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Resumen

De manera frecuente nos encontramos con el problema de optimizar varios obje-
tivos de manera simultanea y t́ıpicamente estos objetivos están en conflicto entre ellos.
A este tipo de problemas se les conoce con el nombre de problemas de optimización
multi-objetivo (POM). En la mayoŕıa de los casos la solución a estos problemas no es
única, si no un compromiso entre los objetivos.

En esta tesis, presentamos métodos orientados a conjuntos para resolver estos
problemas. En particular, nos enfocamos al problema de encontrar el conjunto de
soluciones óptimas, aśı como el problema de encontrar el conjunto de soluciones aprox-
imadas de un problema de optimización multi-objetivo. Este último conjunto es de
interés para el tomador de decisiones, dado que le puede proporcionar soluciones adi-
cionales a las óptimas para la implementación de su proyecto relacionado al POM.
En este estudio, hacemos una primera adaptación de las bien conocidas técnicas
de mapeo de celdas para el análisis global de sistemas dinámicos del problema en
cuestión. Dado el carácter global del enfoque, estos métodos son adecuados para la
investigación exhaustiva de problemas pequeños, incluyendo el cómputo del conjunto
de soluciones aproximadas. También mostramos que nuestra propuesta es competitiva
con los algoritmos evolutivos para problemas de un número bajo de dimensiones.
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Abstract

One is frequently faced with the problem of optimizing several objectives simul-
taneously and typically these objectives are in conflict with each other. These kind
of problems are known as multi-objective optimization problems (MOPs). Typically,
the solution set of a given MOP does not consist of a single point as for single ob-
jective optimization problems but forms a k − 1 dimensional entity where k is the
number of objectives involved in the MOP.

In this thesis, we present set oriented methods for the treatment of these problems.
In particular, we address the problem of computing the set of optimal solutions as well
as the set approximate solutions of a given MOP. The later set is of potential interest
for the decision maker since it might give him/her additional solutions to the optimal
ones for the realization of the project related to the MOP. In this study, we make
a first attempt to adapt well-known cell mapping techniques for the global analysis
of dynamical systems related to the problem at hand. Due to their global approach,
these methods are well-suited for the thorough investigation of small problems, in-
cluding the computation of the set of approximate solutions. We also show that
the proposed approach is competitive to evolutionary strategies for low dimensional
problems.
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Chapter 1

Introduction

One is frequently faced with the problem of optimizing several objectives simultane-
ously and typically these objectives are in conflict with each other. Such objectives
can be, for instance, the quality and the cost of a product. One would like to make a
product, which has the highest quality, but at the same time the lowest cost. One can
see that, since the objectives are in conflict in this example, there is not one single
solution, but rather a set of them, which in this case represents the trade-off between
quality and cost. Thus, in applications one is confronted with the problem of finding
the best trade-off solutions for the given problems.

1.1 Motivation

So far, many numerical methods for the treatment of a given Multi-objective Op-
timization Problem (MOP) have been proposed. There exist, for instance, many
scalarization methods that transform the MOP into a scalar optimization problem
(SOP). By choosing a clever sequence of SOPs a finite size approximation of the
entire Pareto set can be obtained in certain cases [1, 2, 3, 4]. Since the solution
set (the so-called Pareto set) forms under some mild regularity conditions locally a
(k−1)-manifold, where k is the number of objectives involved in the MOP, specialized
continuation methods, which perform a search along the Pareto set are very efficient
if one solution is at hand [5, 6, 7, 8] and if the Pareto set is connected.

Another approach to approximate the Pareto set is to use set oriented methods
such as subdivision techniques [9, 10, 11] or stochastic search methods [12, 13, 14].
The advantage of such set based methods is that they generate an approximation of
the (global) Pareto set in one single run of the algorithm. Further, they are applicable
to a large range of optimization problems and are characterized by a great amount
of robustness. Hence, these methods are interesting alternatives against ‘classical’
mathematical programming techniques in particular for the thorough investigation
of low or moderate dimensional MOPs. The method that is used in this study falls
into the last category: Cell mapping techniques as proposed in [15] are coupled with
dynamical systems derived from multi-objective descent directions that allow for the

1



2 CHAPTER 1. INTRODUCTION

computation of a suitable finite size approximation of the set of interest.

1.2 The Problem

The set of approximate solutions forms a n-dimensional object, where n is the number
of parameters. For this reason it might be useful to have the global view of MOPs to
see its behavior and then to compute the set of interest.

Some numerical schemes are proposed in [2, 16, 17, 18] to solve unconstrained
MOPs. The general idea is starting from an initial solution to steer the search process
in a desired direction given in objective space. It is important to mention that for
these schemes the proposed process can be formulated as an initial value problem
(IVP).

From that idea, if an IVP formulation is used to solve MOPs then we could make
a match between Pareto optimal solutions and an attractor of this dynamical system.
We would also be able to obtain the basin of attraction of every point of the Pareto
set. However, to obtain the global view just by using this, we would have to follow
the IVP for all points in parameter space, which is not possible in practice.

To solve this problem, let us point out that, since the representation of the numbers
in a computer is finite, a number represents not only the number represented by its
digits, but also an infinite neighborhood of numbers given by the precision of the
machine. This does not allow to assume variables to be continuous, due to rounding
errors and for this reason it is possible to consider the space as small hypercubes
whose size is given by the machine precision.

The cell mapping approach [15] proposes to increase this discretization by dividing
the state space in bigger hypercubes called cells. The evolution of the dynamical
system is then reduced to a new function, which is defined not in Rn, but on the cell
space. In this case we restrict ourselves to functions that are strictly deterministically
defined. For this case, we have the so-called simple cell mapping method.

The simple cell mapping method gives us a useful tool to obtain the attractors and
basins of attractions of a dynamical system. Thus, to extend this idea to the context
of multi-objective optimization, in order to obtain the set of approximate solutions is
an important contribution.

1.3 Objectives

General Objective

To design set oriented methods for the numerical treatment of multi-objective opti-
mization problems with a special attention to the set of approximate solutions.
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Particular Objectives

1. To develop a simple cell mapping method for the computation of optimal solu-
tions of a given MOP.

2. To develop a simple cell mapping method for the computation of the set of
approximate solutions of a given MOP.

3. To hybridize simple cell mapping with subdivision techniques.

4. To study the domains of attraction for each descent direction method.

1.4 Contributions

• Set oriented algorithms for global multi-objective optimization

– Simple cell mapping for multi-objective optimization

– Simple cell mapping for the set of approximate solutions

• Comparison between descent direction methods by means of simple cell mapping

• Collaboration with the University of California at Merced

• Contribution at EVOLVE 2013 international conference: C. Hernández, O.
Schütze, J. Q. Sun. Computing the Set of Approximate Solutions of a Multi-
Objective Optimization Problem by Means of Cell Mapping Techniques (pub-
lished)

• Contribution at EVOLVE 2013 international conference: Y. Narajani, C. Hernández,
F. R. Xiong, O. Schütze, J. Q. Sun. A Hybrid Algorithm for the simple cell
mapping Method in Multi-objective Optimization (published)

• Contribution at ASME 2013 international conference: Y. Sardahi, Y. Nara-
jani, W. Liang, J. Q. Sun, C. Hernández, O. Schütze. Multi-objective Optimal
Control Design with the simple cell mapping Method (accepted)

• Contribution at CSTAM 2013 international conference: Y. Sardahi, Y. Nara-
jani, W. Liang, F. R. Xiong, Z. C. Qin, Y. X., C. H., O. Schütze, J. Q. Sun.
Multi-objective Optimal Design of Feedback Controls for Dynamical Systems
Time Delay (submitted)

• Contribution at International Journal of Dynamics and Control: C. Hernández,
Y. Narajani, Y. Sardahi, W. Liang, O. Schütze. simple cell mapping Method
for Multiobjective Optimal PID Control Design (published)
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1.5 Organization of the thesis

This thesis consists of seven chapters, including this introductory chapter. The re-
mainder of this document is organized as follows:

Chapter 2 presents the basic concepts of multi-objective optimization and dynam-
ical systems that are fundamental for understanding the current work. Further, we
review some of the methods for solving a multi-objective optimization problem along
with some methods for global analysis of dynamical systems.

Chapter 3 is devoted to present the simple cell mapping Method in the context of
multi-objective optimization. In this chapter, we discuss the key elements to adapt
this method and further on present numerical results on some academic models.

Chapter 4 describes the simple cell mapping for the set of approximate solutions.
In this chapter, we present the elements that are incorporated to the method to
compute this set and we also present numerical results on academic models.

Chapter 5 provides a comparison between some of the different descent directions
in the literature. This is of particular interest to evolutionary algorithms, since a bias
may exist on this methods.

Chapter 6 includes a hybridization of the simple cell mapping with other tech-
niques to help to refine its results and to recover solutions that may been lost while
performing the search.

Finally, chapter 7 contains the conclusions and some possible future ideas to be
developed from this work.



Chapter 2

Background and Related Work

In this chapter, we look into the basic concepts that are needed for the understanding
of this thesis work. We review the basic concepts of multi-objective optimization
(Section 2.1) and dynamical systems (Section 2.3), which are the main topics related
to this work. Further, we review some of the methods for solving a multi-objective
optimization problem (Section 2.2) and also methods which provide a global analysis
of dynamical systems (Section 2.4).

2.1 Multi-objective Optimization

There is always the wish for getting things better, cheaper, quicker, etc. which is
inherent in human nature. Optimization is the field that deals with this problem.
Sometimes only one objective is selected to be optimized, this leads to what is known
as a single objective optimization problem (SOP). However, in many cases we have
more than one objective to be optimized and we need to consider them at the same
time. This leads to the so-called multi-objective optimization problems (MOPs).

In the first case, we can use our intuition to define what is better in terms of our
objective. If we are in the context of minimization, we know that the lower the value
of the objective function, the better it is for our problem and we also know, that we
are looking for “the solution”, i.e. we expect to find that one solution is better than
all the others.

In the second case, the problem gets more complicated because the definition of
what is “better” is not as easy to define as it was in the previous case. This leads
to another problem, since now we do not have “the solution” i.e, a unique one, but
rather a set of solutions that are incomparable to each other.

In this section, we first define the multi-objective optimization problems (Section
2.1.1), then we define optimality for MOPs along with our sets of interest (Section
2.1.2). Next, we present the necessary optimality condition for MOPs (Section 2.1.3)
and finally we introduce the concept of descent directions, which helps us to identify
directions toward optimal solutions can be found (Section 2.1.4).

5
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2.1.1 Formulation of the Problem

The multi-objective optimization problem can be defined in its general form as

min
x∈Rn
{F (x)},

s.t.

gi(x) ≤ 0, i = 1, . . . , I,

hj(x) = 0, j = 1, . . . , J,

(2.1)

let Q ⊂ Rn be the feasible region defined by

Q = {x ∈ Rn|g(x) ≤ 0 + h(x) = 0}, (2.2)

where F : Q→ Rk is a vector consisting of the objective functions

fi : Q→ R, i = 1, . . . , k, (2.3)

x ∈ Q is known as a parameters vector, gi : Rn → R, i = 1, . . . , I is an inequality
constraint and hi : Rn → R, j = 1, . . . , J is an equality constraint.

In case there are no constraints the MOP is known as unconstrained. We can also
see that in case k = 1 the problem is a single-objective optimization problem (SOP). It
is important to notice that we could also state the MOP as a maximization problem,
however, any maximization problem can be stated as a minimization problem, by
multiplying the objective function vector by −1. For the remainder of this document
we will use the term MOP for problems where the feasible region is only defined by
box constraints QB

QB = {x|lbi ≤ xi ≤ ubi}, (2.4)

where lbi is the lower bound and ubi is the upper bound for xi, i = 1, . . . , n. We
will also use the MOP as a minimization problem, which comes out without loss of
generality.

2.1.2 Pareto Optimality

Now, we need to define what is an optimal solution in the context of multi-objective
optimization. For the case k = 1 and given feasible points a, b ∈ Q with their
objective values F (a), F (b) ∈ Rk, we would be able to say, that the one with the
smallest objective value is better by doing a comparison of the values. However, for
the case k > 1, it is not longer as simple as it was in the previous case, since doing the
comparison might end up with a solution being better according to one objective but
worse according to another one. To overcome this problem, we introduce the concept
of Pareto dominance [19].

