
Centro de Investigacion y de Estudios
Avanzados

del Instituto Politecnico Nacional

Unidad Zacatenco

Departamento de Computación

El punto a punto de las técnicas de búsqueda local

para algoritmos de optimización multiobjetivo

Tesis que presenta

Sergio Jesús Alvarado Garćıa

para obtener el Grado de

Maestro en Ciencias

en Computación

Director de la Tesis: Dr. Oliver Steffen Schütze

México, Distrito Federal Diciembre 2012

Centro de Investigacion y de Estudios
Avanzados

del Instituto Politecnico Nacional

Zacatenco Campus

Computer Science Department

On Pointwise Iterative Local Search Techniques

for Evolutionary Multiobjective Optimization

Submitted by

Sergio Jesús Alvarado Garćıa

as the fulfillment of the requirement for the degree of

Master in

Computer Science

Advisor: Dr. Oliver Steffen Schütze

México, Distrito Federal December 2012

Abstract

In the real world one is often faced with problems that have multiple objectives that
must be optimized concurrently leading to the so-called multiobjective optimization
problems (MOPs). The main difficulty of these problems is that they do not have
only one single solution, but instead consist of a set of solutions presented as different
trade-offs among the objectives. One possible and widely accepted way to solve MOPs
numerically is to use memetic algorithms, i.e., evolutionary algorithms coupled with
local search mechanisms. The goal of this thesis is to extend a recently developed
local search strategy, the Directed Search (DS) method. This new method, should be
first developed to work as a standalone algorithm, and will further on be integrated
into state-of-the-art multi-objective evolutionary algorithms leading to a new memetic
strategy. One of the main ideas of this work is to use DS without explicitly computing
the objective’s gradient. Instead, the neighborhood will be explored leading to a
new finite difference approach. The proposed algorithm has shown to increases the
convergence rate of the multiobjective evolutionary algorithms.

Resumen

En el mundo real frecuentemente enfrentamos problemas que poseen múltiples ob-
jetivos, los cuales deben ser optimizados de manera concurrente llevándonos a los
denominados problemas de optimización multiobjetivo(POMs). La dificultad de este
tipo de problemas radica en que generalmente no se tiene una única solución posi-
ble, sino que por el contrario, existen un conjunto de soluciones que optimizan de
diferente manera a cada uno de los objetivos. Una de las posibles y ampliamente
aceptadas formas aceptadas de resolver POMs es el uso de lo que se conoce como
algoritmos meméticos, v.g., algoritmos evolutivos a los que se les acoplan mecanis-
mos de búsqueda local. El objetivo de esta tesis es el de extender un método de
búsqueda local recientemente desarrollado: la búsqueda dirigida, o Directed Search
(DS). Este nuevo algoritmo, inicialmente se utilizará como un método capaz de en-
contrar soluciones de un PMO por śı mismo, y posteriormente será utilizado en un
algoritmo memético adoptando alguno de los algoritmos evolutivos multiobjetivo que
se encuentran en el estado del arte a fin de producir un nuevo algoritmo memético.
Una de las ideas fundamentales de este trabajo es el de utilizar el DS sin necesidad
de calcular explicitamente el gradiente de las funciones objetivo. En vez de eso, se
explorará el vecindario, a fin de producir un nuevo método de diferencias finitas.
Como resultado, el algoritmo generado ha demostrado mejorar la convergencia de los
algoritmos evolutivos multiobjetivo.

Acknowledgment

First I want to thank to CONACyT for the economic support provided in order to
apply conclude the master’s degree. Also I want to thank the CINVESTAV for the
opportunity of became one of their students.

I really want to thank my advisor Dr. Oliver Schütze for all their support in this
thesis work and guidance through the elaboration of this project, I know that it was not
easy but I really appreciate all the patience and effort in order to help me to prepare
this work.

I also like to thank Dr. Luis Gerardo de la Fraga and Dr. Carlos A. Coello Coello
to read support me and support me in the construction in the final version of this
thesis.

Finally I would like to thank to my family in special to my mother, because without
all your sacrifices this part of my life could not exists. I also thank to my sister and
my father for all the support.

Contents

Figures ii

Tables iv

Algorithms v

1 Introduction 1

2 Background 5

2.1 Optimization . 5

2.1.1 Notations . 5

2.2 Multiobjective optimization . 7

2.2.1 Formal definition of a MOP 8

2.2.2 Pareto dominance . 8

2.2.3 Pareto front . 9

2.2.4 Weak Pareto Optimality . 9

2.2.5 Karush-Kuhn-Tucker point . 10

2.3 Classical Methods . 11

2.3.1 Weighted sum method . 11

2.3.2 The ε-constraint method . 12

2.4 Stochastic Methods . 12

2.4.1 MOEA/D . 13

2.4.2 NSGA-II . 14

2.5 Memetic Algorithms . 17

2.6 The Directed Search method . 18

2.6.1 Approximating the Jacobian 20

2.7 Other methods . 20

2.7.1 Normal Boundary Intersection 20

2.7.2 Descent direction of Fliege and Svaiter 21

2.7.3 The Multi-Agent Collaborative Search 22

2.7.4 The Hill Climber with Sidestep 22

i

ii CONTENTS

3 The Discrete Directed Search method 23
3.1 The method . 23
3.2 Comparison between the DS method and the DDS method 29
3.3 Numerical Results . 30

4 Integrating the DDS into MOEAs 37
4.1 Design parameters of the MAs . 37
4.2 DDS method as local searcher within a MOEA. 39
4.3 NSGA-II/DDS . 41

4.3.1 Numerical Results for NSGA-II/DDS 42
4.4 MOEA/D/DDS . 46

4.4.1 Numerical results . 47
4.5 Decomposing the direction of the DDS 55

4.5.1 Numerical results for the decomposition DDS 58

5 Integration of DS into Multiobjective Control Problems 63
5.1 Application of DS to deteriorated MOCP 63

5.1.1 Numerical results for DS in decomposition control problems . 66
5.2 The DS method in constrained MOCP 68

5.2.1 A new predictor step . 72

6 Conclusions and Future Work 75
6.1 Future work . 77

Appendix A 79

References 90

List of Figures

2.1 Example that illustrates Pareto dominance 9
2.2 Example of a Pareto front . 10
2.3 Pareto points and weak Pareto points 11
2.4 Example of non-dominated sort. 15
2.5 Example of crowding distance. 16
2.6 Outline of a general local search procedure. 17
2.7 The Directed Search method. 18

3.1 Graphical explanation of the β angle. 29
3.2 Example of neighborhood in a memetic algorithm. 30
3.3 Results for the DS method. 33
3.4 Results for the DDS method with r = 5. 33
3.5 Results for the DDS method with r = 10. 34
3.6 Results for the DDS method with r = 15. 34
3.7 Results for the DDS method with r = 20. 35
3.8 Results for the DDS method with r = 25. 35

4.1 Worst case scenario for the application of a local search technique. 38
4.2 Local search improves the solutions near the PF. 39
4.3 Relation between the descent cones and the direction d. 40
4.4 Neighborhood used in NSGA-II/DDS. 43
4.5 Best runs for the algorithms on the ZDT1 problem. 45
4.6 Worst runs for the algorithms on ZDT1 function. 45
4.7 Graphical results in problem UF1. 51
4.8 Graphical results in problem UF2. 52
4.9 Graphical results in problem UF3. 52
4.10 Graphical results in problem UF4. 53
4.11 Graphical results in problem UF5. 53
4.12 Graphical results in problem UF6. 54
4.13 Graphical results in problem UF7. 54
4.14 Problem that occurs when using a large step size. 55
4.15 Example of the DE mutation operator for a bi-objective problem. 56
4.16 Candidate solution expected in the neighborhood of the solutions xdj 58
4.17 Graphical results in problem UF8. 61

iii

iv LIST OF FIGURES

4.18 Graphical results in problem UF9. 62
4.19 Graphical results in problem UF10. 62

5.1 Active control scheme. 64
5.2 Graphical results from the deterioration on Avigad’s function. 67
5.3 Graphical results from the deterioration on the modified quadratic

function. 68
5.4 Predictor step in direction dm. 70
5.5 Predictor corrector step over the constraint. 70
5.6 Comparison between δi and δi−1. 71
5.7 Results for the constrained DS into Tanaka’s function. 72
5.8 Description of the new predictor step. 73
5.9 Results for the new predictor into Tanaka’s function. 74

1 PF of function UF1. 79
2 PF of function UF2. 80
3 PF of function UF3. 81
4 PF of function UF4. 82
5 PF of function UF5. 83
6 PF of function UF6. 84
7 PF of function UF7. 85
8 PF of function UF8. 86
9 PF of function UF9. 88
10 PF of function UF10. 89

List of Tables

3.1 Parameters used in the comparission between DS and DDS. 31
3.2 Results from comparing DS and DDS. 31
3.3 Comparision of the gradient approximations. 32

4.1 Parameters for the NSGA-II /DDS 43
4.2 Results for the NSGA-II /DDS . 44
4.3 Parameters for the MOEA/D/DDS 48
4.4 Results for the IGD indicator in problems UF1-UF7. 49
4.5 Results for the GD indicator in problems UF1-UF7. 50
4.6 Results for the ∆p indicator in problems UF1-UF7. 50
4.7 Results for the Hypervolume indicator in problems UF1-UF7. 51
4.8 Parameters for the decomposition MOEA/D/DDS 58
4.9 Results for the IGD indicator for problems UF8-UF10. 59
4.10 Results for the GD indicator for problems UF8-UF10. 60
4.11 Results for the ∆p indicator for problems UF8-UF10. 60
4.12 Results for the hypervolume indicator for problems UF8-UF10. 61

5.1 Statistics of the function calls for the quadratic deterioration problem. 68
5.2 Comparison of constrained DS algorithms. 74

v

vi LIST OF TABLES

List of Algorithms

1 Pseudocode of an evolutionary algorithm 13
2 Pseudocode of MOEA/D . 14
3 Pseudocode of the NSGA-II . 16
4 Pseudocode of a memetic algorithm 18
5 Pseudocode of the Directed Search 20
6 Pseudocode of the step size control. 29
7 Pseudocode of the NSGA-II/DDS . 41
8 Pseudocode of the MOEA/D/DDS. 47
9 Pseudocode of the decomposition DDS. 57
10 Pseudocode of DS in deterioration control problems. 66

vii

viii LIST OF ALGORITHMS

Chapter 1

Introduction

Some engineering problems in the real world demand to optimize several objectives
at the same time, leading to so-called multiobjective optimization problems (MOPs).
As an example in the design of a car one is (among many other objectives) interested
in a high comfort for the passengers and at the same time in a low production cost
of the vehicle, leading in this case to a bi-objective problem.

One of the main problems of the treatment of the MOPs is that there exist more
than one solution that can be considered to be optimal. The set of solutions of a MOP,
the so-called Pareto set (PS), typically forms a (k − 1)-dimensional object, where k
is the number of objectives involved in the MOP. The knowledge of the entire Pareto
set is of particular interest for the decision maker of the underlying application since
it gives him/her all trade off solutions and is hence important for the decision making
process.

Nowadays, there exist several methods for the numerical treatment of a MOP.
The oldest ones are known as scalarization methods [Ehrgott, 2005], which transform
the MOP into a problem with one single objective (SOP). If the entire Pareto set is
of interest, one can e.g. get an approximation by solving a sequence of SOPs. Next,
there are population-based evolutionary strategies; widely used algorithms that are
able to find an entire approximation of the PS in one run. The main problem of
these methods resides in their slow convergence and their restriction to moderate
dimensions (dimension of the parameter space n < 50). A possible improvement of
these stochastic strategies are the memetic algorithms which combine the evolution-
ary methods along with local search techniques (mainly coming from mathematical
programming), in order to increment the convergence rate of the resulting algorithm.

1

2

Problem

The scope of this work is to extend a recently developed local search technique, the
Directed Search (DS) method presented by [Schütze et al., 2010]. The DS can be
used as a standalone algorithm in order to perform a line search movement until one
solution in the PS is reached. The main limitation of this method is that it requires
the gradient information or a numerical approximation of it. The uses of a state-of-
the-art algorithm to calculate the approximation of the gradient can lead us to a high
computational effort, e.g. the approximation obtained by the finite difference method
costs at least nk function evaluations, where n refers to the number of parameters
and k is the number of objectives. Hence, a reduction in the number of function
evaluations is needed. Next, using the DS inside an EA opens the possibility that
the information of the individuals of the population can be used in order to obtain
an approximation of the gradient.

Objectives

The objectives of this work are as follows:

• To design a numerical method based on the DS for the treatment of MOPs as
a standalone algorithm that does not require explicitly gradient information.

• To integrate the developed algorithm into a multiobjective evolutionary algo-
rithm (MOEA).

• To introduce the possible use of the DS into constrained MOPs.

Organization of the thesis

The organization of this thesis is as follows:

In Chapter 2, some concepts needed to understand the main ideas of this work
are presented, in addition to some of the classical methods used to solve MOPs. Also
some of the state-of-the-art MOEAs are given, and the concept of a memetic algo-
rithm is introduced.

Chapter 3 presents the formulation of the new algorithms developed in this thesis
work such as the gradient-free Directed Search method. Furthermore, results from
applied the standalone algorithm in some MOP are presented.

In Chapter 4, the incorporation of the Discrete Directed Search (DDS) as a local
search technique into two state-of-the-art methods is presented. Next, a new idea
to decompose the direction d used in the DS algorithm is proposed, such that the

Cinvestav Departamento de Computación

Introduction 3

convergence rate of the DDS method is incremented.

Chapter 5 presents the results obtained by using the DS algorithm in order to
solve some particular multiobjective control problems. First, the DS is used to cor-
rect back systems that deteriorate in time; next, novel ideas to work with constrained
multiobjective control problems are presented.

Chapter 6 contains the conclusions and some possible future ideas to be developed
from this work.

Cinvestav Departamento de Computación

4

Cinvestav Departamento de Computación

Chapter 2

Background

2.1 Optimization

Optimization is the process which tries to minimize or maximize the objectives of a
given problem, e.g., to maximize the profits of a manufacturing process by changing
the materials used in the process. But there is not a unique algorithm that can solve
all kinds of optimization problems. In general, it depends on the type of the problem,
and commonly it is left to the users to select the appropriate algorithm.

2.1.1 Notations

Decision variables

The decision variables (also called parameters) in terms of optimization refer to quan-
tities that can control the optimization problem in order to obtain some kind of results.
For instance, in some chemical processes, a change in the temperature of a boil can
lead us to an increment in the pressure.

Formally the decision variables are represented as column vectors constructed
with the n variables:

x =

x1
x2
. . .
xn

 .

Objective function

An objective is the term to name those quantitative measures used in the performance
of the system under study. The objective function describes the co-relation existing
between the results of the problem and the parameters. In mathematical notation,

5

6 Chapter 2

the objective function is defined as:

f : G ⊂ Rn → R (2.1)

Constraints

Sometimes the problem requires that some conditions do not take certain values or
that they must stay between some levels, e.g. the profits of a project must stay
within a certain amount of cash. This type of restrictions are called the constraints
of the problem. In optimization, there exist two types of constraints: equality and
inequality constraints.

In mathematical notation, the constraints can be expressed as:

h(x) = 0, i = 1, . . . , l

g(x) ≤ 0, j = 1, . . . ,m .
(2.2)

Gradient vector

As a non-formal definition, the gradient typically refers to the derivative of a a vecto-
rial function. Sometimes the gradient can be used to represent the slope of a curve.
In mathematical terms the gradient is defined using the nabla operator ∇. Each of
the i entries is formed for the n partial derivatives of the f function:

∇f(x) =

[
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

]T
. (2.3)

Jacobian matrix

Having a vector of objective functions such that F : G→ Rk, the Jacobian (denoted
as J(x) or D(x)) can be constructed using a k-row vector, where each row represents
the gradient of the fk function:

J(x) =

∇f1(x)T

∇f2(x)T

. . .
∇fk(x)T

 ∈ Rk×n, (2.4)

formulated with its partial derivatives the Jacobian matrix can also be described as:

Cinvestav Departamento de Computación

Background 7

J(x) =

∂f1(x)

∂x1

∂f1(x)

∂x2
. . .

∂f1(x)

∂xn

∂f2(x)

∂x1

∂f2(x)

∂x2
. . .

∂f2(x)

∂xn

. . .

∂fk(x)

∂x1

∂fk(x)

∂x2
. . .

