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Resumen

La optimización multiobjetivo ha sido una fuerza de empuje hacia nuevas aplicaciones en

áreas tales como las matemáticas, la f́ısica y la ingenieŕıa. En años recientes, se han desar-

rollado diversas técnicas para el manejo de la optimización de un solo, y múltiples objetivos,

desde estrategias de búsqueda lineal, a estrategias basadas en poblaciones como los algorit-

mos evolutivos.

Uno de estos enfoques de búsqueda lineal, es moverse sobre el conjunto de interés, el

conjunto de Pareto, por medio de métodos de continuación multiobjetivo. Estos métodos

son muy efectivos localmente, sin embargo, requieren -hasta ahora- información de gradiente

o de la Hessiana (derivada de segundo orden) lo cual limita su aplicación.

En este trabajo se propone un nuevo método de continuación basado en la Búsqueda Di-

rigida Directa (DDS por sus siglas del inglés Discrete Directed Search). Este nuevo algoritmo

fue desarrollado para resolver problemas de optimización multiobjetivo, sin la necesidad de

utilizar información de gradiente. Además, el nuevo algoritmo de continuiación por DDS

puede manejar restricciones de igualdad y de desigualdad. También presentamos ejemplos

numéricos sobre problemas académicos, aśı como un problema relacionado con el diseño de

misiones espaciales. Se han obtenido aproximaciones de alta calidad utilizando este método,

haciéndolo una alternativa interesante para resolver problemas de optimización multiobjetivo

en ingenieŕıa.



Abstract

Multiobjective optimization has been a pulling force towards new applications in fields such

as mathematics, physics, and engineering. In recent years, many new techniques have been

developed to treat single and multiple objective optimization, ranging from mathematical

programming techniques such as line search methods, to population based strategies such as

evolutionary algorithms.

One of these line search approaches, is to move along the set of interest, the Pareto set,

by means of multiobjective continuation methods. Such methods are very effective locally,

however, they require -so far- gradient or even Hessian (second order derivative) information,

which limits their applications.

In this work, we propose a new continuation method, based on the Discrete Directed

Search (DDS) method. This new algorithm was developed to solve multiobjective opti-

mization problems, without the need of gradient information. In addition, this new DDS

Continuation Method is capable of handling equality and inequality constraints. We also

present numerical examples on academic models, as well as one problem related to space

mission design. High quality approximations have been achieved using this method, making

it an interesting alternative to solve engineering multiobjective optimization problems.
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Chapter 1

Introduction

Optimization is the process of seeking to improve a certain objective, which depends on a set

of unknown elements. This is, one tries to find the values of these elements to minimize or

maximize the objective, which represents a quantitative measure.

Optimization is an interesting and challenging field inside mathematics. People have

always sought to improve their goals, be they in their daily lives or in academic problems. It

is clear that better, more efficient solutions to these problems are always needed. However,

the computation of better solutions usually come with a cost, and then we are forced to

ponder as to which solution is the best given our context. This is where optimization comes

into play. Since the beginning of the 20th century, mathematicians were interested in finding

formulas to obtain optima by means of calculus. Work done by Newton, Gauss or Lagrange

boosted the interest in such techniques. It was later noticed that these problems could

be translated into real-world applications and from then on, optimization was not only a

mathematical concept, but an area that could help anyone in need. In the 1930’s, the

United States of America military applied optimization on their training schedules, as a way

to maximize the time used by their troops.

Further research into this field, revealed that not only were people searching for a single

answer to their needs, or more importantly one could not assign a specific “value” to the

given problem. The term of multiobjective optimization came to be. Multiple objectives,

or multiobjective optimization is the search for a wide range of optimal solutions, where we

sacrifice the efficiency of one or more solutions, to gain or improve another one. This balance

constitutes the area of interest of this work.

1



2

Multiobjective optimization has taken a fundamental role in society throughout the last

years. Its application in engineering is wide. For example, in manufacturing, improving

the quality of products and at the same time minimizing their cost is of great interest for

manufacturers and clients. Another example is in the design of many products. This requires

to take into account many variables such as the amount of material to be used, the shape

that it will take, the performance and interaction with other elements.

Applications in aircraft structural design require a detailed analysis to satisfy material

and security conditions. One of the main concerns in aircraft structure is the design of

airfoils, i.e., the shape of the wings. The objectives here are to minimize the drag caused by

the flow of air, and at the same time to maximize the lift. Many authors have attacked airfoil

structure designs as well as other engineering-related problems concerning aircrafts [1–8].

Other interesting applications are in the field of space mission designs. In these situations,

where a slight variation in the decisions can lead up to a huge increment of costs for a space

agency. For example, changing the trajectory of a satellite going into deep space, can make

a difference in years for its final destination. Usually, orbits are calculated as to use the

gravity of nearby planets to propel or eject a satellite or shuttle into the desired path and

thus save time and fuel for the traveling satellite. Optimization has been used as a tool in

space mission designs, mainly to improve the trajectory of an object in space as to minimize

the time of departure.

To name a few examples, Vasile et al. [9], formulated the problem of a mission to Mars

and back to Earth as a global optimization problem, this is, to find the best solutions in

the entire design space. They considered straight trajectories, along with catapulting by

means of gravity pulls from said planets, and obtained a set of optimal solutions to allow

the mission control to select the one that suited their needs at that particular time.