Definition 1 (Pareto Dominance) 1. Let v, w ∈ Rk. Then the vector v is less
than w (denoted by v <p w), if vi < wi for all i ∈ 1, . . . , k. The relation ≤p is
defined analogously.
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Figure 2.1: Point P2 dominates the points P4 and P5, as P2 is better in both objectives.
Points P1, P2 and P3 are mutually non-dominated as each of them is better in one
objective but worse according to the another.

2. A vector y ∈ Q is called dominated by a vector x ∈ Q (denoted by x ≺ y) with
respect to Equation (2.1) if

F (x) ≤p F (y) and F (x) 6= F (y),

else y is called non-dominated by x.

Figure 2.1 shows an example of the Pareto dominance relationship.
The Pareto dominance defines a way to determine which of two solutions x and

y is “better”. This can be used to define an optimal solution, also known as Pareto
optimal solution.

Definition 2 (Pareto optimal solution) A point x ∈ Q is called Pareto point of
Equation (2.1) if there is no y ∈ Q that dominates x.

Usually, we will find, that several solutions are non-dominated by any other solu-
tion in the feasible region. Thus, there exists an entire set of solutions. This set is
the so-called Pareto set and its image it is known as the Pareto front.

Definition 3 (Pareto set and Pareto front) 1. The set of all Pareto optimal
solutions is called the Pareto set, i.e.,

P = {x ∈ Q : x is a Pareto optimal point of Equation (2.1)}. (2.5)

2. The image F (P ) of P is called the Pareto front.
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Figure 2.2: Pareto set (left) and Pareto front (right)

Figure 2.2 shows an example of a Pareto set and Pareto front for MOP (A.1)
(compare also to Appendix A).

Typically, both Pareto set and Pareto front form (k−1)-dimensional objects under
some mild assumptions on Problem (2.1) [20].

We now define another notion of dominance which we use to define approximate
solutions [21].

Definition 4 (ε-dominance) Let ε = (ε1, . . . , εk) ∈ Rk
+ and x, y ∈ Q.

1. x is said to ε-dominate y (x ≺ε y) with respect to Equation (2.1) if

F (x)− ε ≤p F (y) and F (x)− ε 6= F (y).

2. x is said to −ε-dominate y (x ≺ε y) with respect to Equation (2.1) if

F (x) + ε ≤p F (y) and F (x) + ε 6= F (y).

Both notions of ε-dominance are equivalent. However, the definition of−ε-dominance
help us to define our set of interest.

Definition 5 (Set of Approximate solutions PQ,ε) Denote by PQ,c the set of points
in Q ⊂ Rn that are not −ε-dominated by any other point in Q, i.e.,

PQ,ε = {x ∈ Q|@y ∈ Q : y ≺−ε x},
F (PQ,ε) is the image of PQ,ε.

(2.6)
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Figure 2.3: Two different examples for sets PQ,ε

Figure 2.3 shows two examples of the set of approximate solutions, given by a value
of ε. a) shows the case for k = 1 and in parameter space with PQ,ε = [a, b]∪[c, d]. Note
that the image solutions f([a, b]) are nearly optimal (measured in objective space),
but that the entire interval [a, b] is not ‘near’ to the optimal solution which is located
within [c, d]. At the right, we show an example for k = 2 in image space, F (PQ,ε) is
the approximate Pareto front (taken from [22]).

2.1.3 Optimality conditions

If all the objectives in an unconstrained MOP are differentiable, the Theorem of Kuhn
and Tucker [23] states a necessary condition for Pareto optimality.

Theorem 1 (Karush-Kuhn-Tucker equation) Let x∗ be a Pareto point of Equa-
tion (2.1), then there exists a vector α ∈ Rk such that

k∑
i=1

αi∇fi(x∗) = 0

s.t.

αi ≥ 0, i = 1, . . . , k,

k∑
i=1

αi = 1,

(2.7)

where ∇fi(x∗) is the gradient of fi at the point x∗ and is defined as follows

∇fi(x∗) =

(
∂fi
∂x1

x∗ + . . .+
∂fi
∂xn

x∗
)
, i = 1, . . . , k. (2.8)

This theorem claims that the zero vector can be expressed as a convex combination
of the gradients of the objective functions at x∗.
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2.1.4 Descent directions

Now, we introduce the concept of descent directions, which is of high interest for this
thesis.

A vector ν ∈ Rn is called a descent direction if a search in this direction leads to
an improvement of all objective values. To be more precise, ν is a descent direction
of Equation (2.1) at a point x ∈ Rn if there exists a t̄ ∈ R+ such that

F (x+ tν) <p F (x), ∀ t ∈ (0, t̄). (2.9)

We highlight, that this descent direction it is not unique, since several vector ν
may fulfill the requirement for a descent direction. The set of descent directions also
known as descent cone, this set is defined for a point x0 ∈ Q as follows

D(x0) = {ν ∈ Rn\{0} | 〈∇fi(x0), ν〉 ≤ 0 ∀i = 1, . . . , k}. (2.10)

2.2 Solving MOPs

The concepts from the last section help us to understand the problem at hand. Having
this in mind, we turn our attention to the approaches that have been developed to
solve it. In general these methods provide a finite approximation of the Pareto front
and they have two main goals. The first one is to converge to the real Pareto front i.e.
that the finite approximation is distributed along the Pareto set/front. The second
one is to have a good spread of the solutions i.e. that the distance between solutions
of the approximation of the Pareto front is ideally the same.

In this section, we review some of these methods. We divide them into three
categories, scalarization methods (Section 2.2.1), descent direction methods (Section
2.2.2) and stochastic methods (Section 2.2.3). Although the descent direction meth-
ods can be seen as scalarization methods, we highlight them here since they are crucial
for this thesis.

2.2.1 Scalarization methods

One of the ideas to solve a MOP is to transform the problem into an auxiliary SOP.
With this approach, we simplify the problem by reducing the number of objectives to
one. Once we do this, we are now able to use one of the numerous methods to solve
SOP that have been proposed. However, typically the solution of a SOP consists of
only one point, while the solution of a MOP is a set. Thus, the Pareto set can be
approximated (in some cases not entirely) by solving a clever sequence of SOPs [20].

In the following, we shortly review the most widely used scalarization techniques
for a more thorough discussion we refer to [20].
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Weighted sum method

The weighted sum method [20] is probably the oldest scalarization method. The
underlying idea is to assign to each objective a certain weight αi ≥ 0, and to minimize
the resulting weighted sum. Given Equation (2.1), the weighted sum problem can be
stated as follows:

min fα(x) :=
k∑
i=1

αifi(x)

s.t. x ∈ Q,
αi ≥ 0, i = 1, . . . , k,

k∑
i=1

αi = 1.

(2.11)

The main advantage of the weighted sum method is that one can expect to find Pareto
optimal solutions, to be more precise:

Theorem 2 Let αi > 0, i = 1, . . . , k, then a solution of Equation (2.11) is Pareto
optimal.

On the other hand, the proper choice of α, though it appears to be intuitive at
first sight. Actually, it is in certain cases a delicate problem. Further, the images of
(global) solutions of Equation (2.11) cannot be located in parts of the Pareto front,
where it is concave. That is, not all points of the Pareto front can be reached, when
using the weighted sum method, which represents a severe drawback.

ε - constrained method

The idea of the ε-constraint method [24] is to select one objective fi, i ∈ {1, . . . , k},
and to treat all the others as constraints by imposing upper bounds on the function
values. This leads to the following optimization problem:

min
x∈Q

fi(x)

s.t. fj(x) ≤ εj ∀j ∈ {1, . . . , k}\{i}.
(2.12)

Theorem 3 A vector x∗ ∈ Q is Pareto optimal if and only if it is a solution of
Equation (2.12) for every i = 1, . . . , k, where εj = fj(x

∗) for j ∈ {1, . . . , k}\{i}.

Hence, using the ε-constraint method, it is possible to find every Pareto optimal
solution regardless of the form of the Pareto front. However, the choice of ε is not an
easy task.
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Weighted Tchebycheff method

The aim of the weighted Tchebycheff method [20] is to find a point whose image is
as close as possible to a given reference point Z ∈ Rk. For the distance assignment
the weighted Tchebycheff metric is used: Let α ∈ Rk with αi ≥ 0, i = 1, . . . , k, and∑k

i=1 αi = 1, and let Z = (z1, . . . , zk), then the weighted Tchebycheff method reads
as follows:

min
x∈Q

max
i=1,...,k

αi|fi(x)− zi|, (2.13)

note that the solution of Equation (2.13) depends on Z as well as on α. The main
advantage of the weighted Tchebycheff method is that by a proper choice of these
vectors, every point on the Pareto front can be reached.

Theorem 4 Let x∗ ∈ Q be Pareto optimal. Then there exists α ∈ Rk
+ such that x∗ is

a solution of Equation (2.13), where Z is chosen as the utopian vector of the MOP.

The utopian vector F ∗ = (f ∗1 , . . . , f
∗
k ) of a MOP consists of the minimum objective

values f ∗i of each function fi.
On the other hand, the proper choice of Z and α might also get a delicate problem
for particular cases.

Normal boundary intersection

The Normal boundary intersection (NBI) method [1] computes finite size approxima-
tions of the Pareto front in the following two steps:

1. The Convex Hull of Individual Minima (CHIM) is computed, which is the (k−
1)-simplex connecting the objective values of the minimum of each objective fi,
i = 1, . . . , k (i.e., the utopian).

2. the points yi from the CHIM are selected and the point x∗i ∈ Q is computed
such that the image F (x∗i ) has the maximal distance from yi in the direction
that is normal to the CHIM and points toward the origin.

The latter is called the NBI-subproblem and can in mathematical terms be stated as
follows: Given an initial value x0 and a direction α ∈ Rk, solve

max
x,l

l

s.t. F (x0) + lα = F (x)

x ∈ Q.

(2.14)

Equation (2.14) can be helpful, since there are scenarios where the aim is to steer
the search in a certain direction given in objective space. On the other hand, solutions
of Equation (2.14) do not have to be Pareto optimal [1].
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Figure 2.4: Curve of dominated points.

2.2.2 Descent direction methods

If a descent direction ν is given at a point x, a further candidate solution xnew that
dominates x can easily be found by a line search, i.e., by setting

xnew = x+ tν, (2.15)

where t ∈ R+ is a step size.
The solution of this kind of problems would give as result a curve of dominated

points, i.e. the new point dominates the previous one. Figure 2.4 shows an example
of a dominated curve.

In the following, we present several methods which use this idea to find a descent
direction ν.

Simplest bi-objective descent direction

One way to combine two gradients to obtain a descent direction is by a vector sum.

Theorem 5 (Simplest bi-objective descent direction [18]) Let x ∈ Rn, and
f1, f2 : Rn → R define a two-objective MOP. if ∇fi(x) 6= 0, for i = 1, 2, then
the direction

ν(x0) = −
(
∇f1(x)

||∇f1(x)||
+
∇f2(x)

||∇f2(x)||

)
, (2.16)

is a descent direction at x0 of MOP.

However, this approach cannot be generalized for more than two objective func-
tions.
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Directed search

The directed search method [17] allows to steer the search from a given point x ∈ Q
into a desired direction d ∈ Rk. A direction vector ν ∈ Rn can be computed such
that

lim
t←0

fi(x0 + tv)− fi(x0)
t

= di, i = 1, . . . k. (2.17)

In the following, we describe two methods that use this idea. The first one is a descent
method that steers in a given direction d. The second one is a continuation method
with the particular advantage that this method does not require any second gradient
information in contrast to other methods [5, 6].

Descent method The following idea is proposed. Assume a point x0 ∈ Q is given
as well as a vector d ∈ Rk representing a desired direction in objective space. This
can be expressed as follows

J(x)ν = d,

where ν ∈ Rn is a search direction in parameter space and J(x) is the jacobian matrix,
which is defined by

J(x) =


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

. . .
...

∂fk
∂x1

(x) · · · ∂fk
∂xn

(x)

 . (2.18)

With this the authors propose that v can be computed by solving a system of linear
equations. Since typically the number of parameters is higher than the number of
objectives, the system of equations is underdetermined, which implies that its solution
is not unique. To deal with this, the problem can be formulated as

ν = J(x0)
+d,

where J(x0)
+ denotes the pseudo inverse of the Jacobian J(x0) ∈ Rk×n. Further, we

can solve the following initial value problem (IVP):

x(0) = x0 ∈ Rn

ẋ(m) = να(x(m)), t > 0.
(2.19)

Continuation method Once an optimal point has been found by the method
above, this second method performs a movement along the Pareto set of a given
MOP.

