1 = PopulationUpdate(O,Pj)
7: Aj+1 = ArchiveUpdate ǫMOEA(O,Aj)
8: end for

2.2 the archive can contain more than one nondominated solution in the same hyper-
box. Alg. 2.2 is composed of four stages (Selection, Generate, PopulationUpdate and
ArchiveUpdate ǫMOEA) which are decribed in the following.

Selection process

To choose a solution p from Pj, two population members from Pj are picked at random
and a domination check (in the usual sense) is made. If one solution dominates the other,
one is chosen, otherwise, it indicates that two picked solutions are nondominated to each
other and one is chosen at random. To choose a solution a from Aj randomly pick a
solution from Aj.

Generate

Solutions p and a are used to create two offspring solutions (o1 and o2). Generate process
is driven by the SBX operator [9, 11, 10] (two variants of this operator, for unbounded
and bounded domains, will be studied in detail in Section 2.7.4 in page 27).

Population Update

Offspring solutions are compared with the population Pj for their possible inclusion. For
dealing whether or not the offspring o1 or o2 will replace any population member, it com-
pares the offspring with all the population members. If the offspring dominates one or
more population members, then the offspring replaces one of them (chosen at random).
If any population member dominates the offspring, it is not accepted. When both test
fail, the offspring replaces a randomly chosen population member.

Archive Update

Inclusion into the archive of offspring o1 or o2 is compared with each member in the
archive for ǫ-dominance. Every solution in the archive is assigned an identification array
(box) as follows, for the case in which we are minimizing a MOP:
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box(a) =

{⌊

fmax
j (a) − fmin

j (a)

ǫj

⌋

| j = 1, . . . , k

}

for some a ∈ A (2.4)

Where fmin
j is the minimum possible value of the j–th objective, fmax

j is the maximum
possible value of the j–th objective and ǫj is the allowable tolerance in the j–th objective
beyond which two values are significant to the user. Notation to refer a component of
the vector box will be as boxj(a) j ∈ {1, . . . , k}. The identification array of an offspring
box(o) contains the component of the point o in the image space. Alg. 2.3 shows the
mechanism to add an offspring to the archive. The update function is similar to the one
described in [27], except for the case when an offspring belongs to the same hyperbox
with an archive element. ArchiveUpdate in [27] verifies only the dominance, in contrast
with the ArchiveUpdate ǫMOEA which checks the Euclidean distance to the B vector,
lines 10 – 12 of Alg. 2.3.

1 2

4

or

3

f1

f1

f2

f1

f2

f1

f2f2

Figure 2.5: Four cases of accepting offspring in the archive are illustrated. Details are on
the text below.
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Algorithm 2.3 ArchiveUpdate ǫMOEA

Require: A, p
Ensure: A′

1: D = {a ∈ A | box(p) ≺ box(a)}
2: if D 6= ∅ then

3: A′ = {p} ∪ A\D
4: else

5: if

(

∃a ∈ A | box(a) = box(p)

)

then

6: if p ≺ a then

7: A′ = {p} ∪ A\{a}
8: else

9: if

(

p ⊀ a and a ⊀ p

)

then

10: B = {ǫ1box1(p), . . . , ǫkboxk(p)}
11: if ‖B − F (a)‖2 > ‖B − F (p)‖2 then

12: A′ = {p} ∪ A\{a}
13: else

14: A′ = A
15: end if

16: end if

17: end if

18: else

19: if

(

∄a ∈ A | box(a) ≺ box(p)

)

then

20: A′ = A ∪ {p}
21: else

22: A′ = A
23: end if

24: end if

25: end if
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Alg. 2.3 and Fig. 2.5 will be used to describe the four cases which may appear in the
ArchiveUpdate ǫMOEA procedure:

1) If the identification array of an offspring box(o) dominates at least one archive
element box(a), then the candidate is going to be accepted and all identification
arrays which are dominated are deleted, see Fig. 2.5(2), Alg. 2.3 lines 1 – 3.

2) If offspring share the same hyper-box with an archive member, i.e. box(o) = box(a),
then they are checked for the usual domination. If the offspring dominates the
archive member or is nondominated to the archive member but is closer to the
B vector than the archive member, then the offspring is accepted and the archive
member is deleted, see Fig. 2.5(3), Alg. 2.3 lines 5 – 12.

3) If the offspring does not share the same hyper-box and its hyper-box is not domi-
nated by another hyper-box from an element into the archive, then the candidate
is accepted, Fig. 2.5(4), Alg. 2.3 lines 19 and 20.

4) The last event means, that the hyper-box of the offspring is dominated by some
hyper-box from a member in the archive and is not accepted, Fig. 2.5(1), Alg. 2.3
lines 14 and 22.

ǫ-MOEA is a steady state algorithm and, it emphasizes nondominated solutions. It
does not allows more than one solution per hyper-box but it does not prevent to obtain
gaps in the approximation when the Pareto front contains dents or is ‘flat’ in certain
regions [46], see Figs. 2.6 and 2.7.

In recent years, Schütze et al. [45, 46], proposed other update strategies for continuous
search spaces, where the sequence of archives converges to different sets of interest in the
limit. All the new update strategies make use of ǫ-dominance in order to manage the
archive size while maintaining a certain approximation quality in the limit. Further, by
adding some features the occurrence of gaps in the limit archives could be prevented.

2.5 ArchiveUpdate Procedures

This section will establish four archiving strategies to obtain a finite Pareto set approxi-
mations for stochastic multi-objective optimization algorithms working in continuous do-
mains. The four archiving strategies have proved convergence either to the ǫ-approximate
Pareto set or to the ǫ-Pareto set in the limit. Furthermore, the author ([45, 46]) gives
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Figure 2.6: ǫ-MOEA was executed with a function that contains some ‘flats’ regions, the
characteristic of applying the dominance over the hyper-boxes implies the loss of the ‘flat’
region.

bounds on the approximation quality and on the cardinality of the limit solution set. We
will give a brief description of them in the following, but the details can be found in [45, 46].

We will assume that the entries of ǫ ∈ Rk
+ are ‘small’ and archives are referred as A.

2.5.1 ArchiveUpdateEps1

An application of the Alg. 2.1, where ArchiveUpdateEps1 (Alg. 2.4) is used to update
the archive. This leads to a sequence of archives Al, l ∈ N, such that there exists with
probability one an l0 ∈ N such that Al is an ǫ-Approximate Pareto set for all l ≥ l0.

Algorithm 2.4 A = ArchiveUpdateEps1(P,A0)

1: A = A0

2: for all p ∈ P do

3: if ∃a ∈ A : a ≺ǫ p then

4: continue
5: end if

6: for all a ∈ A do

7: if p ≺ a then

8: A = A\{a}
9: end if

10: end for

11: A = A ∪ {p}
12: end for

CINVESTAV-IPN Departamento de Computación



16 Chapter 2

 

 

0 0.5 1 1.5 2 2.5 3 3.5

1.5

2

2.5

3

3.5

4

A
F(P

Q
)

Figure 2.7: A zoom in of Fig. 2.6. Note, there is only one element per hyper-box.

The above archive is very similar to the one poposed in [27]. Line 3 in Alg. 2.4 makes
it possible that the sequence of the achives keep a steady state solution which forms an
ǫ-approximate Pareto set after finitely many steps. The distance from the archive to the
Pareto front (image space), dist(F (A), F (PQ)) (see Section 2.5.3, Definition 4), might be
larger than ǫ, whenever some elements in the archive are not ǫ-dominated and they are just
a ‘little better’ not in all objectives, but enough to be out of the region of ǫ-dominance,
see Fig. 2.8.

Further, assume that the elements a1, a2 and a3 are inserted into the archive in this
order, (see Fig. 2.8), these points will not be removed in the subsequent steps.

2.5.2 ArchiveUpdateEps2

An application of the Alg. 2.1, where ArchiveUpdateEps2 (Alg. 2.5) is used to update
the archive, leads to a sequence of archives Al, l ∈ N, such that there exists with prob-
ability one an l0 ∈ N such that Al is an ǫ-approximate Pareto set for all l ≥ l0 and
lim
l→∞

dist(Al, PQ) = 0.

A new element p, will be added to the archive A by ArchiveUpdateEps2 only in one
of the following two cases: (1) if there is not an a ∈ A which ǫ-dominates p and (2), if
p dominates an element a ∈ A, which will be in turn discarded from the archive. In the
limit all the elements into the archive will be Pareto points but, the quality of Pareto front
gets lost. ArchiveUpdateEps2 still keeps the problem as ArchiveUpdateEps1 explained
above. Alg.s 2.4 and 2.5 converge to an ǫ-approximate Pareto set and an ǫ-Pareto set,
respectively. However, they can not guarantee that the limit archives do not reveal gaps
in the Pareto front.
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Figure 2.8: Possible example of a set which was generated by ArchiveUpdateEps1 with
dist(F (A), F (PQ)) >> ǫ

Algorithm 2.5 A = ArchiveUpdateEps2(P,A0)

1: A = A0

2: for all p ∈ P do

3: if ∄a ∈ A : a ≺ǫ p then

4: A = A ∪ {p}
5: end if

6: for all a ∈ A do

7: if p ≺ a then

8: A = A ∪ {p}\{a}
9: end if

10: end for

11: end for
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2.5.3 ArchiveUpdateTight1

We will start with three definitions that are required to explain the next two archives.

Definition 4. Let u, v ∈ Rn and A,B ⊂ Rn. The maximum norm distance d∞, the
semi-distance dist(·, ·) and the Hausdorff distance dH(·, ·) are defined as follows:

a) d∞ = max
i=1,...,n

| ui - vi |

b) dist(u,A) = inf
v∈A

d∞(u, v)

c) dist(B,A) = sup
u∈B

d∞(u,A)

d) dH(A,B) = max { dist(A,B), dist(B,A) }

If it is necessary to specify which metric norm, is being used in order to avoid ambiguity,
we may use a subscript, as in distq(u,A). Otherwise, it is assumed that the infinity norm
is used.

Definition 5 ([46]).

a) A set Aǫ ⊂ Q is called a ∆M -tight ǫ-approximation Pareto set of (MOP) if Aǫ is an
ǫ-approximate Pareto set and

dist(F (PQ), F (Aǫ)) ≤ ∆M

b) A set A∗
ǫ ⊂ Q is called a ∆M − tight ǫ-Pareto set if A∗

ǫ is an ǫ-Pareto set of (MOP)
and dH(F (PQ), F (A∗

ǫ)) ≤ ∆M .

Definition 6 ([46]). Let ǫ ∈ R∗
+

a) A set Aǫ ⊂ Q with |Aǫ| ≥ 2 is called a (∆M , ∆m)-tight ǫ-approximation Pareto set
if A∗

ǫ is an ∆M − tight ǫ-approximation Pareto set and

dist(F (a), F (A\{a})) ≥ ∆m , ∀a ∈ A

b) (∆M , ∆m) − tight ǫ-Pareto set is defined analogously.
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Point a) of Definition 5, says that the archive will be an ǫ-approximation Pareto set
and the maximum distance of a point in Pareto front to the image of an archive element
is not larger than ∆M . Point a) in definition 6 gives the uniformity level ∆m. Points b),
of the two above definitions indicate that all the elements in the archive are Pareto points.

Alg. 2.6 describes the procedure of ArchiveUpdateT ight1. An application of the Alg.
2.1, where ArchiveUpdateT ight1 is used to update the archive, leads to a sequence of
archives Al, l ∈ N, such that there exists with probability one an l0 ∈ N such that Al is
an (∆, ǫ)-tight ǫ-approximate Pareto set for all l ≥ l0.

Algorithm 2.6 A = ArchiveUpdateT ight1(P,A0)

1: A = A0

2: for all p ∈ P do

3: if (∃a ∈ A : a ≺ p) or (∃a1 ∈ A : a1 ≺ǫ p and ∃a2 ∈ A : d∞(F (a2), F (p)) ≤ ∆)
then

4: CONTINUE
5: end if

6: for all a ∈ A do

7: if p ≺ a then

8: A = A ∪ {a}
9: end if

10: end for

11: A = A ∪ {p}
12: end for

2.5.4 ArchiveUpdateTight2

An application of the Alg. 2.1, where ArchiveUpdateT ight2 is used to update the archive,
leads to a sequence of archives Al, l ∈ N, such that there exists with probability one an
l0 ∈ N such that Al is an ∆-tight ǫ-approximate Pareto set for all l ≥ l0 and lim

l→∞

dist(Al, PQ) = 0
The difference of the two archives ArchiveUpdateT ight1 and ArchiveUpdateT ight2 is

the strategy to accept a candidate solution p ∈ P . Given an arhive A, ArchiveUpdateT ight1
accepts p if either there not exists an element into the archive which dominates p or there
not exists an element into the archive which ǫ-dominates p and the distance from every
point into the archive is bigger than ∆, the same holds for ArchiveUpdateT ight2. The
difference in ArchiveUpdateT ight2, with respect to ArchiveUpdateT ight1, is that, it ac-
cepts an element p if there exists an element into the archive which is dominated by p,
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Algorithm 2.7 A = ArchiveUpdateT ight2(P,A0)

1: A = A0

2: for all p ∈ P do

3: if (∄a ∈ A : a ≺ǫ p) or (∄a ∈ A : a ≺ p and ∀a ∈ A : d∞(F (a), F (p)) > ∆) then

4: A = A ∪ {p}
5: end if

6: for all a ∈ A do

7: if p ≺ a then

8: A = A ∪ {p}\{a}
9: end if

10: end for

11: end for

even if the distance is not bigger that ∆.

2.6 Performance Measures

Assessing the quality of an evolutionary algorithm commonly implies experimental com-
parisons between the resulting MOEA and other MOEAs or traditional algorithms. The
convergence to an approximation solution set and maintenance of a good quality are two
distinct and somewhat conflicting goals of multi-objective optimization. No single metric
can decide the performance of an algorithm.