∂fk(x)

∂xn

,

Hessian matrix

The Hessian is the name given to the matrix formed with then second-order partial
derivatives, and is commonly is used to describe the local curvature of a function.
Having a vectorial function F : G→ R, the Hessian matrix is related to the Jacobian
matrix as:

H(x) = J(∇f(x))

Local and global minimizers

Having a point x∗ ∈ G and an objective function F : G→ R , x∗ is a global minimizer
of F if:

f(x∗) ≤ f(x),∀x ∈ G, (2.5)

where G is the feasible region and G ⊂ Rn. It is said that x∗ is a local minimizer if:

f(x∗) ≤ f(x),∀x ∈ N, (2.6)

where N is a neighborhood of x∗.

2.2 Multiobjective optimization

In the real world it is possible to find problems that require to optimize a certain
number of objectives at the same time. The main issue in this kind of optimization
problems resides in trying to find a solution that optimizes all the objectives at the
same time. In other words, it is possible that an optimal solution in one of the ob-
jectives could be the worst possible solution for another one. Next, the existence of
multiple objectives could lead us to find not only one solution, instead, it is possible
to find a set of optimal solutions. As an example in the design of a car one is (among
many other objectives) interested in a high comfort for the passengers and at the
same time in a low production cost of the vehicle. This leads in this case to the
bi-objective problem:

Cinvestav Departamento de Computación

8 Chapter 2

(
maximize comfort
minimize cost

)
.

2.2.1 Formal definition of a MOP

Instead of taking a single objective, one is given k different objective functions that
require to be optimized at the same time, the problem is converted into a multiobjec-
tive optimization problem (MOP). For the unconstrained case, a MOP can be defined
as:

Definition 1. Given a vector x that exist in a region G where G ⊂ Rn (n is the
parameter number), and F (x) a vector of objective functions, such that

F : G→ Rk, F (x) = (f1(x), f2(x), ..., fk(x)) ,

where k is the number of objective functions.

Then we can define a MOP as:

min
x∈G

F (x) . (MOP)

Here a particular case of a MOP is when k = 1. This case is known as a single
objective optimization problem (SOP), where G can be expressed as:

G = {x ∈ Rn|hi(x) = 0, i = 1 . . .m, gi(x) ≤ 0, i = 1 . . . l} . (2.7)

2.2.2 Pareto dominance

In a MOP the concept of an optimal solution turns out to be ambigous, so in order to
explain which solutions are better than others, the concept of optimality for a MOP
was proposed by [Edgeworth, 1881] and later generalized by [Pareto, 1896], proposing
the notion of Pareto dominance (some authors call it Edgeworth-Pareto Optimality).

To compare two solutions of a MOP, the dominance relation described by Pareto
is defined as follows:

Definition 2. Given two points x, y ∈ G. y is said to be dominated by x (x ≺ y) if
fi(x) ≤ fi(y), i = 1, 2, ..., k and fj(x) < fj(y), j ∈ 1, 2, ..., k.

In Figure 2.1 the value of f2 in points A and C are the same, but the value of f1
of A is less than the one from C, so we can confirm that A ≺ C. In the same figure
it is visible that B dominates C, but A and B do not dominate each other.

Cinvestav Departamento de Computación

Background 9

Figure 2.1: Example that illustrates Pareto dominance

2.2.3 Pareto front

The points A and B in Figure 2.1 do not dominate each other. More generally, in a
MOP it is possible that there exists a set of solutions such that all elements of this
set do not dominate each other. Hence, they are the “best” solutions that can be
found. From this idea it is possible to present the definition of Pareto optimality.

Definition 3. Given two points x, y ∈ G, and a vector function F : G ⊂ Rn → Rk,
then a point y ∈ G is called Pareto optimal, if there does not exist a x ∈ G which
dominates y .

The set of all Pareto optimal solutions of a MOP is called the Pareto set, and can
be formalized as:

PS = {x ∈ G| 6 ∃y ∈ G y ≺ x} (2.8)

Figure 2.2 presents the so-called Pareto front F (PS), which is the set of images
of the points of the Pareto Set.

2.2.4 Weak Pareto Optimality

Another concept widely used in multiobjective optimization is weak Pareto optimality.
It is possible to say that a vector is weakly Pareto optimal if there does not exist
another vector for which all the components dominate it. Formally, weakly Pareto
optimality can be formally defined as follows:

Cinvestav Departamento de Computación

10 Chapter 2

Figure 2.2: Example of a Pareto front

Definition 4. Given a point x∗ ∈ G, is called weakly Pareto optimal if does not exist
a point y, such that fi(y) < fi(x),∀i = 1, 2, ..., k.

In Figure 2.3, the concept of weak Pareto optimality is presented. Here, all the
points are weakly Pareto optimal, but only the yellow squares can be considered
Pareto optimal.

2.2.5 Karush-Kuhn-Tucker point

If all the objectives in an unconstrained MOP are differentiable the theorem of Kuhn
and Tucker [Kuhn and Tucker, 1951] states a necessary condition for Pareto optimal-
ity:

Theorem 1. Let x be a Pareto point of (MOP), then there exists a vector α ∈ Rk

with αi ≥ 0, i = 1, ..., k , with
k∑
i=1

αi = 1 such that

k∑
i=1

αi∇fi(x∗) = 0. (2.9)

This theorem claims that the zero vector can be expressed as a convex combina-
tion of the gradients of the objective functions, but this theorem does not state a
sufficient condition for Pareto optimality. For the constrained case we refer e.g. to
[Miettinen, 1999].

Cinvestav Departamento de Computación

Background 11

f2

f1

Figure 2.3: Pareto points and weak Pareto points

Definition 5. A point x ∈ Rn is called a Karush-Kuhn-Tucker (KKT) point if there

exist scalars α1, ..., αk such that
k∑
i=1

αi = 1 ≥ 0 and Equation (2.9) is satisfied.

2.3 Classical Methods

The first approaches to solve MOP were typically based on trying to convert the
problem into an auxilar SOP, and then to use numerical methods to find the op-
timal solution for this auxiliar problem. Since the solution of a SOP consists typ-
ically of one point, one application of the method will lead ideally to one Pareto
optimal solution. An approximation of the entire Pareto set can be obtained by solv-
ing a clever sequence of SOPs, see, e.g., [Miettinen, 1999], [Das and Dennis, 1998],
[Fliege and Svaiter, 2000], [Ehrgott, 2005].

2.3.1 Weighted sum method

One of the oldest algorithms used to solve a MOP is the weighted sum method (for
reference see [Ehrgott, 2005]). This method aggregates all objectives fi into one
auxiliary objective Fw by considering a weighted sum of all the fi’s. To be more
precise, given weights wi, i = 1, ..., k, wi ≥ 0, and

∑
wi = 1, the auxiliary objective

Cinvestav Departamento de Computación

12 Chapter 2

is as follows:

Fw(x) =
k∑
i=1

wifi(x). (2.10)

In general, it is not a trivial task to choose wi, because a priori is not known
which are the weights that lead us to one or another solution.

Further, the method has problems to find Pareto optimal soluctions x such that the
image F (x) is located on concave parts of the Pareto front. See [Dennis and Schnabel, 1987]
for a more thorough discussion.

2.3.2 The ε-constraint method

Another widely used approach that can solve an MOP is the ε-constraint method
([Ehrgott, 2005]). The main idea of this method is to optimize one objective while
the other objectives are transformed into constraints with a permissible error ε. In
this manner, a MOP can be reformulated as:

min fi(x)
x ∈ G

fj(x) ≤ εj j 6= i
. (2.11)

This method is capable of finding several solutions of a MOP by using different values
of ε. Also, it is important to mention that this method can be used in non-convex
functions. The choice of the values of εj depend of the kind of problem at hand.

2.4 Stochastic Methods

Bio-inspired heuristic algorithms are widely used methods adopted to solve MOPs.
Evolutionary Algorithms (EAs) are population-based algorithms that have their foun-
dation on the evolution of species (for more information see [Coello et al., 2007],
[Deb, 2001]). There is plenty of evidence that these stochastic methods are a good
alternative in problems where the gradient methods can not find a global solution.
So, in general, EAs are used to perform a global search in all the objectives. This
leads to a good approximation of the PS constructed by the individuals of the popu-
lation. The main disadvantage of EAs is their low convergence rate when generating
the Pareto front of a MOP, specially in the treatment of high-dimensional problems.

The main idea of EAs is to depart from a randomly generated population, and
take a subset of individuals consisting of the “best ones” generally selected according
to a fitness function (commonly the values of their objectives are taken); in particular,
when dealing with a MOP it is usual to select the individuals according to Pareto

Cinvestav Departamento de Computación

Background 13

dominance.

After the selection process, a new population is constructed by recombining the
best individuals (the most common operators used to recombining individuals are the
crossover and the mutation operators). The generation of individuals continues until
some stopping criteria are reached. The pseudocode in Algorithm 1 illustrates the
way in which EAs work.

Algorithm 1 Pseudocode of an evolutionary algorithm
Input: n, g, F
Output: Pg

1: Randomly initialize the population Pg with n individuals.
2: Evaluate the fitness of each individual in the population using the function F .
3: while Stop condition is not accomplished do
4: g = g + 1
5: Select P ′g from P(g−1) using the fitness of individuals.
6: Apply crossover operator to P ′g → P ′′g
7: Apply mutation operator to P ′′g → P ′′′g
8: Set Pg = P ′′′g
9: end while

2.4.1 MOEA/D

MOEA/D is a stochastic method introduced by [Zhang and Li, 2006]. It is presented
as an alternative to solve MOPs through the decomposition of the original problem
into N subproblems. The algorithm solves the N subproblems at the same time by
evolving a population of solutions. MOEA/D emphatizes the solution of the subprob-
lems by using only the information allocated in their neighborhood. The pseudocode
of MOEA/D is described in Algorithm 2.

The decomposition of the problem can be performed using three different decom-
position methods. The first method used to decompose a MOP is the weighted sum
approach. Having a convex weight λ = (λ1, λ2, . . . , λm)T , i.e. λi ≥ 0 with i = 1, . . . ,m
and

∑m
i=1 λi = 1, the optimal solution can be found by solving the scalar optimization

problem:

max
x

gws(x|λ) =
m∑
i=1

λifi(x). (2.12)

Tchebycheff decomposition is another method used in MOEA/D. Here, the objec-
tive function of each N -th subproblem is defined as:

min
x

gte(x|j, z∗) = max[λji |fi(x)− z∗i |] ∈ Rk, (2.13)

Cinvestav Departamento de Computación

14 Chapter 2

where λ1, ..., λN is a set of evenly spread weight vectors and z∗ is the ideal vector.

The last decomposition method used in the algorithm is based on the Normal
Boundary Intersection method proposed by [Das and Dennis, 1998]. The main moti-
vation of this approach is try to find intersection points of the top boundary. Having
the ideal vector z∗ and the weight vector λ, each subproblem can be defined as:

min
x, d

gbi(x|λ, z∗) = d

z∗ ∈ G
subject to z∗ − F (x) = dλ

. (2.14)

Algorithm 2 Pseudocode of MOEA/D

Input: a stopping criteria, MOP, the number of subproblems N , N weight vector
λ1, . . . , λN , the number of weight neighborhood T

Output: EP
1: Set EP = ∅
2: Find the T closest weight vector of each vector.
3: Set B(i) = i1, . . . , iT , with the T closest vectors to λi.
4: Generate a N random vectors x1, . . . , xN .
5: Set FV i = F (xi).
6: Initializa z
7: while Stopping criteria not accomplished do
8: for i = 1, . . . , N do
9: Select xk, xl from B(i)

10: Generate y using genetic operators on xk and xl.
11: Apply and improvement to y and generate y′.
12: Update z
13: Update of Neighboring Solutions
14: Remove from EP the vectors dominated by F (y′).
15: Add y′ to EP .
16: end for
17: end while

2.4.2 NSGA-II

The Nondominated Sorting Genetic Algorithm II (NSGA-II) is an algorithm pro-
posed by [Deb et al., 2002]. It presents two ideas which try to improve the common
performance of a traditional MOEA.

The non-dominated sort is the first mechanism used in the NSGA-II. It sorts the
individuals according to Pareto non-domination. A rank value is created according

Cinvestav Departamento de Computación

Background 15

to the number of individuals that dominate each solution. The non-dominated solu-
tions receive a rank equal to one, and the others receive a rank value according to
how many subsets they dominate. Figure 2.4 shows the fronts created according to
different rank values.

f1

f2 Rank values

Rank 1

Rank 2

Rank 3

Figure 2.4: Example of non-dominated sort.

To preserve a good spread of the final solutions, the NSGA-II uses a mechanism
called crowding distance. This distance measures the average size of the cuboid formed
with the points that enclose a solution i in the population. In Figure 2.5 the cuboid
of the i-th solution is represented by a dashed line.

Cinvestav Departamento de Computación

16 Chapter 2

i

f1

f2

Figure 2.5: Example of crowding distance.

The main idea behind the NSGA-II is to use a selection that preserves the individ-
uals with the lowest rank value. When almost all the solutions exist in the first rank,
the algorithm selects the solutions with the highest value of the crowding distance.
Algorithm 3 describes the NSGA-II evolves the solutions.

Algorithm 3 Pseudocode of the NSGA-II

Input: number of generations G, number of individuals N
Output: final population PG

1: Randomly generate the population P0

2: Calculate F (P0)
3: Apply genetic operators in P0 to generate Q0

4: i = 0
5: while i < G do
6: Set Ri = Pi ∪Qi

7: Calculate the rank value of Ri

8: Calculate the crowding distance of Ri

9: Select the N individuals with the lowest rank and highest crowding distance
(Pi).

10: Apply genetic operators in Pi to generate Qi

11: Set i = i+ 1
12: end while

Cinvestav Departamento de Computación

Background 17

2.5 Memetic Algorithms

The concept of memetic algorithms (MAs) (introduced by [Moscato, 1989]), refers to
heuristic strategies coupled with local search techniques.

The term memetic is based on the english term “meme” presented by [Dawkins, 1989].
This term is used as the “transmission unit” in the context of cultural evolution.
Quoting Dawkins:

“Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of
making pots or of building arches. Just as genes propagate themselves in the gene
pool by leaping from body to body via sperms or eggs, so memes propagate themselves
in the meme pool by leaping from brain to brain via a process which, in the broad
sense, can be called imitation.”

In terms of computational algorithms the idea of “memes” is used to denote the
improvement of particular individuals along with some mechanism of global cooper-
ation and competition with other solutions in the population.

The main idea of MAs is to perform a local search improving an inital solution by
searching within its neighborhood for a “better” solution that improves the initial one.
Once the local search finds the “best” or at least a better solution in the neighborhood
it replaces the original solution; this process is repeated until the local search does
not find a solution in the neighborhood that improves the current solution. Figure
2.6 presents the behaviour of a local search technique.

Figure 2.6: Outline of a general local search procedure.

Algorithm 4 presents a generic memetic algorithm. It is important to remark that

Cinvestav Departamento de Computación

18 Chapter 2

the time in which the local search is used can be redefined according to the structure
of the EA and/or the optimization problem to be solved.

Algorithm 4 Pseudocode of a memetic algorithm
Input: n, g, F
Output: Pg

1: Randomly initialize the population Pg with n individuals.
2: Evaluate the fitness of each individual in the population using the function F .
3: while Stop condition is not accomplished do
4: g = g + 1
5: Select P ′g from P(g−1) using the fitness of individuals.
6: Apply evolutionary operators to P ′g → P ′′g
7: Apply local Search in the neighborhood of P ′′g (P ′′g → P ′′′g)

8: Select Pg from
(
P(g−1), P

′
g, P

′′
g , P

′′′
g

)
9: end while

2.6 The Directed Search method

The Directed Search method [Schütze et al., 2010] is a local search technique used
to perform a steering movement in a direction d in image space. In order to find
the next point via a line search, a direction ν ∈ Rn needs to be calculated. In this
method, an iterative scheme that performs such a movement in objective space is
proposed. Figure 2.7 represents how the direction d is mapped from objective space
into parameter space in the direction ν.

f2

f1

x2

x1

d

ν

Figure 2.7: The Directed Search method.

Cinvestav Departamento de Computación

Background 19

Assuming an initial point x0 ∈ Rn and the direction d ∈ Rk, it is possible to
calculate the direction ν such that y0 = x0 + tν, where t ∈ R+ is the step size. For ν
it should hold:

lim
t→0

fi(y0)− fi(x0)
t

= 〈∇fi(x0), ν〉 = di, i = 1, ..., k. (2.15)

Using the Jacobian of F, Equation (2.15) can be reformulated in matrix notation
as:

J(x0)ν = d (2.16)

Since typically the number of parameters is higher than the number of objectives,
to calculate the direction ν it is necessary to solve an underdetermined system of
equations. To prevent getting many solutions to the problem caused by the under-
determined system, the solution with the lowest 2-norm can be viewed as the greedy
solution in this context. Hence, using Equation (2.16), this leads to:

ν = J(x0)
+d, (2.17)

where A+ ∈ Rn×k denotes the so-called pseudoinverse. In case that A is maximal,
the pseudoinverse can be calculated as A+ = AT (AAT)−1 [Nocedal and Wright, 2006].