Assume we are given a (local) Pareto point x and the convex weight α such that

k∑
i=1

αi∇fi(x) = 0 (2.20)

and further we assume that
rank(J(x)) = k − 1. (2.21)
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It is known (e.g., [6]) that in this case α is orthogonal to the Pareto front, i.e.,

α⊥TyδF (Rn), (2.22)

where y = F (x) and δF (Rn) denotes the border of the image F (Rn). Thus, a search
orthogonal to α (in objective space) could be promising to obtain new predictor
points. A QR-factorization of α can be computed to use the method above, i.e.,

α = QR, (2.23)

where Q = (q1, . . . , qk) ∈ Rk×k is an orthogonal matrix and i = 1, . . . , k its column
vectors, and R = (r11, 0, . . . , 0)T ∈ Rk×1 with r11 ∈ R\{0}. Since by Equation (2.23)
α = r11q1 and Q orthogonal, it follows that the column vectors q2, . . . , qk build an
orthonormal basis of the hyperplane which is orthogonal to α. Thus, a promising set
of search directions νi may be the ones which satisfy

J(x)νi = qi, i = 2, . . . , k. (2.24)

Since α is not in the image of J(x) (else x would not be a Pareto point), it follows that
the vectors q2, . . . , qk are in the image of J(x), i.e., Equation (2.24) can be solved for
each i ∈ {2, . . . , k}. Then, the following can be chosen as the set of predictor direction:

pi = x0 + tνi. (2.25)

Note that by this choice of predictor direction no second derivative of the objectives
are required.

Now, a corrector step can be used. Given a predictor pi ∈ p, we can use pi as
initial value for Equation (2.19) and choosing α0, i.e., the weight from the previous
solution x0 leads to a new solution x1.

Method of Schäffler, Schultz and Weinzierl

The following function is defined [16]:

q(x) =
k∑
i=1

â∇fi(x),

where q : Rn → Rn and â is a solution of

min
α∈Rk


∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

αi∇fi(x)

∣∣∣∣∣
∣∣∣∣∣
2

2

, αi ≥ 0, i = 1, . . . , k,
k∑
i=1

αi = 1

 ,

where ∇fi is the gradient of ith objective function fi.
From this we have that either q(x) = 0 or −q(x) is a descent direction for all

the objective functions; hence, each x with q(x) = 0 fulfills the first-order necessary
conditions for Pareto optimality.
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Method of Fliege and Svaiter

The following function is defined [2]:

fx(ν) = max(Av)i, i = 1, . . . , k,

where fx : Rn → R. We can see that fx is convex and positive homogeneous. Using
this function the authors propose the following problem:

min fx(ν) +
1

2
||v||2

subject to ν ∈ Rn.

From this we have that, if x is Pareto optimal, then ν(x) = 0. If it is not the case
then ν(x) is a descent direction.

2.2.3 Stochastic methods

An alternative to the classical methods is given by an area known as Evolutionary
Multi-Objective Optimization. This area has developed a wide variety of methods.
These methods are known as Multi-Objective Evolutionary Algorithms (MOEAs).
Some of their advantages are that they do not require gradient information about the
problem, instead they rely on stochastic search procedures. Another advantage is that
they give an approximation of the Pareto set and the Pareto front in one execution.
Examples of these methods can be found in [12, 13]. One drawback is that MOEAs
do not guarantee convergence towards the Pareto front. In the following we review
two of the most important stochastic methods to solve a MOP and also an approach
to find the set of approximate solutions PQ,ε.

Nondominated Sorting Genetic Algorithm II

The Nondominated Sorting Genetic Algorithm II (NSGA-II) was proposed in [25].
The NSGA-II has two main mechanisms. The first one is the non-dominated sort,
where the idea is to rank the current solutions using the Pareto dominance relation-
ship, i.e. the ranking says by how many solutions the current solution is dominated.
This helps to identify the best values and to use them to generate new solutions.

The second mechanism is called crowding distance. The idea is to measure the
distance from a given point to its neighbors. This helps to identify the solutions with
less distance as it means that there are more solutions in that region.

These components aim to accomplish the goals of convergence and spread respec-
tively. Due these mechanisms it has a good overall performance and it has become a
prominent method to the point. It is one of the methods against others have to be
compared, at least if two and three objectives are considered.



2.2. SOLVING MOPS 17

MOEA based on decomposition

Another prominent algorithm is called MOEA based on decomposition (MOEA/D)
which was proposed in [26]. The main idea of this method is to make a decomposition
of the original MOP into N SOPs also called subproblems. Then the algorithm solves
these subproblems using the information from its neighbor subproblems. The decom-
position is made by using one of the following methods: Weighted sum, weighted
Tchebycheff or NBI.

As it is the case of the NSGA-II, this method also gives good results in solving
MOPs and has become one of the most popular algorithms. Also this is one of the
methods against others have to be compared.

Evolutionary computation methods for PQ,ε

The methods described above aim for the approximation of the Pareto set and Pareto
front, but now the goal is to compute the set of approximate solutions.

The method PQ,ε-NSGA-II, is a hybrid of NSGA-II and the archiver ArchiveUpdatePQ,ε
[27]. The idea is to use the archiver in each iteration to keep the approximate so-
lutions found so far and to use them for the mechanisms of NSGA-II. Algorithm 1
describes the basic steps of this method.

Algorithm 1 PQ,ε-NSGA-II.

Require: archive Al,∆ ∈ R+, population size, np,maxiter
for i = 1 to maxiter do

Ensure: updated archive Al+1

C ← Select(Al, np/2)
C ′ ← DominationSort(C)
P ← TournamentSelection(C ′)
O ← GeneticOperator(P )
Al+1 ← ArchiveUpdatePQ, ε(Al, O,∆)

end for

2.2.4 Performance Measures

As many methods have been proposed to solve MOPs, there is the need to compare the
quality of their outcome. However, this is also not an easy task, since the comparison
of sets in this context is not clearly defined [28]. Thus, different approaches can be
used to compare the solutions.

In this section, we present some of performance measures that can be used to
compare solutions from different methods.

In the following, we would like to measure the quality of a given candidate set A =
{a1, . . . , aN} in objective space to a discretized Pareto front F (PQ) = {y1, . . . , yM}.
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Generational Distance

The generational distance (GD) is used to measure the distance from the candidate set
A to the Pareto front F (PQ) [29]. The lower value of GD the better is the candidate
set A. A value of zero means, A ∈ F (PQ). However, if an element an element of the
set is duplicated then the indicator gives a value closer to zero.

GD(A,F (PQ)) =
1

|A|

 |A|∑
i=1

dist2(ai, F (PQ))p

 1
p

. (2.26)

To avoid the potential drawback a slight modification was proposed [30].

GD(A,F (PQ))p =

 1

|A|

|A|∑
i=1

dist2(ai, F (PQ))p

 1
p

. (2.27)

Inverted Generational Distance

The inverted generational distance (IGD) measures the distance from the Pareto
front F (PQ) to the candidate set A [31]. However, this indicator is sensitive to the
discretization of the Pareto front. If a better discretization of the Pareto front is used
then it will output a value closer to zero.

IGD(A,F (PQ)) =
1

|F (PQ)|

|F (PQ)|∑
i=1

dist2(yi, A)p

 1
p

. (2.28)

To avoid the potential drawback a slight modification was proposed [30].

IGD(A,F (PQ))p =

 1

|F (PQ)|

|F (PQ)|∑
i=1

dist2(yi, A)p

 1
p

. (2.29)

Delta p

Now, we present the Hausdorff distance dH , which is used to measure the distance
between sets. Then, we introduce the indicator ∆p, which is used to make our com-
parisons in this thesis work.

Definition 6 (Distance between sets [32]) Let u, v ∈ Rn and A,B ⊂ Rn. The
maximum norm distance d∞, the semi-distance dist(·, ·) and the Hausdorff distance
dH(·, ·) are defined as follows:

1. d∞ = max
i=1,...,n

|ui − vi|
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2. dist(u,A) = inf
v∈A

d∞(u, v)

3. dist(B,A) = sup
u∈B

d∞(u,A)

4. dH(A,B) = max{dist(A,B), dist(B,A)}

It will be assumed that the infinity norm is used unless it is specified otherwise.

Note that for p = ∞, we have ∆∞ = dH , and for finite values of p the distances
in ∆p are averaged. In [30], ∆p is discussed as a performance indicator in context of
Pareto front approximations. In that case, the indicator can be viewed as a combi-
nation of the slight variations of the GD and the IGD.

2.3 Dynamical Systems

In this section, we first define a dynamical system (Section 2.3.1), and further on the
solution of a dynamical system (Section 2.3.2 and Section 2.3.3). We also present the
concept of the domain of attraction (Section 2.3.4) and finally we look into methods
that were proposed to perform a global analysis of a given dynamical system (Section
2.4).

2.3.1 Formulation of the problem

A dynamical system [15] can be considered to be a model describing the temporal
evolution of a system and it is defined as follows:

ẋ = G(x),

where x is a N -dimensional vector and G : RN → RN is, in general, a nonlinear vector
function. The evolution of such a dynamical system can be described by a function
of the form:

xm+1 = G(x(m), µ), (2.30)

where x is a N -dimensional vector, m denotes the mapping step, µ is a parameter
vector, and G is a general nonlinear vector function. In this case ordinary differential
equations can be used to describe the dynamical systems. These are defined as follows:

ẋ = F (x, t, µ); x ∈ Rn, t ∈ R, µ ∈ Rl,

where x is a N -dimensional state vector, t is the time variable, µ is a l-dimensional
parameter vector, and F is a vector-valued function of x, t and µ.
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2.3.2 Fixed point

When the evolution of a dynamical system is made one may find a point that satisfies
the following:

x∗ = G(x∗, µ).

In this case, x∗ is called a fixed point of Equation (2.30).

2.3.3 Periodic group

A periodic solution of Equation (2.30) of period l is a sequence of l distinct points
x∗(j), j = 1, 2, . . . , l such that

x∗(o+ 1) = Go(x∗(1), µ), o = 1, 2, . . . , l − 1,

x∗(1) = Gl(x∗(1), µ).
(2.31)

We say that there exists a periodic solution of period l. Any of the points
x∗(j), j = 1, 2, . . . , l, is called a periodic point of period l. One can see that a
fixed point is a periodic solution with l = 1.

2.3.4 Domain of attraction

We say x∗(j) is an attractor if there exists a neighborhood U of x∗(j) such that for
every open set V ⊃ x∗(j) there is a N ∈ N such that f j(U) ⊂ V for all j ≥ N . Hence,
we can restrict ourselves to the closed invariant set x∗(j), and in this case we obtain

x∗(j) =
⋂
j∈N

Gj(U).

Thus, we can say that all the points in U are attracted by x∗(j) (under iteration
of G), and U is called basin of attraction of x∗(j). If U = Rn, then x∗(j) is called the
global attractor. Several kinds of attractors exists, however, only the ones formed by
the set of periodic solutions will be considered in this work.

2.4 Global Analysis of Dynamical Systems

In this section, we review methods that are used to compute the global properties
of a dynamical system. We present the simple cell mapping [15], which is useful to
compute global attractors and domains of attraction of a given dynamical system.
The other methods that we present are the subdivision techniques [9], which are
useful to compute the global attractors of a given dynamical system.

2.4.1 Discretization of the space

Now, we do not consider the state space as a continuum but rather as a collection of
state cells, with each cell being taken as a state entity. Because of this, now we need
to introduce some basic concepts regarding the new model.
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Cell state space

An N dimensional cell space S [15] is a space whose elements are N -tuples of integers,
and each element is called a cell vector or simply a cell, and is denoted by z.

The simplest way to obtain a cell structure over a given Euclidean state space is
to construct a cell structure consisting of rectangular parallelepipeds of uniform size.

Cell functions

Let S be the cell state space for a dynamical system and let the discrete time evolution
process of the system be such that each cell in a region of interest S0 ⊂ S has a single
image cell after one mapping step. Such an evolution process is called Simple Cell
Mapping (SCM)

z(n+ 1) = C(z(n), µ), z ∈ ZN , µ ∈ Rl, (2.32)

where C : ZN × Rl → ZN , and µ is a l-dimensional parameter.

Periodic group

A cell z∗ which satisfies z∗ = C(z∗) is said to be an equilibrium cell of the system.
Let Cm denote the cell mapping C applied m times with C0 understood to be identity
mapping. A sequence of l distinct cells z∗(j), j ∈ l, which satisfies

z∗(m+ 1) = Cm(z∗(1)),m ∈ l − 1, z∗(1) = C l(z∗(1)), (2.33)

is said to constitute a periodic group or P-Group of period l and each of its elements
z∗(j) a periodic cell of period l. One can see that an equilibrium cell is a l = 1
periodic group.