To be more precise, given a candidate set (or archive) A = {a1, . . . , aN} (in image space)
and a discrete (or discretized) Pareto front F (PQ) = {y1, . . . , yM}, to refer a component
of these points. We will use the notation ai,j for some i ∈ {1, . . . , |A|} and j ∈ {1, . . . , k}.
The following indicators are already used in different MOEA studies.

2.6.1 Error ratio

The error ratio indicator counts the number of candidates that are Pareto points [48].

ER =

|A|
∑

i=1

ei

|A| (2.5)

Where ei = 0 if a ∈ F (PQ) for some a ∈ A, and ei = 1, otherwise. Hence, the archive
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has to be a subset of the discrete Pareto front in order to obtain a value of zero, see Fig.
2.9.
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Figure 2.9: To the left, we show a case in which the value of the error ratio is equal to
1, even when all the points into the archive are Pareto points, but they are not a proper
subset of the discretization of the Pareto front, F (PQ). To the right, we show a case in
which we obtain the error ratio equal to zero with only two elements in the archive. In
this case, both elements in A are Pareto points but the quality is poor.

2.6.2 Set coverage indicator

This indicator calculates the proportion of solutions in A2 which are dominated by solu-
tions in A1, [54].

C(A1, A2) =
|{b ∈ A2|∃a ∈ A1 : a ≤ b and a 6= b}|

|A2|
(2.6)

2.6.3 Generational distance

Generational distance (GD) measures, on average, the distance from the archive A to the
Pareto front F (PQ) [48]. A value of zero means that the archive is contained in the Pareto
front. If the value of p = 1, then the GD has a geometric meaning that is the average
of all the distances from the archive to the Pareto front. If all elements into the archive
are ‘near’ the Pareto front, GD will have a low value, even if the archive contains a single
element, see Fig. 2.10.
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GD(A,F (PQ)) =
1

|A|





|A|
∑

i=1

dist2(ai, F (PQ))p





1

p

(2.7)
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Figure 2.10: To the left, we show a case in which the archive contains Pareto points, but
they are not a subset of the discrete Pareto front. To the right, we show a case in which
the archive contains Pareto points, but all of them are near to each other and the value
of GD might be similar to the previous case.

2.6.4 Inverted generational distance

The Inverted Generational Distance (IGD) indicator measures, on average, the distance
from the Pareto front F (PQ), to the archive A [5]. The IGD indicator gets a low value
only if all the elements in the archive are too close to the Pareto front, but all of them
are distributed across the Pareto front. If the archive contains one or more elements far
away from the rest of the elements (outliers). Those points have no influence in the IGD
value, see Fig. 2.11.

IGD(A,F (PQ)) =
1

|F (PQ)|





|F (PQ)|
∑

i=1

dist2(yi, A)p





1

p

(2.8)
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Figure 2.11: To the left, we show a case in which the IGD value is not zero, even when
the archive is a subset of the discrete Pareto front. To right, we show a case in which the
archive has a good approximation with respect to the discrete Pareto front but it contains
outliers that are not detected by the IGD indicator.

2.6.5 ǫ-indicator

The ǫ-indicator measures the smallest amount ǫ, that must be used to move the archive
contents such that every point in F (PQ) is covered [6]. A good approximation of ǫ is the
maximal of the minimal distances from the Pareto front to the archive, i.e. dist2(F (PQ), A),
see Fig. 2.12.

Iǫ(A,PQ) = min{ǫ ∈ R | ∀y ∈ F (PQ)∃a ∈ A : a − ǫ ≤ǫ y − ǫ and a − ǫ 6= y − ǫ} (2.9)

2.6.6 Hypervolume

The hypervolume Pareto compliant indicator is defined as the area of coverage by the
archive in image space [7, 52]. This is equal to the summation of all the rectangular
areas, bounded by some reference point, r ∈ Rk, see Fig. 2.13.

HY P (A) = volume

(

|A|
⋃

i=1

[r1, ai,1] × · · · × [rk, ai,k]

)

(2.10)
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Figure 2.12: A red arrow represents maximal distance from Pareto front to the archive
(left). Elements in the archive with the substraction of ǫ = dist2(F (PQ), A) (right).

2.6.7 Spacing

The spacing indicator describes the spread of the vectors in the archive [7, 41], i.e., it
measures the distance variance of neighboring vectors into the archive.

d̂(â) = min
a∈A\{â}

‖â − a‖1 d =

|A|
∑

i=1

d̂(ai)

|A|

S(A) =

√

√

√

√

1

|A| − 1

|A|
∑

i=1

(d − d̂(ai))2 (2.11)

2.7 Variation Operators

Genetic algorithms are principally composed by two operators. First, the recombination
(crossover), uses information from two parents (individuals) to generate the offspring. The
second operator, mutation, is applied to one offspring and delivers a modification of it.
This section will explain some of the variation operators for real numbers representation.
We will emphasize here on the Simulated Binary Crossover (SBX) and Polynomial based
Mutation (PM) [9].
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Figure 2.13: The hypervolume enclosed by the non dominated solutions.

The notation used to distingish parents and offspring will be: p1, p2 and o1, o2 ∈ Rn

for parents and offspring, respectively. We will use õ for a mutated offspring. Index i will
be used to express the components of the parents and offspring, i = 1, . . . , n, and the j
index will be used to refer to one parent or offspring, j ∈ {1, 2}.

2.7.1 Intermediate crossover

Intermediate crossover (IC) is one of the two recombination mechanisms in evolution
strategies [47, 1] . Intermediate crossover indicates that the components of the offspring
are obtained by calculating the arithmetic mean of the corresponding component of both
parents. Schwefel proposed the generalized intermediate crossover (GIC) by allowing an
arbitrary number α in the interval [0, 1], and furthermore choose a new value for every
component [47].

o1,i =

{

p1,i + (p2,i − p1,i)/2 intermediate crossover
p1,i + α(p2,i − p1,i) generalized intermediate crossover

i = 1, . . . , n

Intermediate and generalized intermediate crossover always assume p1 ≤p p2, see Fig.
2.14. GIC leads to the offspring over the line in which p1 and p2 are in parameter space.
We can see, this operator as o = p1 + αν where direction ν = (p2 − p1).

2.7.2 Blend crossover

Blend crossover (BLX-α) requires two parent solutions [17]. It always assumes p1 ≤p p2,
BLX-α randomly picks a solution in the range [p1,i − α(p2,i − p1,i), p2,i + α(p2,i − p1,i)].
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o

x1

x2 p2

p1

o

x1

x2 p2

p1

Figure 2.14: Example in R2, intermediate crossover yields the center (left). Generalized
intermediate crossover allows for a result located anywhere on the diagonal line (right).

For every component of the offspring a random number u in [0, 1] will be chosen. α is
any non negative real value. If α approaches to zero, the offspring will be enclosed by
their parents. If α gets bigger, the probability to obtain an offspring far away increases,
see Fig. 2.15. Offspring, then will be as follows.

γi = (1 + 2α)u − α

oj,i = (1 − α)p1,i + αp2,i i = 1, . . . , n

p1

l u
p2p1

ul

α ≈ 0 α ≫ 0

p2

Figure 2.15: Example in one dimension p1, p2, u, l ∈ R. If α is near zero, the offspring
will be located anywhere in the dot line (left). If α is bigger than zero the offspring will
appear far away (right).

2.7.3 Fuzzy recombination operator

The fuzzy recombination (FR) operator creates offspring based on a triangular probability
distribution φ [49]. This distribution has its peak located at the parent solution and the
base is proportional to the difference in parents times a tunable parameter d ∈ R. As d
is large, solutions away from the parents can get created, but always the probability Pr,
to get an offspring near to their parents is high, Fig. 2.16.
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Pr(oj) ∈ {φ(xi), φ(yi)}

with a triangular probability distributions φ(r) having the values p1,i and p2,i (p1,i ≤ p2,i

always hold).

p1,i − d · (p2,i − p1,i) ≤ r ≤ p1,i + d · (p2,i − p1,i)
p2,i − d · (p2,i − p1,i) ≤ r ≤ p2,i + d · (p2,i − p1,i)

φ(p1), φ(p2)

p1 p2

0.5(p2 − p1)

Figure 2.16: Example of fuzzy recombination, p1, p2 ∈ R. This example shows the distri-
bution probability function with d = 0.5. Triangular distributions do not overlap to each
other.

2.7.4 Simulated binary crossover

Deb et al. developed the Simulated Binary Cossover (SBX) which requires two parent
solutions to create two children solutions [9]. The SBX operator simulates the single point
crossover operator in binary strings. The author shows that the average of the decoded
values (the real number to binary string customized for GA) are the same before and
after the crossover operator. The distance from the offspring to their parents is given by
hi = 1

2
β
(

p2,i − p1,i

)

, assume p1 ≤p p2. The distance h is regulated by the value β, see Fig.
2.17. This value is obtained by a probability distribution function (pdf) 4. Offspring are
calculated as follows:

o1,i = 1
2

(

p1,i + p2,i

)

− hi

o2,i = 1
2

(

p1,i + p2,i

)

+ hi

(2.12)

4Probability Distribution Function (pdf) of a continuous random variable is a function that
describes the relative likelihood for this random variable to occur at a given point in some interval [19].
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Example in one dimension of the distance h,
derived from SBX. Offspring are enclosed by
the parents when β < 1. If β > 1, then the
offspring points enclose the parents. Other-
wise if β = 1, the offspring are the same to
their parents.

P2

P1

P2

P2

β > 1

β < 1

β = 1

O2O1

O2O1

O1 O2

P1

P1

Figure 2.17:

The probability distribution used to create an offspring is given as follows.

P(β) =







1
2
(ηc + 1)βηc if β ≤ 1,

1
2
(ηc + 1) 1

(βηc+2)
otherwise

(2.13)

The value of ηc is any non-negative real number. A large value of ηc gives a higher
probability for creating the offspring near to its parents and, a small value of ηc allows
distant offspring. Fig. 2.18 shows a plot of the pdf with different values of ηc. There is a
50% chance that β < 1 and the rest that β > 1. This chance, is only for the unbounded
case. We will see later on that is not true for a bounded domain.

We calculate the β value by equating the area under the probability curve u ∈ [0, 1],
as follows.

β =















(2u)
1

ηc+1 if u ≤ 0.5,

(

1
2(1−u)

) 1

ηc+1

otherwise

(2.14)

Algorithm 2.8 gives a procedure to create two offspring (o1 and o2) from two parent
solutions p1 and p2.

Fig. 2.19 shows an example of the SBX operator in R2 with a feasible region Q = [0, 1]2.
Some offspring are out of the feasible region, specially with an small value of ηc.

Since we are dealing with a bounded domain Q, we have to know the largest possible
value of β. Note that the β value does not represent the step size. We observed that
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Figure 2.18: Probability distribution function, used to calculate the value of β, using
different values of ηc.

Algorithm 2.8 {o1, o2} = SBX(p1, p2)

1: for i = 1, . . ., n do

2: choose a random number u ∈ [0, 1]
3: calculate the value of β, using Eq. (2.14)
4: compute the offspring by using the Eq. (2.12)
5: end for

when β is in the interval [0, 1], and the size hi goes from 0 to 1
2

(

p2,i − p1,i

)

, the offspring
will appear in feasible region, because they are going to be enclosed by their parents. The
task is find the greatest value of β, given the nearest parent to the boundary min(p1,i −
li, ui−p2,i). Therefore, the greatest value of β is calculated as follows (A bounded version
of SBX was proposed by Deb et al. [10]).

βmax,i = 1 +
2

p2,i − p1,i

min(p1,i − li, ui − p2,i) (2.15)

Eq. (2.15) obtains the greatest value of β assuming p1 ≤p p2 holds all the time. In the
mean time we know the largest value of βmax,i for a bounded domain Q, but it is necesary
to modify the pdf for purpose of a bounded domain. Theoretically, the domain of pdf in
Eq. (2.13) is [0, ∞). Indeed, as u approaches to one, the value of β goes to infinity (Eq.
(2.14)). The pdf for bounded domains is given by the Eq. (2.16).
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Figure 2.19: An example of the SBX operator in R2 with a feasible region Q = [0, 1]2.
The parents are marked with a cross and offspring with dots. 100 offspring with ηc = 2
(left), 100 offspring with ηc = 6 (right).

P(β) =







1
α
(ηc + 1)βηc if β ≤ 1

1
α
(ηc + 1) 1

(βηc+2)
otherwise β ∈ (1, βmax]

(2.16)

The difference in Eq. (2.16) with respect to Eq. (2.13) is an extra parameter α.
Parameter α is not adjusted a priori as ηc. It is the trick to obtain offspring inside the
feasible region. It allows that the probability goes from 0 to 1 in the interval β ∈ [0, 1]
and all offspring will appear inside the domain as a result, i.e. the pdf gets cut according
to the value of α for a given set of parents. Eq. (2.17) gives the value of β for the previous
pdf Eq. (2.16). This is equal for the unbounded SBX with α = 2.

β =















(αu)
1

ηc+1 if u ≤ 1
α

(

1
2−uα

) 1

ηc+1

otherwise

(2.17)

Extra parameter α depends of βmax. If α is near to one, then one of the parents is too
close to the boundary and the offspring will appear enclosed by their parents (pdf has
sense in the interval [0, 1] or very near to this interval). If α is close to two, then parents
are far away to the boundary and the pdf looks like the Eq. (2.13). α is given by Eq.
(2.18).
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α = 2 − β−(ηc+1)
max (2.18)

Algorithm 2.9 makes a sketch to use SBX for bounded domains.