Using the previous result, the problem is the same as numerically solving the
following initial value problem:

x(0) = x0 ∈ Rn

ẋ = J(x(t))+d
(2.18)

Assuming that d is a “descent direction” in objective space (i.e., di ≤ 0 for all
i = 1, . . . , k and there exists an index j such that dj < 0), the numerical solution of
Equation (2.18) can be considered as a hill climber for a MOP.

When an endpoint of the curve described in (2.18) is reached, it is possible to
detect it under certain assumptions: If the number of parameters n is at least as large
as the number of objectives k, and all the gradients at x0 are linearly independent
from each other; it is possible to detect along the points in the curve when the value
of κ(J(x)) increase over a certain tolerance tol in order to find when the objectives
start to conflict between them. For the condition number of the Jacobian, it holds:

κ(J(x)) =

√
λmax [J(x)TJ(x)]

λmin [J(x)TJ(x)]
→∞ for x→ x∗, (2.19)

where λmax(A) and λmin(A) denote the largest and smallest eigenvalues of matrix A,
and x∗ is a point in the end in the curve of Equation (2.18).

Cinvestav Departamento de Computación

20 Chapter 2

With the stopping criteria already defined, it is possible to state the algorithm for
the Directed Search (see Algorithm 5).

Algorithm 5 Pseudocode of the Directed Search

Input: starting point x0 ∈ Rn with rank(J(x0)) = k, tol ∈ R+, convex weight
α0 ∈ Rk.

1: i := 0
2: while κ2(J(xi)) < tol do
3: compute νi = J(xi)

+di
4: compute ti ∈ R+

5: set xi+1 = xi + tiνi
6: choose di+1 ∈ Rk

7: set i := i+ 1
8: end while

2.6.1 Approximating the Jacobian

The main problem that can be presented in the DS method can be the requirement
of the Jacobian matrix of the functions. One possible solution to break this depen-
dency is the use of a numerical approach to approximate the derivatives, using the
finite differences method, the ji, i = 1, . . . , n column vectors of the Jacobian can be
approximated as:

ji(x0) =
f(x0 + hei)− f(x0)

h
,

where x0, I ∈ Rn and ei is the i-th unit vector h ∈ R+.

Finite differences can obtain good results in low dimensions, but the computational
cost is O (nk) in terms of additional function calls, and this cost increases as the
number of the parameters gets higher.

2.7 Other methods

2.7.1 Normal Boundary Intersection

Das and Dennis [Das and Dennis, 1998] proposed the Normal Boundary Intersection
(NBI) technique. This method tries to find points along the PF making use of a
convex hull of individual minima (CHIM).

Definition 6. Let x∗i be the k global minimizers of the function F : Rn → Rk, set
F ∗i = F (x∗i), and having the shadow minima F ∗. Let Φ ∈ Rk×k be the matrix whose
column vectors is F ∗i − F ∗, also called the shifted pay-off matrix. Let equation B =

Cinvestav Departamento de Computación

Background 21

{
β : β ∈ Rk,

∑n
i=1 βi = 1, βi ≥ 0

}
represent the set of “convex combination vectors”.

Then the set of point in Rk that are convex combinations of F ∗i −F ∗ i.e. {Φβ : β ∈ B},
is referred to as the convex hull of individual minima.

Having a convex combination vector β ∈ B, a point in the CHIM (Φβ). Let
Φβ + tn̂, with t ∈ R represent the set of points and the normal vector of the CHIM
(ñ) that point towards the origin. It is possible to calculate the intersection between
n̂ and the PF by solving the problem:

max t
x ∈ G

subject to Φβ + tn̂ = F ∗i − F ∗
. (2.20)

2.7.2 Descent direction of Fliege and Svaiter

In [Fliege and Svaiter, 2000] a steepest descent method is proposed. Having an initial
point x ∈ Rn, the matrix A is defined as:

A = J(x)

and the function fx : Rn → Rk by:

fx(ν) = max {(Aν)i|i = 1, . . . , k}.

Considering the unconstrained minimization problem described as:

min fx(ν) +
1

2
‖ν‖2

subject to ν ∈ Rn
(2.21)

.
Assuming that the objective function is proper, closed and strongly convex, it is

possible to reformulate Equation (2.21) into:

minα +
1

2
‖ν‖2

subject to (Aν)i ≤ α, i = 1, . . . , k
. (2.22)

Lemma 1. Let ν(x) and α(x) be the solution and the optimum value of problem
(2.22), respectively.

1. If x is Pareto critical, then v(x) = 0 ∈ Rn and α(x) = 0.

2. If x is not Pareto critical, then a(x) < 0. It should hold:

fx(ν(x)) ≤ −1

2
‖ν‖2 < 0

(J(x)ν(x))i ≤ fx(ν(x)), i = 1, . . . ,m
(2.23)

3. The mappings x→ v(x) and x→ α(x) are continuous.

Cinvestav Departamento de Computación

22 Chapter 2

2.7.3 The Multi-Agent Collaborative Search

In [Vasile and Zuiani, 2011] a memetic algorithm is implemented. The Multi-Agent
Collaborative Search (MACS) method uses several mechanisms to find local solutions.
The algorithm generates the population through stochastic mechanisms (crossover
and mutation), then it takes the individuals that are Pareto dominated and applies
them local search strategies (individualistic actions) in order to improve such candi-
date solutions. The principal individualistic actions are based on algorithms to such
as hill climbers, interpolation and extrapolation between individuals and differential
evolution ([Storn and Price, 1997]).

2.7.4 The Hill Climber with Sidestep

The Hill Climber with Sidestep (HCS) proposed by [Lara et al., 2010] is a novel local
search idea to perform a hillclimber movement in order to reach the PF. It uses a
random point x2l in the neighborhood of x1l to construct a direction νacc ∈ Rn, such
that:

νacc =

{
x1l − x2l if x1l ≺ x2l
x2l − x1l otherwise

.

Next, the algorithm uses the descent direction in order to perform a line search
technique that throws a new candidate solution. While the solutions dominate each
other it means that these solutions exist “far away” from the PF. But, when the
solutions found are mutually non-dominated and the process starts to repeat Nnd

many times, this indicates that the point is already near to the PF, and hence the
algorithm will try to move along the PF.

The gradient free version of HCS, uses all the information obtained in the Nnd

iterations in order to find a direction that describes a predictor step like movement,
that is supposed to be orthogonal to the PF. Having i0 ∈ {1, 2}, we can define the
predictor step as:

α =
1

Nnd

Nnd∑
k=1

slk
x2lk − x

1
lk∥∥x2lk − x1lk∥∥ . (2.24)

The Nnd is the number of iterations used to recopilate information. It is important
to mention that Nnd only present the cases when x1l and x2l do not dominate each
other. Hence, sl can be defined as:

νacc =

{
1 if fir(x

2
l) ≺ fir(x

1
l)

−1 otherwise
. (2.25)

where ir ∈ i0 is selected randomly.

Cinvestav Departamento de Computación

Chapter 3

The Discrete Directed Search
method

The use of the Directed Search method as described in the previous chapter makes
use of the gradient of the objectives. Hence, with MOPs without such a type of
information, the use of an approximation of the gradient becomes an important tool.
The use of the DS method can become a problem when it is used in high-dimensional
problems (e.g. when n� 50), because the computational cost of the approximation
is expensive (it requires n × k function evaluations). In some cases it can be more
effective to choose a stochastic local search technique.

The main motivation in this work is to try to improve the Directed Search by
decreasing the computational cost of the approximation when it is used on objectives
whithout gradient information.

3.1 The method

Having an initial solution x0 ∈ Rn and r search directions νi ∈ Rn, i = 1, . . . , r, define
the matrix F(x0) ∈ Rk×r as follows:

F(x0) = (〈∇fi(x0), νj〉) i = 1, . . . , k
j = 1, . . . , r

. (3.1)

Hence, each entry mij of the matrix F is defined by the directional derivative of each
objective fi in direction νj, mij = ∇νjfi(x0). Then it holds:

Proposition 1. Let xi, νi ∈ Rn, i = 1, . . . , r, λ ∈ Rr and ν =
r∑
i=1

λiνi. Then

DF (x)ν = F(x)λ. (3.2)

23

24 Chapter 3

Proof. It is:

F(x)λ =

〈∇f1(x), ν1〉 . . . 〈∇f1(x), νr〉

...
...

...

〈∇fk(x), ν1〉 . . . 〈∇fk(x), νr〉

λ1
...

λr

, (3.3)

and

J(x)ν = J(x)

(
r∑
i=1

λiνi

)
=

r∑
i=1

λi

 ∇f1(x)T

...
∇fk(x)T

 νi. (3.4)

Hence for the l-th component of both products it holds:

(F(x)λ)I =
r∑
i=1

λi 〈∇fi(x), νi〉 = (J(x)ν)l , (3.5)

and the desired identity follows.

Hence, instead of solving Equation (2.16), one can solve the equation:

F(x)λ = d, (3.6)

and define:

ν =
r∑
i=1

λiνi. (3.7)

Now, the entries mij of matrix F are required. Having the starting point x0 the
direction νj can be defined as follows:

νj =
xj − x0
‖xj − x0‖2

, tj = ‖xj − x0‖2 , j = 1, . . . , r (3.8)

Using Equation (3.8) the entries mij can be approximated by:

mij = 〈∇fi(x0), νj〉 = lim
t→0

fi(x0 + tνj)− fi(x0)
t

≈ fi(x0 + tνj)− fi(x0)
‖xj − x0‖2

, i = 1, . . . , k, j = 1, . . . , r
. (3.9)

Now that the new approximation is constructed, it is desirable to calculate the
numerical error. From the discussion above it holds that the computational error is
defined as follows:

〈∇fi(x0), νj〉 =
fi(xj)− fi(x0)
‖xj − x0‖2

+O
(
‖xj − x0‖2

)
(3.10)

Cinvestav Departamento de Computación

The Discrete Directed Search method 25

It is important to remark that with this approximation, the search direction can
be computed without any additional function evaluation.

Until now it is impossible to know if there exists a solution for Equation (3.6), so
it is important to investigate the behavior of the problem according to the selection
of r and the νi’s. For this, it is advantageous to write F(x) as follows:

F(x) = J(x)V, (3.11)

where V = (ν1, . . . , νr) ∈ Rn×r represents the matrix where each row is given by the
search direction νi.

If rank(J(x)) = k (which is given for a non-boundary point x), it is known from
linear algebra that:

rank(J(x)) = k ⇒ rank(F(x)) = rank(V). (3.12)

If, on the other hand, x is a boundary point (and hence, rank(J(x)) < k), then
it follows by the rank theorem of matrix multiplication that also rank(F(x)) < k
regardless of the choice of V (i.e., regardless of the number r and the choice of the
search directions νi).

This indicates that the condition number of κ2(F(x)) can be used to check nu-
merically if a current iterate is already near to an endpoint of (2.18) (in the page
19). Equation (3.12) indicates that the νi’s should be chosen such that they are lin-
early independent. If in addition the search directions are orthogonal to each other,
a straightforward calculation shows that:

V orthogonal⇒ κ2(F(x)) = κ2(J(x)). (3.13)

In that case, the condition number κ2(F(x)) can indeed be used as a stopping
criteria.

It is V
(r)
+ → Vr for r → n. This is due to the fact that V V T (i.e., the orthogonal

projection on to span {V1, · · · , Vr}) converges to the identity matrix In ∈ Rn×n. One
way to see this is as follows: Let V1, · · · , Vn be an orthogonal basis of the Rn, whereby
V1, · · · , Vr are identical to the column vectors of V . Further, let x ∈ Rn. Since
{V1, · · · , Vr} is a basis of Rn, there exist scalars N1, · · · , Nn ∈ R such that x =∑n

i=1NiVi. Then:

V V T =
r∑
i=1

ViV
T
i

(
n∑
j=1

NiVi

)

=
r∑
i=1

n∑
j=1

Nj 〈Vi, Vj〉 =
r∑
i=1

NiVi

. (3.14)

Cinvestav Departamento de Computación

26 Chapter 3

Hence, it holds:

∥∥V V Tx− Inx
∥∥ =

∥∥∥∥∥
n∑

i=r+1

NiVi

∥∥∥∥∥ , (3.15)

which diminishes for increasing value of r. For r = n it holds:

V
(n)
+ = V F(x)+d = V V TJ(x)T

(
J(x)V V T

)−1
d

= J(x)T
(
J(x)J(x)T

)−1
d = J(x)+d = V +

. (3.16)

Example 1. Using the bi-objective model proposed in [Köppen and Yoshida, 2007]:

F : Rn → R2

fi(x) = ‖x− ai‖22, i = 1, 2,
(3.17)

where a1 = (1, . . . , 1)T , a2 = (−1, . . . ,−1)T ∈ Rn. The Pareto set is given by the line
segment between a1 and a2, i.e.,

P = {x ∈ Rn : xi = 2α− 1, i = 1, . . . , k, α ∈ [0, 1]} (3.18)

Let r = 2 and v1 := ei and v2 := ej, i 6= j, where ei denotes the i-th canonical vector.
Then, it is

F(x) =

(
xi − 1 xj − 1
xi + 1 xj + 1

)
(3.19)

It is det(F(x)) = 1/(2(xi − xj)), and hence,

det(F(x)) = 0 ⇔ xi = xj, (3.20)

by which it follows that it is rank(F(x)) = 2 for all x ∈ Rn\B, where B := {x ∈
Rn : xi = xj} (note that P ⊂ B).

Since B is a zero set in Rn, the probability is one that for a randomly chosen point
x ∈ Rn the matrix F(x) has full rank, and hence, that Equation (3.1) has a unique
solution. To be more precise, it is ν = λ1ei + λ2ej, where

λ = F−1(x)d =
1

det(F(x))

(
xj+1 −xj + 1
−xi − 1 xj − 1

)(
d1
d2

)

=
1

2(xi − xj)

(
xj(d1 − d2) + d1 + d2
xi(d2 − d1)− d1 − d2

)
.

(3.21)

Cinvestav Departamento de Computación

The Discrete Directed Search method 27

Note that this holds regardless of the number n ≥ 2 of the parameter dimension.

The above considerations show that already for r = k search directions νi, i =
1, . . . , r, one can find a descent direction ν̃ by solving Equation (3.1).

However, by construction it is ν ∈ span{ν1, . . . , νk} which means that only a k-
dimensional subspace of the Rn is explored in one step. One would expect that the
more search directions νi are taken into account, the better the choice of ν̃ is. This
is indeed the case: For r > k, we suggest to choose analog to (2.17)

ν
(r)
+ :=

r∑
i=1

λiνi, where λ = F(x0)
+d (3.22)

The following discussion gives a relation between ν
(r)
+ and ν+ for non-boundary

points x for the case that the νi’s are orthonormal: It is

ν+ = J+(x)d = J(x)T (J(x)J(x)T)−1d (3.23)

and

λ = F(x)+d = V TJ(x)T (J(x)V V T︸ ︷︷ ︸
I

J(x)T)−1d

= V T J(x)T (J(x)J(x)T)−1d︸ ︷︷ ︸
ν+

= V Tν+
(3.24)

and hence

ν
(r)
+ =

r∑
i=1

λiνi =
r∑
i=1

〈νi, ν+〉νi (3.25)

For instance, when choosing νi = eji , Equation (3.25) gets simplified:

ν
(r)
+ =

r∑
i=1

ν+,jieji , (3.26)

i.e., ν
(r)
+ has only r entries which are identical to the corresponding entries of ν+. In

both cases ν
(r)
+ gets closer to ν+ with increasing number r and for r = n it is ν

(r)
+ = ν+.

Finally the developed algorithm requires the calculation of the optimal step size for
each iteration. Hence, the step size calculation presented by [Mejia and Schütze, 2010]
was used. In the original algorithm the step size was calculated for initial value prob-
lems, so in consideration that the DS can be stated as that type of problem, it could

Cinvestav Departamento de Computación

28 Chapter 3

be implemented along with it.

The step size calculates the gain γ(xi) of each iteration in the Directed Search:

γ(xi) =
(f(xi)− f(xi−1))

T d

dTd
. (3.27)

From above, it is possible to approximate the curvature σi of the solution curve
of the IVP.

σi =

γ(xi)− γ(xi−1)

xi − xi−1
− γ(xi−1)− γ(xi−2)

xi−1 − xi−2
xi − xi−2

. (3.28)

Finally, the step size can be formulated as follows:

t =
1

‖σi‖
. (3.29)

As mentioned above, the proposed algorithm is used to calculate the step size that
is going to be used in the DDS method. Along with the calculation of the optimal
length of the step size, this algorithm also restricts the length of the step size t such
that the movement of the line search stays close enough to the original direction d.