Another example, by Sánchez et al. [10], generated a mathematical model for the devia-

tion of objects approaching Earth by means of collision, this is, to minimize the mass of the

object impacting an asteroid and to maximize the deviation caused by the explosion.

There are several approaches for solving real-world problems using multiobjective op-

timization. The simplest one is by means of scalarization methods [11–13], which break

Cinvestav Computer Science Department



Introduction 3

down the initial problems into a set of single objective ones and then attempt to minimize

each one separately. Other ideas are to use nature-inspired techniques such as evolutionary

strategies [14, 15], in which a group of data points “evolves” throughout time by combining

promising solutions. In order to speed up convergence for this kind of algorithms, a new

approach is to fuse them with local search methods. This group of algorithms is known as

memetic methods [16]. Finally if a partial set of the best solutions is found, one can turn to

continuation methods [17, 18], which, given an initial point (considered the best by a given

function), move through objective space, obtaining solutions which are as good as the initial

one. The broad set of attacks to real-world problems leads to the work presented in this

thesis, in which a local search strategy is combined with a continuation method to obtain

the set of best solutions for a given problem.

In this chapter, we present a quick overview of the thesis. In Section 1.1 we prese the

motivation of our work, and the main difficulties arising from engineering problems, as well

as the main problem attacked in this work. In Section 1.2 we briefly describe the objectives

of this thesis, and in Section 1.3 we state the contributions obtained from this work. Finally

a description of the structure of this document is presented in Section 1.4.

1.1 Motivation

Multiobjective optimization in engineering has evolved and new strategies have been devel-

oped in order to solve aeronautical problems. Bowen and Zhide [1] used single objective

optimization to assess airfoils in several operational conditions. Chamis [8] stated an engine

design problem using multiobjective optimization, and Gaiddon et al. [2] used multiobjec-

tive optimization as well on missile inlets. Both concluded that multiobjective optimization

obtained better results and that obtaining a Pareto front simplifies the process of satisfying

design constraints. Finally, in a real world application Chiba et al. [3] attacked the prob-

lem of the airfoil design using multiobjective optimization, and a combination of genetic

algorithm and parallel processing yielded good results.

One of the most recent attempts to solve an airfoil and engine problem was developed

Cinvestav Computer Science Department



4 Chapter 1

by Kipouros et al. [4]. The authors developed a variation of the taboo search algorithm and

successfully improved the results of a single objective optimization problem (SOP) previously

used in the same design problem by Harvey et al. [5]. The problem was designed for two

objectives but it was later extended to three and four objectives [6]. The fact that the design

space can be extended into more objectives, shows that real world problems can be attacked

with different optimization approaches.

Evolutionary algorithms have also been used to attack aeronautical design problems.

These algorithms use a population and generate solutions by breeding or mutating the cur-

rent solutions to generate a new population, and keep the non-dominated solutions. In 2004,

Emmerich and Naujoks [7] proposed a modification of two evolutionary algorithms: NSGA-

II [14] and ε-MOEA [19]. The authors implemented metamodels which approximate function

values in airfoil design. This modification was made to reduce the time in the time-intensive

function calls needed to evaluate airfoil design parameters. Their results showed an improve-

ment in the spread of solutions as well as in the rate of convergence towards the Pareto front.

However one major issue, according to Emmerichs on multiobjective evolutionary algorithms

(MOEAs), is that the larger the population, the greater the number function evaluations.

In the context of engineering problem, function evaluations are a time-consuming task, and

thus, MOEAs become infeasible.

Due to the difficulty of solving real-world problems using optimization techniques and

the time-consuming tasks that convey such problems, a method that minimizes the time and

cost (measured in terms of function evaluations) is of great interest. This led us to merge an

academic local search method into a continuation method in aeronautical design cases, and

more specifically into a space trajectory mission design.

1.2 The Problem

In aeronautical design, the large number of infeasible solutions makes it a challenging task to

obtain the set of optimal solutions. In addition, the high cost in both time and computational

power of each function evaluation further increase the complexity of the problem. As stated
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before, multiobjective optimization can help us search towards and along the Pareto front.

Using a local search method described by Schütze et. al in [20], one can guide the search

in objective space towards the Pareto front. Once the Pareto front is reached, we can apply

the gradient-free version of the method to the problem and obtain a smooth approxima-

tion of the Pareto front, thus leaving the decision-makers the more useful choice given their

current context. This method, compared to standard evolutionary algorithms and other con-

tinuation methods, cannot obtain a better approximation using the same budget of function

evaluations.

Our aim is to obtain good approximations of the solution sets in academic problems and

then attack aeronautical and space mission design problems, with a “small” budget of func-

tion evaluations using a gradient-free continuation method. Since so far, no gradient-free

continuation method exists, we will demonstrate the usefulness of this method in multiob-

jective optimization problems.

1.3 General and Particular Aims of the Project

The aim of this project is,

� To develop a new gradient free continuation method for the treatment of multiobjective

optimization problems to achieve a good approximation quality of the Pareto front

using a low number of function evaluations, and to apply it to space mission design

problems.

Particularly,

� To develop and analyze a new gradient free continuation method for unconstrained

multiobjective optimization problems based on the Discrete Directed Search (DDS).

� To adapt this novel method for the handling of constrained optimization problems.

� To test the DDS Continuation method on academic problems.

� To apply the DDS continuation method on problems related to space mission design.

Cinvestav Computer Science Department



6 Chapter 1

� To evaluate the results with the current state-of-the-art evolutionary algorithms and

continuation methods.