Algorithm 2.9 {o1, o2} = SBX(p1, p2)

1: for i = 1, . . ., n do

2: choose a random number u ∈ [0, 1]
3: calculate the value of β, using Eqs. (2.17), (2.18) and (2.15)
4: compute offspring by using Eq. (2.12)
5: end for

Example 2. This example illustrates the mechanism of the bounded SBX and the difference
with itself for the unbounded algorithm. Given two parents p1 and p2 ∈ R2, p1 = (0.1, 0.0),
p2 = (0.5, 0.5), ηc = 2 and a feasible region Q = [0, 1]2. The maximum beta value to every
comoponet are: βmax,1 = 1.5, α1 = 1.7 and βmax,2 = 1, α2 = 1 for the first and the second
component, respectively, see Eq. (2.15) and (2.18). The first component of offspring
either appears enclosed by its parents or at most it will have a step size of 0.1, because
the nearest parent is 0.1 to the boundary. The second component of offspring must be
enclosed by its parents. There exists a parent which is in the boundary, Fig. 2.20 shows
100 runs of Algorithm 2.9.

pdf changes its domain according to the values of α and βmax. The porpuse of the lat-
ter is to avoid acquiring offspring out of the domain Q, but it already holds the property
∫ βmax

0
dβ = 1. The chance β < 1 could be bigger than 50%. Fig. 2.21 shows the domain

of pdf to the previos example.

SBX is endowed to generates offspring inside the domain while decreases its capability
to cover all the parameter space. Moreover, all Eq.s (2.12) – (2.18) expect that p1 ≤p

p2. Indeed, this can keep the balance, swapping every p1,i > p2,i. The effect of swapping
some, but not all components p1,i and p2,i, leads to parents to become completely different
than the old ones (image space too). The authors of SBX applied this swap, as can be
seen in his implementations within several algorithms5.

5http://www.iitk.ac.in/kangal/codes.shtml contains implementations of the following two algo-
rithms; NSGA-II and ǫ-MOEA, both of which use SBX.
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Figure 2.20: Algorithm 2.9 generates 100 offspring. The second parent p2 = (0.5, 0.5)
has its offspring at most 0.1 distance from itself over the first component, altough it is
far enough to the boundary and the second component is enclosed by p1,2 and p2,2 (left).
Algorithm 2.8 generates 100 offspring, with a low value of ηc = 2. There is a posibility to
obtain offspring outside the feasible region (right).

2.7.5 Polynomial mutation

The Polynomial Mutation (PM) operator is based on a pdf similar to SBX. PM makes a
small perturbation to offspring o, to obtain the mutated offspring õ. The maximum step
size is equal to the difference in the upper and lower bound [10].

õi = oi + β(ui − li) , β ∈ [−1, 1] (2.19)

where parameter β is calculated from the probability distribution P(β) = 0.5(ηm +1)(1−
|β|)ηm , β ∈ [−1, 1]:

β =











(2u)
1

ηm+1 − 1 if u < 0.5

1 −
(

2 − 2u
) 1

ηm+1 otherwise

(2.20)

Algorithm 2.10 illustrates the procedure of PM.
u is a random number in the interval [0, 1], Algorithm 2.10 line 2. It represents the

area under the pdf and is used to calculate β, ηm has the same role that ηc in the SBX
operator (Eq. (2.20)). Fig. 2.22 shows an example of the PM operator and its pdf for
differents values of ηm.
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Figure 2.21: Sloping lines under the curve cover the whole domain of the pdf with ηc = 2,
β ∈ [0, 1.5]. The first component for Example 2 (in page 31) is shown at the left and
β ∈ [0, 1] for the second component in Example 2 (in page 31) is shown to the right.

Algorithm 2.10 õ = PM(o)

1: for i = 1, . . ., n do

2: choose a random number u ∈ [0, 1]
3: calculate the value of β, using Eq. (2.20)
4: compute mutation by using Eq. (2.19)
5: end for

Whenever an offspring has mutated there is a chance that it appears outside the feasible
domain. A solution to this problem is the same as in SBX. It adds an extra parameter α,
which is not adjusted a priori. It gives a relation between the nearest boundary and the
size of the domain as follows.

αi =
min(oi − li, ui − oi)

ui − li
(2.21)

PM applies the same idea of modify domain of the pdf in order to suit it, (Eq. (2.19))
for a bounded domain. The latter increases the probability that the mutated offspring is
near to the offspring. As a result, if the offspring is too close to the boundary, mutations
become ‘small’ perturbations and the rest of the feasible region is ignored. Here we give
a posible probability distribution function for PM, Eq. (2.22).

P(β) =
(1 − |β|)ηm(ηm + 1)

2(1 − (1 − α)ηm+1)
, β ∈ [−α, α] (2.22)

Eq. (2.23) gives the value of beta, given a random number u ∈ [0, 1] which represents
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Figure 2.22: Feasible region Q = [0, 1]2. Algorithm 2.10 generated 100 mutations of an
offspring. In some cases the mutated individual is outside the feasible region (left). pdf
used in polynomial mutation with ηm = 2 and 6 (right).

the area under the curve.

β =



















(

2u + (1 − 2u)(1 − α)ηm+1

) 1

ηm+1

− 1 if u ≤ 0.5

1 −
(

2(1 − u) + 2(u − 0.5)(1 − α)
1

ηm+1

) 1

ηm+1

otherwise

(2.23)

Example 3. To ilustrate polynomial mutation we take the next points o ∈ R2 and a
feasible region is limited by the two vectors l = (0, 0) and u = (1, 1), i.e. Q = [0, 1]2.
The value of α is equal in both components α = 0.1. The maximum step size in which
offspring will mutate is 0.1, because the minimal distance from o to the boundary is 0.1.
Nevertheless, it is far enough from the upper bound, Fig. 2.23.

The consequence of reducing the domain of the pdf is that this becomes a ‘small’ pertur-
bation whenever offspring is near to the boundary. Moreover pdf still holds the property
∫ α

−α
P(β)dβ = 1.

The SBX and PM operators looks like a small movement from either the parents or
offspring, respectively. In any case, we can express those operators as o = p + hν for
crossover and õ = o + hν for mutation and h ∈ R. The direction is choosen at random
ν ∈ Rn. The latter will hold for SBX whenever p1 ≤p p2.
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Figure 2.23: The maximum step size of offspring will be at most 0.1, 100 mutations ηm

= 2 (left). pdf is suited in the domain β ∈ [−0.1, 0.1] (right).
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Chapter 3

Archive Based MOEA

In this work, we make a first attempt to design variation operators that are tailored to a
particular class of algorithms (i.e., archivers that are based on the concept of ǫ-dominance)
that allow for a finite size representation of the solution set of a MOP while maintaining
a certain approximation quality. The resulting MOEA can be viewed as a variant of
ǫ-MOEA ([12], see also Chapter 2).

3.1 The Algorithmic Framework

The algorithms that we describe in this chapter follow the same scheme which we describe
here: for every point x ∈ Q under consideration we define first a search direction ν ∈ Rn

and then a step size h ∈ R+, i.e., each new candidate solution xnew is generated from x
as follows

xnew = x + hν. (3.1)

That is, our methods have a certain relation to line search methods used in ‘classical’
numerical optimization (e.g., [33]). To maintain feasibility (i.e., to ensure that xnew ∈ Q)
we have chosen to restrict ourselves to step sizes h ≤ hmax such that xnew is inside the
domain (i.e., we apply no projection methods). Since Q is a box, hmax can be computed
explicitly: it is hmax = mini=1,..,n hi, where

hi =







(ui − xi)/νi if νi > 0
(xi − li)/νi if νi < 0
∞ otherwise

(3.2)

Another aspect which is used in the operators is the desired distance between archive
entries. Here, we are particularly interested in the use of archivers that are based on
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ǫ-dominance, and all such archivers share one characteristic: if two points x, xnew ∈ Q
are ‘near’ to each other, xnew is ǫ-dominated by x. Thus, it is very likely that this
new candidate solution is discarded from the archive regardless if xnew represents an
improvement or not (in fact, this is a general major drawback of the discretization, e.g.
as is done in ǫ-MOEA. One can include dominance replacements in the archive, as is done
in ArchiveUpdateEps2. However, this leads typically to a larger upper bound of the
archive magnitudes and, hence to a large computational effort, see [45]). Hence, too short
step sizes h should be avoided in (3.1). Given an archive entry a ∈ Q which is already near
to PQ, an optimal ‘neighbor solution’ of a is located along PQ, and the ‘ideal’ distance
from F (a) to F (b) is certainly

‖F (b) − F (a)‖∞ ≈ 2ǫ (3.3)

To make use of this desired distance (note that (3.3) is defined in objective space while
(3.1) is defined in parameter space) we can utilize the Lipschitz continuity of F : assume
F is Lipschitz continuous with Lipschitz constant L.

Definition 7 (Lipschitz constant). A function f : Q → R is called Lipschitz continuous
on Q if there exist an L ≥ 0 s.t.

‖f(x) − f(y)‖ ≤ L‖x − y‖ ∀x, y ∈ Q (3.4)

L is called the Lipschitz constant of f where L is chosen as the smallest value such that
(3.4) holds

The Lipschitz constant gives us a measure of how the relation between the parameter
and image space is. With the Lipschitz constant we can know whether a small perturba-
tion in the parameter space yields a small change in the image space, or the opposite, a
small perturbation yields a big change in the image space.

We can estimate the distance of a and b by

‖a − b‖∞ ≈ 2ǫ

L
. (3.5)

Hence, an estimation for the step size h∗ to obtain the desired distance in objective
space is (assuming that b is generated by a as in (3.1)):

h∗ ≈ 2ǫ

L‖ν‖∞
. (3.6)

It remains how to approximate L. Since we may assume that ǫ is ‘small’ and hence a
and b are ‘close’ together, it is sufficient to estimate L at a in direction ν (here ν = b−a).
For this, one can e.g. use
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La ≈ ‖∇νf1(a), . . . ,∇νfk(a)‖∞, (3.7)

where ∇νfi(a) denotes the directional derivative of fi at a along ν. If gradient information
is not at hand, or its use/approximation should be avoided due to the computational cost,
one can alternatively approximate La by

La ≈ ‖F (a + t̄ν) − F (a)‖∞
t̄‖ν‖∞

, (3.8)

where t̄ ∈ R+ is ‘small’. The cost for the latter approximation is apparently given by one
additional function call.

In the above approximation, to estimate the step size h∗ using the Lipschitz constant,
we have the ideal step size to obtain a distance of 2ǫ in image space, but this operator
is going to be developed to be embedded into a genetic algorithm. This implies that the
approximation of the step size h∗ could be endowed to obtain it in a probabilistic way,
because the genetic algorithm works in a probabilistic environment.

The random process, for which the step size will be calculated, will have a probability
distribution function, pdf. It has a peak next to the ideal step size, h∗, and a lower
probability to appear near to the parent or near to the boundary. The pdf must respect
the position where the probability is higher. This position changes in order to suit the
Lipschitz constant, and the domain of the pdf has to go from the parent to the boundary
in the direction of ν. The new pdf will have an external parameter η. The purpose of it is
similar to the operators SBX and PM. η increases the probability near to h∗ for the new
pdf. The probability for the step size h is given by

P(h) =











1
hmax

(η + 1)
(

h
h∗

)η
0 ≤ h ≤ h∗

1
hmax

(η + 1)
(

hmax−h
hmax−h∗

)η

h∗ < h ≤ hmax

, (3.9)

see Fig. 3.1 for one such example.

The variable h, unlike variable β in SBX and PM, represents the step size, and it is
not a requirement that p1 has to be partially less than p2, i.e. p1 ≤p p2. In fact, the pdf
is endowed to adjust its domain. It does not change its shape except for the case when
either hmax > Ui or hmax < Li, hmax is set equal to h∗.

The function P(h) determines the distance h from the parent to the offspring based on
the area under the function. The total area under P(h) is given by the integral from 0
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Figure 3.1: The image shows the pdf for two different values of η = 2, 6, the maximum
step size, hmax = 10 and the peak of the pdf is h∗ = 2.

to hmax,
∫ hmax

0
P(h)dh = 1. The variable h is obtained with a random number u ∈ [0, 1].

We solve the integral and get the value of h.

h =























(hmaxu(h∗)η)
1

η+1 u ∈
[

0, h∗

hmax

]

hmax −
((

1 − û − h∗

hmax

)

(hmax (hmax − h∗)η)
) 1

η+1 u ∈
(

h∗

hmax
, 1

]

and û = u − h∗

hmax

(3.10)

Alg. 3.1 describes the procedure to obtain the step size in a probabilistic sense.

Algorithm 3.1 h = GenerateStepSize(h∗,hmax)

1: if hmax ≤ h∗ then

2: h∗ = hmax return

3: end if

4: choose u ∈ [0, 1] uniformly at random
5: compute h as in Eq. (3.10)

3.2 The Variation Operators

In the following, we define two variation operators which are based on the ideas presented
in the previous subsection.
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3.2.1 Shifted polynomial mutation

The mutation operator we present here, Shifted Polynomial Mutation (SPM), is a variant
of the widely used polynomial mutation (PM, see [14]). We adapt this to our method with
one exception: the peak of the probability distribution is as in Eq. (3.3). As discussed
above, this is not desirable when using archivers that are based on ǫ-dominance, since by
this the probability is relatively high that the offspring õ gets discarded from the archive
since it is ǫ-dominated by the archive entry o. Instead of using the probability distribution
of PM, we suggest to shift this peak such that the highest probability is to choose õ such
that the difference to o in objective space is 2ǫ as discussed above. To be more precise,
given an element o ∈ Q the new offspring õ is generated as follows:

Algorithm 3.2 õ = ShiftedPolynomialMutation(o)

1: choose ν ∈ Rn, ‖ν‖∞ = 1, uniformly at random
2: compute h∗ and hmax, Eq. (3.6) and (3.2)
3: h = GenerateStepSize (h∗,hmax)
4: õ = o + hν

Example 4. To understand the SPM operator, of the discussion made above, we first apply
the SPM with the next example, the function F : R2 → R2, [46].

F (x) =

(

(x1 − 1)4 + (x2 − 1)4

(x1 + 1)2 + (x2 + 1)2

)

(3.11)

The Pareto set of function 3.11 is given by

PQ =

{(

x
x

)

: x ∈ [−1, 1]

}

Fig. 3.2 shows 100 mutations to the offspring o = (−0.8, 0.8) with η = 4 and h∗ = 3
using Alg. 3.2.