In order to maintain a good direction, the angle β is introduced. β measures the
angle formed between the direction d and the line segment formed with the point xi
and the point after the line search has been performed xi+1. It is desirable that the
angle β is as small as possible in order to make the correction step be easier to perform.

Figure 3.1 illustrates how the tolerance of β is used. The point A represents the
point with the maximal value of t and point B represents the point using a step size
after k iterations of the algorithm, tk. The value of the step size has been reduced in
order to fit at the β tolerance.

In the step size algorithm a parameter ρ ∈ (0, 1) is used to reduce the final length
of the step size in each iteration. In Algorithm 6, it is possible to see that at each
iteration, the value of the step size t is reduced by a factor ρ.

Cinvestav Departamento de Computación

The Discrete Directed Search method 29

β

d

F(x0)

A=F(x0+td)

B=F(x0+tkd)

Figure 3.1: Graphical explanation of the β angle.

Algorithm 6 Pseudocode of the step size control.

Input: β, xi, ρ, ν, d
Output: t

1: compute t as in (3.29)
2: y = xi + tν
3: Fx = F (xi)
4: Fy = F (y)
5: while ∠(Fx − d, Fx − Fy) > β do
6: t = tρ
7: y = xi + tν
8: Fx = F (xi)
9: Fy = F (y)

10: end while
11: return t

3.2 Comparison between the DS method and the

DDS method

If the DS and the DDS methods are compared, the first significant point is that the
DDS do not need gradient information. DDS is a method that uses the neighborhood
information of the current iteration in order to construct an approximation of the
gradient. It is important to note that the error can be ignored.

A key feature of the DDS is that it was originally developed in order to work
along an EA, and is also known that in an EA the information of the individuals
comes for “free”. Hence, an important task to construct a memetic algorithm can
be the selection of the individuals that are going to be used in order to construct
the Jacobian approximation. Figure 3.2 presents the idea of taking the r directions,
which correspond to the r = 2 individuals in the neighborhood of x0 (N(x0)).

Cinvestav Departamento de Computación

30 Chapter 3

Another important issue about the DDS is that even if a model does not have
gradient information, the algorithm can use the approximation of the Jacobian with
an affordable computational cost (it requires only the function evaluations for the
step size control).

x2

x1

x0

ν1

ν2

x1

x2

Figure 3.2: Example of neighborhood in a memetic algorithm.

Thus, the main advantages of the DDS method in comparison with the DS can
be stated as follows:

• It can work on problems where a function evaluation is computational expensive.

• It can work on problems where the exact gradient information is hard to find.

3.3 Numerical Results

In order to illustrate the performance of the DDS in a multiobjective problem, an
academic function is used here [Schütze et al., 2011]:

F (x) =

‖x− a1‖22
‖x− a2‖22

...

‖x− ak‖22

 , (3.30)

where x ∈ Rn and ai ∈ Rn, i = 1, . . . , k.

Cinvestav Departamento de Computación

The Discrete Directed Search method 31

This experiment were performed in order to compare the DS and the DDS algo-
rithms. To make a fair test both algorithms started with the same initial random
point x0. The parameters used in the tests are shown in Table 3.1.

Parameter Value

n 100

k 2

ai a1 = (1, 1, . . . , 1) , a2 = (−1,−1, . . . ,−1)

r 5, 10, 15, 20, 25

tol 102

d (− 1√
2
, − 1√

2
)

Table 3.1: Parameters used in the comparission between DS and DDS.

In order to fulfill the requirement of the DDS that the search directions νi are lin-
early independent, the following mechanism is presented. First, a random individual
xj ∈ Rn is calculated, such that a QR decomposition of xj can be obtained. Next,
the j column vector is taken from the Q matrix, such that the column vectors are
also linearly independent with each other. Hence, these solutions also represent the
best possible case which is obtained when the solutions are orthogonal with respect
to each other. Next, having a small step size tn (in this case 10−6) the construction
of the neighbors took place. Each neighbor solution is used to construct the matrix
F(x) as:

νi = x0 + tnvq, i = 1, · · · , r, (3.31)

where v1 refers to the r column vector taken from Q matrix.

Table 3.2 presents the number of function evaluations, and the number of iterations
needed to reach the tolerance tol adopted. In the table is also presented the number
of Jacobian matrices that the DS method requires.

Parameter
DS DDS

- r = 5 r = 10 r = 15 r = 20 r = 25

Function evaluations 100 + 10J(x) 2130 1921 1617 1709 1641

No. of iterations 10 217 129 82 69 55

Table 3.2: Results from comparing DS and DDS.

Cinvestav Departamento de Computación

32 Chapter 3

From the results presented in Table 3.2, it can be pointed out that when the value
of r increases, the number of function evaluations is significantly reduced, and also
the number of iterations of the algorithm is decreased. Hence, the main problem with
the use of the DDS is to try to define the maximal number of neighbors that is allowed
to take from an EA. To calculate the results, the exact gradient of the function was
used, but in order to allow a fair comparison of both algorithms Table 3.3 presents
the function evaluations required in order to approximate the Jacobian matrix by
two state-of-the-art methods. The first method presented is finite differences, and
the other approximation is calculated by using automatic differentiation [Rall, 1981]
approach.

Algorithm Function Evaluations

DS(Finite differences) 2000

DS(Automatic Differentiation) 100

Table 3.3: Comparision of the gradient approximations.

In Figures 3.3-3.8 the graphical results obtained from this experiment are pre-
sented. From the graphical results, it is possible to state that the behavior of the
DDS in comparison to the DS becomes the same as long as the r value increases.
Also, it is important to remark that the DDS performs “bigger” steps when the value
of r is incremented. Here, it is important to investigate the possible balance that
exists between the value of r and the convergence rate, because it is possible that
a better choice of the direction d can greatly increment the convergence rate of the
algorithm. Finally, it is possible to confirm that the selection of the neighbors of the
DDS is not a trivial task, and the selection must be reviewed when a new model is
presented in order to be solved.

Cinvestav Departamento de Computación

The Discrete Directed Search method 33

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

f
1

f 2

PF
DS

F(x0)

Figure 3.3: Results for the DS method.

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

f
1

f 2

PF
DDS r = 5

F(x0)

Figure 3.4: Results for the DDS method with r = 5.

Cinvestav Departamento de Computación

34 Chapter 3

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

f
1

f 2

PF
DDS r = 10

F(x0)

Figure 3.5: Results for the DDS method with r = 10.

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

f
1

f 2

PF
DDS r = 15

F(x0)

Figure 3.6: Results for the DDS method with r = 15.

Cinvestav Departamento de Computación

The Discrete Directed Search method 35

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

f
1

f 2

PF
DDS r = 20

F(x0)

Figure 3.7: Results for the DDS method with r = 20.

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

f
1

f 2

PF
DDS r = 25

F(x0)

Figure 3.8: Results for the DDS method with r = 25.

Cinvestav Departamento de Computación

36 Chapter 3

Cinvestav Departamento de Computación

Chapter 4

Integrating the DDS into MOEAs

As mentioned in Chapter 2, the main idea behind the memetic algorithms (MA) is to
try to improve the approximations obtained by the MOEA by the use of local search
techniques. To make an approximation of the PF that is well distributed along the
front certainly is not an easy task. Generally, the function evaluations required by
an average MOEA significantly increases as the problem becomes complicated.

It is important to remark that in general to find the right balance between the
local search technique and the evolutionary operators of a memetic algorithm is not
a trivial task . Hence, an “incorrect” choice of the design parameters could lead to
worse results than the ones obtained by the MOEA used as a standalone algorithm.

4.1 Design parameters of the MAs

Along with the common parameters of a MOEA, there exist other design parameters
in MAs that must be considered, e.g. which individuals must be selected in order to
be improved by the local search operator. If the local search is applied too early in
the MOEA, it is possible that a waste of resources is presented because some of the
individuals selected for the local search can not pass the selection mechanism and
they will be discarded in the next generation of the algorithm.

Figure 4.1 shows the effect explained above. Having a randomly selected indi-
vidual I1, a local search technique is performed and the I ′1 individual is created by
it. Considering that the individuals are selected by Pareto dominance and only five
individuals are chosen from the whole population, it is shown that only the set of in-
dividuals that exist inside the region B will be selected in the next generation. Here,
the I ′1 do not accomplish the minimum requirements to survive the selection and the
local search can be considered as a waste of function evaluations, and even a waste
of computational resources.

Thus, the ideal behavior of an individual that was affected by the local search is

37

38 Chapter 4

f1

f2

I1'

I1

B

Figure 4.1: Worst case scenario for the application of a local search technique.

that it survives the selection in order to generate children in the following generation.
Hence, if the local search leads to a solution near to the PF, there is a great proba-
bility that the children generated exist in the neighborhood of the original solution.
Based on this behavior, it is expected that the convergence rate will be significantly
increased due to the local search. Another possible advantage that comes from a
local search operator is shown when the individuals are near to the PF. At this point,
the convergence rate becomes significantly slower for the evolutionary operators in
comparison with the individuals that exist far away from the PF. In this case, a lo-
cal search technique can be used in order to reach some space that cannot be easily
reached by the evolutionary operators.

In Figure 4.2 the individual A is affected by the local search operator leading to
the individual A′. Since almost all the population resides near the PF, the improve-
ment that comes from the evolutionary operators can be smaller. In the figure, the
individuals B and C are the ones generated by these operators. On the other hand
the individuals B′ and C ′ are the ones generated from A′ and it is expected that these
solutions dominate both A and B. The behavior described above can only take place
if the cost of the local search operator is significantly less than the one from the main
evolutionary operators. At this point the main goal of the DDS is to take advantage
of the information that already exists in the population.

Cinvestav Departamento de Computación

Integrating the DDS into MOEAs 39

f1

f2

A

B

C

A'

B'

C'

PF

EA Individuals

MA Individuals

Figure 4.2: Local search improves the solutions near the PF.

4.2 DDS method as local searcher within a MOEA.

In some of the state-of-the-art algorithms, gradient information is used in order to
perform a descent local search. The individuals obtained in this type of local search
are expected to exist inside the descent cones of the functions [Lara et al., 2010],
[Brown and Smith, 2005]. The descent cone represents the set of directions in which
an improvement according to all objectives is possible.

It is known that the size of the descent cone depends on the directions that the
objectives gradients are pointed at. When a solution x0 is far enough from the PF, it
is assumed that the gradients are almost aligned and the descent cone is almost equal
to a half space. But, as long as the solution is getting closer to the PF, the gradients of
the objectives are pointing in different directions and the cone starts reducing its size.

As an important feature to consider is that the DS/DDS can not only perform a
movement following the descent cone. Instead, these methods can perform a move-
ment in any of the 2k directional cones by only changing the components of direction
d. Figure 4.3 shows that changing the sign of one or more components of the direction
vector d leads to the directions di, i = 1, . . . , 4. Using these directions it is possible for
the DS/DDS method to visit any of the directional cones by calculating the direction
in parameter space νi, i = 1, · · · , 4.

The next issue to take into consideration is which individuals of the population
can be used to construct the matrix F(x). As mentioned in Chapter 3 such solutions

Cinvestav Departamento de Computación

40 Chapter 4

F(x0)

f1

f2

x1

x2

()-1
-1

d1 =

descent {-,-}

ascent {+,+}

()-1
 1

d4 =

diversity {+,-}

() 1
-1

d2 =

() 1
-1

d2 =

diversity {-,+}

diversity {-,+}

ascent {+,+}

descent {-,-}

diversity {+,-}

x0
ν1

ν4

ν2

ν3

Figure 4.3: Relation between the descent cones and the direction d.

must accomplish certain conditions, in order to consider them as good candidates for
the DDS method. The selection of the individuals that are going to take part in the
DDS is not a trivial task and generally depends on the problem and the MOEA under
consideration.

It is necessary to pay attention to the selection step of the algorithm because if
random solutions are taken from the population perhaps a bad approximation of the
gradient will be constructed and hence the DDS method can not obtain a solution as
“good” as expected.

At this point it is possible to compare the approximation obtained with the DDS
method with respect to the finite differences method. Here, the approximation of
the finite differences approach by the use of information that is already present in
the population is not possible, i.e., using a biobjective MOP with n = 30, it would
be necessary to take around 60 individuals of the population to generate a “free”
approximation of the Jacobian, but for the DDS, having r = 2 would be the minimal
condition to generate a search direction ν.

The DDS method can save even more function evaluations by using two possible
options. In Chapter 3, in page 28, it was mentioned that the step size uses a corrector
step in order to follow the direction d. But, in case of using an EA, it is not strictly
necessary to perform such a movement because it is not critical for the local operator
to perform a restricted line movement, so it is possible to afford a small error in the
direction. By this, the value of β is increased such that an admissible error can be
used, e.g. β = 0.5, and also the correction step was eliminated in the implementation

Cinvestav Departamento de Computación

Integrating the DDS into MOEAs 41

of the MA.

4.3 NSGA-II/DDS

NSGA-II (see Chapter 2 in page 14), is a widely used algorithm to solve MOPs. The
main advantage in taking this algorithm as a base line for our MA, is that in the
NSGA-II it is possible to know for “free” which individuals of the population are non
dominated at each generation.

Another point in favor of the NSGA-II is that it creates many sets of individuals at
each generation. Each set of individuals is constructed by applying the evolutionary
operators over the current population. At the end all the sets are coupled together
before the selection mechanism is applied in order to generate the next generation of
individuals. The main idea for the MA is to generate a new subpopulation Li and
merge it with the other subpopulations as described above. Next, because all sub-
populations are merged into a single population, the selection mechanism is applied
to all individuals no matter how many subpopulations were created in previous steps.
It is desirable that the local search is applied before the evolutionary operators have
taken place. This process is described in Algorithm 7.

Algorithm 7 Pseudocode of the NSGA-II/DDS

Input: number of generations G, number of individuals N
Output: final population PG

1: Randomly generate the population P0

2: Calculate F (P0)
3: Apply genetic operators in P0 to generate Q0

4: Set R0 = ∅
5: i = 0
6: while i < G do
7: Apply the DDS on Ri and generate Li
8: Set Ri = Pi ∪Qi ∪ Li
9: Calculate the rank value of Ri

10: Calculate the crowding distance of Ri

11: Select the N individuals with the lowest rank and highest crowding distance
(Pi).

12: Apply genetic operators in Pi to generate Qi

13: Set i = i+ 1
14: end while

Finally when the proper time to apply the local search inside the MA is already
defined, the selection of the individuals to apply the local search is the next step in the

Cinvestav Departamento de Computación

42 Chapter 4

analysis. As mentioned before, the NSGA-II sorts the whole population into so-called
“fronts” using the rank value of each individual, so it can be an option to take the
individuals with the lowest rank value among all the population. Such individuals
have a high probability to survive the selection process and it can be assumed that
this individuals will attract the rest of the population, leading to an increment in the
convergence rate.

4.3.1 Numerical Results for NSGA-II/DDS

As discussed before the application of the local search operator also depends on
the kind of problem that is going to be solved. In this section the ZDT1 problem
[Zitzler et al., 2000] was used in order to test the new memetic algorithm. The main
goal of this experiment is to observe how the individuals inside a MOEA are affected
after local search is applied to some of them.

For this experiment the local search operator was applied to the individuals that
have a rank value equal to 1. It is expected that the solutions with lower rank value
can survive selection and, therefore, can pass the information through recombination.

Finally, the last important point to be resolved is the use of the neighborhood
information. Hence, a simple approach can help in the selection of the individuals
that exist near a certain solution x0. For each solution x0 choose elements xi from
the current population such that ‖xi − x0‖2 ≤ ε, where ε is a problem dependent
threshold. Then, the individuals with the smallest norm are selected as the neighbors
of x0. Graphically in Figure 4.4 it can be observed that this method pretends to form
a neighborhood N around the solution x0. The parameters used for the experiment
are described in Table 4.1. In order to maintain a fair experiment, a fixed num-
ber of evaluations was used for both algorithms. The goal for this experiment is to
demonstrate the improvement of the rate of convergence, and thus, a small number
of function evaluations was selected.

In the particular case of the ZDT1 problem, the NSGA-II can converge to the PF
in less than 10000 function evaluations. So a 10% of the total number of function
evaluations required to approximate the PF was used in order to observe the behavior
of the algorithm while it has not yet reached the set of interest.