1.4 Contributions

The main contribution of this work is a novel continuation method which eliminates one of the

main issues of continuation methods: The use of gradient information. In this new method,

we adapt the Directed Search method [21] into the gradient-free continuation method which

uses a low number of function evaluations while yielding a good approximation of the Pareto

front of a given problem. This method can also handle box, linear and non-linear constraints.

In addition, this method can be applied to real-world problems, in particular, to engineering

design optimization.

The secondary contributions of our work are as follows:

� An implementation of both the discrete directed search and the gradient free directed

search continuation method.

� A good approximation of the Pareto front for the a real-world space trajectory problem.

� A software package for free academic use.

� A paper submitted to an international journal: The IEEE Transactions on Evolution-

ary Computation, and the participation in an international conference: The EVOLVE

2013 - A Bridge Between Probability, Set-Oriented Numerics, and Evolutionary Com-

putation, held in Leiden, The Netherlands from July 11th to the 13th.

1.5 Organization of the Thesis

An outline of the thesis document is described as follows:

In Chapter 2, some basic notations for multiobjective optimization are presented, as

well as related strategies for solving such problems. Also a brief overview of multiobjective
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optimization in engineering is shown.

In Chapter 3, the proposed method is thoroughly explained: The novel gradient free

Discrete Directed Search continuation method, which includes the predictor and corrector

iterations, as well as the elements used for the step size control, and some initial results on

academic functions.

Chapter 4 is used to describe the adaptation of the DDS Continuation method to

constrained problems. Further, some results on constrained academic problems are shown.

In Chapter 5 we present a three-impulse space trajectory problem, and the results of

the gradient-free continuation method, as well as a comparison with standard evolutionary

algorithms, and the result of another gradient-free continuation method.

Finally, in Chapter 6, some comments and a discussion are presented, which include

possible applications in other areas of engineering and future work.
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Chapter 2

Background

Numerical optimization is the search for improvements of the result of a given problem.

In single objective optimization, this translates into the minimization or maximization of

the objective function value until we reach an optimal solution. However in multiobjective

optimization there is a set of objective functions to be minimized or maximized concurrently.

It is our desire to improve all objectives at once, but the functions are usually conflicting

amongst each other. In the set of optimal solutions, we cannot always improve one objective

without deteriorating another one. This “trade-off” generates an entire set of candidate

solutions. In literature, the set of optimal solutions is called the Pareto set. The image of

these solutions in the objective functions is called Pareto front.

To obtain the desired solutions, we can use evolutionary algorithms, which simulate

nature’s way of improving organisms in an environment, or we can use other methods such

as continuation algorithms, which iterate to better solutions using previously found good

solutions.

In this chapter, a brief overview of state-of-the-art algorithms and basic definitions used

in the field of multiobjective optimization are presented. The structure of this chapter is

as follows. In Section 2.1, some common concepts are stated as to define the grounds for

the work presented in this thesis. The concepts of multiobjective optimization problem and

formal Pareto terminologies are noted, following the definitions of descent directions, and

numerical continuation methods. Section 2.2 gives an overview of the variety of algorithms

for the treatment of multiobjective optimization problems, and finally the algorithm used

as the foundation for this work is detailed. We close the chapter with some comments in

9
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Section 2.3.

2.1 Theoretical Background

A multiobjective optimization problem (MOP) can be defined in the following form:

minimize F (x)

subject to x ∈ S,

gi(x) ≤ 0 i = 1, . . . , l,

hj(x) = 0 j = 1, . . . ,m,

(2.1)

where F (x) represents a vector of at least k ≥ 2 objective functions fi : S → R. This map

is defined as

F (x) = (f1(x), f2(x), . . . , fk(x))T . (2.2)

The decision vector x = (x1, x2, . . . , xn)T corresponds to the feasible region S ⊆ Rn.

Objective functions represent the outcome of selecting a decision vector from the feasible

region. For example, a farmer who wants to maximize the profit by planting corn and tomato

in his field. The objective function represents the money earned and the decision vector the

number of acres planted with each vegetable.

In almost all optimization problems, one is faced with several constraints imposed by the

decision maker or by the environment itself. We can consider two types of constraints:

� Inequality constraints, noted by gi(x), i = 1, . . . , l, represent flexible or soft restrictions

on the design vector. For example, a producer of a certain product may have a limit

in the amount of money spent to create this product. We know that we cannot spend

more money because that will result in a violation of the constraint.

� Equality constraints, noted by hj(x), j = 1, . . . ,m, represent rigid or hard restrictions.

For example, the producer may need to generate an exact number of units of a product
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each day. Any less is unacceptable, and more than that will not be able to be sold or

stored. Here, we must not violate the constraint at any point.

2.1.1 Basic concepts

In the following, we present some commonly used terms in multiobjective optimization.

These concepts were first presented by Francis Edgeworth [22] and then established by

Vilfredo Pareto [23]. We describe the notion of optimality in the context of multiobjective

problems, along with the definitions of optimal solutions and other useful definitions.

Pareto Dominance

Before going further to detail about optimality, first we must be able to compare two solu-

tions, in order to choose the “best one”. However, since the images F (s) of solutions s ∈ S
are not scalar values, but rather vectors, and we cannot compare two or more vectors as we

would with scalars, we need to establish a measure to determine which solutions are good.