3.2.2 Biased intermediate crossover

The next operator we propose here, is called Biased Intermediate Crossover (BIC), which
is a modification of the Intermediate Crossover (IC, see [47]). In fact, it is the extension
of the SPM for the crossover scenario: given two parent solutions p1 and p2, a possible
crossover of the two points is to select intermediate candidates on the connecting line
l = p1 + R(p2 − p1). However, also a search in the opposite direction could be interesting
since the Pareto set forms at least locally a (k−1)-manifold. To be more precise, the BIC
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Figure 3.2: The mutations are marked with dots, offspring with ¤, the Pareto front and
set with a solid line, 100 mutations in image space (left), mutations in parameter space
(right).

works as follows: given p1 and p2, two offspring are generated on l from each pj toward
the other solution, and another two offspring in the opposite direction. In all cases, the
search direction is ν = ±(p2 − p1), and the step size control can be handled as in SPM
since in all four cases a point and a direction is at hand. The procedure is summarized
in Alg. 3.3. To avoid confusion, we denote by h∗(p, ν) the step size (3.6) for given p and
ν. The following images show the latter comments. The offspring were generated by Alg.
3.3 using the same function that in the SPM.

Algorithm 3.3 {o1, o2, o3, o4} = BiasedIntermediateCrossover(p1,p2)
1: ν1 = p2 − p1

2: ν2 = −ν1

3: h1,1 = GenerateStepSize(h∗(p1, ν1),hmax(p1, ν1))
4: o1 = p1 + h1,1ν1

5: h1,2 = GenerateStepSize(h∗(p1, ν2),hmax(p1, ν2))
6: o2 = p1 + h1,2ν2

7: h2,1 = GenerateStepSize(h∗(p2, ν1),hmax(p2, ν1))
8: o3 = p2 + h2,1ν1

9: h2,2 = GenerateStepSize(h∗(p2, ν2),hmax(p2, ν2))
10: o4 = p2 + h2,2ν2

The method is in particular effective when the parent solutions are already ‘near’ to
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the Pareto set, see Fig. 3.3, or both parents are non dominated to each other, see Fig.
3.4. In the particular case in which one parent dominates the other one while, is a Pareto
point, the offspring will be dominated, and four function calls will be lost, see Fig. 3.5.

Example 5. Fig.s 3.3, 3.4, 3.5 show examples of the BIC operator using the Function 3.11.
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Figure 3.3: The offspring are ‘near’ Pareto front (left). Both parents are ‘near’ the Pareto
set (right)

In the last case, one parent dominates the other one, which is not allowed for MOEAs
based on the archive model. These kinds of algorithms only keep the nondominated
individuals. These archives are based on ǫ-dominance and guarantee an upper bound of
the archiver size as well as convergence ( see Schütze et al. [45, 46]).

3.3 Two Archive Based MOEAs

Here, we propose two archive-based MOEAs which incorporate the elements discussed
above. The first algorithm, MOEA1, is a straightforward application of the novel variation
operators within an archive-based MOEA. Results have shown that this algorithm is well
suited for the treatment of low-dimensional MOPs. This, however, has certain limitations
when dealing with higher dimensional models. For the treatment of the latter, we propose
in the sequel, ELMA (Evolutionary Lipschitz Multi-Objective Algorithm) which is a more
sophisticated version of MOEA1 and also is advantageous over its predecessor on higher
dimensional models.
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Figure 3.4: Both parents are non dominated to each other, they acquire two very good
approximations in image space (left) and parameter space (right).

3.3.1 A new proposed MOEA

In the following, we propose our first archive based MOEA which is a classical combina-
tion of generation operators (crossover followed by mutation) and an external archive. For
the archive, we have chosen to take ArchiveUpdateT ight2 since we have observed that by
this, a suitable approximation of the Pareto front can be obtained (see [46] or Section 2.5
in page 19 for a brief discussion of the archiver). A pseudo-code of the resulting algorithm
(called here MOEA1) can be found in Alg. 3.4. Hereby, pm denotes the probability for
mutation, i.e., the probability that SPM is applied.

Now, we describe our choice of mutation pm: unlike ‘classical’ genetic algorithms, we
start with a relatively high value of pm and reduce this value during the run of the al-
gorithm. This is motivated as follows: as discussed in [3], if a candidate x is ‘far away’
from the Pareto set, there is, a nearly 50% chance to find a dominating (i.e., ‘better’)
solution in the neigborhood of x with random local search (explained in [3] by the use
of descent and ascent cones). Probability pm will start with a high value, in spite of the
fact that, how it is mentioned before, genetic algorithms normally use a low probability
of mutation. Therefore, for a randomly chosen search direction, ν in SPM there is nearly
50% chance that this direction is a descent direction at x0 (i.e. there exists an h∗ ∈ R+

such that F (x0 + h∗ν) <p F (x0)). If, on the other side, a point x0 is ‘close’ to the Pareto
set, then the size of the descent cone is extremely narrow, resulting in a small probability
for a randomly chosen vector to be a descent direction [3]. The two scenarios are depicted
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Figure 3.5: One parent is dominated while the other one is a Pareto point. The four
offspring are dominated by the last one. Image space (left) and parameter space (right).

in Fig. 3.6 for a bi-objective problem. Hereby, {-, -} and {+, +} denote the descent and
ascent cone respectively. The symbol {-, +} indicates that in this direction an improve-
ment according to f1 can be achieved while the values of f2 will increase. Descent cones
have already been used to develop evolutionary algorithms, see [42, 25].

One straightforward strategy (also used used for the following computations) is to
handles the choice of mutation probability as follows: pm is set as the number of accepted
offspring divided by the number of offspring generated by the previous iteration, i.e.,

pm,i =
#{accepted offpring in iteration step i − 1}
#{generated offpring in iteration step i − 1} . (3.12)

The following example describes the behavior of Alg. 3.4.

Example 6. A multi-objective optimization problem called PS1 [34]:

fi : Rn → R

fi(x) =
n

∑

j=1

(xj − ai,j)
2

(PS1)

where ai,j denotes the j-th entry of ai ∈ Rn, and i = 1, . . . , k. The Pareto set of the
(PS1) is given by a simplex S(a1, . . . , ak)

1. A bi-objective problem, f{1,2} : R10 → R,

1Definition Simplex
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Algorithm 3.4 MOEA1

1: Generate a random population P0

2: Ao = ArchiveUpdateT ight2(∅, P0)
3: j = 0
4: repeat

5: Choose two points, a1, a2 ∈ Aj

6: {o1, o2, o3, o4} = BiasedIntermediateCrossover(a1,a2)
7: for k = 1, . . . , 4 do

8: u ∈ [0, 1] uniformly at random
9: if u ≤ pm then

10: ok = ShiftedPolynomialMutation(ok)
11: end if

12: end for

13: Aj+1 = ArchiveUpdateT ight2(Aj, {o1, o2, o3, o4})
14: j = j + 1
15: until number of function calls have been reached

with a1 = (4, 9, 6, 9, 5, 7, 3, 9, 10, 1) and a2 = (6, 8, 9, 8, 7, 2, 5, 7, 3, 10). Fig. 3.7 shows a
representative simulation of an application of the Alg. 3.4 with the (PS1) problem, after
15 simulations, we have chosen one of them.

The performance of Alg. 3.4 can neither be measured by a single function nor by a
graphical evaluation. Numerical results will later define a proper metric. We observed
from experiments carried out with Alg. 3.4 a good performance with low-dimensional
functions [2, 24, 21, 28]. However, it has troubles with MOPs of higher dimensionality.

A set of test functions known as the ZDT (Zitzler-Deb-Thiele) [51] are frequently used
to evaluate a new evolutionary algorithm. Alg. 3.4 has shown difficulties in this set of
functions. The question arises, as to how can we improve the Alg. 3.4? Our proposal is
to combine the generation process of ǫ-MOEA with our generation process in Alg. 3.4. A
related work used components of ǫ-MOEA. They used NSGA-II at the explorative stage,
implicity SBX is used in NSGA-II. The authors created an explotative stage based on
the Nelder and Mead method [50]. Our generation process has to harnesse the power of

Let a1, a2, . . . , ak ∈ Rn, then the set

S(a1, a2, . . . , ak) =

{

k
∑

i=1

λiai | λi ∈ [0, 1] ∀i

k
∑

i=1

λi = 1

}

is called the (k-1)-simplex of a1, a2, . . . , ak.
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Figure 3.6: Descent cone (shaded) for an MOP with two parameters and two objectives
(f1 solid line and f2 dot line), during the initial (left) and the final (right) stages of
convergence. The descent cone shrinks to zero during the final stages of convergence.

exploration made by the SBX operator. Additionally, it is an extra operator to use when
the archive contains only one element (i.e., the archive ‘collapses’).

3.3.2 Evolutionary lipschitz multi-objective algorithm

Here, we will develop an algorithm that adopts the generation process used in ǫ-MOEA
together with our generation process. The proposed algorithm is a more sophisticated
version of MOEA1 and is advantageous over its predecessor on higher dimensional models.
We formulate the requeriments with the purpose of improvement of Alg. 3.4 as follows.

1. Economize the required number of function calls, since to calculate the Lipschitz
constant, an extra function call is needed.

2. What to do, if the archive collapses? both operators, BIC and SBX, demand two
points.

3. How to supress the outliers2?.

2An outlier is an observation that is numerically distant from the population,
http://en.wikipedia.org/wiki/Outlier.
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Figure 3.7: Pareto front of problem PS1 (solid line), and final archive after the application
of Alg. 3.4 (crosses). Final archive after 3000 function calls with pm = 0.02. The best
archive, in terms of the Hausdorff distance, of the 15 simulations (left). Final archive
using a decreasing sequence for pm, starting with a probability pm = 0.4 (right).

3.3.2.1 Economize the required number of function calls

Eq. (3.8) gives a possibility to calculate the Lipschitz constant but, it has the requisite
of an extra function call. Whenever the Lipschitz constant has to be calculated for a new
offspring onew, there exists another element into the archive a, which is a distance less
or equal to ∆ (image space) from onew. This will be used in substitution to the extra
function call.

To calculate the Lipschitz constant of a new offspring, we follow the next procedure:

1. onew if ∃a ∈ A such that d∞(F (a), F (onew)) ≤ ∆ then

Lonew
≈ ‖F (a) − F (onew)‖∞

‖a − onew‖∞

2. otherwise Apply Eq. (3.8)

Moreover, the Lipschitz constant of an offspring will be obtained if an offspring was
accepted by the archive. In this case, the generation and an update process has been
done. Otherwise the constant will not be calculated.

3.3.2.2 What to do, if the archive collapses?

During the execution of an evolutionary algorithm, there is a possibility to create an
offspring, which dominates all points in the archive. This leads to the event that the
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archive contains a single solution. If the BIC operator is applied with the single point
in the archive and a random point, possibly dominated, then two offspring will go in the
direction of the random point. If the scenario is similar to that in Fig. 3.5, offspring will
be rejected and four function calls will get lost.

To handle the archive collapse, we use a mechanism from ǫ-MOEA. We use the SBX
operator with the single element in the archive and a random point, until the archive has
more than one element. The random point ‘emulates’ the external population in ǫ-MOEA.

3.3.2.3 Supressing the outliers

The existence of outliers can decrease the performance of the algorithm. They have the
same probability to be chosen like the rest of elements in the archive and apply crossover
as a result. To illustrate this, we give a possible scenario.

Example 7. Let 1) ZDT1 in two dimensions, a bi-objective problem be given the Pareto
set by PQ = [0, 1] × {0} and the Pareto front is the curve F : [0, 1] → R2, F (PQ) =
( x1

1 −√
x1

)

(see [51]). 2) Further, an archive A ⊂ R2, |A| = 20 is as follows: nineteen

points uniformly at random with xi,1 ∈ [0.1, 1], xi,2 = 0.01 i = 2, . . . , 20 and one outlier
at x1 = (0.09, 0.2).
We choose the outlier as the first parent and the second parent is chosen at random. Using
BIC, it is in general linearly, that outliers generate more outliers, see Fig. 3.8. if outliers
arise, they will start to multiply in subsequent iterations.

Identification of outliers is not an easy task. Since the Pareto front is typically a priori
not known, it is difficult to know whether a point out of a candidate set is an outlier or
not. Further, if the number of objectives increases, the number of outliers typically grows,
i.e., the problem gets harder with increasing number k of objectives. One possible remedy
is as follows: One can ‘clean’ the current archive by re-inserting them into the archive,
however, with a different order of consideration. The underlying idea of this is that out-
liers (that are hopefully not inserted first) are ǫ-dominated by other archive entries, and
are thus discarded from the ‘new’ archive. Referring to the sketch of ArchiveUpdateEps1
in the previous chapter, (for details see [45, 46]) the insertion order is crucial. In case of
a bi-objective problem, if we sort over one objective and insert in ascending order.