Domains of attraction

A cell z is said to be r steps away from a periodic group if r is the minimum positive
integer such that Cr(z) = z∗(j), where z∗(j) is one of the cells of that periodic group.

The set of all cells, which are r steps or less removed from a periodic group is
called the r-step domain of attraction for that periodic group. The total domain of
attraction of a periodic group is its r-step domain of attraction with r →∞.

2.4.2 Simple cell mapping

The main idea of this method is based on the fact that the representation of the
numbers in a computer is finite. A number does not only represent the number
represented by its digits, but also an infinite neighborhood of numbers given by the
precision of the machine. This does not allow to assume variables to be continuous,
due to rounding errors and for this reason it is possible to consider the space as small
hypercubes whose size is given by the machine precision.
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The cell mapping approach [15] proposes to increase this discretization by dividing
the state space into bigger hypercubes. The evolution of the dynamical system is then
reduced to a new function, which is not defined in Rn, but rather on the cell space. In
this case we restrict ourselves to functions that are strictly deterministically defined.
For this case, we have the so-called simple cell mapping method, which is effective to
obtain the attractors and basins of attraction of a dynamical system.

Figure 2.5 shows the mapping for a group motion. The group motion has a 12
periodic group.

Figure 2.5: Group motion with a 12 periodic group. The arrows represent the map-
ping C from one cell to another. C(i) = C(j) is the mapping where the periodic
group is detected.

The cell mapping methods have been applied to optimal control problems of deter-
ministic and stochastic dynamic systems [33, 34, 35]. Other interesting applications of
the cell mapping methods include optimal space craft momentum unloading [36], sin-
gle and multiple manipulators of robots [37], optimum trajectory planning in robotic
systems by [38], and tracking control of the read-write head of computer hard disks
[39].

Now, we present a small example of the SCM. We considerer the following SOP:

min
x
f = 4x3 − 2x, (2.34)

where f ∈ R and x ∈ R. For this problem, we have two optimal points at
√
2
2

and

−
√
2
2

. Figure 2.6 shows the result for different values of N and Q = [−3, 3]. The
figure shows the mapping from one cell to another until it reaches a periodic group.
Further, it shows two different group motions and for N = 14 and N = 28, we can
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also see where the domain of attraction of
√
2
2

ends and the domain of attraction of

−
√
2
2

begins.

0.5 1 1.5 2 2.5
N1

(a) N = 2

1 2 3 4
N1

(b) N = 4

2 4 6 8 10 12 14
N1

(c) N = 14

5 10 15 20 25
N1

(d) N = 28

Figure 2.6: Numerical result of the SCM on Equation (2.34) with different grid size,
(a) N = 2; (b) N = 4; (c) N = 14; (d) N = 28. The white cells represents the optimal
solutions. The cells with the same color belong to the same domain of attraction (for
those cells their mapping end in the same cell). The arrows represent the cell mapping.
Finally, the black curve is the graphic representation of the problem.

2.4.3 Subdivision techniques

The subdivision techniques [9] are based on a generation of a collection of boxes in
parameter space, which by the end of the execution covers the periodic groups of a
given dynamical system. Let B0 be an initial collection of finitely many subsets of the
compact set Q such that ∪B∈B0 = Q. Then Bk is obtained from Bk−1 in the following
two steps:



24 CHAPTER 2. BACKGROUND AND RELATED WORK

1. Subdivision: Construct from Bk−1 a new system B̂k of subsets such that⋃
B∈B̂k

B =
⋃

B∈B̂k−1

B

and
diam(B̂k) = θkdiam(Bk−1),

where 0 < θmin ≤ θk ≤ θmax < 1.

2. Selection: Define the new collection Bk by

Bk = {B ∈ B̂k : there existsB̂ ∈ B̂k such that C−1(B) ∩ B̂ 6= 0}.

These methods converge to the periodic group of one (or several) dynamical system(s)
in the Hausdorff sense [40]. In the context of optimization this can be the set of global
minimizers [40, 10, 9].

Now, we present a small example of the subdivision techniques on Equation (2.34).
We have also chosen Q = [−3, 3]. Figure 2.7 shows the boxes that contain the periodic
groups for different iterations.



2.4. GLOBAL ANALYSIS OF DYNAMICAL SYSTEMS 25

−3 −2 −1 0 1 2 3
x1

(a) Iteration 1

−3 −2 −1 0 1 2 3
x1

(b) Iteration 2

−3 −2 −1 0 1 2 3
x1

(c) Iteration 3

−3 −2 −1 0 1 2 3
x1

(d) Iteration 4

Figure 2.7: Numerical result of the subdivision algorithm on Equation (2.34), (a)
Iteration 1; (b) Iteration 2; (c) Iteration 3; (d) Iteration 4. The black curve is the
graphic representation the problem.
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Chapter 3

Simple Cell Mapping for
Multi-Objective Optimization

In this chapter, we first describe the simple cell mapping method for general dynamical
systems (Section 3.1). We further adapt the simple cell mapping method to the
context of multi-objective optimization (Section 3.2) and finally we present numerical
results on academic models and a comparison with NSGA-II and MOEA/D (Section
3.4).

3.1 Simple Cell Mapping

In general, when we solve a problem, we do not obtain an exact result. This is either
due to the limited machine precision (roundoff errors) or by a limited measurement
accuracy while doing an experiment.

This is the main idea behind the SCM method [15]. Since these problems are
unavoidable, the method proposes to increase this error by a given discretization and
assumes every value as a discrete quantity.

The SCM method is an useful tool to do a global analysis of a given dynamical
system. In this section we present the classical SCM method and describe some of
the key elements used by the method to capture the global properties of a dynamical
system. We also provide an analysis of the simple cell mapping method based on
graph theory.

3.1.1 Description of the SCM Method

The SCM method uses some sets in order to capture the global properties of a cell,
which we describe in the following:

• Group motion number (Gr): The group number uniquely identifies a periodic
motion; it is assigned to every periodic cell of that periodic motion and also to
every cell in the domain of attraction. The group numbers, which are positive
integers, can be assigned sequentially.

27
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Figure 3.1: Shows a point x0 and the neighborhood of numbers that are represented
by x0.

• Period (Pe): Defines the period of each periodic motion.

• Number of steps to a P -group (St): Used to indicate how many steps it takes
to map this cell into a periodic cell.

According to the previous discussion, the algorithm works as follows: Until all
cells are processed, the value of the group motion indicates the state of the current
cell and it also points out the corresponding actions to the cell.

• A value of Gr(cell) = 0 means, the cell has not been processed, hence the state
of the cell changes to under process and then we follow the dynamical system
to the next cell.

• A value of Gr(cell) = −1 means, the cell is under process, which means we have
found a periodic group and we can compute the global properties of the current
periodic motion.

• A value Gr(cell) > 0 means, the cell has already been processed, hence we
found a previous periodic motion along with its global properties, which can be
used to complete the information of the cells under process.

Algorithm 2 shows the key elements of the SCM method.

3.1.2 Center point method

Now, we need to choose a point to represent the whole cell, for this we have picked
the center point method because of its simplicity and its good results if we have a
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Figure 3.2: Shows a periodic motion along with its global properties.

fine grid. This method is as follows, given a cell pcell ∈ Z , we compute its center
pcell center ∈ Rn.

When a cell is picked by the SCM method to start the process, a cell number
is given and we need to convert it into its cell center in order to start following the
dynamical system.

The first step is to convert the cell number into its cell coordinates ∈ Zn of the cell.
If we have the same number of divisions for each dimension i.e. Ni = b, ∀i ∈ n, then
this problem can be seen as a numerical base conversion (e.g. convert from decimal
to binary), where the base is given by N . This problem can be solved by means of
successive divisions.

Now, in order to generalize this process, we can use the same algorithm but in
each step, we change the base, which in this case is given by Ni. Algorithm 3 shows
the realization of this idea.

The next step is to take the cell coordinates and output the center of the cell.
This is given by the following expression:

pcell centeri = lbi + hizi −
1

2
hi, i = 1, . . . , n, (3.1)

where lb is a vector with the lower bound and h is a vector with the size of the cell
for each dimension.

Once we have followed from one cell to another one, we need to compute the
cell number of the new cell, which represents the inverse process of the algorithm
described above. Given a point ∈ Rn identify in which cell is located. Given the cell
center ∈ Rn, the cell coordinates ∈ Zn are given by the following expression:

pcelli = round((cell centeri − lbi)/hi + 1/2), i = 1 . . . , n. (3.2)
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Algorithm 2 Simple Cell Mapping Algorithm.

Require: DynamicalSystem, F, ub, lb, N, h,Nc

Ensure: z, C,Gr, Pe, St
1: current group← 1
2: Gr(i)← 0,∀i ∈ Nc

3: for all pcell ∈ Nc do
4: cell← pcell
5: i← 0
6: while newcell = true do
7: xi ← center point of cell
8: if Gr(cell) = 0 then
9: pi+1 ← DynamicalSystem(xi)

10: ncell← cell where pi+1 is located
11: C(cell)← ncell
12: cell← ncell
13: i← i+ 1
14: end if
15: if Gr(cell) > 0 then
16: Gr(Cj(pcell))← Gr(cell), j ← 0, · · · , i
17: Pe(Cj(pcell))← Pe(cell), j ← 0, · · · , i
18: St(Cj(pcell))← St(cell) + i− j, j ← 0, · · · , i
19: cell← C(cell)
20: newcell← false
21: end if
22: if Gr(cell) = −1 then
23: current group← current group+ 1
24: Gr(Ck(pcell))← current group, k ← 0, · · · , i
25: j ← ith value when period appears
26: Pe(Ck(pcell))← i− j, k ← 0, · · · , i
27: St(Ck(pcell))← j − k, k ← 0, · · · , j − 1
28: St(Ck(pcell))← 0, k ← j, · · · , i
29: cell← C(cell)
30: newcell← false
31: end if
32: end while
33: end for

Next, given the cell coordinates ∈ Zn, we compute the cell number ∈ Z based in
the evaluation of a polynomial. Algorithm 4 shows such a realization. Although
the center point method is rather simple, it is an effective way to represent a cell,
however, if the cells are too big the center point might no longer be representative of
the dynamics of the whole cell.
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Figure 3.3: Shows how the mapping is done from the center of celli to cellj.

Algorithm 3 Cell integer to cell coordinates

Require: cell, N
Ensure: z

1: cell← cell − 1
2: for i← 1 : length(N) do
3: coord(i)← rem(cell, N(i)) + 1
4: cell← fix(cell/N(i))
5: end for
6: z ← coord

Algorithm 4 Cell coordinates to cell number.

Require: z,N
Ensure: ncell

1: z ← z − 1
2: ncell← z(1)
3: b← N(1)
4: for i← 2 : length(N) do
5: ncell← ncell + z(i) ∗ b
6: b← b ∗N(i)
7: end for
8: ncell← ncell + 1
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3.1.3 Analysis of SCM

The SCM method can be viewed as a graph problem g = (x, e), where x is the set of
vertex of the graph and e is the set of edges. In the following we describe the SCM
as a graph problem.

1. Create graph: The first step consists of creating a graph g. The vector x is
equal to the set S of cells. The vector e is the mapping of a cell i to a cell j,
i.e. for a cell i compute its center point and then follow the dynamical system
to a cell j. Which is the representation of the transition between vertexes.

2. Find cycles: The second step is to use the graph g to compute the global
properties of the dynamical system. For this we could use either breadth search
first or deep search first (both methods are equivalent in this case, since we only
have transition for each vertex) and these methods can also give us the size of
the cycles if we use the colored version of the algorithms.

This view of the SCM method helps us to study the method in terms of space and
time complexity. In the following, we state some of the more important properties of
the method.

• The out-degree [41] of the graph g is 1.

• The generation of the graph is done in O(|x|), since for each vertex we only
have one edge going out.

• The search for cycles is done in O(|x|+ |e|), since each vertex and edge is visited
once.

• If we use an adjacency list representation for the graph g, O(|x| + |e|) is the
memory needed to store the graph.

• The number of vertexes x is given by N1×N2× . . . Nn, which is exponential in
the number of dimensions. This is the weakest point of the SCM method, thus
the method is restricted to low dimensional problems.