The next definition establishes when a vector is better than another one:

Definition 2.1.1. A vector a = (a1, . . . , ak) ∈ Rk is said to be less than another vector

b = (b1, . . . , bk) (denoted by a ≤p b) if and only if a is partially less than b, i.e., for all

i = 1, . . . , k, ai ≤ bi and aj < bj for some j ∈ 1, . . . , k.

Pareto Optimality

Using the new concept of Pareto dominance we can establish optimal solutions. Roughly

speaking, optimal solutions are the ones which are not dominated by any other solution in

the entire set.

Definition 2.1.2. A point y ∈ S is dominated by a point x ∈ S (x ≺ y) with respect to MOP

(2.1) if x is partially less than y, i.e. if fi(x) ≤ fi(y), for all i ∈ 1, . . . , k, and fj(x) < fj(y)

for some j ∈ 1, . . . , k. Otherwise it is non-dominated by x.

This definition states that a vector x ∈ S will be better than y ∈ S, if its function

values are at least as good for every objective function, and better in one or more objective
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functions. Put simply, it means that there is no other vector which can successfully decrease

one objective without the increase of another one at the same time. Finally, we can establish

a definition for the “best” solutions and a formal definition of the Pareto Set and the Pareto

front.

Pareto Optimal Set

Pareto optimal solutions are those solutions which corresponding objective function values

cannot be improved simultaneously. This group of solutions are non-dominated among each

other, and dominate all other solutions, based on their function values. They do not need

to have anything else in common other than the fact that they are non-dominated.

Definition 2.1.3. The set of Pareto optimal points P,

P = {x ∈ S | 6 ∃y ∈ S : y < x}

is called a Pareto set.

Pareto Front

The image F (P) of this set is called the Pareto front. There is typically no analytical model

at hand to represent the Pareto front. An interesting property of the Pareto front is that it

forms a (k − 1)−dimensional manifold, where k is the number of objectives. This property

will be exploited in this work. The formal definition of the Pareto front is given as follows:

Definition 2.1.4. The image F (P) of the Pareto set is called the Pareto front PF

2.1.2 Optimality conditions

In numerical optimization, there are several conditions that a solution must satisfy in order

to be optimal. These conditions are concerned with the gradients of the objective functions,

and hence are called first-order conditions. These conditions deal with equality constrained

problems but if they are extended to inequality constraints, they are refered to as the Karush-

Kuhn-Tucker conditions [24].
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Definition 2.1.5. Suppose x∗ is a local minimum of a MOP, that satisfies regularity con-

ditions. There exist constants µi, i = 1, . . . , l and λj, j = 1, . . . ,m, called KKT multipliers

that fulfill the following conditions

−∇f(x∗) =
l∑

i=1

µi∇gi(x∗) +
m∑
j=1

∇hj(x∗), (2.3)

gi(x
∗) ≤ 0, for all i = 1, . . . , l, (2.4)

hj(x
∗) = 0, for all j = 1, . . . ,m, (2.5)

µi ≥ 0, for all i = 1, . . . , l, (2.6)

µigi(x
∗) = 0, for all i = 1, . . . , l. (2.7)

If there are no inequality constraints, the KKT conditions become the Lagrange condi-

tions and the KKT multipliers, the Lagrange multipliers.

2.1.3 Descent directions

In a multiobjective optimization problem, a direction v ∈ Rn is called a descent direction

for a point x0 ∈ S if:

〈∇fi(x0), v〉 < 0, i = 1, . . . , k. (2.8)

In other words, a descent direction is a vector which reduces every objective function

value by some amount. Using this equation, we can state that for any sufficiently small step

size t ∈ R+, it holds that fi(x0 + tv) < fi(x0), i = 1, . . . , k.

Using this construction, we can define a descent cone, which represents the union of all

descent directions for eah objective. In the case of multiobjective optimization, a descent

cone is the intersection of the cones of each individual function. We can state this using the

next equation:

D(x0) = {ν ∈ Rn \ {0}| 〈∇fi(x0), v〉 < 0,∀ i = 1, . . . , k}. (2.9)
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If the descent cone at a point x0 is empty, that means that we are in an optimal (local)

point. There are several descent directions that can be used to steer a search towards the

Pareto front, such as the ones proposed by Fliege and Svaiter [25], Schäffler, Schultz and

Weinzierl [26] and Lara et. al [27].

Final comments

We have discussed the basic concepts to determine optimal solutions in the treatment of

multiobjective optimization problems. Also, we mentioned the definition for the descent

directions, which play a fundamental role in evolutionary and line search strategies, since

these directions can guide the search to optimal solutions. The concepts of the Pareto set

and the Pareto front are commonly used throughout multiobjective optimization and it is

the properties of the Pareto front which are exploited to perform movements along the front

using the Directed Search Continuation method.

2.2 Related Work

Here we present alternative methods for solving multiobjective optimization problems. First

the two major algorithms from which most techniques derived are presented: the weighted

sum method, and the Tchebycheff method. Then, a brief introduction to line search strategies

is noted, which includes a short description of the step size control. Finally, some state of

the art evolutionary algorithms are described, along with their application in engineering

design problems. Later on, we state the algorithms that will be used as a basis for this

thesis, and an example of surrogate models which can be used to predict the outcome of the

design problem to reduce its computational cost.