In order to approximate the same behavior that DDS presents as a standalone
algorithm, the direction d is set with the same value as the one defined in the exper-
iments performed in Chapter 3, i.e.:

d = (− 1√
2
,− 1√

2
) (4.1)

In order to obtain a fair competition, the memetic algorithm and the NSGA-II
standalone algorithm performed over 30 independent runs, using the same random

Cinvestav Departamento de Computación

Integrating the DDS into MOEAs 43

x1

x2

x0

N

Figure 4.4: Neighborhood used in NSGA-II/DDS.

Identifier Value Description

n 30 Number of decision variables

N 100 Number of individuals

Emax 2000 Maximum number of function evaluations

r 7 Number of neighbors for DDS

Pc 0.95 Crossover probability

Pm 0.0333 Mutation probability

gl 20 Frequency of generation to apply the DDS

Nl 3 Individuals affected by DDS

Table 4.1: Parameters for the NSGA-II /DDS

seed in both algorithms. Four metrics were measured to compare the performance of
the algorithms: the Inverted Generational Distance (IGD), the Generational Distance
(GD), the ∆p indicator and finally the hypervolume.

The statistics can be seen in Table 4.2, and from the results it is clear that even
when the NSGA-II has the minimum values in IGD and in the GD indicators, the
memetic algorithm, in the mean, produces better results with respect to spread and

Cinvestav Departamento de Computación

44 Chapter 4

the convergence rate.

As the first experiment using the DDS inside a MOEA, DDS has demonstrated
that at least for the ZDT1 problem it can increase the convergence rate of the algo-
rithm. These results can be used in order to discuss an idea about the values of the
main parameters of the MA, e.g. the size of the neighborhood and the number of
individuals that must be affected.

Statistic Algorithm
Indicators

IGD GD ∆p Hypervolume

Mean
NSGA-II 0.2277816835 0.1923195486 0.2326735132 0.9328004813

NSGA-II/DDS 0.1782101893 0.1594371667 0.1891265487 0.946121494

Min
NSGA-II 0.0894245635 0.1065269724 0.1091867267 0.8860861093

NSGA-II/DDS 0.0885838994 0.0751261388 0.1153974934 0.9071797267

Max
NSGA-II 0.398520959 0.2801037669 0.398520959 0.9764002544

NSGA-II/DDS 0.2639838353 0.2769408556 0.2769408556 0.9829203408

Median
NSGA-II 0.2254322047 0.1909437101 0.2324421287 0.9354864752

NSGA-II/DDS 0.1718001804 0.1506737425 0.1757497566 0.9422848267

Table 4.2: Results for the NSGA-II /DDS

Figure 4.5 presents the best approximations obtained by the algorithms when
the ∆p indicator is measured. Here, it is important to mention that for this par-
ticular case, both approximations were obtained with the same seed value. Hence,
graphically it is shown that the evolutionary operators win against the local search
operator, such that the approximation obtained by the standalone algorithm has a
better spread and better convergence rate than the one obtained by the MA. It is
possible, however, that this behavior can be changed by fine tuning the parameters
of the MA.

The worst cases are presented in Figure 4.6. Graphically it can be seen that the
NSGA-II/DDS presents better convergence rate than that for the NSGA-II. In most
of the experiments this type of behavior is repeated, and the MA wins in the average.

This experiment confirms that when there exists a proper choice of the parameters
that control the memetic algorithm, the convergence rate is increased. The parame-

Cinvestav Departamento de Computación

Integrating the DDS into MOEAs 45

ters used in the NSGA-II can be used as a starting point for the implementation of
other memetic algorithms.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

f
1

f 2

NSGA−II
PF

(a) NSGA-II

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f
1

f 2

NSGA−II/DDS
PF

(b) NSGA-II/DDS

Figure 4.5: Best runs for the algorithms on the ZDT1 problem.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

f
1

f 2

NSGA−II
PF

(a) NSGA-II

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f
1

f 2

NSGA−II/DDS
PF

(b) NSGA-II/DDS

Figure 4.6: Worst runs for the algorithms on ZDT1 function.

Cinvestav Departamento de Computación

46 Chapter 4

4.4 MOEA/D/DDS

After the CEC’09 competition, the MOEA/D algorithm has become one of the most
important algorithms used to solve MOPs that exist in the state-of-the-art. As de-
scribed in Section 2, it decomposes the MOP into several scalar subproblems and
solves them simultaneously. Since the algorithm solves simultaneously all the sub-
problems, one can expect that by affecting a subset of solutions, in the long run,
the other solutions that keep interactions with its neighbors can also be affected by
interchanging information in order to improve themselves.

In MOEA/D the neighbors of one solution are explicitly stored in an array. This
detail could be interesting to exploit because such information can be taken in order
to integrate the DDS method. Further, this idea could help the selection of the neigh-
borhood of the solution. It is important to remark that MOEA/D takes as neighbors
the solutions that have weights close to the weight that is associated to the current
individual.

In order to use the DDS algorithm a direction d is needed. In particular, for this
method, a “reference” point was used. Here, the zero vector

−→
0 ∈ Rk was set as

the reference point. Using this reference point the algorithm will try to spread the
solutions when the MOEA/D is approaching to the PF. Hence, for each individual
x0 in the population it is possible to define the direction d using a reference point z:

d = z −
F (x0)

‖F (x0)‖2
(4.2)

The DDS was located before the evolutionary operators have taken place, in other
words, the local search technique could only be applied to new individuals. In order
to let the MOEA/D perform its own global search, the DDS technique was only ap-
plied after every g generations.

Unlike in the NSGA-II in the MOEA/D there does not exist a mechanism that
remarks which individuals are non-dominated. So in this case the DDS is applied to
individuals that are randomly selected. Algorithm 8 defines how the MA was devel-
oped. Here, the frequency kls defines in which generation the local search is going to
be applied. Also, the parameter hls is presented. This parameter is used to restrict
the local search to certain number of individuals in the population.

Cinvestav Departamento de Computación

Integrating the DDS into MOEAs 47

Algorithm 8 Pseudocode of the MOEA/D/DDS.

1: Set the weight vectors λi.
2: Set the neighborhoods B(i) = i1, . . . , iT .
3: Generate initial population P0.
4: Set reference point z .
5: Set the external population EP = ∅.
6: Set g = 1.
7: repeat
8: for i = 1, . . . , N do
9: Select two indexes k, l from B(i).

10: Generate yi using genetic operators over xk, xl .
11: Generate y′i using the subproblem improvement heuristic on yi .
12: if mod(g, kls) = 0 and mod(i, hls) = 0 then
13: Generate y′′i appliying DDS on y′i.
14: Set y′i = y′′i .
15: end if
16: Update reference point z∗.
17: Remove from EP all the vectors dominated by yI .
18: Add yi if no vectors in EP dominates it.
19: end for
20: Set g = g + 1
21: until Stopping criterion is satisfied
22: Report Ep

4.4.1 Numerical results

Since MOEAD/D is the selected algorithm for this experiment it is reasonable to test
the MA with the problems included in the CEC’09 contest benchmark [Zhang et al., 2009b].
In these experiments an adapted version of MOEA/D proposed by [Zhang et al., 2009a]
was used. This specific version uses a utility function πi in order to distribute the
subproblems.

The original DS algorithm was developed to work only with unconstrained prob-
lems. It is worth nothing, however, that there were some problems with some of the
CEC’09 functions. The main problem consists in that sometimes after the DDS per-
formed the iterations some of the values of x vector go outside of the allowable range
and make the algorithm to reach some unfeasible results. So, it becomes necessary
to implement some mechanism that bounds the limits of the variables.

In order to restrict the DDS to stay inside the bounds of the variables, a new
stopping criterion was added to the original algorithm. When the generated solution
overpasses the limits of the variables, the step size is reduced in order to fit such
restrictions until all variables remains in its feasible region.

Cinvestav Departamento de Computación

48 Chapter 4

In these experiments the algorithm was run 30 times for each of the test problems.
These runs were performed by using the Tchebycheff and NBI decompositions of the
MOEA/D (30 iteration for each decomposition). Table 4.3 shows the parameters
used in the runs. Here, in order to compare the results four metrics were used: hy-
pervolume, Inverted Generational Distance (IGD), Generational Distance (GD) and
∆p. In the MA, the local search was performed using the DDS method and also the
DS method in order to compare both algorithms.

Identifier Value Description

n 30 Number of parameters

N 300 Number of subproblems

NEP 100 Size of external population

G 50000 Max number of function evaluations

r 7 Number of neighbors for DDS

Pm 1/n Mutation probability

gl 15 Frequency of generation to apply the DDS

Nl 10 Individuals affected by DDS

Table 4.3: Parameters for the MOEA/D/DDS

In Tables 4.4, 4.5, 4.6 and 4.7, the average values of the indicators obtained after
30 runs that were obtained by applying the algorithm over the test functions UF1-
UF7 are presented. Hence, the letters in brackets represent the decomposition used
in the algorithm, e.g. TD refers to Tchebycheff decomposition.

It is visible that the results from the DDS are very promising. The memetic al-
gorithm with the DDS presents better ∆p results on four of the seven problems that
were tested. Here, each of the gradients of the DS method uses the function evalua-
tions defined in the automatic differentiation approach (5k).

For the particular case of the UF2 the MA presents a worse performance in com-
parison with the standalone MOEA/D because for this particular function the con-
vergence of the algorithms in almost all the parts of the PF, takes place at the earliest
generations (around g = 100). When the DDS method tries to point to the PF to a
solution that is already “near”, this can be considered as a waste of resources, so it
would be interesting to find a method that allows the algorithm to detect the parts of
the PF that really need to apply the local search technique in order to approximate

Cinvestav Departamento de Computación

Integrating the DDS into MOEAs 49

to the PF.

From Table 4.7 it is possible to conclude that the expected behavior for the DDS
has been accomplished. Here, it is possible to affirm that the hypervolume value is
incremented because the solutions slightly reduce their distance to the original PF.
As mentioned above, the results of the local search techniques can be affected by the
choice of reference point, so in a future work a direction d (in Equation (4.2)) that
also helps the good spreading of the solutions can be stated.

In general from the numerical results of these experiments it is possible to see that
the DDS increases the performance of the MOEA, but in some cases the increment
in the convergence rate can lead to solutions that converge to a certain region of the
PF, e.g in function UF2 and the DDS.

IGD

Function
Algorithm

MOEA/D(NBI) MOEA/D(TD) MOEA/D/DS(TD) MOEA/D/DDS(TD)

UF1 0.0572622262 0.0347917234 0.0260356595 0.0143866214

UF2 0.1252927650 0.0208602479 0.0199435559 0.0238102230

UF3 0.2634246836 0.0919392204 0.0813866009 0.0287657808

UF4 0.0764105874 0.0787618084 0.080434227 0.1242333148

UF5 0.7158476404 0.7553129089 0.7842737725 0.7279528880

UF6 0.4768850725 0.2886370163 0.2989744918 0.2778251599

UF7 0.1235368942 0.0267808352 0.0275765137 0.0129843756

Table 4.4: Results for the IGD indicator in problems UF1-UF7.

Cinvestav Departamento de Computación

50 Chapter 4

GD

Function
Algorithm

MOEA/D(NBI) MOEA/D(TD) MOEA/D/DS(TD) MOEA/D/DDS(TD)

UF1 0.0138066143 0.0304481000 0.0237297276 0.0123029218

UF2 0.0021363890 0.0155243552 0.0114669723 0.0100961147

UF3 0.0255686142 0.0785433072 0.0636126413 0.0282090741

UF4 0.0747297508 0.0838012798 0.0851082982 0.0253206580

UF5 0.6012714682 0.8435331768 0.8807595923 0.7913894440

UF6 0.0782684283 0.1374295793 0.0.1402271371 0.1095751695

UF7 0.0076582949 0.0190092861 0.0141336054 0.0094960721

Table 4.5: Results for the GD indicator in problems UF1-UF7.

∆p

Function
Algorithm

MOEA/D(NBI) MOEA/D(TD) MOEA/D/DS(TD) MOEA/D/DDS(TD)

UF1 0.0572622262 0.0352910483 0.0267699625 0.0145801900

UF2 0.1252927650 0.0208602479 0.0199435559 0.0238102230

UF3 0.2634246836 0.0960016721 0.0854409444 0.0321980680

UF4 0.0767216658 0.0838012798 0.0851082982 0.1246050193

UF5 0.7339885104 0.8445128539 0.8807595923 0.8014984378

UF6 0.4802285764 0.3055477151 0.314770258 0.2970146178

UF7 0.1235368942 0.0276249002 0.0283612276 0.0131369537

Table 4.6: Results for the ∆p indicator in problems UF1-UF7.

Cinvestav Departamento de Computación

Integrating the DDS into MOEAs 51

Hypervolume

Function
Algorithm

MOEA/D(NBI) MOEA/D(TD) MOEA/D/DS(TD) MOEA/D/DDS(TD)

UF1 0.9339361501 0.9538326792 0.9599056217 0.9757925643

UF2 0.8915056434 0.9739430907 0.9741609691 0.9692053716

UF3 0.6832457349 0.8721615163 0.8825773787 0.9642096892

UF4 0.8770614516 0.8804023001 0.8782569225 0.8750131924

UF5 0.7542892280 0.7587095853 0.7540902708 0.7586473790

UF6 0.5912642076 0.6846642933 0.6721417613 0.6968876079

UF7 0.8968660617 0.9712112769 0.972680329 0.9818931461

Table 4.7: Results for the Hypervolume indicator in problems UF1-UF7.

Figures 4.7 to 4.13 present the best approximations obtained by the MOEA/D/DDS
and the MOEA/D. Graphically it can be observed the difference between the algo-
rithms is not significant in UF2 and UF5, where the memetic algorithm present lower
values for the indicators. Hence, in the best cases for the function UF4 the DDS helps
the algorithm to get closer to the PF in comparison to the standalone algorithm.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

PF
MOEA/D

a)MOEA/D

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF
MOEA/D/DDS

b)MOEA/D/DDS

Figure 4.7: Graphical results in problem UF1.

Cinvestav Departamento de Computación

52 Chapter 4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF
MOEA/D

a)MOEA/D

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF
MOEA/D/DDS

b)MOEA/D/DDS

Figure 4.8: Graphical results in problem UF2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

PF
MOEA/D

a)MOEA/D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

PF
MOEA/D/DDS

b)MOEA/D/DDS

Figure 4.9: Graphical results in problem UF3.

Cinvestav Departamento de Computación

Integrating the DDS into MOEAs 53

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF
MOEA/D

a)MOEA/D

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF
MOEA/D/DDS

b)MOEA/D/DDS

Figure 4.10: Graphical results in problem UF4.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

f
1

f 2

PF
MOEA/D

a)MOEA/D

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f
1

f 2

PF
MOEA/D/DDS

b)MOEA/D/DDS

Figure 4.11: Graphical results in problem UF5.

Cinvestav Departamento de Computación

54 Chapter 4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF
MOEA/D

a)MOEA/D

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF
MOEA/D/DDS

b)MOEA/D/DDS

Figure 4.12: Graphical results in problem UF6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF
MOEA/D

a)MOEA/D

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f

f 2

PF
MOEA/D/DDS

b)MOEA/D/DDS

Figure 4.13: Graphical results in problem UF7.

Cinvestav Departamento de Computación

Integrating the DDS into MOEAs 55

4.5 Decomposing the direction of the DDS

When the experiments with the MOEA/D were performed over the functions UF8-
UF10, the DDS algorithm did not present the results such that were expected as in
the previous section. Having the current solution in objective space F (x0) and the
objective value of the solution calculated by the local search F (xs), the 2-norm of
the difference between these two points was minimal (around 10−9) even when the
solutions are “far” from the PF.

After a step by step review over the original MA it was found that in the DDS the
improvement of the method was restricted because in most cases the step size of the
algorithm was reduced to a insignificant value (t ≈ 10−12). The main issue behind
the reduction of the step size was caused because one of the three direction points in
the opposite direction when the value of t is “normal” and by this the angle β (see
Chapter 3 in page 28) overpasses its threshold. Figure 4.14 illustrates the co-relation
between the sign of the components of the direction d and the length of the step size.
In Figure 4.14a a step size t1 (that can be considered small) is used to calculated
a new candidate solution that points in the same direction than d. Meanwhile, in
Figure 4.14b when a larger step size t2 is used (t2 � t1), the new solution presents
the component d3 in the opposite direction than d.

d

F(x0)

F(x0+t1ν)

d1

d2

d3

f1 f2

f3

(a) t1

d

F(x0)

F(x0+t2ν)
d1

d2

-d3

f1 f2

f3

(b) t2

Figure 4.14: Problem that occurs when using a large step size.

From the discussion above it was shown that it is preferable to take only two of
the three components of the direction d and use it to direct the movement in order
to help the DDS method to perform larger steps. But apriori in the end the local
search must find an improvement in all the objectives and not only in a subset of them.