3.2 Adapting the SCM Method for MOPs

So far, the SCM method is designed for general dynamical systems as shown in
Algorithm 2. In order to apply it to the context of multi-objective optimization, we
have to define a suitable dynamical system. For this, we have chosen to take models
that are derived from descent direction methods.
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3.2.1 Dynamical system

In this section, we have picked the descent direction from [18] to be used with the
SCM method. Using Equation (2.16), the dynamical system

ẋ(t) = v(x(t)) (3.3)

can now be used since it defines a pressure toward the Pareto set/front of the MOP
at hand. The other descent direction methods described previously can be used in a
similar form.

3.2.2 Step size control

Once we have decided which descent direction ν to use, we are left with the problem
of choosing an appropriate step length t.

Typically, the computation of the step size is not easy as we have two conflicting
wishes. First, we would like to choose a step size t that lowers the objective function
as much as possible with a given descent direction ν. Ideally, we would like to have
the global minimizer of the function

φ(t) = F (x+ tν), t > 0, (3.4)

however, doing this we would spend a lot of function evaluation solving this problem
and this is in contrast to the second wish, which is to make this decision as cheap as
possible in terms of time and number of function evaluations.

As an alternative to the global minimizer of the function φ, we can use an inexact
step size control as the ones proposed in [2, 42].

In the particular case of the SCM for multi-objective optimization, it has several
advantages for solving the step size control problem since it has more information at
hand. For instance, we have the size of the cell which is given by h and we also have
that we start at the center of each cell. With this information, we already have a value
for sufficient decrease. If there exists a tνi ≥ hi

2
, i = 1, . . . , n, then we ensure that we

leave the current cell, which it is what the SCM method needs to keep working.
Now, to decide if the step size t is accepted, we can use a dominance test, if the

image of the new point F (xi+1) ≺ F (xi) then we accept the step size t else we can use
backtracking until we find an appropriate step size or the step size is so small that it
would be enough to leave the current cell.

We are left with the choice of the initial step size t0. For this we could choose
an arbitrary initial value and if this value is not accepted, we could rely in the back-
tracking to help us find an appropriate value for t0. However we can also compute
the nearest neighbor given the descent direction ν from the current cell center. This
idea is shown in Equation (3.5).

t0 = max

(
hi
νi

)
+ ε, ∀i|νi 6= 0. (3.5)
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Figure 3.4: Shows the setting of the step size control problem for the SCM method.

Although a bigger value of t0 may lead to a bigger decrease in the objective function,
this value of t0 is enough to leave the current cell and we have several advantages.
We would lose less information since we would be moving to a neighbor cell, this step
size control we would be in the frontier between the current cell and its neighbor,
thus if the step size t0 is not accepted there is no need to use backtracking, given
that we would not be able to leave the current cell and also since all cells are visited
in the SCM method the advantages that bigger step sizes would have by going to an
optimal solution with less function evaluations would be lost.

3.2.3 Finding Pareto optimal solutions

In order to be able to store those cells that are candidates to be Pareto optimal (to
be more precise, cells that potentially contain a part of the Pareto set), we use a set
called cPs.

As stated before the SCM method is useful to compute the global attractors and
the domain of attraction of the given dynamical system. To compute the Pareto
set and Pareto front, we use the first one. The solution of Equation (2.16) leads to
an optimal solution which can be also seen as a fixed point. Thus, every time the
SCM method finds a fixed point, we state that point is a candidate optimal solution.
Moreover, even if we do not reach the stopping criteria of Equation (2.16), SCM
method can also detect when we cycle around solutions. In this case all the solutions
of the cycle are marked as candidate optimal solutions.

In terms of global properties gathered by the SCM method, the candidate optimal
solutions are those cells with St = 0 and Gr 6= 1. St = 0 means they are part of a
periodic group and Gr 6= 1 ensures, we do not add cells that map to the sink cell.



3.3. DESCRIPTION THE SCM METHOD FOR MOPS 35

It is important to notice that because of the dynamical system periodic groups
with size greater than 1 should not appear, however, due to discretization errors
and too large step sizes periodic groups greater than 1 may be generated (i.e., an
oscillation around the Pareto set can occur). Thus, cells that are involved in the
current periodic group are also considered to be candidates.

Now, we have all the elements needed to solve a MOP by means of SCM method.

3.3 Description the SCM method for MOPs

In this section, we put together all the above discussion to write the SCM method
for multi-objective optimization. Algorithm 5 shows the key elements of the SCM
method for multi-objective optimization.

Now, we describe the behavior of the SCM with an example on MOP (A.1) with a
10× 10 grid. Figure 3.5 shows the SCM for the iterations 1, 3, 10 and 50. The result
is in cell space. First, we look at the cell located in (1, 1), which has been taken as the
starting cell. Next, we can follow the mapping from this cell by following its arrow.
That is, the path formed by the cells (1, 1), (2, 1), (3, 2), (4, 3), and (5, 4). Cell (5, 4)
is an endpoint in this case, since there is not an arrow from this cell to another cell,
which means we have a periodic group of 1. All the cells processed belong to the same
domain of attraction therefor they should have the same group number. Since, this
is the first group motion discovered, we give the group number 2 (the group number
1 is reserved for those periodic motions that go to the sink cell). Once we have the
global properties of those cells, we have to choose a new starting cell. Since the cell
(2, 1) has already been processed, we skip it and continue with the cell (3, 1). The
mapping of this cell also finishes in the cell (5, 4), thus this cell together with the new
path belong should have the same group number from before (group number 2).

Then, we choose a new starting cell and continue until we finish processing all
the cells. As we process the cells, we gather more information of the problem. For
this example we have 8 periodic motions with the same number of optimal solutions.
Figure 3.6 shows the result of the SCM for multi-objective optimization in cell space.

On the previous example we have used a 10×10 grid. However, different grid sizes
can be used. The grid size has an influence on the number of function evaluations
to be used and also on the quality of the solutions. Thus, the bigger the grid size,
the better the result. On the other hand, it also means more computational effort.
Figure 3.7 shows SCM for grid size of 5×5, 10×10 and 20×20. We can see even for a
small grid size the SCM succeeds to find the cells that contain the optimal solutions.
We can also see that as we increase the grid size, we obtain a better approximation
of both Pareto set and Pareto front. Further, we can see that although as we increase
the grid size, we have a better detail on the mapping, we can see the same patter on
the mapping even for the 5× 5 grid.

Figure 3.8 shows the result of SCM on different academic models. For the first
two model we use a 10× 10 grid and for the third model we use a 20× 20 grid.
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(d) Iteration 50

Figure 3.5: Iteration of SCM. The white cells represent the optimal solution found
so far. The arrows show the path from the starting cell to the optimal solution. The
darker cells represent unexplored regions.
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Algorithm 5 Simple Cell Mapping for MOPs.

Require: DynamicalSystem, F, ub, lb, N, h,Nc

Ensure: z, C,Gr, Pe, St, cPs
1: current group← 1
2: cPs = {}
3: Gr(i)← 0,∀i ∈ Nc

4: for all pcell ∈ Nc do
5: cell← pcell
6: i← 0
7: while newcell = true do
8: xi ← center point of cell
9: if Gr(cell) = 0 then

10: ν ← compute with Equation (3.3)
11: t← compute with Equation (3.5)
12: pi+1 ← xi + νt
13: ncell← cell where pi+1 is located
14: C(cell)← ncell
15: cell← ncell
16: i← i+ 1
17: end if
18: if Gr(cell) > 0 then
19: Gr(Cj(pcell))← Gr(cell), j ← 0, · · · , i
20: Pe(Cj(pcell))← Pe(cell), j ← 0, · · · , i
21: St(Cj(pcell))← St(cell) + i− j, j ← 0, · · · , i
22: cell← C(cell)
23: newcell← false
24: end if
25: if Gr(cell) = −1 then
26: current group← current group+ 1
27: Gr(Ck(pcell))← current group, k ← 0, · · · , i
28: j ← ith value when period appears
29: Pe(Ck(pcell))← i− j, k ← 0, · · · , i
30: St(Ck(pcell))← j − k, k ← 0, · · · , j − 1
31: St(Ck(pcell))← 0, k ← j, · · · , i
32: cPs← cPs ∪ cellk, k ← j, · · · , i
33: cell← C(cell)
34: newcell← false
35: end if
36: end while
37: end for
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Figure 3.6: SCM on MOP (A.1) in page 81 with a 10× 10 grid. White cells represent
optimal solutions. Further, cells with the same color belong to the same domain of
attraction. Finally, the arrows represent the mapping between cells.

3.4 Numerical Results

In this section, we present the numerical results of the SCM method for multi-
objective optimization on three academic functions and we compare the results with
the two state-of-the-art algorithms MOEA/D and NSGA-II (the evolutionary com-
putations are averaged over 20 independent runs). Tables 3.1 and 3.2 show the ∆p

values of the candidate sets (respectively their images) to PQ (F (PQ)) for all further
examples.

3.4.1 Problem 1

First, we consider MOP (A.1 in page 81). Figure 3.9 shows the numerical result
obtained by the SCM algorithm and the two evolutionary algorithms. A budget of
10, 000 function evaluations was used, the grid for SCM was set to N = [40, 40] (9, 600
function evaluations). From the figure, we see SCM covers all the Pareto set/front
with a good spread. We can also see that the results from SCM to the evolutionary
algorithms are competitive. From the tables 3.1 and 3.2, NSGA-II has the best
approximation in parameter space, while the SCM has the best approximation in
objective space according to ∆p.
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3.4.2 Problem 2

Next, we consider MOP (A.2 in page 82). Figure 3.10 shows some numerical results.
A budget of 10, 000 function evaluations was used, the grid for SCM was N = [40, 40]
(9, 600 function evaluations). From the figure, we see the SCM method does not only
finds the global optimal solution, but also the 8 regions that are nearly optimal, which
is a potential drawback of the method, since in this case we are only interested in
global optimal solutions. From the tables, MOEA/D has the best approximation in
parameter space, while the NSGA-II has the best approximation in objective space
according to ∆p. In this case, since SCM computes also the local optimal solutions
the ∆p values are not as good as the ones from the evolutionary algorithms.

3.4.3 Problem 3

Further, we consider MOP (A.3 in page 83). Figure 3.11 shows a numerical result
of the SCM and the evolutionary strategies for n = 3. A budget of 10, 000 func-
tion evaluations was used, the grid for SCM was N = [10, 10, 10] (6, 000 function
evaluations). Figure 3.12 shows a numerical result of the SCM and the evolutionary
strategies for n = 5. A budget of 600, 000 function evaluations was used, the grid for
SCM was N = [10, 10, 10, 10, 10] (600, 000 function evaluations). From the figure, we
see the SCM method is the only one that finds the four components of the Pareto
set. We also see the SCM computes a good approximation of the Pareto front From
the tables, SCM has the best approximation in parameter space, while the NSGA-II
has the best approximation in objective space according to ∆p.

3.4.4 Problem 4

Now, we consider MOP (A.6). Figure 3.13 shows a numerical result of the SCM and
the evolutionary strategies. A budget of 6, 000 function evaluations was used, the
grid for SCM was N = [20, 10, 5] (6, 000 function evaluations). For n = 3, we see the
SCM method together with NSGA-II yield the best results for this problem. From
the tables, SCM has the best approximation in parameter space, while the NSGA-II
has the best approximation in objective space according to ∆p. For n = 5, SCM is
still able to compute the sets of interest, however the computational cost increases
exponentially as we increase the number of parameters.
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Table 3.1: ∆p values for the distances of the candidate solution set to PQ,ε, the best
solutions in boldface.

MOP MOEA/D NSGA-II SCM

A.1 (Convex) 0.1376 0.1373 0.2550
A.2 (Rudolph) 0.0400 0.0273 7.8876
A.3 (Schäeffler n = 3) 35.0855 22.0992 4.0927
A.3 (Schäeffler n = 5) 35.3288 3.8959 3.8458
A.6 (PID) 15.8382 21.3082 13.6784

Table 3.2: ∆p values for the distances of the images of the candidate sets to F (PQ,ε).