2.2.1 Scalarization strategies

Scalarization methods work by merging the different objective functions into a single objec-

tive, and then minimizing this new problem. The earliest attempts to solve multiobjective

optimization problems were based on scalarization strategies. However, the drawback of
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scalarization methods is that at the end, there is only one solution, and this solution reflects

the preference the decision maker has regarding each objective function [28]. The three most

important scalarization strategies in multiobjective optimization are: The weighted sum, the

ε-constraint, and the Tchebycheff methods.

The idea behind the weighted sum method, proposed by Zadeh [11] in 1963, is to

associate each objective function with a weighting coefficient, and to minimize the weighted

sum of the objectives. The weighting coefficients wi are real numbers such that wi ≥ 0 for

all i = 1, . . . , k. It is also assumed that the weights are normalized, i.e.,
∑k

i=1wi = 1. The

weighted sum problem is defined as follows:

minimize
k∑
i=1

wifi(x)

subject to x ∈ S
(2.10)

where wi ≥ 0 for all i = 1, . . . , k and
∑k

i=1wi = 1. However, according to Koski [29], it

is stated that this method fails to find Pareto points in non-convex regions, and an even

distribution of weights in the objective functions does not guarantee an even distribution of

points in the Pareto front.

The ε-constraint method was introduced in 1971 [12]. The idea behind this method

is to select an objective function to be optimized, and all the other objective functions are

then converted into constraints by setting an upper bound to each of them. Thus, the new

problem to be solved is as follows:

minimize f`(x)

subject to fj(x) ≤ εj j = 1, . . . , k, j 6= `,

x ∈ S,

(2.11)

where ` ∈ {1, . . . , k}. However, to obtain the Pareto front, one has to solve Problem (2.11)

with different values for the upper bounds. This is thus the main drawback of this method.

Also, the given values for the bounds greatly impact the resulting solution. If the bound is
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too tight, then no solution will be found. On the other hand, if the bound is too loose, no

region will be restricted at all. In addition, the amount of increase on for the constraints

has to be small enough to avoid missing optimal solutions, but large enough as to not waste

function evaluations. Since we generally do not know the proper distribution and behavior

of the Pareto set, this information is not known [30]. Finally the choice of the objective

function to minimize is problem-dependent, and as such, it is not clear on how will the

Pareto front be affected by the choice of the objective function.

Similar to the weighted sum approach, the Tchebycheff method [13] converts the

problem into a scalar optimization problem as follows:

minimize gtc(x|λ, z∗) = max
1≤i≤k

{λi|fi(x)− z∗}

subject to x ∈ S
(2.12)

where z∗ = (z∗1 , . . . , z
∗
k)
T is the reference point, this is, z∗i = min1≤i≤k{fi(x)|x ∈ S}. Then for

each optimal solution x∗ there is an associated weight vector λ, such that x∗ is an optimal

solution of Equation (2.12), and thus a Pareto point of the multiobjective optimization

problem. In other words, by changing the reference point, we can generate every non-

dominated point of a general multiobjective optimization problem. The drawback in this

method is that it generates weakly non-dominated points, which is not usually desired [31].

2.2.2 Line search strategies

In these kind of methods, given an initial point, a descent direction is selected. Then a step

size is chosen and the new iterate performs a movement along this direction with a certain

step size. Equation (2.13) represents the fundamental idea of the line search methods.

xi+1 = xi + tivi, (2.13)

where ti ∈ R+ is a scalar representing the step length and vi ∈ Rn represents the desired

direction. It is critical for any line search method to choose a “suitable” step size and a
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direction which minimizes at least one of the objective functions. There are many step size

control strategies, for example the Wolfe or Goldstein conditions [24]. In this work, we will

concentrate on the directional derivative as a step size control for the predictor and corrector

iterates.

The Wolfe conditions are twofold: one represents a sufficient decrease in a given ob-

jective, while the other discards very small step sizes, to avoid unnecessary computations

and “creeping” along a given direction. The first Wolfe condition is given by the following

inequality:

f(xi + tivi) ≤ f(xi) + c1ti∇fTvi, (2.14)

for a constant c1 ∈ (0, 1). Typically a value of 10−4 is chosen for this constant. Equation

(2.14) is usually called sufficient decrease condition.

The second Wolfe condition is given by the following inequality:

∇f(xi + tivi)
Tvi ≥ c2∇fTvi, (2.15)

for a constant c2 ∈ (c1, 1). In this condition, the slope of the new point must be greater

than c2 times the initial slope. This suggests that a strongly negative slope will reduce

significantly the function value by moving along such direction.

2.2.3 Numerical continuation methods

Let us consider a nonlinear system of equations which we wish to solve, this is:

F (x) = 0 (2.16)

where F : Rn → Rn is a smooth map, i.e., it is continuous derivative. If we know any good

starting points, this is, a zero point of F , then it is possible to try and compute another zero

point by means of, say, a Newton approach [32]. This is:

xi+1 = xi −F−1i F (xi), i = 0, 1, . . . (2.17)
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where F is an approximation of the Jacobian. In certain cases, this process will fail since we

don’t know the properties of the curve we wish to trace, mixed with poor starting points.