Given a determined archive A of size n, we will obtain a sorted archive, Ã:

Ã =
{

fi(a1), . . . , fi(an)
}

, i ∈ {1, 2} and fi(a1) ≤ fi(a2) ≤ . . . ≤ fi(an)

We proceed as follows to remove outliers
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Figure 3.8: Example using ZDT1 function in R2. Elements in the archive are marked
as dots, offspring are marked with a cross, selected parents with a black circle and the
feasible domain (parameter space) is denoted as a rectangle. Applying the BIC operator,
with a fixed step size h∗ = 0.01, it generates two new outliers. They can begin to multiply
in subsequent iterations (see image space left). The archive in parameter space shows that
most of its elements are ‘near’ the Pareto set. It is desired to choose some of them except
the outlier (right).

pvt = ⌊n
2
⌋

Ãa = {fi(apvt), fi(apvt+1), . . . , fi(an)}
Ãb = {fi(apvt−1), fi(apvt−2), . . . , fi(a1)}
Ã1 = ArchiveUpdateEps2(Ãa, ∅);
Ã2 = ArchiveUpdateEps2(Ãb, ∅);
A = Ã1 ∪ Ã2

It is important to note that the order of insertion of elements with ArchiveUpdateEps2
has to be from apvt to n in case of Ãa and from apvt−1 to a1 for Ãb, otherwise the outliers
will not be deleted from the archive. The above mechanism prevents the flat region of
the Pareto front from appearing, due to the properties of ArchiveUpdateEps2. In case
the number of objectives is more than two, the ‘archive into archive‘ strategy cannot be
applied as above. Here, we have chosen a random order of the two disjunct sub-archives
Ãa and Ãb (however, a better choice of the sub-archives is subject to future research).
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3.3.2.4 Integrating operators of ǫ-MOEA into ELMA

Extra information about SBX will be given in this subsection before we can state the final
algorithm. The SBX operator always assumes that p1 ≤p p2, something which in prac-
tice can not hold forever. The author of SBX gives as a solution to exchange whenever
p1,i > p2,i.

Exchange of parents increases the capabilities of the search, in particular when they
are not ‘near’ and, when using a step size much bigger than the value that could be found
with Eq. (3.6). The external parameter ηc has an important role here. If ηm is equal to
one, the step size would be bigger than we expected. It could also be a step size much
bigger than the value that we could find with Eq. (3.6). A particular effect of this is that
it could eliminate some outliers in some cases. See Fig. 3.9 for one such example with
the ZDT1 problem.
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Figure 3.9: Example using the ZDT1 problem in R2. Elements in the archive are marked
as dots, offspring are marked with a cross, and selected parents with a black circle. The
application of the SBX operator can reduce the outliers. This operator will delete the
outliers after ArchiveUpdate pocedure and a good approximation will be added (left).
The first parent p1 = (0.09, 0.2), is bigger over the second component p1,2 > p2,2 and, a
swapping will make an improvement in addition to suppressing the outlier (right).

Now we are in the position to state the algorithm. Since the two novel operators
are both of local nature, we will hybridize them with established operators leading to
Generator1 (Alg. 3.6) and Generator2 (Alg. 3.7). Both generators consist of a crossover
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strategy followed by mutation similar to the general scheme of an evolutionary algorithm
[14]. For the archive we have chosen to take ArchiveUpdateEps2 [45], since it is able to
maintain an ǫ-Pareto set of the given MOP [27]. The new MOEA Evolutionary Lipschitz
Multi-Objective Algorithm (ELMA) is outlined in Alg. 3.5.

Algorithm 3.5 {A} = ELMA()

Require: Initial probabilities pm, every few iterations remove outliers r
Ensure: The final archive (A)
1: P0 ⊂ Q drawn at random
2: A0 = ArchiveUpdateEps2(P0, ∅)
3: j = 0
4: while number of function evaluations not reached do

5: choose p1, p2 ∈ Aj with p1 6= p2 at random
6: O1 = Generator1(p1,p2)
7: O2 = Generator2(p1,p2)
8: Aj+1 = ArchiveUpdateEps2(O1 ∪ O2, Aj)
9: if j mod r then

10: Aj+1 = ArchiveUpdateEps2(Aj+1, ∅)
11: end if

12: j = j + 1
13: end while

Algorithm 3.6 O = Generator1(p1, p2)

1: {o1, .., o4} = BiasedIntermediateCrossover (p1,p2)
2: for i = 1, .., 4 do

3: choose u ∈ [0, 1] uniformly at random
4: if u ≤ pm then

5: oi = ShiftedPolynomialMutation(oi)
6: end if

7: end for

8: O = {o1, .., o4}
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Algorithm 3.7 O = Generator2(p1, p2)

1: {o1, o2} = SBX (p1,p2)
2: for i = 1, 2 do

3: choose u ∈ [0, 1] uniformly at random
4: if u ≤ pm then

5: oi = PolynomialMutation(oi)
6: end if

7: end for

8: O = {o1, o2}
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Chapter 4

∆p: A New Indicator to Measure the

Averaged Hausdorff Distance to the

Pareto Front

Assessing the quality of an evolutionary algorithm commonly implies experimental com-
parisons between the resulting MOEA and other MOEAs or traditional algorithms. The
convergence to an approximation solution set and maintenance of a good quality are two
distinct and somewhat conflicting goals of multi-objective optimization. Therefore, no
single metric can decide the performance of an algorithm.

This chapter begins with a study of two commonly used indicators, namely the Gen-
erational Distance (GD) and Inverted Generational Distance (IGD). Further on, we will
define a new performance indicator, ∆p, which can be viewed as an ‘averaged Hausdorff
distance’ between the outcome set and the Pareto front which is composed of GD and
IGD (to be more precise, slight modifications of them). Finally, we give a possible way
to discretize a Pareto front by means of multi-objective continuation [46], which we call
the L-Method.

4.1 Investigating the Indicators

In the following, we will give a description of indicators GD and IGD (see Section 1.6 in
page 21, Eq. (2.7) and (2.8)) in relation to the properties of a metric.

Definition 8 ([36]). Suppose X is a set and d is a real function defined on the Cartesian
product X × X. Then d is called a metric on X if, and only if, for each a, b, c ∈ X,

a) (Positive Property) d(a, b) ≥ 0 with equality if, and only if, a = b;
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b) (Symmetric Property) d(a, b) = d(b, a); and

c) (Triangle Inequality) d(a, c) ≤ d(a, b) + d(b, c).

d is called a semi-metric, if properties a) and b) are satisfied. If a semi-metric satisfies
the relaxed triangle inequality

d(a, c) ≤ σ(d(a, b) + d(b, c)),∀ a, b, c ∈ X (4.1)

for a value σ ≥ 1, d is called a pseudo-metric. In the following we will consider X as the
set of compact subsets of the Rk. A well-known metric on X is the Hausdorff distance dH

(see Section 1.5.3).

4.1.1 Generational distance

Given a candidate set A = {a1, . . . , aN} (in image space) and a Pareto front F (PQ) =
{y1, . . . , yM}, the Generational Distance (GD, see [48]) can be written as follows:

GD(A,F (PQ)) =
1

|A|





|A|
∑

i=1

dist2(ai, F (PQ))p





1

p

(GD)

Due to the non-negativity norms, GD is also non negative, i.e., it is GD(A,F (PQ)) ≥
0 for all finite sets A and F (PQ). However, it is equal to zero only when A is contained
in F (PQ), i.e.,

GD(A,F (PQ)) = 0 ⇐⇒ A ⊂ F (PQ) (4.2)

Since A does not have to be equal to F (PQ), the positive property does not hold. Fur-
ther, GD is not symmetric. As an example, let A be a proper subset of F (PQ). Then,
it is GD(A,F (PQ)) = 0 and GD(F (PQ), A) > 0. Finally, GD does not satisfy the trian-
gle inequality. Assume, for instance, A = {(4, 4)T , (7, 4)T}, B = {(1, 7)T , (6, 5)T}, and
C = {(2, 10)T , (4, 10)T}. Then, it is GD(A,C) > GD(A,B) + GD(B,C) for p = 1, 2.

The normalization strategy in GD decreases the indicator value as the magnitude of A
grows, for a bounded domain. It is worth noting that this effect becomes stronger with
increasing p for distp. In the context of archive based MOEAs, it is advantageous from
this point of view to ‘fill’ the archive with more solutions since typically larger sets yield
better GD values. However, this leads to trouble for MOEAs which are based on archives
that are not bounded by an a priori defined value (but rather indirectly, e.g., by the use
of ǫ-dominance as in [27, 12, 45, 46]). A ‘perfect’ archiver (with respect to GD) is hence
the one that accepts all (or at least as many as possible) candidate solutions. An effect
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which is certainly not desired.

As an alternative version of GD that avoids the effect discussed above, we propose
a modification of the indicator, by using the power mean1 to average the distances
dist(ai, F (PQ)), i.e.:

GDp(X,Y ) =





1

|A|

|A|
∑

i=1

dist(ai, F (PQ))p





1/p

=
‖dAF‖p

p
√

|A|
(4.3)

We name the new indicator here GDp (i.e., with the index p). The ‘new’ indicator does
not have the unwanted characteristic as discussed above and seems hence to be more fair
for a comparison of sets with different magnitudes. Nevertheless, the metric properties
are the same as for GD.

Apparently, GDp has a relation to dist, i.e.,

GD∞(A,F (PQ)) = dist(A,F (PQ)) (4.4)

That it, for p < ∞, GDp can be viewed as an ‘averaged’ version of dist.

To illustrate this, we consider a bi-objective problem, ZDT1, which has as its domain
Q = [0, 1]30. As the number of randomly chosen points N that form the archive A within
Q increases, the GD value goes down while GDp remains ‘stable’. Table 4.1 shows values
obtained with GD and GDp with different norms and sizes of N . Even though, there are
nondominated points GD goes down as N increases.

4.1.2 Inverted generational distance

Analog to the GD indicator, we will propose the same modification for IGDp, which has
the same metric properties as GDp. The new indicator is related to many distance mea-
surements used in the EMO literature.

The IGD indicator as proposed in [5] can be written as follows:

IGD(A,F (PQ)) =
1

|F (PQ)|

(

|F (PQ)|
∑

i=1

dist2(yi, A)p

) 1

p

, (IGD)

1Also known as generalized mean or Hölder mean.
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Table 4.1: Numerical values of GD and GDp indicators for different norms and archive
sizes.

p Indicator N = 100 N = 1000 N = 10,000 N = 40,000

p = 1 GD 3.007298 3.007833 2.998742 3.003585
GD1 3.007298 3.007833 2.998742 3.003585

p = 2 GD 0.308157 0.097281 0.030647 0.015353
GD2 3.081573 3.076308 3.064666 3.070502

p = 5 GD 0.083783 0.013054 0.002059 0.000681
GD5 3.335445 3.278910 3.262850 3.270808

p = ∞ GD 0.055364 0.005085 0.000541 0.000145
GD∞ 5.536430 5.085181 5.413225 5.807405

where A is a candidate set A = {a1, . . . , aN} (in image space) and F (PQ) is discrete
Pareto front, F (PQ) = {y1, . . . , yM}.

Due to the analogy of GD and IGD in principle the same argumentation can be applied
to justify a modification of the operator. In the context of multi-objective optimization, a
(suitable) discretization F (PQ) of the Pareto front has to be chosen. Analog to the discus-
sion for GD, the IGD value gets better when choosing a finer discretization of the Pareto
front: assume we are given an archive A, and two discretizations F1(PQ) and F2(PQ) of
the Pareto front, where F2(PQ) is finer than F1(PQ) (i.e., better in the Hausdorff sense and
contains more elements). Then, it is IGD(F2(PQ), F (A)) < IGD(F1(PQ), F (A)). Though
this problem can in principle be avoided by fixing a discretization of the Pareto front is
also an unwanted effect. To void the effect discussed above, we propose a modification of
the indicator to average the distances dist(yi, A), i.e.:

IGDp(A,F (PQ)) =





1

|F (PQ)|

|F (PQ)|
∑

i=1

dist(yi, A)p





1/p

=
‖dFA‖p

p
√

|F (PQ)|
(4.5)

Apparently, IGDp has a relation to dist, i.e.,

IGD∞(A,F (PQ)) = dist(F (PQ), A) (4.6)

Since it is
IGD(A,F (PQ)) = GD(F (PQ), A) (4.7)

the properties of GD apply for IGD. In particular, it is

IGD(A,F (PQ)) = 0 ⇐⇒ F (PQ) ⊂ A (4.8)
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A relation to other distances will be given after the following definition.

Definition 9 ([39]). Let d be a metric, δ > 0, and D ⊂ Z be a discrete set. D is called a
dδ representation of Z if for any z ∈ Z there exists an element y ∈ D such that d(z, y) ≤ δ.

The next proposition gives the relation of IGD∞ to the measurements based on ǫ-
dominance. Hereby, we use IGDq

∞ to indicate that the q-norm is used for distq(a,B) (see
Section 1.6).

Proposition 1. Let A ⊂ Rn be given.

a) A is a c-approximate Pareto set of the MOP, where c = IGDq
∞(F (A), F (PQ)).

b) Iǫ+(A,PQ) = IGD∞
∞(F (A), F (PQ))

Proof. Ad a): It is

IGDq
∞(F (A), F (PQ)) = max

p∈PQ

min
a∈A

‖F (p) − F (a)‖q. (4.9)

That is, for all p ∈ PQ there exists an a ∈ A such that ‖F (p) − F (a)‖q ≤ c. Since in
particular |fi(p) − fi(a)| ≤ c for all i = 1, . . . , k it is also a ≺1c p, and the claim follows.
Ad b): It is

Iǫ+(A,PQ) = min
ǫ∈R+

{∀p ∈ PQ∃a ∈ A : F (a) − 1ǫ ≤p F (p)}

IGD∞
∞(F (A), F (PQ)) = max

p∈PQ

min
a∈A

‖F (p) − F (a)‖∞ =: c,
(4.10)

and there exist p̄ ∈ PQ, ā ∈ A such that

‖F (p̄) − F (ā)‖∞ = c. (4.11)

That is, for all p ∈ PQ there exists an a ∈ A such that ‖F (p) − F (a)‖∞ ≤ c. Since also
here |fi(p)−fi(a)| ≤ c for all i = 1, . . . , k it follows that F (a)−1ǫ ≤p F (p). This together
with (4.11) completes the proof.

For an example of Proposition 1(a) see Section 1.6, Fig. 2.11. Finally, to understand
the relation with Definition 9, let A ∈ Rn, then its image F (A), is a dδ representation of
the Pareto front iff

GD∞(F (A), F (PQ)) = 0 and

IGD∞(F (A), F (PQ)) ≤ δ,
(4.12)

where dist2 is the metric induced by the 2-norm (or in more general terms, the q-norm)
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A

dH(A, B)
B

Figure 4.1: If B is a proper subset of A, then it follows that dist(B,A) = 0 and
dist(A,B) > 0, and hence dH(A,B) = dist(A,B) > 0.