MOP MOEA/D NSGA-II SCM

A.1 (Convex) 3.6766 1.7580 1.7385
A.2 (Rudolph) 0.0667 0.0367 0.1632
A.3 (Schäeffler n = 3) 49.2080 2.9000 4.5000
A.3 (Schäeffler n = 5) 59.5702 3.6123 7.9329
A.6 (PID) 22.9232 1.7408 3.3082
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Figure 3.7: SCM for different grid sizes on MOP (A.1 in page 81). In the left, we
present cell space. The cells of the same color belong to the same domain of attraction.
Next, white cells that contain the Pareto set. Further, the black arrow represent the
mapping between cells. In the right, we present objective space. The black dots
represent the approximation of the Pareto front.
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Figure 3.8: SCM for three Academic models on cell space. The cells of the same color
belong to the same domain of attraction. Next, white cells that contain the Pareto
set. Further, the black arrow represent the mapping between cells. In the right, we
present objective space.
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Figure 3.9: Numerical results for MOP (A.1). Black points indicate Pareto optimal
candidates.
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Figure 3.10: Numerical results for MOP (A.2). Black points indicate Pareto optimal
candidates.
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Figure 3.11: Numerical results for MOP (A.3) with n = 3. Black points indicate
Pareto optimal candidates.
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Figure 3.12: Numerical results for MOP (A.3) n = 5. Black points indicate Pareto
optimal candidates.



3.4. NUMERICAL RESULTS 47

10
20

30
40

50

10

20

30
1

1.5

2

x1
x2

x
3

0

0.2

0.4

0

10

20

30
0

0.1

0.2

0.3

0.4

f1f2

f
3

(a) Cell Mapping

10
20

30
40

50

10

20

30
1

1.5

2

x1
x2

x
3

0

0.2

0.4

0

10

20

30
0

0.1

0.2

0.3

0.4

f1f2

f
3

(b) MOEA/D

10
20

30
40

50

10

20

30
1

1.5

2

x1
x2

x
3

0

0.2

0.4

0

10

20

30
0

0.1

0.2

0.3

0.4

f1f2

f
3

(c) NSGA-II

Figure 3.13: Numerical results for MOP (A.6 in page 86). Black points indicate
Pareto optimal candidates.
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Chapter 4

Simple Cell Mapping for the
Approximation of the Set of
Approximate Solutions

Here we address the problem of computing the set of approximate solutions of a given
MOP. This set is of potential interest for the decision maker (DM) since it might give
him/her additional solutions to the optimal ones for the realization of the project
related to the MOP.

In a variety of applications in industry and finance a problem arises that several
objective functions have to be optimized concurrently leading to multi-objective op-
timization problems. For instance, in space mission design, there are two crucial aims
for the realization of a transfer: Minimization of flight time and fuel consumption of
the spacecraft [43, 44, 45]. In this case, it makes sense to consider in addition to the
‘optimal’ trajectories also approximate solutions since by this the decision maker is
offered a much larger variety of possibilities, and to present one way to compute this
enlarged set of interest with reasonable effort.

As a motivating example, consider the MOP which is a model taken from [27]
for the transfer from Earth to Mercury, and the following two points xi with images
F (xi), i = 1, 2:

x1 = (782, 1288, 1788), F (x1) = (0.462, 1001.7)

x2 = (1222, 1642, 2224), F (x2) = (0.463, 1005.3)

The two objectives are the propellant mass fraction i.e., the portion of the vehicle’s
mass which does not reach the destination and the flight time (in days). In the
domain, the first parameter is of particular interest: It determines the departure
time from the Earth (in days after 01/01/2000). F (x1) is less than F (x2) in both
components, and thus, x1 can be considered to be ‘better’ than x2. However, note
that the difference in image space is small: the mass fraction of the two solutions
differs by 0.001 which makes 0.1% of the total mass, and the flight time differs by
four days for a transfer which takes almost three years. In case the DM is willing to

49
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accept this deterioration, it will offer him/her a second choice in addition to x1 for
the realization of the transfer: While the two solutions offer ‘similar’ characteristics
in image space this is not the case in the design space since the starting times for the
two transfers differ by 440 days.

The identification of the two solutions would be a fundamental requirement during
the preliminary design of a space mission. In fact, in order to increase the reliability of
the design, the mission analysts would need to identify one or more back-up solutions,
possibly with identical cost, for each baseline solution. Furthermore, for each mission
opportunity (i.e. each launch date) rather than an optimal solution, it is generally
required to identify a set of nearly optimal ones, possibly all with similar cost.

As stated before the SCM method is restricted to small dimensions of the pa-
rameter space. However, there exist small dimensional problems where a thorough
investigation is desirable. Such models e.g. arise in preliminary space mission design
(e.g., [43, 44, 45]) or in the design of electrical circuits (e.g., [46, 47]).

In this study, we make a first attempt to adapt the SCM to the problem at
hand. Due to their global approach, these methods are well-suited for the thorough
investigation of small problems, including the computation of the set of approximate
solutions. Finally, we present three academic bi-objective optimization problems
including a comparison to a related evolutionary approach.

4.1 Archiving Techniques

In this section, we present the archiving procedure ArchiveUpdateTight2 [32]. This
procedure will be used together with the SCM method in order to compute the set
of approximate solutions PQε .

Definition 7 (Tight Sets [32]) 1. A set Aε ⊂ Q is called ∆M−tight ε−approximation
Pareto set of Problem (2.1) if Aε is ε-approximate Pareto set and

dist(F (PQ), F (Aε) ≤ ∆M .

2. A set A∗ε ⊂ Q is called a ∆M − tight ε-Pareto set if A∗ε is an ε-Pareto set of
Problem (2.1) and

dH(F (PQ), F (A∗ε)) ≤ ∆M .

Definition 8 ([32]) Let ε ∈ R∗+

1. A set Aε ⊂ Q with |Aε| ≥ 2 is called a (∆M ,∆m)−tight ε-approximation Pareto
set if A∗ε is an ∆M − tight− ε-approximation Pareto set and

dist(F (a), F (A\{a})) ≥ ∆m, ∀a ∈ A.

2. (∆M ,∆m)− tight ε-Pareto set is defined analogously.
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ArchiveUpdateTight2 leads to a sequence of archives Al, l ∈ N, such that there exists
with probability one, an integer l0 ∈ N such that Al is an ∆ − tight ε-approximate
Pareto set for all l ≥ l0 and lim

l→∞
. Algorithm 6 describes the procedure of ArchivUp-

dateTight2.

Algorithm 6 ArchiveUpdateTight2

Require: P,A0

Ensure: A
1: A← A0

2: for all p ∈ P do
3: if @a ∈ A : a ≺ε p)or@a ∈ A : a ≺ pand∀a ∈ A : d∞(F (a), F (p)) > ∆ then
4: A← A ∪ {p}
5: end if
6: for all a ∈ A do
7: if p ≺ a then
8: A← A ∪ {p}\{a}
9: end if

10: end for
11: end for

Given an archive A0 the archiver accepts a solution p if the one of the following
conditions is true.

• If all of the conditions in line 3 of Algorithm 6 is true

• If there exists an element a ∈ A0 which is dominated by p

4.2 Description of the SCM Method for the Set of

Approximate Solutions

After one run of the SCM algorithm, we have gathered the information on the global
dynamics of the system and are hence able to approximate the set of interest in a
post-processing step. For the problem at hand, the approximation of PQ,ε, we use the
archiving technique presented above.

The integration of both algorithms is as follows: Once the group number of the
current periodic motion is discovered, we use Algorithm 7 to compute the set PQ,ε.
Algorithm 7 updates the archive first with the periodic group of the current periodic
motion and continues with the rest of the periodic motion. Once it finds a cell which
is not in PQ,ε it stops the procedure. The reason for this can be easily seen. Since
each periodic group is a curve of dominated points, once a point xj 6∈ PQ,ε the other
points would not be either, since by construction these points are dominated by xj.

In the worst case Algorithm 7 visits all the cells. If this is the case, all solutions
in Q are in the set PQε . Thus, the presented approach would be equivalent to apply
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Algorithm 7 Post-processing to get PQ,ε
Require: PQ,ε, C, pcell, i
Ensure: PQ,ε

1: j ← i− 1
2: isPQ,ε ← true
3: while isPQ,ε do
4: xj ← center point of Cj(pcell)
5: PQ,ε ← ArchiveUpdateT ight2(PQ,ε, xj, F (xj), ε, h)
6: if xj 6∈ PQ,ε then
7: isPQ,ε ← false
8: end if
9: j ← j − 1

10: end while

the archiving technique to all centers points of the cells. Typically, this is not the
case and the number of cells run in the archive is much lower than the total number
of cells.

Now, we describe the behavior of the SCM for approximate solutions with an
example on MOP (A.1 in page 81) with a 10× 10 grid and ε = 0.5. Figure 4.1 shows
the SCM for the iterations 1, 3, 10 and 50. The result is in cell space. Note than even
if a cell is marked to be an approximate solution, it is possible than in later iterations
this cell is removed from the set.

It is also important to notice the impact of the ε value on the final solution. If
a value of ε = 0 is chosen then the solution is equivalent to the optimal one. As we
increase the value of ε more solutions become accepted. Figure 4.2 shows the result
of SCM on MOP A.1 with different ε values.

Figure 4.3 shows the final result of the SCM for the set of approximate solutions
in cell space. We can see that the set of approximate solutions is bigger than the set
of optimal solutions shown in Figure 3.6.

4.3 Numerical Results

In this section, we present the numerical results of the SCM method for the approx-
imation of PQ,ε on three academic functions and we compare the results with two
of algorithms of the state-of-the-art MOEA/D and NSGA-II (the results of the evo-
lutionary computations are averaged over 20 independent runs). Tables 4.1 and 4.2
show the ∆p values of the candidate sets (respectively their images) to PQ,ε (F (PQ,ε))
for all further examples.
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Figure 4.1: Iteration of SCM for PQε. The white cells represent the near optimal
solutions. Finally, the darker cells represent unexplored regions.
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Figure 4.2: Impact of ε values. The white cells represent the near optimal solutions.
Finally, the darker cells represent unexplored regions.
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Figure 4.3: SCM on MOP (A.1 in page 81) with a 10 × 10 grid and ε = 0.5. White
cells represent near optimal solutions

4.3.1 Problem 1

First, we consider the MOP (A.1 in page 81). Figure 4.4 shows the numerical result
obtained by the SCM algorithm and the two evolutionary algorithms. A budget of
10, 000 function evaluations was used, the grid for SCM was set to N = [40, 40] (9, 600
function evaluations). Apparently, SCM is able to get the best approximation of the
set of interest, in particular in parameter space.

4.3.2 Problem 2

Next, we consider the MOP (A.2 in page 82). Figure 4.5 shows some numerical
results. A budget of 60, 000 function evaluations was used, the grid for SCM was
N = [100, 100] (60, 000 function evaluations). SCM computes a covering of the entire
set of interest, while the evolutionary strategies do not always detect all components.
As a hypothetical decision making problem assume the DM is interested in the per-
formance Z = [0.2132, 0.2932] (measured in objective space) and is willing to accept a
deterioration of ε = [0.1, 0.1]. Then, e.g. the representatives of the cells those images
are within the target regions can be presented to the DM leading here to the following
22 candidate solutions:
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(c) NSGA-II

Figure 4.4: Numerical results for MOP (A.1). Black cells indicate Pareto optimal
candidates and gray cells regions in PQ,ε that are not optimal.
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(−6.04,−5.00), (−0.04,−5.00), (5.96,−5.00), (−6.04,−0.04),
(−0.12,−0.04), (−0.04,−0.28), (−0.04,−0.20), (−0.04,−0.12),
(−0.04,−0.04), (−0.12, 0.04), (−0.04, 0.04), (−0.04, 0.12),
(−0.04, 0.20), (−0.04, 0.28), (0.04,−0.12), (0.04,−0.04),
(0.04, 0.04), (0.04, 0.12), (5.96,−0.04), (−6.04, 5.00),
(−0.04, 5.00), (5.96, 5.00).

The solutions are well-spread and come in this case from all nine components of PQ,ε.
Since these components are located in different regions of the parameter space, the
DM is hence given a large variety for the realization of his/her project.

4.3.3 Problem 3

Finally, we consider the MOP (A.3 in page 82). Figure 4.6 shows a numerical result of
the SCM and the evolutionary strategies. A budget of 60, 000 function evaluations was
used and the grid for SCM was N = [20, 20, 20] (48, 000 function evaluations). Also
in this case, SCM obtains the best result in particular measured in parameter space
(compare also to Tables 1 and 2). Figure 4.7 shows the resulting boxes of another
hypothetical decision making problem where we have chosen Z = [23, 0.02231] and
ε = [2, 0.0004]. Also here, the DM is offered an entire range of solutions with different
parameter values.

The results indicate that the cell mapping technique is able to reliably compute
the set of approximate solutions, and is faster than the evolutionary approaches. The
method, however, is restricted to small dimensions of the decision space.