According to [32], we can define a homotopy H : Rn × R→ Rn such that:

H(x, 1) = G(x), H(x, 0) = F (x), (2.18)

where G(x) : Rn → Rn is also a smooth map. We can use this homotopy to try and trace

the curve c(s) ⊂ H−1(0) from the starting point to a solution point. If the method succeeds

then we obtain a zero point of F . A global homotopy can be defined as:

H(x, λ) = (1− λ)F (x), λ ∈ [0, 1] (2.19)

It is unclear, however, if the curve c(s) can be parametrized with the parameter λ. Usually,

λ is ill-suited for this task and thus, we have to select an additional parameter to trace it. A

common idea is to take the arclength s of the curve, and state the new problem as follows:

H(c(s)) = 0 (2.20)

Finally we can state this as an initial value problem by differentiating Equation (2.20)

with respect to the arclength.

H
′
(c)ċ = 0,

ċ =
dc

ds
,

‖ċ‖ = 1,

c(0) = (x1, 1).

(2.21)

We can use Equations (2.20) and (2.21) together: First, we can integrate Equation (2.21)

and use Equation (2.20) to stabilize the result. This is the basic principle of predictor-

corrector (PC) methods. Other ideas use piecewise linear (PL) approximations to the homo-

topy maps. The advantage of PL methods is that they do not require that the smoothness

holds for the homotopy, which gives them a bigger area of application than PC methods.

However, the difficulty in adapting step size control strategies to PL methods, gives PC the

advantage when they are applicable, even in higher dimensions.
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Figure 2.1: General predictor corrector method. The points ui are the best approximated

solutions to c(si).

Predictor-Corrector (PC) methods

The idea of the PC methods is to generate a set of points U = {ui = (xi, λi)|xi ∈ Rn, λi ∈ R}
that fit the curve we wish to trace, given by a tolerance, for example ‖H(ui)‖ < ε for some

“small” ε > 0. We also state that an initial point u0 ∈ Rn is given such that H(u0) = 0.

Figure 2.1 (borrowed from [32]) shows an example of this procedure.

First, a predictor point is computed, usually using numerical integration on the initial

value problem of Equation (2.21). This predicted point vi+1 is used to compute the corrector

point. This new point wi+1 is computed by solving the minimization problem described as

follows:

‖wi+1 − vi+1‖ = min
H(w)=0

‖w − vi+1‖ (2.22)

Figure 2.2 (borrowed from [32]) illustrates an iteration of a generic PC continuation method.

Once the new point is calculated, it is used as a starting point for the next iteration. The

PC continuation method applies the predictor and corrector steps iteratively to approximate

the curve.

2.2.4 The Directed Search method

Here we describe the foundation of our novel algorithm, along with a rough construction of

the gradient-free continuation method. The idea of the Directed Search proposed by Schütze

et. al in [21], is to steer the search process into any direction in objective space. This is,

given a point x0 ∈ Rn in parameter space, and a vector d ∈ Rk in objective space, a direction
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Figure 2.2: Predictor orrector iteration. The predicted point vi+1 is corrected to wi+1, which

is the closest to the zero point ui+1.

vector v ∈ Rn is sought for such that:

lim
t→0

fi(x0 + tv)− fi(x0)
t

= di, i = 1, . . . , k, (2.23)

where fi : Rn → R denotes the i-th objective of the multiobjective problem. That is, the

relative change of each objective value for an infinitesimal step size is given by the value of di.

Using this construction, two methods are defined: A descent method, which finds “better”

solutions leading to a boundary solution (as shown in Figure 2.3); and a continuation method

which allows a movement along the Pareto set starting from a known solution.

2.2.5 DS: Descent method

The idea of the Directed Search Descent Method is to generate a curve of dominated points,

with a proportion of an improvement defined by the direction α, in objective space. Using

Equation (2.23), the DS method can be stated in a matrix vector notation as:

J(x0)v = d, (2.24)

where

J(x) =


∇f1(x)T

...

∇fk(x)T

 ∈ Rk×n, (2.25)

and J(x) denotes the Jacobian of F at x0. Using this construction, a search direction v can be

computed by solving this system of linear equations. Typically, the number of parameters is
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Figure 2.3: Basic idea of the Directed Search Descent Method

higher than that of the objectives, i.e., n� k, and thus the system (2.24) is underdetermined

which means that there is no unique solution. One suggestion is to take

v+ = J(x0)
+d, (2.26)

where J(x0)
+ ∈ Rn×k denotes the pseudo inverse of J(x0) [24]. The argument for this choice

is as follows: Given a candidate solution x0, a new solution is computed as

x1 = x0 + tv, (2.27)

where t ≥ 0 is a step size control and v ∈ R a vector that satisfies Equation (2.24). Of all

the solutions of Equation (2.24), v+ is the one with the smallest Euclidian norm. Hence,

given a fixed (and small) value of t, a step in direction v+ will yield the largest progress in

direction d (measured in objective space). This idea is used on an initial value problem
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x(0) = x0 ∈ Rn,

ẋ(t) = ν+(x(t)), t > 0.
(2.28)

The drawback is that the computation of J(x) requires gradient information, and in

aeronautical design function evaluations are costly, both in time and resources. It is clear

that a method that does not use gradient information would be of great use for this particular

problem. Schütze et. al [21] go on to propose a variation of the continuation method of the

Directed Search that is gradient free. The alternative presented uses a finite difference

approach to solve Equation (2.24).