4.2 A New Performance Indicator

This section describes a ‘new’ indicator which is composed by the two indicators discussed
above (GDp and IGDp ). We will also see the relationship of this ‘new’ indicator with
the Hausdorff metric dH . We begin with a description of the Hausdorff metric, which is
a widely used tool to measure the distance between different objects in several research
fields.

4.2.1 The Hausdorff metric

The idea behind dH is to define a metric on a collection of subsets of a metric space in
terms a given metric distq. The metric extends to all nonempty closed bounded subsets
of an arbitrary metric space X. Using Definition 4, Section 2.5.3; Given two sets A =
{a1, a2, . . . , an} and B = {b1, b2, . . . , bm} (possible n = m) the Hausdorff distance is
defined as:

dH(A,B) = max{dist(A,B), dist(B,A)} (HD)

The metric identifies the point a ∈ A that is farthest from any point of B, and measures
the distance from a to its nearest neighbor in B. Thus the Hausdorff distance dH(A,B),
measures the degree of mismatch between two sets. Fig. 4.1 illustrated dH , the set B is
contained in the set A, and the biggest distance is from an a ∈ A to set B.

4.2.2 A ‘new’ proposal indicator

The new indicator is motivated by the Hausdorff metric and the relation of GDp and IGDp

with dist. We define the new indicator ∆p as follows.

Definition 10. Let A = {a1, . . . , aN} ⊂ Rk and B = {b1, . . . , bM} ⊂ Rk be finite and
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nonempty sets. Then we define ∆p(A,B) by

∆p(A,B) = max{GDp(A,B), IGDp(A,B)}

= max

{ (

1

N

N
∑

i=1

dist(ai, B)p

)1/p

,

(

1

M

M
∑

i=1

dist(bi, A)p

)1/p }

(4.13)

The metric properties of the new indicator ∆p are stronger than the one of GDp and
IGDp, due to the combination of the two indicators. In particular, when p = ∞ this
becomes a metric, since it holds ∆∞(A,B) = dH(A,B), see Eq.s (4.4) and (4.6). On the
other hand, for all values of p < ∞ and a bounded archive size, ∆p defines a semi-metric
and, this can be viewed as an ‘averaged Hausdorff distance’. The indicator ∆p does not
satisfy the triangle inequality for p < ∞ which is caused by the averaging of the distances.
As an example let A = {(5, 8)T , (9, 9)T}, B = {(2, 8)T , (6, 9)T} and C = {(1, 9)T , (2, 5)T}.
Then ∆∞(A,C) = ∆∞(A,B) + ∆∞(B,C) and ∆1(A,C) > ∆1(A,B) + ∆1(B,C).

Proposition 2. ∆p is a semi-metric for 1 ≤ p < ∞ and a metric for p = ∞.

Proof. The positive property follows directly by the non-negativity of the norm and the
Eq.s (4.2) and (4.8). The symmetry follows by the construction of ∆p. Hence, ∆p is a
semi-norm.
Let p = ∞, then

∆∞(X, Y ) = max

(

max
i=1,...,|X|

(dist(xi, Y )), max
i=1,...,|Y |

(dist(yi, X))

)

= max(dist(X, Y ), dist(Y, X)) = dH(X, Y ),

(4.14)

i.e., for p = ∞ the indicator ∆p coincides with the Hausdorff distance.

Since F (PQ) is given, we can assume that we are given a finite approximation Y ⊂ Rk

of the Pareto front with dH(Y, F (PQ)) ≤ δ (i.e., Y contains no outliers, see below for one
possible heuristic for the generation of Y for bi-objective problems). The natural question
that arises in this context is the resulting discretization error that has to be considered
when comparing different indicator values. Here, we define the approximation error in a
straightforward way: given an archive A, the Pareto front F (PQ) and its discretization
Y , we define the error e.g. for GDp as |GDp(F (A), F (PQ))−GDp(F (A), Y ))| (analog for
the other indicators).
The following result shows that the discretization error for the three indicators under
investigation is equal to the approximation quality of Y .

Proposition 3. Let A ⊂ Rn be finite, F (PQ) and let Y ⊂ Rk be finite such that
dH(F (PQ), Y ) ≤ δ. Then
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a) |GDp(F (A), F (PQ)) − GDp(F (A), Y ))| ≤ δ

b) |IGDp(F (A), F (PQ)) − IGDp(F (A), Y ))| ≤ δ

c) |∆p(F (A), F (PQ)) − ∆p(F (A), Y ))| ≤ δ

Proof. See [44].

Example 8. Assume a hypothetical discrete Pareto front is given by P where pi = ((i −
1) · 0.1, 1 − (i − 1) · 0.1)T , i = 1, . . . , 11. Further, we are given two approximations of
P : A is identical to P except for the first element a1 = (0.001, 10)T (an ’outlier’), i.e.,
A = {a1, p2, . . . , p11}. B is a translation of P defined by bi = pi + (2, 2)T , i = 1, . . . , 11,
Fig. 4.2 shows a plot of these three sets. Now, we apply the indicator ∆p(A,P ) and
∆p(B,P ), Table 4.2 shows the numerical values of ∆p for different values of p. A is a
‘better’ approximation, and B is ‘better’ for p ≥ 3.
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Figure 4.2: Hypothetical example for a Pareto front (P) and two different approximations
A and B.

The choice of the p-norm is the way to handle the ‘outlier trade off’. If p is smaller, the
outlier does not have a big influence. On the other hand, if p is increased, then the largest
distances in GD(A,B) dominanted, and hence, outliers influence the value of ∆p(A,B).
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Table 4.2: Values of ∆p(A,P ) and ∆p(B,P ). The higher the value of p, the more outliers
are penalized by ∆p.

p = 1 p = 2 p = 3 p = 5 p = 10 p = ∞
∆p(A,P ) 0.818 2.714 4.047 5.571 7.080 9.000
∆p(B,P ) 2.828 2.828 2.828 2.828 2.828 2.828

The worst case is when p = ∞ and, the farthest distances are considered, but in turn ∆p

defines a metric. Table 4.3 shows the percentage of the triangle inequality violations for
different values of p for a sequence of randomly chosen sets A, B and C with different
magnitudes. The larger p, the fewer triangle inequality violations are observed, and hence,
the ‘nearer’ ∆p is to a metric.

Table 4.3: Percentage of the triangle violations for different values of p. Here 100,000
different sets A, B, and C with magnitude N = 2, 4, 6, 10 and 100 have been chosen, and
each entry of each set has been chosen randomly from [0, 10]2 (The non vanishing values
for p = ∞ are due to round-off errors).

p = 1 p = 2 p = 5 p = 10 p = 20 p = ∞
N = 2 0.541 0.15 0.026 0.008 0.005 0.006
N = 4 0.249 0.06 0.019 0.009 0.005 0.002
N = 6 0.105 0.033 0.008 0.003 0.001 0
N = 10 0.02 0.002 0.004 0.001 0 0
N = 100 0 0 0 0 0 0

4.3 Discretization of the Pareto Front

In almost all benchmark functions provide the PQ or F (PQ) as an analitical expression
and in an ‘easy’ form. Assume we are given either PQ or F (PQ), the question is to get a
‘suitable’ discretization P = {p1, . . . , pn}, pi ∈ PQ, such that Y = F (P ) serves as a Pareto
front approximation with dH(Y, F (PQ)) ≤ δ, where δ ∈ R+ is given a priori. The present
section provides a method to discretize the Pareto front Y for bi-objective problems with
the desired Hausdorff distance. We support the method with elements of step size control
for multi-objective continuation [46].
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We assume that all models are continuous, differentiable and connected. By the
connectedness of F (PQ) and the characteristic of Pareto fronts there exists a curve
γ : [a, b] → R2 such that γ(t) is equal to F (PQ). Consider a Pareto front of the form

γ : [a, b] → R2

γ(t) =

(

t
g(t)

)

, (4.15)

where g : [a, b] → R (i.e., the first objective is given by t as in the Okabe or ZDT
benchmark models which are widely used in the EMO literature). The main problem is
to estimate the distance

‖γ(ti+1) − γ(ti)‖∞ ≈ δ (4.16)

of two consecutive elements. The step size h = ti+1 − ti, is calculated in the same way
as in Eq. (3.6). The Lipschitz constant Lt, can be calculated using finite series as in
Eq. (3.8) or, if the gradient is available, then it is used. Alg. 4.1 shows the procedure to
obtain a discretization given the Pareto front γ(t).

Algorithm 4.1 Y = L-Method1([a, b], δ)
1: t = a
2: Y = ∅
3: while t ≤ b do

4: Y = Y ∪ γ(t)
5: Lt = ‖γ′(t)‖∞
6: h = δ

Lt

7: t = t + h
8: end while

To obtain a discretization Y given a Pareto set by the simplex S(pa, pb), pa and pb

∈ Rn (i.e. the Pareto set is a line), in Alg. 4.1, line 7 is changed in the form t = t + hν
with ν = pb − pa. Alg. 4.2 shows a pseudo-code to obtain a discretization Y , when
PQ = S(pa, pb).

The difference of the two previous algorithms is that, L-Method1 requires the equation
of the Pareto front. If the Pareto set forms a simplex S(pa, pb), then L-Method2 is used.
In the following, we assume PQ is not a line, then the step size h will be the length of the
curve

PQ : [a, b] → Rn. (4.17)

To move along the curve PQ(t), a distance h from ti, the final point ti+1 has to be known.

The final point is obtained by the integral
∫ ti+1

ti
‖P ′

Q(t)‖∞dt = h. If we obtain ‖P ′
Q(t)‖∞

CINVESTAV-IPN Departamento de Computación



∆p: A New Indicator to Measure the Averaged Hausdorff Distance to the Pareto Front
65

Algorithm 4.2 Y = L-Method2(pa, pb, δ)
1: t = pa

2: Y = ∅
3: ν = pb − pa

4: while h > 0 using Eq. (3.2) do

5: Y = Y ∪ F (t)
6: Lt = ‖F ′(t)‖∞
7: h = δ

Lt

8: t = t + hν
9: end while

= G(t) separately, then the next point ti+1 is obtained as follows: ti+1 = h
G(t)

+ ti. Alg.
4.3 shows as discretizing the Pareto front when the Pareto set is given.

Algorithm 4.3 Y = L-Method3([a, b], δ)
1: t = a
2: s = PQ(t)
3: Y = ∅
4: while t ≤ b do

5: Y = Y ∪ F (s)
6: Lt = ‖F ′(s)‖∞
7: h = δ

Lt

8: G = ‖P ′
Q(t)‖∞

9: t = h
G

+ t
10: s = PQ(t)
11: end while
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Chapter 5

Numerical Results

Here, we attempt to demonstrate the usefulness of the novel indicator as well as the benefit
of the new algorithm. First, we show examples of discretizations of the Pareto front as
discussed in Section 4.3. Next, we intend to show empirically that modern MOEAs indeed
comply (to a certain extent) with ∆p. For this, we have chosen to apply NSGA-II on a
benchmark model for the evaluation of ArchiveUpdateTighti, i = 1, 2 and their relation
with ∆p. Finally we evaluate the new algorithm proposed with the new indicator ∆p plus
the GDp and IGDp indicators.

5.1 Generating Discretizations of the Pareto Front

We address the problem of generating a ‘suitable’ discretization of F (PQ). We will take
advantage of the present section and discretize functions that are going to be used to
evaluate ELMA. The first five models (ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6) were pro-
posed by Deb et al. [51]. The functions called (Deb2) and (Deb3) were proposed in [13].
The function (Lis) was proposed in [28] and, finally the (Oka2) function was proposed in
[35].

ZDT1 This problem has a convex and connected Pareto front.

f1(x) =x1

f2(x) =g(x) ·
(

1 −
√

f1(x)

g(x)

)

where :

g(x) =1 +
9

n − 1
·

n
∑

i=2

xi

(ZDT1)
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with n = 30 and xi ∈ [0, 1] for i = 1, . . . , 30. The Pareto set is given by

PQ = [0, 1] × {0n−1}, (ZDT1-PQ)

and the Pareto front is given by

γ : [0, 1] → R2

γ(t) =

(

t

1 −
√

t

)

(ZDT1-F (PQ))

Fig. 5.1 shows results for different values of δ, on application of Alg. 4.1.
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Figure 5.1: Discretizations of the Pareto front of model ZDT1 using a continuation method
together with the step size control described in Section 4.3. We show the results for δ = 0.1
(left) and δ = 0.01 (right).

ZDT2 This problem has a nonconvex and connected Pareto front.

f1(x) =x1

f2(x) =g(x) ·
(

1 −
(

f1(x)

g(x)

)2
)

where :

g(x) =1 +
9

n − 1
·

n
∑

i=2

xi

(ZDT2)

with n = 30 and xi ∈ [0, 1] for i = 1, . . . , 30. The Pareto set is given by

PQ = [0, 1] × {0n−1}, (ZDT2-PQ)
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and the Pareto front is given by

γ : [0, 1] → R2

γ(t) =

(

t
1 − t2

)

(ZDT2-F (PQ))

Fig. 5.2 shows results for different values of δ, on application of Alg. 4.1.
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Figure 5.2: Discretizations of the Pareto front of model ZDT2 using a continuation method
together with the step size control described in Section 4.3. We show the results for δ = 0.1
(left) and δ = 0.01 (right).