Cinvestav Departamento de Computación

56 Chapter 4

The main goal of this approach is to generate many candidate solutions that steer
in a different subspace of direction d. Finally, all the candidate solutions are merged
in order to calculate a final solution, that increments the performance of the original
solution.

As explained above, many solutions are generated in the firsts steps of this al-
gorithm, and it is assumed that each of these solutions improves a subset of the
objectives functions, but at the end the algorithm must combine these solution into
a single one. In order to perform such an operation, the mutation operator proposed
in the Differential Evolution (DE) algorithm [Storn and Price, 1997] was used.

In the DE mutation operator the weighted difference between two vectors is taken
and added to a third vector. Figure 4.15 illustrates an example in a two dimensional
problem. Here, the difference of the x2 and x3 vectors helps x1 to get closer to the
optimal solution x∗.

x2

X2

X3
X1

x0

x1

x*

X2-X3

C(X2-X3)

Figure 4.15: Example of the DE mutation operator for a bi-objective problem.

Having xj, j = 1, · · · , 3 ∈ Rn, then a new candidate solution can be defined as:

v = x1 + C(x2 − x3), (4.3)

where C ∈ [0, 2] is a constant that controls the amplification rate of the differential
variation.

The first step to generate the three solutions required by the mutation operator,

Cinvestav Departamento de Computación

Integrating the DDS into MOEAs 57

is that the function F is decomposed into three different directions such that:

F = fd1 ∪ fd2 ∪ fd3

=

 fi
· · ·
fk1

 ∪
 fj
· · ·
fk2

 ∪
 fk
· · ·
fk3

, (4.4)

where fj represent the j entries of the function F .

Since the objective function was decomposed, the direction d used in the DS
algorithm is also separated into three new directions adopting the same j components
used for the decomposition of the objective function. Here, the new directions are
defined as:

d = dd1 ∪ dd2 ∪ dd3

=

 di
· · ·
dk1

 ∪
 dj
· · ·
dk2

 ∪
 dk
· · ·
dk3

. (4.5)

Having the decomposed directions, DDS can perform a steered movement (as
described in 3) in each of the new directions. Finally, after the DDS has completed
the line search, three solutions are generated xdj, j = 1 · · · , 3 and these solutions are
merged:

xi+1 = xd1 + C(xd2 − xd3). (4.6)

Using this new method the algorithm can performs a line search using “larger”
steps, and in the objective value F (xi+1) of the new calculated solution is expected
to exists in the neighborhood of F (xdj). In Figure 4.16 it is shown that the new
candidate solution xi+1 is located inside the neighborhoods of the three solutions xdj.
Here, the dotted circles represent the neighborhoods of each solution and the shaded
area symbolizes the neighbor where the new candidate solution is expected.

The main advantage of decomposing the direction d is that even when the value
k is increased the direction of the DS can be decomposed into three subspace ddj.
Further, in order to calculate the solutions xdj it is only needed a single approxima-
tion of the gradient. Algorithm 10 presents the pseudocode of the decomposition DDS.

Algorithm 9 Pseudocode of the decomposition DDS.

1: Calculate fdj as in (4.4).
2: Calculate ddj as in (4.5).
3: Generate xdj by applying the DDS.
4: Generate xi+1 as in (4.6).

Cinvestav Departamento de Computación

58 Chapter 4

f1

f2

f3

F(x0)

F(xd1)

F(xd2)

F(xd3)

Figure 4.16: Candidate solution expected in the neighborhood of the solutions xdj .

4.5.1 Numerical results for the decomposition DDS

In order to continue the previous experiments, the decomposition algorithm was tested
in the three objectives problems of the CEC’09 benchmark. Here, the algorithm was
run 30 times for each of the test problems, using two different decompositions, i.e.
Tchebycheff and NBI decompositions. Table 4.8 presents the parameters used in each
of the run of the algorithm.

Identifier Value Description

n 30 Number of decision variables

N 300 Number of subproblems

NEP 100 Size of external population

G 50000 Max number of function evaluations

r 7 Number of neighbors for DDS

Pm 1/n Mutation probability

gl 15 Frecuency of generation to apply the DDS

Nl 10 Individuals affected by DDS

C 0.7 Constant for DE mutation operator

Table 4.8: Parameters for the decomposition MOEA/D/DDS

Cinvestav Departamento de Computación

Integrating the DDS into MOEAs 59

The MOEA/D/DDS with a decomposed direction shows an increases in the per-
formance with respect to the original algorithm. The results from Tables 4.9 to 4.12,
show that the new algorithm increments the ∆p indicator in two of the three test
functions. As in the experiments of the previous section, the cost of the gradient
approximation in the DS was set in 5k. All the MAs obtain an increment in the
convergence rate and towards the end.

IGD

Algorithm
Problems

UF8 UF9 UF10

MOEAD(NBI) 0.0905479809 0.2204627194 1.0931730426

MOEAD(TD) 0.1030686364 0.1418144915 1.565850743

MOEAD/DS(TD) 0.1049478908 0.1507459676 1.6558603659

MOEAD/DDS(TD) 0.1011438193 0.1338730213 1.2965367009

MOEAD/DS(NBI) 0.0848439888 0.2490652369 1.0024615247

MOEAD/DDS(NBI) 0.0876753754 0.2350480389 0.9753865032

Table 4.9: Results for the IGD indicator for problems UF8-UF10.

Figures 4.17 to 4.19 illustrate the comparison among the best solutions found with
the Tchebycheff decomposition. From the pictures it is clear that even when the DDS
shows a good approximation in problem UF9, in the average cases the solutions were
attracted to the reference point z that for this particular experiment was chosen as
the zero vector. Hence, all the solutions are concentrated in the middle part of the
objective space, and the approximation loses its spread along the PF.

Cinvestav Departamento de Computación

60 Chapter 4

GD

Algorithm
Problems

UF8 UF9 UF10

MOEAD(NBI) 0.0516827256 0.0807498948 1.2717375658

MOEAD(TD) 0.3805004696 0.7176044379 2.5226477893

MOEAD/DS(TD) 0.4853651901 0.8267701070 2.6729793238

MOEAD/DDS(TD) 0.2977168144 0.6800938809 2.4076450278

MOEAD/DDS(NBI) 0.0462688125 0.0710153193 1.083548091

MOEAD/DDS(NBI) 0.0475805638 0.0760597811 1.0272677578

Table 4.10: Results for the GD indicator for problems UF8-UF10.

∆p

Algorithm
Problems

UF8 UF9 UF10

MOEAD(NBI) 0.0910747238 0.2204627194 1.2742476511

MOEAD(TD) 0.3835674553 0.7176044379 2.5226477893

MOEAD/DS(TD) 0.4859597077 0.8267701070 2.6729793238

MOEAD/DDS(TD) 0.3043166328 0.6800938809 2.4076450278

MOEAD/DDS(NBI) 0.0850173032 0.2490652369 1.1169212468

MOEAD/DDS(NBI) 0.0876753754 0.2350480389 1.0586193275

Table 4.11: Results for the ∆p indicator for problems UF8-UF10.

Cinvestav Departamento de Computación

Integrating the DDS into MOEAs 61

Hypervolume

Algorithm
Problems

UF8 UF9 UF10

MOEAD(NBI) 0.996156917 0.9767867371 0.8571690877

MOEAD(TD) 0.9983952876 0.9968842351 0.8820561865

MOEAD/DS(TD) 0.9983183730 0.9968600779 0.8758373866

MOEAD/DDS(TD) 0.9984354931 0.9971625358 0.8838777544

MOEAD/DDS(NBI) 0.9964002215 0.9721411587 0.8633398313

MOEAD/DDS(NBI) 0.9962463045 0.9748012254 0.8584407906

Table 4.12: Results for the hypervolume indicator for problems UF8-UF10.

f 3

0

0.5

1

1.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
2

f
1

PF
MOEA/D

a)MOEA/D

0

0.5

1

1.5
0

0.5
1

1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
2

f
1

f 3

PF
MOEA/D/DDS

b)MOEA/D/DDS

Figure 4.17: Graphical results in problem UF8.

Cinvestav Departamento de Computación

62 Chapter 4

0

0.5

1 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

f
2

f
1

f 3

PF
MOEA/D

1

a)MOEA/D

0

0.5

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

f
2f

1

f 3

PF
MOEA/D/DDS

b)MOEA/D/DDS

Figure 4.18: Graphical results in problem UF9.

2

0
0.5

1
1.5

2 0

0.5

1

1.50

0.5

1

1.5

2

2.5

f
1

f 3

PF
MOEA/D

3

f

a)MOEA/D

0
1

2
3

4
5 0

2
4

60

0.5

1

1.5

2

2.5

3

3.5

4

2
f
1

f 3

PF
MOEA/D/DDS

f

4.5

b)MOEA/D/DDS

Figure 4.19: Graphical results in problem UF10.

Cinvestav Departamento de Computación

Chapter 5

Integration of DS into
Multiobjective Control Problems

As mentioned before the movement in the objective space that the DS can perform is
not restricted to only the descent directions of the objective functions. Sometimes in
multiobjective control problems (MOCPs) this feature can be used in order to develop
a controller that helps the system to move from a certain region in objective space to
another, in order to adjust the parameters in the system.

The DS also can be used to follow a certain path in the conditions of the system,
e.g. make the system to preserve certain trajectory in objective space such that it
does not overpass any of the restrictions of the system. In this section, the features
described above are used in two possible applications of the DS into some particular
MOCP.

5.1 Application of DS to deteriorated MOCP

Control processes are generally affected by external parameters that deteriorates the
parameters of the system, leading to values that get worse as time goes by. Perhaps
the most promising idea is to replace the deteriorated parts of the model such that
the system returns to an “ideal” state, but in the real world this could lead to a waste
of money and, in some cases, a waste of time as well.

Here, the incorporation of a controller procedure could not provide the same re-
sults as in the ideal case, but it could at least approximate those results, with the
advantage that neither of the parts are replaced.

In this section, an alternative to the replacement of the parts is presented togheter
with a the proposal that uses the DS method as a controller algorithm inside a MOCP.
The main idea of these experiments resides in demonstrating that the DS can actu-

63

64 Chapter 5

ally respond to the effect of deterioration of certain parameters. Also, the DS must
demonstrate that is possible to return the objective values almost to their original
values with a low computational cost.

Figure 5.1 presents a general active control schema used in order to manipulate
a multiobjective control problem, which was presented by Avigad and Eisenstadt
[Avigad and Eisenstadt, 2010]. Having two parameters x, y ∈ R, the controller mea-
sures the error e = ‖F ∗(x)− F (x)‖ where F ∗ represents the optimal value that the
objectives take before the deterioration is applied, and F represents the current value
of the objectives. The controller can only adjust the values of y in the system while
the values of x are deteriorated in time.

Controller
Objective
Functions

e = || F*(x,y) -F(x,y)||

F*(x,y)

x

y F(x,y)

Figure 5.1: Active control scheme.

For this system it is possible to define that the main idea behind the deterioration
problems is to minimize the error through the time. Further, the error can be defined
as:

e =

∫ t

0

‖F ∗(x)− F (x0)‖ (5.1)

Having y0 which represents the value of y after the deterioration, Avigad and
Eisenstadt proposed a proportional controller such that at each time the value of y
is defined as:

y = y0 + kce (5.2)

where e is defined as in Equation (5.1), and kc is the proportional controller gain.

In order to calculate the kc value, Avigad and Eisenstadt proposed to use the
NSGA-II. It is clear that some computational resources can be saved by directly

Cinvestav Departamento de Computación

Integration of DS into Multiobjective Control Problems 65

reaching the point in the objective space that has the least error e.

As mentioned before the main task that the DS must resolve is to control the vari-
ables in the system in order to stay as close as possible from the “optimal” condition
that was present before deterioration starts. In terms of time, each period T some
of the variables are deteriorated by a certain rate. This happens when the DS must
manipulate the other variables of the system in oder to minimize the error of the
Equation (5.1). Here, some modifications to the original algorithm of the DS must
be performed in order to work with this type of problems.

Having an initial optimal solution x0 the direction ν is calculated as in Equation
(2.17) in page 19, but in particular the j entries of ν are set to zero, in order to simulate
the behavior of the deteriorated variables. Then the system can be reformulated as:

ν =

ν1
ν2
0
0
· · ·
νn

 =

 J1,1 J1,2 0 0 · · · J1,n
...

Jk,1 Jk,2 0 0 · · · Jk,n

 d1

...
dk

 , (5.3)

where the j columns of the gradient are also set to zero.

In particular for this problem, it is important to discuss two more features for
the algorithm: the direction d and the stopping criterion. When the system does not
present deterioration it is possible to obtain the optimal objective value of a point
by f ∗ = F (x∗). After the time t, the point f ∗ is moved away from the PF, and it
becomes a new point x0 = x∗ +DtT and its image is f0 = F (x0), where Dt refers to
deterioration factor. Here, the direction d can be defined as:

d =
f ∗ − f 2

‖f ∗ − f 2‖
(5.4)

In previous application of the DS method, the condition number was used as a
stopping criterion, but here it is not possible to measure how close the current solu-
tion is from the optimal solution by using such criterion. Hence, the algorithm must
stop when the error of Equation (5.1) overpasses a threshold ε ∈ R. The pseudocode
in Algorithm 10 illustrates all the modifications that were introduced in order to use
the DS as a controller.

Cinvestav Departamento de Computación

66 Chapter 5

Algorithm 10 Pseudocode of DS in deterioration control problems.
Input: x∗, x0
Output: xi

1: calculate the error e as in Equation (5.1)
2: set xi = x0
3: while e ≥ ε do
4: calculate direction d as in Equation (5.4)
5: calculate the gradient of the function J(x0)
6: set to zero the column vectors that correspond to the deteriorated variables
7: calculate ν = J(x)+d
8: set the elements of ν to zero, which corresponds to the deteriorated variables
9: calculate the step size t

10: set xi = xi + tν
11: calculate the error e as in Equation (5.1)
12: end while
13: return t

5.1.1 Numerical results for DS in decomposition control prob-
lems

The first experiment for the controller algorithm used to test the newly developed al-
gorithm takes the test function used in [Avigad and Eisenstadt, 2010]. This function
was selected in order to demonstrate that the DS method can save computational
resources in comparison with the method that uses the NSGA-II as its baseline ap-
proach. The problem presents a simple bi-objective function described as:

F (x) =

(
x1
x2

x1x2

)
(5.5)

where x ∈ R2, and x1 is deteriorated in time T by the rate x1 = x1 + 1.2T .

In Figure 5.2, we show the results obtained by running the algorithm for a time
T = [0, 5]. In Figure 5.2b, the PF is represented by * symbols. A random point in
the PF is selected, and the squares represent how the selected points get deteriorated
through the time T (it is represented by a square). Since in this part of the experi-
ment there does not exist a controller the deterioration significantly affects the initial
solution.

Figure 5.2b presents the behavior of the DS method. Here, the DS method can
perform a correction step over the points that were previously deteriorated, leading
to the solutions that are supposed to be closest to the original solution (represented
by circles). It is important to mention that it is not possible to get closer to the
original solution because only one of the two parameters was varying with the DDS,

Cinvestav Departamento de Computación

Integration of DS into Multiobjective Control Problems 67

while the other parameter was constant.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

f
1

f 2

PF
Initial Points
Corrected points
Selected point

(a) Results using the controller.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

f
1

f 2

PF
Deteriorate Point
Selected point

(b) Results without the controller.

Figure 5.2: Graphical results from the deterioration on Avigad’s function.

For the next experiment a model with more complexity is introduced. Taking the
bi-objective function proposed in [Köppen and Yoshida, 2007]:

F : R15 → R2

fi(x) = ‖x− ai‖22, i = 1, 2,
(5.6)

where a1 = (1, . . . , 1)T , a2 = (−1, . . . ,−1)T ∈ R15. Next, xj, j = 1, · · · , 3 are deterio-
rated by the coefficient x = x− 0.3T .

We strat by taking the Pareto optimal solutions of the problem. As in the previ-
ous experiment, one solution is picked at random in order to demonstrate the impact
of the controller based on the DS.

Figure 5.3a presents the correction steps performed by the DS in order to return
the deteriorated solution to the value before deterioration. On the other hand, Figure
5.3b illustrates the deteriorated solution after five periods of time (T = 5), in this
case there do not exist a correction step.

Finally, it is possible to observe that even in a problem with many parameters
deteriorated at the same time, the DS method can return closest to the original
optimal value in a considerably low number of function evaluations. Maybe this
could lead to a faster response when it is compared with MOEAs. Table 5.1 presents
the number of function evaluations along with the number of Jacobian matrices used
at each time T ;

Cinvestav Departamento de Computación

68 Chapter 5

T Number of function evaluations Number of Jacobians

1 10 61

2 19 70

3 12 63

4 4 55

5 2 52

Table 5.1: Statistics of the function calls for the quadratic deterioration problem.