Table 4.1: ∆p values for the distances of the candidate solution set to PQ,ε, the best
solutions in boldface. For MOP (A.2) (Rudolph) and MOP (A.3) (Schäffler).

MOP MOEA/D NSGA-II SCM

A.1(Convex) 0.5141 0.4628 0.0849
A.2(Rudolph) 5.0507 7.4737 0.0632
A.3(Schäffler) 10.8365 10.9384 0.8660

Table 4.2: ∆p values for the distances of the images of the candidate sets to F (PQ,ε).

MOP MOEA/D NSGA-II SCM

A.1(Convex) 7.8902 8.0027 2.4250
A.2(Rudolph) 0.4276 0.6317 0.0524
A.3(Schäffler) 5.8152 2.6852 1.5000
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Figure 4.5: Numerical results for MOP (A.2). Black cells indicate Pareto optimal
candidates and gray cells regions in PQ,ε that are not optimal.



4.3. NUMERICAL RESULTS 59

0

20

40

0

20

40

0

10

20

30

40

x
1

x
2

x
3

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

f
1

f 2

(a) Cell Mapping

0

20

40

0

20

40

0

10

20

30

40

x
1

x
2

x
3

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

f
1

f 2

(b) MOEA/D

0

20

40

0

20

40

0

10

20

30

40

x
1

x
2

x
3

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

f
1

f 2

(c) NSGA-II

Figure 4.6: Numerical results for MOP (A.3). Black cells indicate Pareto optimal
candidates and gray cells regions in PQ,ε that are not optimal.
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Chapter 5

Analysis of Descent Direction
Methods

So far, we have only used the descent direction proposed in [18]. Although this descent
direction yields good results, we have other candidates to use along with SCM. In
this chapter, we make a comparison of the descent direction methods by means of the
SCM.

First, we present the problem at hand (Section 5.1), next we make a empirical
comparison of the methods on an academic function to give an intuition of the study
(Section 5.2). We conclude this chapter with a study of the domains of attraction by
means of the SCM on three academic functions (Section 5.3).

5.1 The Problem

Since, we have many options of descent direction methods, when one is faced with
the task of choosing the best descent direction method for the given application, an
important question arises. This is, if the methods have a preference in finding a
segment of the Pareto front, that is given a random point x0, we do not have the
same probability to find any Pareto optimal point.

This is of particular interest for memetic evolutionary algorithms. This algorithms
combines evolutionary algorithms with local search with the goal of improving their
results. One possible option for local search is to use descent direction methods.
However, if the current descent direction methods have a preference towards a segment
of the Pareto front. It might lead to a lost of diversity on the evolutionary algorithm,
which is highly unwanted. Therefore, it is important to study the descent direction
methods and to identify to which kind of problems is better to use a given descent
direction method.

To answer this question, we use one of the features of the SCM. Until now, we have
only explored the periodic groups found by the SCM. However, the SCM also gives
as result the domains of attraction for all periodic groups found. We propose to use
this feature to compute the domain of attraction for all Pareto optimal points. With
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this information we are able give a fair comparison of the descent direction methods
by measuring the size of the domain of attraction of all Pareto optimal points.

5.2 Empirical Comparison of DDMs

In this section, we present a first comparison of the descent direction methods. We
have picked MOP (A.1). The comparison is as follows:

We choose 10 random points and then apply the descent direction methods [2, 16,
18] to all the points for the same number of steps and an initial step size of 1. Figure
5.1 shows the comparison of the descent direction methods using one and five steps.
From the figure we can see Fliege and Schäffler yield the same results and also for the
two methods we can see a small preference to the end points of the Pareto set/front.
However, it is not enough to conclude on this matter. Table 5.1 shows the results for
∆p on the comparison that uses 5 steps.

Table 5.1: ∆p values for the distances of the candidate solution set to PQ,ε and F (PQ,ε)
for MOP (A.1).

Lara [18] Fliege [2] Schäffler [16]

Parameter space 1.9671 2.1573 2.1573
Objective space 15.6873 14.2295 14.2295

5.3 Comparison of DDMs by SCM

In this section, we present the results of the comparison of the descent direction
methods on three academic functions. We use slightly different methods to make the
comparison in parameter space and objective space.

We first look into the comparison in parameter space. Once we have the results
of the SCM for MOO, we cluster the cells by their group number (Gr) and then
compute the size of the domain of attraction of each group motion which is given by
the number of cells that have the same group number.

Since the number of group motions can be very high (almost each Pareto optimal
point has a different group motion), it is convenient to group the group motions
that are the closer together. For this we use a new discretization NQ ∈ Nn for the
feasible region Q where NQ ≤ N . With NQ we can now group the group motions by
computing for each Pareto optimal a new cell number with NQ.

Now we look into objective space. Although we could use the results of the
domains of attraction from parameter space, we would have the problem of choosing
which of the Pareto optimal points would represent the region in objective space and
also how big this region would be. Thus, we propose to also make a discretization
of the objective space NF (Q) ∈ Nk in the region bounded by the ideal vector and the
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Figure 5.1: Comparison of three descent direction methods. The squares represent
the initial points, asterisks represent Lara [18], crosses represent Schäffler [16] and
circles represent Fliege [2] a) Shows the result for one iteration of the methods. b)
Shows the result for five iterations of the methods.
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nadir vector. Then, we can group the groups motions in the same way as in parameter
space.

5.4 Numerical Results

In the following, we present the comparison for the descent direction methods. For all
the figures a lighter color means a bigger domain of attraction, while a darker color
means a smaller domain of attraction.

5.4.1 Problem 1

First, we look into MOP (A.1). Figure 5.2 shows the result of SCM on cell space
with a 10× 10 grid. Here we can see the mapping for the different descent directions
along with the optimal solutions found. Figure 5.3 shows the result obtained by the
SCM algorithm, the grid for SCM was set to N = [100, 100], NQ = [10, 10] and
NF (Q) = [10, 10]. Apparently, all the methods show a preference towards the extreme
points of the both Pareto set and Pareto front. However, in Lara’s method is not as
clear as it is for the other two methods.

5.4.2 Problem 2

Next, we look into MOP (A.4). Figure 5.4 shows the result of SCM on cell space with a
21×21 grid. This allows to visually compare the difference on mapping for the descent
direction methods. Figure 5.5 shows the result obtained by the SCM algorithm, the
grid for SCM was set to N = [100, 100], NQ = [20, 20] and NF (Q) = [20, 20]. In this
case, it is clearer a preference towards the extreme points of the sets.

5.4.3 Problem 3

Finally, we look into MOP (A.4). Figure 5.6 shows the result of SCM on cell space
with a 21 × 21 grid. This allows to visually compare the difference on mapping for
the descent direction methods. Figure 5.7 shows the result obtained by the SCM
algorithm, the grid for SCM was set to N = [100, 100], NQ = [20, 20] and NF (Q) =
[20, 20]. For Fliege and Schäffler it shows a preference for the optimal points in the
left and the size of the domain of attraction is smaller as we move to the right. We can
also notice that for this problem Fliege and Schäffler give different slightly different
results, opposite to the previous problems where both were the same. In Lara we can
see a clear preference towards any section of the Pareto set/front.
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Figure 5.2: SCM on MOP (A.1) in cell space with different descent direction methods.
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Figure 5.3: Comparison of three descent direction methods for MOP (A.1). We show
parameter space (left) with NQ = 10×10 and objective space (right) NF (Q) = 10×10.
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Figure 5.4: SCM on MOP (A.4) in cell space with different descent direction methods.
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Figure 5.5: Comparison of three descent direction methods for MOP (A.4). We show
parameter space (left) with NQ = 20×20 and objective space (right) NF (Q) = 20×20.
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Figure 5.6: SCM on MOP (A.5) in cell space with different descent direction methods.
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Figure 5.7: Comparison of three descent direction methods for MOP (A.5). We show
parameter space (left) with NQ = 20×20 and objective space (right) NF (Q) = 20×20.



Chapter 6

Refine and Recover

One of the potential drawbacks of the SCM is given by the size of the cells. The
choice of the size of the cells is critical for the algorithm, since cells too small may
lead to a high number of function evaluations, while cells too big may lead to results
that are not significant enough or even in the lost of information.

In this chapter, we address the problem of refining the solutions once the SCM
has computed the optimal solutions (Section 6.1) and then we address the problem
of how to recover optimal solutions once they have been discarded by the SCM due
the discretization of the feasible region Q (Section 6.2).

6.1 Refine

Although there is a risk on using a big size of cell, the SCM can be used to compute
a raw picture of promissory regions where optimal solutions can be found. With
this preliminary result, now we can focus in these regions to perform a fine search.
In this section, we present several methods that can be used in this context. First,
we present a method that given the center points of each cell that belongs to an
optimal solution, it searches for the best point within its cell (Section 6.1.1). Next,
we present a variation of the SCM method that takes a subspace of the feasible
region Q and then performs the SCM (Section 6.1.2). Further, we examine in how
to use the subdivision techniques together with the SCM (Section 6.1.3). Finally, we
present a comparison between the methods proposed in this section and the SCM for
multi-objective optimization (Section 6.1.4).

6.1.1 Refine in Cell

As we mentioned previously the center point method has the disadvantage that the
center point may not be significant of the whole cell. When a cell is marked as
an optimal solution, it means that within the cell, we can find an optimal solution.
However in the SCM, we always take the center point to represent the cell, thus it
can be the case that there are better solutions rather than the center point.

71



72 CHAPTER 6. REFINE AND RECOVER

The idea of this method is the following: Given the center point xc of a cell and its
boundaries lbcell and ubcell, we use the dynamical systems with lbcell and ubcell as box
constraints and we use xc as initial point. Thus, we will find a new point xc+j after
j steps such that xc+j ≺ xc. Algorithm 8 shows the key elements of this approach
called rinc.

Algorithm 8 Refine in Cell (rinc)

Require: DynamicalSystem, cPs,maxiter, tolerance
Ensure: refined solution

1: refined solution← {}
2: for all cell ∈ cPs do
3: i← 1
4: xc ← compute center of cell with Equation (3.1)
5: lbcell, ubcell ← compute lower and upper bounds of cell
6: while i ≤ maxiter and stopcriteria(xc) > tolerance do
7: xc ← DynamicalSystem(xc)
8: end while
9: refined solution← refined solution ∪ {xc}

10: end for

This method has the property that it will output the same number of solutions
as the input had. However, it has two potential drawbacks. First, although several
optimal solutions may exist in the same cell but the method only give one for each
cell. Further, due the step size control, periodic groups bigger than one may appear.
Thus a cell marked as optimal solution may not in fact be one, in this case the method
is not capable of detecting it and will give as output a point in the boundary of a cell.

6.1.2 SCM-Refine

As we can see in Algorithm 2, the SCM takes as input a feasible region bounded
by box constraints lb and ub. We propose to give as input a set of feasible cells
celli such that i ∈ n and everything outside this set is considered to be the sink cell.
This idea allows the SCM to skip cells that are not interesting by a given criteria, i.e.
the cell is not feasible.

Thus, once we have the result of the SCM using only box constraints, we can select
the cells that are optimal solutions. Next, we divide these cells by a given factor c and
then use the SCM only with these cells and compute a new set of optimal solutions.
Algorithm 9 shows the key elements of this method (SCM-R).

This method has the advantages that we are able to compute more than one
optimal solution for each cell. Also the method can be used several times until it
meets a criteria. For instance, on the size of the cells or the number of solutions.
Finally, this method compute not only the new set of optimal solutions but also the
domains of attraction of the new set, which can be both an advantage of a drawback,
if we are interested or not in the domains of attraction.
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Algorithm 9 SCM-Refine

Require: DynamicalSystem, cPs, div, h,N
Ensure: cPs

1: S ← {}
2: hi ← hi/divi
3: Ni ← Ni ∗ divi
4: rangi ← −divi + 1,−div, . . . , 0, i = 1, . . . , |div|
5: comb← rang1 × . . .× rang|div|
6: for all cell ∈ cPs do
7: z ← compute cell coordinates of cell with Algorithm (3)
8: corneri ← zidivi, i = 1, . . . , |div|
9: new cells← combi + corner, i = 1, . . . , |div|

10: end for
11: S ← S ∪ new cells
12: z, C,Gr, Pe, St, cPs← SCM(DynamicalSystem, F, ub, lb, N, h,Nc, S)

6.1.3 SCM with subdivision techniques

The subdivision techniques are an effective way to compute the optimal solutions of
a given MOP and the subdivision techniques has also been proved to converge to the
optimal solutions [40]. However, in the realization of the algorithm, when the cells
are too big (for instance in the initial iterations), it is more difficult to decide if a
given cell fulfills the selection criteria. In this section, we propose to use the SCM
(SCM-ST) to preprocess the feasible region Q.