ZDT3 This problem has a finite number of disconnected Pareto fronts.

f1(x) =x1

f2(x) =g(x) ·
(

1 −
√

f1(x)

g(x)
− f1(x)

g(x)
· sin(10πf1(x))

)

where :

g(x) =1 +
9

n − 1
·

n
∑

i=2

xi

(ZDT3)

with n = 30 and xi ∈ [0, 1] for i = 1, . . . , 30. The approximation (because not all points
of x1 ∈ [0, 1] are Pareto points) of the Pareto set is given by

PQ ≈ [0, 1] × {0n−1} , (ZDT3-PQ)

and the Pareto front is contained inside

γ : [0, 1] → R2

γ(t) =

(

t

1 −
√

t − t · sin(10πt)

)

(ZDT3-F (PQ))
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Fig. 5.3 shows results for different values of δ, on application of Alg. 4.1, note that after
the application of the algorithm all the dominated points have to be removed.
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Figure 5.3: Discretizations of the Pareto front of model ZDT3 using a continuation method
together with the step size control described in Section 4.3. We show the results for δ = 0.1
(left) and δ = 0.01 (right).

ZDT4 This problem has a convex Pareto front.

f1(x) =x1

f2(x) =g(x) ·
(

1 −
√

f1(x)

g(x)

)

where :

g(x) =1 + 10 · (n − 1) +
n

∑

i=2

(

x2
i − 10 cos(4πxi)

)

(ZDT4)

with n = 10 and x1 ∈ [0, 1] and xi ∈ [−5, 5] for i = 2, . . . , 10. The Pareto set is given by

PQ = [0, 1] × {0n−1} , (ZDT4-PQ)

and the Pareto front is given by

γ : [0, 1] → R2

γ(t) =

(

t

1 −
√

t

)

(ZDT4-F (PQ))

Fig. 5.3 shows results for different values of δ, on application of Alg. 4.1.
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Figure 5.4: Discretizations of the Pareto front of model ZDT4 using a continuation method
together with the step size control described in Section 4.3. We show the results for δ = 0.1
(left) and δ = 0.01 (right).

ZDT6 This problem has a nonconvex Pareto front.

f1(x) =1 − e−4x1 · sin6(6πx1)

f2(x) =g(x) ·
(

1 −
(

f1

g(x)

)2
)

where :

g(x) =1 + 9 ·
(

1

9

n
∑

i=2

xi

)0.25

(ZDT6)

with n = 10 and x1 ∈ [0, 1] for i = 1, . . . , 10. The Pareto set is given by

PQ = [0, 1] × {0n−1} , (ZDT6-PQ)

To write the Pareto front in the form of Eq. (4.15), note that the parameter t is in the
image of f1, see Eq. (ZDT6). Numerically, by means of a software such as MATLAB, we
estimate t ∈ [0.28, 1]. The Pareto front of the ZDT6 problem can be written as follows.

γ : [0.28, 1] → R2

γ(t) =

(

t
1 − t2

)

(ZDT6-F (PQ))

Fig. 5.5 shows results for different values of δ, on application of Alg. 4.1.
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Figure 5.5: Discretizations of the Pareto front of model ZDT6 using a continuation method
together with the step size control described in Section 4.3. We show the results for δ = 0.1
(left) and δ = 0.01 (right).

Deb Fun2 This problem has a finite number of disconnected Pareto fronts.

f1(x) =x1

f2(x) = (1 + 10x2) · g(x)

where :

g(x) =1 −
(

f1(x)

(1 + 10x2)

)2

− f1(x)

(1 + 10x2)
· sin(12πf1)

(Deb2)

with xi ∈ [0, 1] for i = 1, 2. The Pareto set is given by

PQ = [0, 1] × {0} (Deb2-PQ)

and the Pareto front is contained inside

γ : [0, 1] → R2

γ(t) =

(

t
1 − t2 − t sin(12πt)

)

(Deb2-F (PQ))

Fig. 5.6 shows results for different values of δ, on application of Alg. 4.1. Note that after
the application of the algorithm all the dominated points have to be removed.
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Figure 5.6: Discretizations of the Pareto front of model Deb2 using a continuation method
together with the step size control described in Section 4.3. We show the results for δ = 0.1
(left) and δ = 0.01 (right).

Deb Fun3 This problem has a nonconvex and connected Pareto front.

f1(x) =1 − e−4x1 sin(10πx1)
4

f2(x) =
(

1 + x2
2

)

· g(x)

where :

g(x) =







1 −
(

f1(x)

(1+x2
2)

)10

if f1(x) ≤ (1 + x2
2)

0 otherwise

(Deb3)

with xi ∈ [0, 1] for i = 1, 2. The Pareto set is given by

PQ = [0, 1] × {0} (Deb3-PQ)

and the Pareto front is given by

γ : [0, 1] → R2

γ(t) =

(

t
1 − t10

)

(Deb3-F (PQ))

Fig. 5.7 shows results for different values of δ, on application of Alg. 4.1.

Lis This problem has a nonconvex and connected Pareto front.

f1(x) =
(

x2
1 + x2

2

) 1

8

f2(x) =
(

(x1 − 0.5)2 + (x2 − 0.5)2
) 1

4

(Lis)
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Figure 5.7: Discretizations of the Pareto front of model Deb3 using a continuation method
together with the step size control described in Section 4.3. We show the results for δ = 0.1
(left) and δ = 0.01 (right).

with xi ∈ [−5, 10] for i = 1, 2. The Pareto set is given by the simplex

PQ =S(pa, pb)

where :

pa =(0, 0)T and pb = (0.5, 0.5)T

(Lis-PQ)

There is no analytical expression for the Pareto front. Fig. 5.8 shows results for different
values of δ, on application of Alg. 4.2 with a starting point pa = (0, 0)T to the direction
ν = (1, 1)T .

Okabe Fun2 This problem has a nonconvex and connected Pareto front.

f1 =x1

f2 =1 − 1

4π2
(x1 + π)2 + |x2 − 5 cos(x1)|

1

3 + |x3 − 5 sin(x1)|
1

3

(Oka2)

with x1 ∈ [−π, π] and x2, x3 ∈ [−5, 5]. The Pareto set is given by

PQ : [−π, π] → R3

PQ(t) =





t
5 cos(t)
5 sin(t)





(Oka2-PQ)

and the Pareto front is given by

γ : [−π, π] → R2

γ(t) =

(

t

1 − 1
4π2 (t + π)2

)

(Oka2-F (PQ))
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Figure 5.8: Discretizations of the Pareto front of problem Lis using a continuation method
together with the step size control described in Section 4.3. We show the results for δ = 0.1
(left) and δ = 0.01 (right).

Fig. 5.9 shows results for different values of δ, on application of Alg. 4.3 with ‖G(t)‖∞ =

max

{

1, |5 sin(t)|, |5 cos(t)|
}

.
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Figure 5.9: Discretizations of the Pareto front of model Oka2 using a continuation method
together with the step size control described in Section 4.3.
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5.2 Measuring the Performance of NSGA-II on DTLZ1

Next, we are interested in measuring the performance of a modern Pareto-based MOEA
on a benchmark model (DTLZ1). Here, we have decided for the well-known algorithm
NSGA-II, since this is a widely accepted state-of-the-art MOEA, and (DTLZ1) contains
weakly optimal Pareto points which are easily detected—but not easily discarded—by a
MOEA.

DTLZ1

f1(x) =
1

2
x1x2 (1 + g(x))

f2(x) =
1

2
x1 (1 − x2) (1 + g(x))

f3(x) =
1

2
(1 − x1) (1 + g(x))

where :

g(x) =100

(

10 +
n

∑

i=3

(xi − 0.5)2 − cos(20π (xi − 0.5))

)

(DTLZ1)

with n = 12 and xi ∈ [0, 1] for i = 1, . . . , 12. The Pareto front is given by the simplex:

PQ =S(pa, pb, pc)

where :

pa =(0.5, 0, 0)T

pb =(0, 0.5, 0)T

pc =(0, 0, 0.5)T

(DTLZ1-F (PQ))

Fig. 5.10 and Table 5.1 show the values of GDp, IGDp, and ∆p for the extreme values
p = 1 and p = ∞ for the first 700 generations (averaged over 50 independent runs using
population size Npop = 60). In general, a convergent behavior can be observed, which
differs, however, for the different values of p: while for p = 1 all curves of the indicators
values are nearly ‘smooth’. This is not the case for p = ∞, where jumps in the indicator
values can be observed.
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Figure 5.10: Numerical results of NSGA-II on the DTLZ1 model, measured by GDp,
IGDp, and ∆p for p = 1 and p = ∞ (compare to Table 5.1). The results are averaged
over 50 independent ranges of generations. The left figures show the result of the entire
run, and the figures on the right show a zoom.
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Table 5.1: Numerical results of NSGA-II on the DTLZ1 model, measured by GDp, IGDp,
and ∆p for p = 1 and p = ∞.

No. of Generations
100 200 300 400 500 600 700

GD1 18.586 4.682 1.953 1.061 0.670 0.239 0.128
GD∞ 40.051 10.954 3.510 2.205 9,791 0.466 0.253

IGD1 9.327 3.123 1.421 0.778 0.371 0.173 0.124
IGD∞ 9.467 3.217 1.506 0.861 0.438 0.260 0.233

∆1 18.586 4.682 1.953 1.061 0.670 0.239 0.128
∆∞ 40.051 10.954 3.510 2.205 9,791 0.466 0.253

5.3 Evaluation of ArchiveUpdateTight Results

Here we will use Definitions 5 and 6 (see Section 2.5.3 or [46] for a further explanation),
in order to see the relation between the indicator developed and the archiving strategies
used in ELMA.

ArchiveUpdateT ight1 It generates an (δ, ǫ)-tight ǫ-approximate Pareto set A1, where
δ ∈ R+, ǫ ∈ Rk

+ are discretization parameters. For a limit archive it holds

dist(F (A1), F (PQ)) ≤ ǫ, and

dist(F (PQ), F (A1)) ≤ δ.
(5.1)

Since ǫ-approximate solutions are considered to be ‘good enough’ by ArchiveUpdateT ight1,
they are not replaced by dominating solutions any more. That, the uniformity level ǫ (i.e.,
‖F (a1) − F (a2)‖∞ ≥ ǫ ∀a1, a2 ∈ A1, a1 6= a2) can be guaranteed, but no convergence to-
ward the Pareto front.

ArchiveUpdateT ight2 It generates an δ-tight ǫ-approximate Pareto set, by Archive-
UpdateT ight2. It is expected that for a limit archive it holds

dist(F (A2), F (PQ)) = 0, and

dist(F (PQ), F (A2)) ≤ δ.
(5.2)

The images of the archive entries (ArchiveUpdateT ight2) have to converge toward the
Pareto front, altough the uniformity gets lost.

CINVESTAV-IPN Departamento de Computación



80 Chapter 5

To investigate the performance of the two archivers we will use following MOP.

min
x∈Q

F (x) = x, (5.3)

where F : Rk → Rk and the domain Q is given by

Q =

{

x ∈ Rk : xi ∈ [0, 10], i = 1, . . . , k, and
k

∑

i=1

xi ≥ 1

}

. (5.4)

Hereby, Pareto set and front are given by the (k − 1)-standard simplex

PQ = F (PQ) = S(e1, . . . , ek) (5.5)

Fig. 5.11 shows the final archive acquired for ArchiveUpdateT ight1 and Archive-
UpdateT ight2 with 1 × 106 randomly choosen points. The values used are ǫ = δ = 0.1
(see Section 2.5.3 Definitions 5 and 6), and the discretization error δerr = 0.001 (Section
4.2.2, Proposition 3). Table 5.2 shows that as the p-norm increases, the three indicators
(GDp, IGDp and ∆p) are close to the value of δ, see Eq. (5.1). Table 5.3 shows that as
the p-norm increases, the indicator (GDp) is close to zero and the two indicators (IGDp

and ∆p) are close to the value of δ, see Eq. (5.2).
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Figure 5.11: Final archive acquired of 1 × 106 randomly choosen points,
ArchiveUpdateT ight1 (left), ArchiveUpdateT ight2 (right).
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Table 5.2: Values of GDp, IGDp and ∆p for ArchiveUpdateT ight1 with a discretization
error δerr = 0.001.

p = 1 p = 2 p = 10 p = ∞
GDp 0.0377 0.0496 0.0759 0.0912
IGDp 0.0506 0.0562 0.0760 0.1027
∆p 0.0506 0.0562 0.0760 0.1027

Table 5.3: Values of GDp, IGDp and ∆p for ArchiveUpdateT ight2 with a discretization
error δerr = 0.001.

p = 1 p = 2 p = 10 p = ∞
GDp 0.0006 0.0007 0.0012 0.0016
IGDp 0.0270 0.0320 0.0484 0.0694
∆p 0.0270 0.0320 0.0484 0.0694

5.4 Evaluation of ELMA Algorithm

To evaluate the performance of the new algorithm we have chosen to take the ZDT
benchmark suite plus four further models (see Section 5.1). We compare our results
to the original version of ǫ − MOEA as well as a slight variant of this algorithm, ǫ-
MOEA+Eps2, which is identical to the original algorithm but equipped with the archiver
ArchiveUpdateEps2, we have chosen the value of η = 1 for all operators. This is done to
investigate the effect of the archiver within the MOEA. To compare the performance, we
have chosen to use the GDp, IGDp and the ∆p indicator. To be more precise, given a can-
didate set (or archive) A = {a1, . . . , aN} (in image space) and a discrete (or discretized)
Pareto front F (PQ) = {y1, . . . , yM} with an error of δ = 0.001.

A low of ∆p indicates a low value of both GDp and IGDp, and the approximation can
be considered to be ’good’ in the Hausdorff sense. In all indicators, the value of p is
used to handle the outliers in the candidate set which can be explained by looking at the
extremes: for p = 1, the distances are averaged while for p = ∞ only the candidate with
the largest distance is considered. The p-norm is used which is replaced by the maximum
norm for p = ∞.

Tables from 5.5 to 5.13 and Figs. from 5.12 to 5.20 show the results for the test functions
(the PF in the tables means the discrete Pareto front). When considering the averaged
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results (i.e., p = 1), the new algorithm outperforms (in some cases even significantly) the
two ǫ-MOEA versions. The differences, however, get smaller when increasing the value
of p which indicates that ELMA tends to generate and maintain outliers in the approx-
imation. One exception is the highly multimodal model ZDT4, where ǫ-MOEA clearly
outperforms ELMA. A possible explanation is that the new algortihm gets more likely
trapped in locally optimal regions due to the use of the new operators (which are both of
local nature).