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

f
1

f 2

PF
Deteriorated Points

Corrected Points

Selected point

(a) Results using the controller.

0 20 40 60 80 100

0

10

20

30

40

50

60

f
1

f 2

PF
Deteriorated Points
Selected point

(b) Results without the controller.

Figure 5.3: Graphical results from the deterioration on the modified quadratic func-
tion.

5.2 The DS method in constrained MOCP

In some of the MOCP sometimes it is desirable to move from one point to another
point in objective space, but it is possible that between points there exists an infea-
sible region that must be avoided.

Let’s assume that the initial and final points A,B ∈ Rk are given. In general, it
is an “easy” task for the DS to perform such a movement for an unconstrained MOP,
but when a constraint is added then the problem can not be treated in the same way.
In this kind of problems the active constraints do not allow to perform a straight
movement along the objective space in order to reach the point B.

Cinvestav Departamento de Computación

Integration of DS into Multiobjective Control Problems 69

When a problem contains one or more constraints, the algorithm must be changed
in order to adapt to the new system. First, it is desirable that the DS performs a
straight movement until one or more constraints become active. Next, in order to
avoid such constraints, a side step along the constraints could be performed in order
to get closer to the point B. Finally when the constraints are avoided, the DS again
must perform a straight movement in order to reach the final point.

Having a constrained MOP that only has inequality constraints:

min (f1, f2, ..., fk).
gj(x) ≤ 0, 0 ≤ j ≤ m

(5.7)

As described above, at the beginning, it is desirable to try to perform a straight
like movement in order to reach the point B. In order to do this, it is possible to use
the direction d = B − A until one or more constraints can be considered as active.
Since it is not easy to determinate when one or more constraints become active, a
threshold ε is introduced as an indicator. When the ε value is overpassed for a con-
straint, such a constraint is then considered as active.

Once one or more constraint become active, the next step is to perform a side
step along the constraint in order to avoid them. This can be done by adding the
constraints considered active to the system formulated in the Equation (5.7) such
that the system can be rewritten as:

min (f1, f2, ..., fk, g1(x), g2(x), ..., gi(x)). (5.8)

Having the new system of Equation (5.8), it is possible to generate a predictor step
by adding a value of −1 to the original direction d for each of the active constraints.
The main idea behind this is that the predictor step tries to move away from the
constraint by minimizing it. Hence, it is possible to use a direction, such that the
active constraints are minimized. Thus, the new direction dm can be formulated as:

dm = (dT ,−1,−1, ...,−1)T . (5.9)

Figure 5.4 presents the desirable behavior of the direction dm. By using the DS
and the direction dm is possible to find a new candidate solution that is considered
“far” enough for the constraints.

After the predictor step was obtained, the corrector step must perform a line
search such that one or more constraints becomes active again. Having the point ob-
tained in the predictor step xm and the previous candidate solution xi, it is possible
to define a direction dd:

dd = F (xm)− F (xi). (5.10)

Cinvestav Departamento de Computación

70 Chapter 5

f1

f2

A

dm

Figure 5.4: Predictor step in direction dm.

Then it is necessary to take a corrector step such that this step must be orthogonal
to the direction dd. In order to generate the corrector step, a QR-decomposition of
the direction dd is taken. Next, taking the q2 vector (where q2 is the 2nd entry of the
Q matrix) and the r1 (the first entry of the R vector), the direction of the correct
step can be defined as:

dc = −q2r1. (5.11)

Using the direction of Equation (5.11), it is possible to find the next candidate so-
lution by performing a movement in such a direction with the DS method. In Figure
5.5, it is possible to observe that the new predictor-corrector method can perform a
side step along the active constraints.

f1

f2

dm dc

Figure 5.5: Predictor corrector step over the constraint.

Cinvestav Departamento de Computación

Integration of DS into Multiobjective Control Problems 71

Next, the algorithm must continue the procedure described above until the point
B is “near” enough. Here, in order to determine if the point B is close, we used the
area of the triangle formed with the point in objective space given by the current
solution F (xi), the previous solution F (xi−1) and the point B. Hence, we assumed
that this triangle’s area must decrease at each iteration, so when the area of the
triangle of this iteration δi becomes bigger than the one from the previous iteration
δi−1, it indicates that the current iteration is starting to “move away”” from B. Then
the algorithm stops when the triangle’s area of this iteration δi is bigger than the one
from the previous iteration. Figure 5.6 illustrates the triangles used for the stoping
criterion.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

A

f1

f2

Figure 5.6: Comparison between δi and δi−1.

After the stopping criterion explained above is reached, the final step of the algo-
rithm performs a straight movement in order to reach the final point B. Having the
current point xi, the new direction for the DS can be defined as:

dd = B − F (xi),

Finally, the algorithm must stop when ‖dd‖2 is less than a defined threshold εc.

An example

In order to test the new approach of the DS for constrained problems, the algorithm
was tested in Tanaka’s constrained function [Coello et al., 2007]. Here, the function
is defined as:

F =

(
x
y

)
, (5.12)

with the constraints:

(x2)(y2) + 1 + (a cos(b arctan(x/y))) ≤ 0 (5.13)

Cinvestav Departamento de Computación

72 Chapter 5

where a = 0.1 and b = 16.

In the particular case of this experiment a value of ε = 10−6 was set. Figure 5.7
presents the final results of the algorithm. Here, the green point represents the path
that the DS performs in order to move along the objective space from point A point
to point B.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF
Constrained DS
A
B

Figure 5.7: Results for the constrained DS into Tanaka’s function.

5.2.1 A new predictor step

The main problem from the method discussed above is that it requires the user to
define a parameter ε used to distinguish an active constraint. As an alternative ap-
proaching is using Equation (5.7), since it is possible to know when a point is “near”
to a constraint using the condition number κ on the gradient of the function.

In this section a new way to calculate a predictor step in a system that has only
one active constraint is discussed.

Given x0 ∈ Rn, d ∈ Rk and one equality constraint g(x0) = 0, one can try to solve
the system:

J(x0)ν = d, (5.14)

where it is intended to calculated an orthogonal projection νnew to the hyperplane
defined as:

H := {y ∈ Rn| 〈∇g(x0), y〉 = 0} (5.15)

Cinvestav Departamento de Computación

Integration of DS into Multiobjective Control Problems 73

Figure 5.8 shows how the gradient of the function and the projection over the
constraint are related. It is visible that the desirable predictor step must be the pro-
jection of ν over the constraint.

νnew
ν

Δ

g(x0)

f1

f2

Figure 5.8: Description of the new predictor step.

From Figure 5.8, it can be stated that:

νnew = ν + t∇g(x0), (5.16)

such that:

0 = 〈νnew,∇g(x0)〉
= 〈ν + t∇(x0),∇g(x0)〉
= 〈ν,∇g(x0)〉+ t 〈∇g(x0),∇g(x0)〉

(5.17)

then, the optimal step t can be defined as:

t = − 〈ν,∇g(x0)〉
〈∇g(x0),∇g(x0)〉

(5.18)

Finally the direction for the predictor step can be obtained by substituting the t
value from Equation (5.18) into Equation (5.16):

νnew = ν − 〈ν,∇g(x0)〉
〈∇g(x0),∇g(x0)〉

∇g(x0) (5.19)

Numerical example

In order to test the new predictor step, the same problem proposed in (5.12) was used.
Table 5.2 presents the comparison of the number of function calls required for the

Cinvestav Departamento de Computación

74 Chapter 5

two algorithms of this section. It is remarkable that the new predictor approach helps
the algorithm to decrease the number of function evaluations and also the number of
Jacobians required.

Algorithm Function evaluations Jacobians

DS with ε value 7144 732

DS with orthogonal predictor 3142 61

Table 5.2: Comparison of constrained DS algorithms.

Figure 5.9 illustrate the final result of the algorithm proposed in this section.
Here, it is visible that the DS could follow the constraint and reach the B point by
following the constraint.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF
Constrained DS
A
B

Figure 5.9: Results for the new predictor into Tanaka’s function.

Cinvestav Departamento de Computación

Chapter 6

Conclusions and Future Work

The DDS is a new method that is presented as an alternative to the DS in order to
eliminate the requirement of gradient information. It uses a novel idea to approxi-
mate the gradient information that requires less function calls when it is compared
with the finite differences approximation method.

As was shown in this thesis, the DDS method has demonstrated that it can use
the same stopping criterion than the one used in the DS. We have also provided dis-
cussion of the requirement that the solutions used in the approximation must satisfy
certain conditions with respect to linear independence of the solutions.

We also investigated the influence of the parameter r of the new method, and we
concluded that when the value increases, the algorithm can perform “larger” steps,
but to obtain such a number of individuals can generate a problem with the linear
independence of the solutions.

First, the DDS was tested as a standalone algorithm and we showed that it could
have a similar behavior than the version that uses gradient information. The algo-
rithm can reach the PF in a particular problem with less than two thousand iterations.
However, but it must be noticed that the number of function calls also depends in the
size of r. Hence, the most important feature presented by the DDS method is that
it only requires at least k function evaluations in order to generate a new candidate
solution.

Then, we proposed that DDS was coupled to a MOEA, in order to test its be-
havior as a local search operator. The first algorithm that was coupled with was the
NSGA-II. As a local operator the DDS improved the convergence rate on the average
of the test cases for the test problem ZDT1. Here, we took advantage of the fact that
the NSGA-II separates the individuals in fronts using the rank value defined inside
the algorithm, so the local search technique was only applied to the individuals that
were in “nearest” front to the PF.

75

76

For the NSGA-II/DDS the individuals were taken from the neighborhood of the x0
solution, so that, an important number of function calls were saved. Because of this,
it was not necessary any extra function call in order to run the algorithm. Hence, the
individuals were selected by using a circle-like neighborhood, which helps to obtain
the closest solutions according to x0.

Also, we implemented a memetic algorithm that uses the MOEA/D as its base-
line approach. When tested in the CEC’09 functions, the MOEA/D/DDS showed
a good performance in four of the seven unconstrained bi-objective functions. The
results were compared using the average values obtained in the ∆p indicator, which
measures the convergence rate and the spread of the approximation obtained by the
an algorithm.

One of the critical parameters that affects the DDS method, is the selection of the
direction d, e.g., in the UF4 function, the direction leads the individuals to a good
convergence rate, but lose their spread along the PF.

One of the main problems found in the MOEA/D/DDS occurs when the algorithm
was tested in problems having three objectives. Here, in the first case the DDS pre-
sented worse results than those obtained by the standalone MOEA/D. So, it became
necessary to implement a new model in order to try to find a local search operator
that has better results. In order to do that, the decomposition of the direction of the
DDS was proposed.

In the decomposition of the direction of the DDS, the components of the original
direction d were separated in three sets. Then, with each set, a line search was per-
formed leading to three different solutions in the neighborhood of x0. Then, using
the Differential Evolution mutation operator, the three solutions were coupled into a
single solution.

The experiment over the UF8-UF10 test function using the decomposition DDS
algorithm presents better results than those obtained with the standard version of
the DDS. The new algorithm outperformed the MOEA/D in two of the three test
functions, and in the UF8, there does not exist a clear winner between the algorithms.

As with any other stochastic algorithm, the fine tuning of the parameters of the
application of the local search operator played an important rule in the performance
of DDS. Hence, as many other local search operators, it is necessary perform more
experiments in order to study the rate of application of the local operator inside the
MOEA. Also, it could be important to study the influence of the reference point z.

In the last part of this work the DS was applied choice to a specific MOCP in
order to illustrate one of the biggest advantages of this method: The possibility to

Cinvestav Departamento de Computación

Conclusions and Future Work 77

move in any direction in objective space.

The first part of the experiments introduced the DS, as a method to control a
process where the deterioration of some variables of the system exists. Here, the DS
must control the rest of the variables in order to try to return to the original optimal
point. This can be applied in order to avoid to change some of the parts of the system,
so that some resources can be saved, e.g. money and time.

The controller method shows that it could handle the deterioration rate, even
when there exist more than one variable that is affected by such rate. Also, the al-
gorithm performs the correction step with a low number of function evaluations, this
can lead to a faster reaction in comparison to a MOEA.

In the last section of the thesis, the DS was presented as a method that can go
from a point in objective space to another one even if there exist some constraints
that block the direct path between both points. It was proposed that the DS per-
forms a straight path, and if some constraint is detected as active, the DS changes its
movement to a predictor corrector method in order to follow such constraints until
reaching the final point that was fixed at the beginning of the algorithm.

The last algorithm was tested over Tanaka’s constraint function, and it was shown
that indeed the algorithm can perform the movement as it was initially explained.

The first method to follow the constraints uses a parameter ε in order to detect
the constraints and describes the path above explained. But, the addition of such
parameters leads to a new problem, i.e., how to choose a good value for ε.

In order to generalize the algorithm for constrained problems, an alternative idea
to transform the original predictor-corrector into another method that do not requires
an extra parameter in order to work.

6.1 Future work

It can be observed that many of the algorithms that were presented in the discussion
above have some critical points that were only was introduced. Therefore, new possi-
ble future works can be obtained from the recent work. Some of the points that can
be considered as future work are:

• Investigate the influence of the r parameter in the performance of the DDS.

• Study the influence of the neighbors in the behavior of the DDS.

• Study the fine tunning of the DDS when it is coupled to some MOEA, e.g. the
selection of the direction d, to which individuals and how often the local search

Cinvestav Departamento de Computación

78 Chapter 6

operator must be applied in order to obtain good results.

• Extend the work by consideing deterioration control problems.

• Apply the deterioration algorithm in some real-world MOCP.

• Extend the research in the treatment of constrained problems using the DS.

Cinvestav Departamento de Computación

Appendix A

CEC’09 test functions.

UF1

f1 = x1 +
2

|J1|
∑
j∈J1

[
xj − sin

(
6πx1 +

jπ

n

)]2
f2 = 1−

√
x1 +

2

|J2|
∑
j∈J2

[
xj − sin

(
6πx1 +

jπ

n

)]2, (1)

where J1 = {j|j is odd and 2 ≤ j ≤ n} , J2 = {j|j is even and 2 ≤ j ≤ n} and n =
30. The search space is [0, 1]× [−1, 1]n−1.

PS is defined as:

xj = sin

(
6πx1 +

jπ

n

)
, j = 2, · · · , n, 0 ≤ x1 ≤ 1 (2)

PF is defined as:

f2 = 1−
√
f1, 0 ≤ f1 ≤ 1 (3)

Figure 1 illustrates the PF.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

Figure 1: PF of function UF1.

79

80

UF2

f1 = x1 +
2

|J1|
∑
j∈J1

y2j

f2 = 1−
√
x1 +

2

|J2|
∑
j∈J2

y2j

, (4)

where J1 = {j|j is odd and 2 ≤ j ≤ n} , J2 = {j|j is even and 2 ≤ j ≤ n}, n = 30,
and yj is defined as:

yj =

{
xj −

[
0.3x21 cos

(
24πx1 + 4jπ

n

)
+ 0.6x1

]
cos
(
6πx1 + jπ

n

)
j ∈ J1

xj −
[
0.3x21 cos

(
24πx1 + 4jπ

n

)
+ 0.6x1

]
sin
(
6πx1 + jπ

n

)
j ∈ J2

(5)

The search space is [0, 1]× [−1, 1]n−1.

PS is defined as:

xj =

{[
0.3x21 cos

(
24πx1 + 4jπ

n

)
+ 0.6x1

]
cos
(
6πx1 + jπ

n

)
j ∈ J1[

0.3x21 cos
(
24πx1 + 4jπ

n

)
+ 0.6x1

]
sin
(
6πx1 + jπ

n

)
j ∈ J2

(6)

PF is defined as:

f2 = 1−
√
f1, 0 ≤ f1 ≤ 1 (7)

Figure 2 illustrates the PF.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

Figure 2: PF of function UF2.

Cinvestav Departamento de Computación

Appendix A 81

UF3

f1 = x1 +
2

|J1|

[
4
∑
j∈J1

y2j − 2
∏
j∈J1

cos

(
20yjπ√

j

)
+ 2

]

f2 = 1−
√
x1 +

2

|J2|

[
4
∑
j∈J2

y2j − 2
∏
j∈J2

cos

(
20yjπ√

j

)
+ 2

], (8)

where J1 = {j|j is odd and 2 ≤ j ≤ n} , J2 = {j|j is even and 2 ≤ j ≤ n}, n = 30,
and yj is defined as:

yj = xj − x
0.5(1+ 2(j−2)

n−2)
i , j = 2, · · · , n, (9)

The search space is [0, 1]n.