2.2.6 DS: Continuation method

Suppose we are given a Pareto point x0 and its convex weight α, such that:

k∑
i=1

αi∇fi(x) = 0, (2.29)

where α ≥ 0, i = 1, . . . , k, and
∑k

i=1 αi = 1. Also, we assume that

rank(J(x)) = k − 1. (2.30)

In this case, α is orthogonal to the Pareto front [33]. This means that a search orthogonal

to α could yield new predictor points. To use the directed search, one can perform a QR-

decomposition of α. This is:

α = QR, (2.31)

where Q = (q1, . . . , qk) ∈ Rk×k is an orthogonal matrix and each entry is a column vector,

and R = (r11, 0, . . . , 0)T ∈ Rk×1 and r11 ∈ R\{0}. By (2.31) α = r11q1, it follows that the rest

of the column vectors of Q form an orthonormal basis of the hyperplane that is orthogonal

to α. Finally a well-spread set of search directions vi may be the ones that satisfy:
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J(x)vi = qi, i = 2, . . . , k. (2.32)

We know that α is not in the image of J(x) and by (2.30), it follows that the vectors

qi, i = 2, . . . , k, are in the image of J(x), and thus Equation (2.32) can be solved for each

index i = 2, . . . , k. Note that this method does not compute the second derivate of the

objective functions.

After the previous statement, a new predictor corrector variant is constructed. The

authors of [21] state this method for bi-objective optimization. For higher dimensions (k > 2)

additional considerations have to be taken into account. It is not in the scope of this project

to extend to further dimensions, and thus, we will restrain ourselves to two objectives.

Given the initial Pareto point x0, we can choose a search direction as one of the normalized

vectors v = ±v2/‖v2‖2, where v2 satisfies Equation (2.24) as stated before for d = q2. To

obtain the orientation, we can define the sign according to each objective, this is, the increase

or decrease of one objective. To obtain the sign, we can use the respective entry of the vector

q2. Finally, the predictor step given the direction v, is computed as follows:

p = x0 − sgn(qi,2)tv, i = 1, 2. (2.33)

For the step size control we assume that each objective is Lipschitz continuous and that

the step size ti for the i-th objective is sufficiently small, we obtain:

| fi(p)− fi(x) |≈ Li,x‖p− x‖2. (2.34)

After estimating the Lipschitz constant using the directional derivative, we obtain for

each objective:

ti =
ε

wi | 〈∇fi(x), v〉 | , i = 1, . . . , k. (2.35)

and this yields the step size for the current iteration:

t = min
i=1,...,k

ti. (2.36)
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Since the predictor step p leaves the Pareto front, it is important to return using a

corrector step. The solution along the curve can be computed by using the directed search

with initial point p, and the direction d = α0, this is the weight from the previous solution

x0, leading to the new solution x1. Finally, the new weight α1 can be computed as follows:

α1 ∈ arg min
α

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

α0,i∇fi(x)

∣∣∣∣∣
∣∣∣∣∣
2

2

,

s. t. α0,i ≥ 0, i = 1, . . . , k

k∑
i=1

α0,i = 1.

(2.37)

The DS continuation method described in the previous section is used to move along the

Pareto front, given an initial solution x0 ∈ S near, or on the Pareto set, but the drawback is

that it requires gradient information. The goal here is to use the geometry of the Pareto front

together with a predictor and corrector movement. This novel approach does not require

the computation of the Hessians of the objectives. The challenge now is to eliminate the

need of the Jacobian, and create a gradient free continuation method based on the Discrete

Directed Search.

2.2.7 Discrete Directed Search: Descent method

Suppose we know a solution x ∈ S and r search directions vi ∈ Rn, i = 1, . . . , r. Define the

matrix F(x) ∈ Rk×r as follows:

F(x) = (〈∇fi(x), vj〉), i = 1, . . . , k,

j = 1, . . . , r
(2.38)

This means that every entry mi,j of F is defined as the directional derivative of the

objective fi in direction vj, mi,j = ∇vjfi(x). The following proposition is the basis for the

gradient free directed search:
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Proposition 2.2.1. Let x, vi ∈ S, i = 1, . . . , r, λ ∈ Rr, and v =
∑r

i=1 λivi. Then:

J(x)v = F(x)λ. (2.39)

The proof can be found in [21]. Furthermore, when we search for the direction v (i.e.

solving Equation (2.24)) we can instead try to solve the following equation:

F(x)λ = d, (2.40)

and finally set:

v =
r∑
i=1

λivi. (2.41)

Now we assume we are given a candidate solution x0 ∈ Rn and further r points xi, i =

1, . . . , r, in the neighborhood of x0 and their function values F (xi), i = 1, . . . , r. We now

define:

vj =
xj − x0
‖ xj − x0 ‖2

, tj =‖ xj − x0 ‖2, j = 1, . . . , r. (2.42)

Then all that is left is to approximate the entries of F by finite differences as follows:

mi,j = 〈∇fi(x), vj〉 = lim
t→0

fi(x0 + tvj)− fi(x0)
t

≈ fi(xj)− fi(x0)
‖ xj − x0 ‖2

i = 1, . . . , k, j = 1, . . . , r.
(2.43)

Analog to (2.26), we can obtain the greedy direction in the discrete setting as follows:

v
(r)
+ =

r∑
i=1

λivi, where λ = F+(x)d. (2.44)

We can use the DDS to create a novel gradient free approach of the DS continuation

method. Previous to this work, there was only one other continuation method that does not

require gradient information, and is presented in the following section.
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2.2.8 Hill Climber with Sidestep

The Hill Climber with Sidestep (HCS) was proposed by Schütze et al. in [18]. This algorithm

allows a movement towards and along the Pareto set. This approach can be used with or

without gradient information. In this section, we concentrate on the gradient free version of

the HCS.