Table 5.4 shows the size of the archivers for each of the algorithms as well as the number
of evaluations.

Table 5.4: Size of Archivers and number of evaluations
ELMA+Eps2 ǫ-MOEA+EPS2 ǫ-MOEA

Function Archive size Archive size Archive size Evaluations
ZDT1 59.95 44.35 41.60 5005
ZDT2 64.65 21.75 21.45 5001
ZDT3 33.75 35.00 25.75 5003
ZDT4 82.35 71.30 68.40 5004
ZDT6 39.70 14.05 14.75 5002

Deb fun2 23.80 29.30 22.10 1501
Deb fun3 33.25 36.40 30.70 1002

Lis 45.30 36.35 33.95 1505
Oka fun2 17.05 16.05 12.45 5001
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Figure 5.12: Representative solutions of the three algorithms on ZDT1.

Table 5.5: Numerical results for ZDT1 (averaged over 30 runs).
p=1 p=2 p=5 p = ∞

∆p(ELMA+Eps2, PF) 0.0229 0.0249 0.0341 0.0740
∆p(ǫ-MOEA+Eps2, PF) 0.0604 0.0683 0.0984 0.1935
∆p(ǫ-MOEA, PF) 0.0535 0.0601 0.0778 0.1395
GDp(ELMA+Eps2, PF) 0.0195 0.0200 0.0215 0.0336
GDp(ǫ-MOEA+Eps2, PF) 0.0560 0.0610 0.0835 0.1631
GDp(ǫ-MOEA, PF) 0.0455 0.0470 0.0499 0.0656
IGDp(ELMA+Eps2, PF) 0.0227 0.0247 0.0333 0.0673
IGDp(ǫ-MOEA+Eps2, PF) 0.0584 0.0634 0.0773 0.1292
IGDp(ǫ-MOEA, PF) 0.0534 0.0599 0.0775 0.1390
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Figure 5.13: Representative solutions of the three algorithms on ZDT2.

Table 5.6: Numerical results for ZDT2 (averaged over 30 runs).
p=1 p=2 p=5 p = ∞

∆p(ELMA+Eps2, PF) 0.0144 0.0162 0.0245 0.0545
∆p(ǫ-MOEA+Eps2, PF) 0.2183 0.2346 0.2856 0.4753
∆p(ǫ-MOEA, PF) 0.1775 0.1940 0.2415 0.4066
GDp(ELMA+Eps2, PF) 0.0112 0.0122 0.0164 0.0299
GDp(ǫ-MOEA+Eps2, PF) 0.1820 0.1839 0.1911 0.2560
GDp(ǫ-MOEA, PF) 0.1364 0.1374 0.1401 0.1656
IGDp(ELMA+Eps2, PF) 0.0144 0.0156 0.0212 0.0468
IGDp(ǫ-MOEA+Eps2, PF) 0.2183 0.2346 0.2856 0.4753
IGDp(ǫ-MOEA, PF) 0.1775 0.1940 0.2415 0.4066
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Figure 5.14: Representative solutions of the three algorithms on ZDT3.

Table 5.7: Numerical results for ZDT3 (averaged over 30 runs).
p=1 p=2 p=5 p = ∞

∆p(ELMA+Eps2, PF) 0.0369 0.0442 0.0667 0.1311
∆p(ǫ-MOEA+Eps2, PF) 0.0862 0.1184 0.1942 0.3597
∆p(ǫ-MOEA, PF) 0.0579 0.0733 0.1057 0.1837
GDp(ELMA+Eps2, PF) 0.0245 0.0311 0.0495 0.0913
GDp(ǫ-MOEA+Eps2, PF) 0.0711 0.1003 0.1691 0.3165
GDp(ǫ-MOEA, PF) 0.0378 0.0510 0.0824 0.1428
IGDp(ELMA+Eps2, PF) 0.0369 0.0436 0.0603 0.1166
IGDp(ǫ-MOEA+Eps2, PF) 0.0849 0.1087 0.1531 0.2555
IGDp(ǫ-MOEA, PF) 0.0579 0.0732 0.1041 0.1790

CINVESTAV-IPN Departamento de Computación



86 Chapter 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

f
1

f 2
ZDT4   Evaluations: 5004

ELMA+Eps2 |A| = 82,  ε−MOEA+Eps2 |A| = 81,  ε−MOEA |A| = 70

 

 

ELMA+Eps2
ε−MOEA+Eps2
ε−MOEA

Figure 5.15: Representative solutions of the three algorithms ON ZDT4.

Table 5.8: Numerical results for ZDT4 (averaged over 30 runs).
p=1 p=2 p=5 p = ∞

∆p(ELMA+Eps2, PF) 19.0547 19.1791 19.9281 24.0174
∆p(ǫ-MOEA+Eps2, PF) 7.9959 8.0403 8.1726 9.6835
∆p(ǫ-MOEA, PF) 9.8138 9.8506 9.9646 11.5986
GDp(ELMA+Eps2, PF) 19.0547 19.1791 19.9281 24.0174
GDp(ǫ-MOEA+Eps2, PF) 7.9856 8.0300 8.1624 9.6795
GDp(ǫ-MOEA, PF) 9.8021 9.8389 9.9529 11.5872
IGDp(ELMA+Eps2, PF) 18.1554 18.1583 18.1671 18.5697
IGDp(ǫ-MOEA+Eps2, PF) 7.4404 7.4462 7.4629 7.8471
IGDp(ǫ-MOEA, PF) 9.3215 9.3263 9.3404 9.7302
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Figure 5.16: Representative solutions of the three algorithms on ZDT6.

Table 5.9: Numerical results for ZDT6 (averaged over 30 runs).
p=1 p=2 p=5 p = ∞

∆p(ELMA+Eps2, PF) 0.0970 0.0987 0.1073 0.1862
∆p(ǫ-MOEA+Eps2, PF) 0.7465 0.7621 0.8119 1.0969
∆p(ǫ-MOEA, PF) 0.5478 0.5618 0.6078 0.8570
GDp(ELMA+Eps2, PF) 0.0943 0.0946 0.0955 0.1142
GDp(ǫ-MOEA+Eps2, PF) 0.6842 0.6884 0.7024 0.8504
GDp(ǫ-MOEA, PF) 0.4887 0.4901 0.4943 0.5536
IGDp(ELMA+Eps2, PF) 0.0968 0.0986 0.1073 0.1862
IGDp(ǫ-MOEA+Eps2, PF) 0.7452 0.7615 0.8119 1.0969
IGDp(ǫ-MOEA, PF) 0.5478 0.5618 0.6078 0.8570
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Figure 5.17: Representative solutions of the three algorithms on Deb fun2.

Table 5.10: Numerical results for Deb fun2 (averaged over 30 runs).
p=1 p=2 p=5 p = ∞

∆p(ELMA+Eps2, PF) 0.0507 0.0743 0.1168 0.2116
∆p(ǫ-MOEA+Eps2, PF) 0.0557 0.0816 0.1251 0.2192
∆p(ǫ-MOEA, PF) 0.0583 0.0839 0.1295 0.2277
GDp(ELMA+Eps2, PF) 0.0005 0.0007 0.0013 0.0024
GDp(ǫ-MOEA+Eps2, PF) 0.0015 0.0043 0.0105 0.0201
GDp(ǫ-MOEA, PF) 0.0016 0.0050 0.0115 0.0209
IGDp(ELMA+Eps2, PF) 0.0507 0.0743 0.1168 0.2116
IGDp(ǫ-MOEA+Eps2, PF) 0.0557 0.0816 0.1251 0.2192
IGDp(ǫ-MOEA, PF) 0.0583 0.0839 0.1295 0.2277
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Figure 5.18: Representative solutions of the three algorithms on Deb fun3.

Table 5.11: Numerical results for Deb fun3 (averaged over 30 runs).
p=1 p=2 p=5 p = ∞

∆p(ELMA+Eps2, PF) 0.0368 0.0620 0.1074 0.2003
∆p(ǫ-MOEA+Eps2, PF) 0.0356 0.0597 0.1032 0.1927
∆p(ǫ-MOEA, PF) 0.0320 0.0500 0.0851 0.1617
GDp(ELMA+Eps2, PF) 0.0004 0.0006 0.0010 0.0017
GDp(ǫ-MOEA+Eps2, PF) 0.0004 0.0004 0.0006 0.0010
GDp(ǫ-MOEA, PF) 0.0003 0.0004 0.0005 0.0008
IGDp(ELMA+Eps2, PF) 0.0368 0.0620 0.1074 0.2003
IGDp(ǫ-MOEA+Eps2, PF) 0.0356 0.0597 0.1032 0.1927
IGDp(ǫ-MOEA, PF) 0.0320 0.0500 0.0851 0.1617
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Figure 5.19: Representative solutions of the three algorithms on Lis.

Table 5.12: Numerical results for Lis (averaged over 30 runs).
p=1 p=2 p=5 p = ∞

∆p(ELMA+Eps2, PF) 0.0192 0.0361 0.0784 0.2247
∆p(ǫ-MOEA+Eps2, PF) 0.0631 0.1106 0.1906 0.4155
∆p(ǫ-MOEA, PF) 0.0657 0.1162 0.2015 0.4381
GDp(ELMA+Eps2, PF) 0.0005 0.0006 0.0010 0.0021
GDp(ǫ-MOEA+Eps2, PF) 0.0016 0.0025 0.0044 0.0084
GDp(ǫ-MOEA, PF) 0.0013 0.0022 0.0042 0.0077
IGDp(ELMA+Eps2, PF) 0.0192 0.0361 0.0784 0.2247
IGDp(ǫ-MOEA+Eps2, PF) 0.0631 0.1106 0.1906 0.4155
IGDp(ǫ-MOEA, PF) 0.0657 0.1162 0.2015 0.4381
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Figure 5.20: Representative solutions of the three algorithms on Oka fun2.

Table 5.13: Numerical results for Oka fun2 (averaged over 30 runs).
p=1 p=2 p=5 p = ∞

∆p(ELMA+Eps2, PF) 2.5371 2.9914 3.7104 5.4530
∆p(ǫ-MOEA+Eps2, PF) 2.4830 2.9186 3.6114 5.3063
∆p(ǫ-MOEA, PF) 2.3745 2.7952 3.4789 5.1531
GDp(ELMA+Eps2, PF) 0.7450 0.7999 0.9030 1.1966
GDp(ǫ-MOEA+Eps2, PF) 0.8030 0.8661 0.9706 1.2149
GDp(ǫ-MOEA, PF) 0.8107 0.8729 0.9724 1.2028
IGDp(ELMA+Eps2, PF) 2.5371 2.9914 3.7104 5.4530
IGDp(ǫ-MOEA+Eps2, PF) 2.4830 2.9186 3.6114 5.3063
IGDp(ǫ-MOEA, PF) 2.3745 2.7952 3.4789 5.1531
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work, we have made a first attempt to design variation operators of an archive
based MOEA tailored to the characteristics of the external archive as well as the interplay
of generation and the archive. In particular, we have considered archivers based on the
concept of ǫ-dominance. Further, we have proposed and investigated a new performance
indicator in order to give a ‘fair’ evaluation of the outcome set of ELMA. To be more
precise, we have proposed the indicator ∆p which can be considered as an ‘averaged Haus-
dorff distance’.
A brief description of our contribution are provided next:

1. We proposed two variation operators (SPM and BIC), which are local search proce-
dures based on Lipschitz estimations in order to detect suitable neighbor solutions
of given archive entries. SPM has shown good performance with a high probability
of ocurrence, while the local nature of BIC allows to be more effective when the
parent solutions are already near to the Pareto set. The two operators are endowed
to generate the step size in a probabilistic sense (the idea behind this was taken
from the SBX operator).

2. Our first proposal (MOEA1) works only with the two new operators suited to its
archive. The MOEA1 shows a good performance with models of low dimensions, but
not with high-dimensional models. Based on this observation, we have presented an
improved algorithm (ELMA) which is a variant of ǫ-MOEA (plus SPM and BIC)
and offers a better performance on the ZDT benchmark suite than its base algorithm
(except for ZDT4). Further, the ELMA algorithm is not sensitive to outliers.
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3. We gave a brief study between the generation process and the archive. A special
attention to the outliers problem was given. Further, an alternative way to supress
them was provided. Even with the extra function call, necessary in SPM and BIC,
the total number of function calls has been reduced. An idea to handle the algorithm
if the archive has a single element is also explained.

4. We proposed a slight modification of GD and IGD. The new variant of GD (called
GDp) reduces the effect of decreasing its value by just adding more elements into
the archive, even if most of them are dominated. The new variant of IGD (called
IGDp) has certain relations to other distance measures used in the EMO literature.

5. We proposed a ‘new’ indicator ∆p, which consists of GDp and IGDp, and which can
be viewed as an averaged Hausdorff distance. We also addressed one possiblity to
handle the ‘outlier trade off’, penalizing single outliers but having a metric against
supressing the influence of outliers. This, however, loses the metric properties by
violating the triangle inequality. Furthermore, the discretization error is given (this
can be handled by the discretization of the Pareto front).

6. We gave a technique to discretize the Pareto front if an analytical expression of the
Pareto front or set is available.

6.2 Future Work

This work is certainly just an initial step and by far not complete yet. In the future,
more investigation on the variation operators has to be done, including a more advanced
interplay of the operators and the archive elements, and more tests have to be performed.
In particular, the bias of the approach to generate outliers has to be suppressed as well as
the possibility to get trapped in locally optimal regions (as for ZDT4) has to be reduced by
refining the balance of global and local search, as well as, to extend the algorithm in order
to work with functions with more than two objectives. Finally, the method should be
modularized such that the algorithm works efficiently for different sets of interest related
to an MOP (e.g., Pareto set, Pareto front, set of approximate solutions, etc.).
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