PS is defined as:

xj = x
0.5(1+ 3(j−2)

n−2)
1 , j = 2, · · · , n, 0 ≤ x1 ≤ 1 (10)

PF is defined as:

f2 = 1−
√
f1, 0 ≤ f1 ≤ 1 (11)

Figure 3 illustrates the PF.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

Figure 3: PF of function UF3.

Cinvestav Departamento de Computación

82

UF4

f1 = x1 +
2

|J1|
∑
j∈J1

h (yj)

f2 = 1− x21 +
2

|J2|
∑
j∈J2

h (yj)
, (12)

where J1 = {j|j is odd and 2 ≤ j ≤ n} , J2 = {j|j is even and 2 ≤ j ≤ n}, n = 30,
yj is defined as:

yj = xj − sin

(
6πx1 +

jπ

n

)
, j = 2, · · · , n, (13)

and h(t) is:

h(t) =
|t|

1 + e2|t|
. (14)

The search space is [0, 1]× [−2, 2]n−1.

PS is defined as:

xj = sin

(
6πx1 +

jπ

n

)
, j = 2, · · · , n, 0 ≤ x1 ≤ 1. (15)

PF is defined as:

f2 = 1− f 2
1 , 0 ≤ f1 ≤ 1 (16)

Figure 4 illustrates the PF.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

Figure 4: PF of function UF4.

Cinvestav Departamento de Computación

Appendix A 83

UF5

f1 = x1 +

(
1

2N
+ ε

)
|sin (2Nπx1)|+

2

|J1|
∑
j∈J1

h (yj)

f2 = 1− x1 +

(
1

2N
+ ε

)
|sin (2Nπx1)|+

2

|J2|
∑
j∈J2

h (yj)

, (17)

where J1 = {j|j is odd and 2 ≤ j ≤ n} , J2 = {j|j is even and 2 ≤ j ≤ n}, n = 30,
N = 10, ε = 0.1, yj is defined as:

yj = xj − sin

(
6πx1 +

jπ

n

)
, j = 2, · · · , n, (18)

and h(t) is:

h(t) = 2t2 − cos (4πt) + 1. (19)

The search space is [0, 1]× [−1, 1]n−1.

PF consist of 2N + 1 optimal solutions defined as:

pi =

(
i

2N
, 1− i

2N

)
, i = 0, · · · , 2N. (20)

Figure 5 illustrates the PF.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

Figure 5: PF of function UF5.

Cinvestav Departamento de Computación

84

UF6

f1 = x1 + max

{
0, 2

(
1

2N
+ ε

)
(2Nπx1)

}
+

2

|J1|

4
∑
j∈J1

y2j − 2
∏
j∈J1

cos

(
20yjπ√

j

)
+ 2

f2 = 1− x1 + max

{
0, 2

(
1

2N
+ ε

)
(2Nπx1)

}
+

2

|J2|

4
∑
j∈J2

y2j − 2
∏
j∈J2

cos

(
20yjπ√

j

)
+ 2

, (21)

where J1 = {j|j is odd and 2 ≤ j ≤ n} , J2 = {j|j is even and 2 ≤ j ≤ n}, n = 30,
N = 2, ε = 0.1 and yj is defined as:

yj = xj − sin

(
6πx1 +

jπ

n

)
, j = 2, · · · , n. (22)

The search space is [0, 1]× [−1, 1]n−1.

PF consist of:

• One insolatd point (0, 1) N disconnected parts defined as:

f2 = 1− f1, f1 ∈
N⋃
i=1

2i− 1

2N
,

2i

2N
(23)

Figure 6 illustrates the PF.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

Figure 6: PF of function UF6.

Cinvestav Departamento de Computación

Appendix A 85

UF7

f1 = 5
√
x1 +

2

|J1|
∑
j∈J1

y2j

f2 = 1− 5
√
x1 +

2

|J2|
∑
j∈J2

y2j

, (24)

where J1 = {j|j is odd and 2 ≤ j ≤ n} , J2 = {j|j is even and 2 ≤ j ≤ n}, n = 30
and yj is defined as:

yj = xj − sin

(
6πx1 +

jπ

n

)
, j = 2, · · · , n. (25)

The search space is [0, 1]× [−1, 1]n−1.

PS is defined as:

xj = sin

(
6πx1 +

jπ

n

)
, j = 2, · · · , n, 0 ≤ x1 ≤ 1. (26)

PF is defined as:

f2 = 1− f1, 0 ≤ f1 ≤ 1 (27)

Figure 7 illustrates the PF.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

Figure 7: PF of function UF7.

Cinvestav Departamento de Computación

86

UF8

f1 = cos (0.5x1π) cos (0.5x2π) +
2

|J1|
∑
j∈J1

[
xj − 2x2 sin

(
2πx1 +

jπ

n

)2
]

f2 = cos (0.5x1π) sin (0.5x2π) +
2

|J2|
∑
j∈J2

[
xj − 2x2 sin

(
2πx1 +

jπ

n

)2
]

f3 = sin (0.5x1π) +
2

|J3|
∑
j∈J3

[
xj − 2x2 sin

(
2πx1 +

jπ

n

)2
] , (28)

where:

J1 = {j|3 ≤ j ≤ n and j − 1is a multiplication of 3} , (29)

J2 = {j|3 ≤ j ≤ n and j − 2is a multiplication of 3} , (30)

J3 = {j|3 ≤ j ≤ n and jis a multiplication of 3} , (31)

and n = 30.

The search space is [0, 1]2 × [−2, 2]n−2.

PS is defined as:

xj = 2x2 sin

(
6πx1 +

jπ

n

)
, j = 3, · · · , n. (32)

PF is defined as:

f 2
1 + f 2

2 + f 2
3 = 1, 0 ≤ f1, f2, f3 ≤ 1 (33)

Figure 8 illustrates the PF.

00.10.20.30.40.50.60.70.80.91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1f

2

f 3

Figure 8: PF of function UF8.

Cinvestav Departamento de Computación

Appendix A 87

UF9

f1 = 0.5
[
max

{
0, (1 + ε)

(
1− 4 (2x1 − 1)2

)
+ 2x1

}]
+

2

|J1|
∑
j∈J1

[
xj − 2x2 sin

(
2πx1 +

jπ

n

)2
]

f2 = 0.5
[
max

{
0, (1 + ε)

(
1− 4 (2x1 − 1)2

)
− 2x1 + 2

}]
+

2

|J2|
∑
j∈J2

[
xj − 2x2 sin

(
2πx1 +

jπ

n

)2
]

f3 = 1− x2
∑
j∈J3

[
xj − 2x2 sin

(
2πx1 +

jπ

n

)2
] , (34)

where:

J1 = {j|3 ≤ j ≤ n and j − 1is a multiplication of 3} , (35)

J2 = {j|3 ≤ j ≤ n and j − 2is a multiplication of 3} , (36)

J3 = {j|3 ≤ j ≤ n and jis a multiplication of 3} , (37)

ε = 0.1 and n = 30.

The search space is [0, 1]2 × [−2, 2]n−2.

PS is defined in two disconnected parts:

x1 ∈ [0, 0.25] ∪ [0.75, 1] , 0 ≤ x2 ≤ x2, (38)

and:

xj = 2x2 sin

(
6πx1 +

jπ

n

)
, j = 3, · · · , n. (39)

PF is also defined in two parts. The first part is:

f2 = 1− f1 − f3, 0 ≤ f3 ≤ 1, 0 ≤ f1 ≤
1− f3

4
, (40)

and the second parts is defined as:

f2 = 1− f1 − f3, 0 ≤ f3 ≤ 1,
3 (1− f3)

4
≤ f1 ≤ 1, (41)

Figure 9 illustrates the PF.

Cinvestav Departamento de Computación

88

00.10.20.30.40.50.60.70.80.91
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f2f
1

f 3

Figure 9: PF of function UF9.

UF10

f1 = cos (0.5x1π) cos (0.5x2π) +
2

|J1|
∑
j∈J1

[
4y2j − cos (8πyj) + 1

]
f2 = cos (0.5x1π) sin (0.5x2π) +

2

|J2|
∑
j∈J2

[
4y2j − cos (8πyj) + 1

]
f3 = sin (0.5x1π) +

2

|J3|
∑
j∈J3

[
4y2j − cos (8πyj) + 1

]
, (42)

where:

J1 = {j|3 ≤ j ≤ n and j − 1is a multiplication of 3} , (43)

J2 = {j|3 ≤ j ≤ n and j − 2is a multiplication of 3} , (44)

J3 = {j|3 ≤ j ≤ n and jis a multiplication of 3} , (45)

n = 30 and yj is defined as:

yj = xj − 2x2 sin

(
2πx1 +

jπ

n

)
, j = 3, · · · , n (46)

The search space is [0, 1]2 × [−2, 2]n−2.

PS is defined as:

xj = 2x2 sin

(
2πx1 +

jπ

n

)
, j = 3, · · · , n. (47)

PF is defined as:

f 2
1 + f 2

2 + f 2
3 = 1, 0 ≤ f1, f2, f3 ≤ 1 (48)

Cinvestav Departamento de Computación

Appendix A 89

Figure 10 illustrates the PF.

00.10.20.30.40.50.60.70.80.91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f2

f 3

Figure 10: PF of function UF10.

Cinvestav Departamento de Computación

90

Cinvestav Departamento de Computación

Bibliography

[Avigad and Eisenstadt, 2010] Avigad, G. and Eisenstadt, E., Robustness of multi-
objective optimal solutions to physical deterioration through active control, in
SEAL, pp. 394–403, 2010.

[Brown and Smith, 2005] Brown, M. and Smith, R.E., Directed multi-objective opti-
mization, Int. J. Comput. Syst. Signal, vol. 6, no. 1, pp. 3–17, 2005.

[Coello et al., 2007] Coello, C.A., Lamont, G.B. and Veldhuizen, D.A.V., Evolution-
ary Algorithms for Solving Multi-Objective Problems, 2nd ed., Springer, USA,
2007.

[Das and Dennis, 1998] Das, I. and Dennis, J.E., Normal-Boundary Intersection: A
New Method for Generating the Pareto Surface in Nonlinear Multicriteria Opti-
mization Problems, SIAM Journal on Optimization, vol. 8, no. 3, pp. 631–657,
August 1998.

[Dawkins, 1989] Dawkins, R., The Selfish Gene, Popular Science, Oxford University
Press, 1989, ISBN 9780192860927.

[Deb, 2001] Deb, K., Multi-Objective Optimization using Evolutionary Algorithms,
1st ed., John Wiley and Sons, USA, 2001.

[Deb et al., 2002] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T., A fast and eli-
tist multiobjective optimization genetic algorithm: NSGA-II, IEEE Transactions
on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, April 2002.

[Dennis and Schnabel, 1987] Dennis, J. and Schnabel, R., Numerical Methods for Un-
constrained Optimization and Nonlinear Equations, Classics in Applied Mathe-
matics, Society for Industrial and Applied Mathematics, 1987.

[Edgeworth, 1881] Edgeworth, F.Y., Mathematical Psychics; An Essay on the Appli-
cation of Mathematics to the Moral Sciences, P. Keagan, England, 1881.

[Ehrgott, 2005] Ehrgott, M., Multicriteria Optimization, 2nd ed., Springer, USA,
2005.

91

92 BIBLIOGRAPHY

[Fliege and Svaiter, 2000] Fliege, J. and Svaiter, B.F., Steepest descent methods
for multicriteria optimization, Mathematical Methods of Operations Research,
vol. 51, no. 1, pp. 479–494, Springer-Verlat, 2000.

[Köppen and Yoshida, 2007] Köppen, M. and Yoshida, K., Many-objective particle
swarm optimization by gradual leader selection, in Proceedings of the 8th interna-
tional conference on Adaptive and Natural Computing Algorithms (ICANNGA
2007), Springer-Verlag, pp. 323–331, Berlin, Heidelberg, 2007, ISBN 978-3-540-
71589-4, doi:http://dx.doi.org/10.1007/978-3-540-71618-1 36.

[Kuhn and Tucker, 1951] Kuhn, H.W. and Tucker, A.W., Nonlinear programming,
in Proceedings of the 2nd Berkley Symposium on Mathematical Statics and
Probability, University of California Press, 1951.

[Lara et al., 2010] Lara, A., Sanchez, G., Coello, C.A. and Schütze, O., Hcs: A new
local search strategy for strategy for memetic multiobjective evolutionary algo-
rithms, IEEE Transactions on Evolutionary Computation, vol. 14, no. 1, pp.
112–132, February 2010.

[Mejia and Schütze, 2010] Mejia, E. and Schütze, O., A predictor corrector method
for the computation of boundary points of a multi-objective optimization problem,
in Proceedings of IEEE 7th International Conference on Electrical Engineering
Computing Science and Automatic Control, September 2010.

[Miettinen, 1999] Miettinen, K., Nonlinear Multiobjective Optimization, Kluwer Aca-
demic Publishers, USA, 1999.

[Moscato, 1989] Moscato, P., On evolution, search, optimization, genetic algorithms
and martial arts: Towards memetic algorithms, 1989.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S.J., Numerical Optimization,
2nd ed., Springer, USA, 2006.

[Pareto, 1896] Pareto, V., Cours DEconomie Politique, F. Rouge, Switzerland, 1896.

[Rall, 1981] Rall, L., Automatic Differentiation - Techniques and Applications, vol.
120 of Lecture Notes in Computer Science, Springer, 1981.

[Schütze et al., 2010] Schütze, O., Lara, A. and Coello, C.A., The directed search
method for unconstrained multi-objective optimization problems, Tech. Rep. TR-
OS-2010-01, CINVESTAV, January 2010.

[Schütze et al., 2011] Schütze, O., Lara, A. and Coello, C.A., On the influence of the
Number of objectives on the hardness of a multiobjective optimization problem,
IEEE Transactions on Evolutionary Computation, vol. 15, no. 4, pp. 444–455,
August 2011.

Cinvestav Departamento de Computación

BIBLIOGRAPHY 93

[Storn and Price, 1997] Storn, R. and Price, K., Differential evolution a simple and
efficient heuristic for global optimization over continuous spaces, J. of Global Op-
timization, vol. 11, no. 4, pp. 341–359, Kluwer Academic Publishers, Hingham,
MA, USA, Dec. 1997, ISSN 0925-5001.

[Vasile and Zuiani, 2011] Vasile, M. and Zuiani, F., Macs: An agent-based memetic
multiobjective optimization algorithm applied to space trajectory design, Institu-
tion of Mechanical Engineers, Part G, Journal of Aerospace Engineering, August
2011.

[Zhang et al., 2009a] Zhang, Q., Liu, W. and Li., H., The performance of a new
version of moea/d on cec09 uncon- strained mop test instances, in Proceedings
of IEEE Congress In Evolutionary Computation, pp. 203–208, May 2009a.

[Zhang and Li, 2006] Zhang, Q. and Li, H., A multi-objective evolutionary algorithm
based on decomposition, Tech. rep., University of Essex, May 2006.

[Zhang et al., 2009b] Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W. and
Tiwari, S., Multiobjective optimization test instances for the cec 2009 special
session and competition, Tech. Rep. CES-487, University of Essex and Nanyang
Technological University, April 2009b.

[Zitzler et al., 2000] Zitzler, E., Deb, K. and Thiele, L., Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results, Evolutionary Computation, vol. 8,
no. 2, pp. 173–195, 2000.

Cinvestav Departamento de Computación

	Figures
	Tables
	Algorithms
	Introduction
	Background
	Optimization
	Notations

	Multiobjective optimization
	Formal definition of a MOP
	Pareto dominance
	Pareto front
	Weak Pareto Optimality
	Karush-Kuhn-Tucker point

	Classical Methods
	Weighted sum method
	The -constraint method

	Stochastic Methods
	MOEA/D
	NSGA-II

	Memetic Algorithms
	The Directed Search method
	Approximating the Jacobian

	Other methods
	Normal Boundary Intersection
	Descent direction of Fliege and Svaiter
	The Multi-Agent Collaborative Search
	The Hill Climber with Sidestep

	The Discrete Directed Search method
	The method
	Comparison between the DS method and the DDS method
	Numerical Results

	Integrating the DDS into MOEAs
	Design parameters of the MAs
	DDS method as local searcher within a MOEA.
	NSGA-II/DDS
	Numerical Results for NSGA-II/DDS

	MOEA/D/DDS
	Numerical results

	Decomposing the direction of the DDS
	Numerical results for the decomposition DDS

	Integration of DS into Multiobjective Control Problems
	Application of DS to deteriorated MOCP
	Numerical results for DS in decomposition control problems

	The DS method in constrained MOCP
	A new predictor step

	Conclusions and Future Work
	Future work

	Appendix A
	References