Again, we select the optimal solutions given by the SCM. Next, we convert the
cells to a (center, radius) representation. Finally, we use the new set of cells as initial
parameter for the subdivision techniques.

This method has also the advantage of computing more than one optimal solution
for each original cell. Also, if we are not interested in the domains of attraction of
the new set of optimal solutions, this method only computes the optimal solutions.
Thus, it is cheaper in terms of memory than the previous method, since we do not
compute the global properties of the dynamical system.

6.1.4 Comparison of the methods

In this section, we present a numerical comparison of the refinement methods pre-
sented above for MOP (A.1). A budget of 10, 000 function evaluations was used as
in Section 3.4. First a result with SCM was computed. The grid for rinc was set to
N = [35, 35] (7350 function evaluations) leading to 21 optimal solutions and for the
other cases was set to N = [20, 20] (2400 function evaluations) leading to 11 optimal
solutions.

Next, for rinc 17 steps of the dynamical system were used for each optimal solution
found. In the case of both SCM-ST and SCM-R a division factor of 2 was used and
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the stopping criteria was set to be less than the limit of function evaluations to be
used. SCM-ST does a search equivalent to a grid of N = [640, 320] and SCM-R does
a search to a grid of N = [640, 640]. If we would like to use SCM on grids of these
size then we would use 1228800 and 2457600 respectively.

Figure 6.1 shows the results. Table 6.1 shows the ∆p values of the candidate sets
to PQ and their image F (PQ). From the results, we can see that SCM-R and SCM-ST
are similar. Also if we compare this results with Table 3.1 in page 40, we can see that
the three refinement methods show better result than the SCM and further SCM-R
and SCM-ST show better results than MOEA/D and NSGA-II.

Table 6.1: ∆p values for the distances of the candidate solution set to PQ,ε and F (PQ,ε),
the best solutions in boldface.

PQ F (PQ)

Refine in Cell 0.1869 1.6355
SCM-R 0.1328 1.8150
SCM-ST 0.1328 1.8336

6.2 Recover

It may be the case that in the course of the SCM cells get lost, although they contain
optimal solutions. For instance, this would be the case due discretization errors. We
now describe a couple of algorithms using a process which allows to recover those
optimal solutions that have previously been lost.

The idea behind these methods is the following: If the size of the cells is small
enough, we expect that there would be neighboring boxes that also contain optimal
solutions. Then we could perform a local search around these cells and keep those
that are optimal solutions and we continue doing this while new solutions are found.

First, we look into a continuation method adapted to the SCM context (Section
6.2.2). Further, we look into a method that moves the boxes towards optimal solutions
(Section 6.2.1). Finally, we present a comparison between these methods (Section
6.2.3).

6.2.1 Moving Boxes

Given the set of optimal solutions found by SCM, we now choose for each cell several
test points at random and then follow the dynamical system for one step. Then, we
compute the cell where the new points end and add the new cells. This process is
repeated until there are not any new cells. Algorithm 10 shows this process.

This method has the disadvantage that if big sections of the solutions are lost,
then it is very likely that the method will not be able to recover all the solutions.
Also, if the set cPs (in Algoritm 10)contains cells that does not belong to the set
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Figure 6.1: Numerical results for MOP (A.1). Black cells indicate Pareto optimal
candidates.
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Algorithm 10 Moving Boxes

Require: DynamicalSystem, cPsh,N, no test
Ensure: cPs

1: S ← {}
2: for all cell ∈ cPs do
3: for i to no test do
4: xj ← rand(celllbj , cellubj), j = 1, . . . , |lb|
5: xnew ← DynamicalSystem(x)
6: new cell← compute cell of xnew with Algorithm 4
7: if new cell /∈ cPs then
8: cPs← cPs ∪ new cell
9: end if

10: end for
11: end for

of optimal solutions then the method would give as output a path to the optimal
solution from the initial cell.

6.2.2 Continuation

Once we have the set of optimal solutions computed by the SCM, we would like to
move along the Pareto front. We use a continuation method based on the directed
search [17].

Algorithm 11 SCM Continuation

Require: cPs
Ensure: cPs

1: for all cell ∈ cPs do
2: xc ← compute center of cell with Equation (3.1)
3: αcell ← compute αcell
4: q, r ← QR− factorization(αcell)
5: directions← qi ∪ −qi, i = 2, . . . , |q|
6: xi ← DirectedSearch(xc, directionsi), i = 1, . . . , |directions|
7: new cells← compute cell index of xi with Algorithm 4
8: cPs← cPs

⋂
new cells

9: end for

6.2.3 Comparison of the methods

In this section, we present a numerical comparison of the recover methods presented
above for MOP (A.1). First a result with SCM was computed and then to we remove
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Figure 6.2: Numerical results for MOP (A.1). Black cells indicate Pareto optimal
candidates.

Table 6.2: ∆p values for the distances of the candidate solution set to PQ,ε and F (PQ,ε),
the best solutions in boldface.

PQ F (PQ)

Moving boxes 0.3536 1.8635
SCM-continuation 0.2550 2.6770
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The main goal of this thesis has been to design set oriented methods for the numerical
treatment of multi-objective optimization problems. The proposed approach was to
adapt the simple cell mapping method to the given context. With this approach we
obtained a thorough investigation for low dimensional problems.

We have used the simple cell mapping techniques to address the problem of com-
puting the set of approximate solutions of a given multi-objective optimization prob-
lem. This set is of interest for the decision maker since it might enhance the set of
options for him/her when compared to the set of optimal solutions, the Pareto set. To
compute the set of approximate solutions we have adapted cell mapping techniques
that were originally designed for the global analysis of dynamical systems. Since
methods of that kind divide the search space into n-dimensional cells, where n is the
dimension of the decision space of the MOP, they are well-suited for the problem at
hand since they allow for an efficient approximation of the set of interest. We have
tested the novel method on three academic functions and have compared it against
two evolutionary methods. The results indicate that the cell mapping technique is
able to reliably compute the set of approximate solutions, and is faster than the
evolutionary approaches.

Further, we have made a comparison of some of the existing descent direction
methods. This comparison is of particular interest for memetic evolutionary algo-
rithms, since the results indicate that the studied methods have a potential bias
towards the extreme points of the Pareto front. This should be taken to account
when designing a memetic evolutionary algorithm based on this methods, since it can
lead to unwanted issues as a lost on diversity.

Finally, we have also hybridized the simple cell mapping method with other tech-
niques to partially overcome some of the drawbacks of the method. In particular
we have addressed the refinement of the solutions once a prominent region has been
found and the potential lost of information due discretization errors. The results
show that this approach is highly competitive with the evolutionary algorithms for
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low dimension problems.

7.2 Future Work

There are several points to be addressed. First of all, it would be desirable to extend
the applicability of the method to higher dimensional problems. For this it seems
promising to parallelize the simple cell mapping method.

Next, the integration of constraint handling techniques has to be addresses which
has been left out in this study.

It would also be interesting to extend the refinement and recovering techniques to
the other sets of interest such as approximate solutions and domains of attractions.

For our study, we have used academic models. However, we plan to apply the new
method to real-wold engineering problems.

In the case of the comparison of descent direction methods, it would be desirable
to improve it and to design a framework to help us study these methods and also to
either improve them or to design a bias free descent direction method.

Finally, we plan to use the simple cell mapping to address robust multi-objective
optimization, since it seems to be a good candidate given the thorough investigation
provided by simple cell mapping.



Appendix A

Appendix A: Test Functions

Problem 1

This MOP taken from [48] that is given by two objective functions f1, f2 : R2 → R,

f1(x1, x2) = (x1 − 1)2 + (x2 − 1)4,

f2(x1, x2) = (x1 + 1)2 + (x2 + 1)2.
(A.1)

Here, we have chosen for the domain Q = [−3, 3]× [−3, 3]. The Pareto set PQ forms a
curve connecting the end points x1 = (−1,−1)T and x2 = (1, 1)T . Figure A.1 shows
the Pareto set and Pareto front.
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Figure A.1: Pareto set and Pareto front of MOP (A.1).
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Problem 2

Next, we consider the problem F : R2 → R
2 proposed in [49].

F (x1, x2) =

(
(x1 − t1(c+ 2a) + a)2 + (x2 − t2b)2 + δt
(x1 − t1(c+ 2a)− a)2 + (x2 − t2b)2 + δt

)
, (A.2)

where

t1 = sgn(x1) min

(⌈
|x1| − a− c/2

2a+ c

⌉
, 1

)
, t2 = sgn(x2) min

(⌈
|x2| − b/2

b

⌉
, 1

)
,

and

δt =

{
0 for t1 = 0 and t2 = 0
0.1 else

.

Using a = 0.5, b = 5, c = 5 the Pareto set of MOP (A.2) is connected and further
there exist eight other connected components that are locally optimal. For ε > 0.1,
the set PQ,ε consists of nine sets that contain these components. Figure A.2 shows
the Pareto set and Pareto front.
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Figure A.2: Pareto set and Pareto front of MOP (A.2).
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Problem 3

The production model proposed in [16] is defined as follows:

f1, f2 : Rn → R

f1(x) =
n∑
j=1

xj,

f2(x) = 1−
n∏
j=1

(1− wj(xj)),

(A.3)

where

wj(z) =

{
0.01 · exp(−( z

20
)2.5) for j = 1, 2

0.01 · exp(− z
15

) for j > 2

Objective f1 is related to the cost of a given product and f2 to its failure rate. For
the domain Q = [0, 40]3 the Pareto set consists of four connected components. Figure
A.2 shows the Pareto set and Pareto front.
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Figure A.3: Pareto set and Pareto front of MOP (A.3).



84 APPENDIX A. APPENDIX A: TEST FUNCTIONS

Problem 4

The model proposed in [50] is defined as follows:

f1(x, y) = x2 + y2,

f2(x, y) = (x+ 2)2 + y2
(A.4)

Here, we have chosen for the domain Q = [−5, 5]× [−5, 5]. The Pareto set PQ forms
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Figure A.4: Pareto set and Pareto front of MOP (A.4).

a curve connecting the end points x1 = (−2,−0)T and x2 = (0, 0)T . Figure A.4 shows
the Pareto set and Pareto front.
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Problem 5

The model proposed in [51] is defined as follows:

f1(x) = x1,

f2(x, g) = g(x)h(x),

and

g(x) = 1 + x22

h(x) =

{
1 if f1 ≤ g,

0 otherwise

(A.5)
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Figure A.5: Pareto set and Pareto front of MOP (A.5).
Here, we have chosen for the domain Q = [0, 1] × [0, 1]. The Pareto set PQ forms a
curve connecting the end points x1 = (0, 0)T and x2 = (1, 0)T . Figure A.5 shows the
Pareto set and Pareto front.
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Problem PID

We consider a second order oscillator subject to a proportional-integral-derivative
(PID) control [52].

ẍ+ 2ζωnẋ+ ω2
nx = ω2

nu(t), (A.6)

where ωn = 5, ζ = 0.01,

u(t) = kp [r(t)− x(t)] + ki

∫ t

0

[
r(t̂)− x(t̂)

]
dt̂− kdẋ(t), (A.7)

r(t) is a step input, kp, ki and kd are the PID control gains. We consider the MOP

with the control gains k = [kp, ki, kd]
T as design parameters. The design space for the

parameters is chosen as follows,

Q = {k ∈ [10, 50]× [1, 30]× [1, 2] ⊂ R3}. (A.8)

Peak time and overshoot are common in time domain control design objectives
[53, 54, 55]. We consider the multi-objective optimization problem to design the
control gain k,

min
k∈Q
{tp,Mp, eIAE}, (A.9)

where Mp stands for the overshoot of the response to a step reference input, tp is the
corresponding peak time and eIAE is the integrated absolute tracking error

eIAE =

∫ Tss

0

∣∣r(t̂)− x(t̂)
∣∣ dt̂. (A.10)

Where r(t) is a reference input and Tss is the time when the response is close to be
in the steady state. The closed-loop response of the system for each design trial is
computed with the help of closed form solutions. The integrated absolute tracking
error eIAE is calculated over time with Tss = 20s.
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Figure A.6: Pareto set and Pareto front of MOP (A.6).
Here, we have chosen for the domain Q = [10, 1, 1]× [50, 30, 2]. Figure A.6 shows the
Pareto set and Pareto front.
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