The gradient free HCS works by approximating the descent directions with neighborhood

information. Given a point x0 ∈ S, we obtain a new point x̃1 at random from a neighborhood

of x0, using a given radius r ∈ Rn
+ which is problem dependent. If x̃1 ≺ x0 then we set

ν = x̃1 − x0 as a descent direction. Then a line search is performed along that direction to

obtain a better candidate solution.

If, on the other hand, x0 ≺ x̃1, the same procedure is applied to the opposite direction,

starting with x̃1. If we are far away from a local solution, then the probability is high that

any of these two events will happen. If x0 and x̃1 are non-dominated among each other, we

repeat the initial search of a neighbor, until we find a dominated solution (in which case we

proceed as before) or until we reach N steps. If this happens, it means that we are probably

near to an optimal solution, and thus a search along the solution set is desired.

We then need to perform a sidestep, using the accumulated knowledge obtained previously

by unsuccessful trials. The proposed new direction is as follows:

νa =
1

N

N∑
i=1

si
x̃i − x0
‖x̃i − x0‖

, (2.45)

where

si =

 1 if f1(x̃i) < f1(x0)

−1 otherwise
(2.46)

Note that Equation (2.47) is only useful for two objectives, where we can only move along

two directions: minimizing f1 or minimizing f2 (this can be seen as moving “up” or “down”

the Pareto front). This is due to the diversity cones created by the objectives. If there are

k objectives, then there are a total of 2k − 2 diversity cones. So if we have three objectives,

then we will have six cones (i.e. the search directions will be divided into six groups). This
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means that it is less likely to find a perpendicular direction within N trials. Thus, we can

use the accumulated information by averaging all search directions, and we get:

νa =
1

N

N∑
i=1

x̃i − x0
‖x̃i − x0‖

. (2.47)

2.2.9 Zigzag search method

Another recent and novel continuation method was created by Wang in 2012 [34]. This

method works by performing a local search procedure around the Pareto front. By using the

gradients of the objective functions, this method “zigzags” along the front, thus obtaining

an approximated set of the Pareto optimal solutions.

The algorithm can be divided into two stages: First the “zig” step starts from an optimal

solution and then performs a movement in the direction g, which is a projection of the

gradient g1 of f1, to the orthogonal hyperplane of the gradient g2 of f2. This leads to

a candidate solution near the Pareto front. Then the “zag” step is performed, using the

projection of −g2 to the orthogonal hyperplane of g1. This movement leads the candidate

solution back to an optimal solution. Figure 2.4 shows the two steps of this algorithm.

The choice of these directions is described next. Given a small step size, the zig movement

will find a candidate solution with a larger value of f1, while the value of f2 will not change

much. This is because a small step size is almost within the level set of f2 at x1. If the

movement is from a nonboundary of the Pareto set, then by the KKT equations, there

exists a c > 0 such that g1(x1) = −cg2(x1). For the zag movement, −g2 is chosen since

the candidate solution x is near the Pareto set, and this direction leads to a new optimal

solution x2, with a fast decrease in f2 and a small decrease in f1.

2.2.10 Evolutionary algorithms

Evolutionary algorithms (EAs) have their foundations in biology. Their principle idea is that

individuals of a given group breed and mutate, giving birth to new individuals which in turn

replace their parents [16]. An individual represents a solution to a problem, and is usually
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Figure 2.4: Zigzag method. The “zig” step starts from an optimal stolution x1, moves in

direction g1. Then the “zag” step moves to a new optimal solution x2 using direction g,

which is a projection of g2 over g1.

represented by a string or vector corresponding to a biological genotype. This genotype

is composed of chromosomes and each one is constructed by a series of genes. Using this

composition, an individual is decoded into a set of parameters for the function at hand. The

group of chromosomes is defined as a population.

When we consider an organism in nature, we know that the fittest in its environment

will survive and pass on its genes. The same is true for the individuals in evolutionary

algorithms. The operators in EA’s are used in the chromosomes, in order to generate new

solutions with better fitness. Usually, three operators are used in EA’s: mutation, crossover,

and selection, which work as follows:

� Mutation: The selected individual is mutated, for example, in the case of bitwise

vectors, a “1” might be replaced by a “0”, and so on.

� Crossover: Just as in nature, two parents are selected from among the population and

they breed to form a new solution. For example, one might combine the first segment
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Figure 2.5: Basic concepts for an evolutionary algorithms.

of one parent with the second segment of the other.

� Selection: This is typically the survival of the fittest. The best individuals are chosen

to go on the next generation. In this case, the individual is just copied over to the new

population.

It is clear now that evolutionary algorithms must have a way to assign the fitness to each

individual. In nature, fitness is defined by context, i.e., the fish which swims faster will be

less likely to be eaten than a slower fish. In EA’s the objective function define the optimality

condition, and the fitness function is a measurement of how good does a particular solution

satisfies such condition and assigns a real-value to that solution. Figure 2.5 (borrowed

from [16]) shows the basic concepts of an evolutionary algorithm.

In 1994 Srinivas and Deb [35] proposed a new genetic algorithm using non-dominated

sorting. This algorithm works similarly to other evolutionary algorithms, in the sense that

the crossover and mutation operations remain the same. However, the selection is modified,

and each solution is assigned a value based on domination. The solutions with the best values

are grouped together into an initial front. Then, this procedure is repeated, generating a

group of fronts using the remaining points. Finally, the reproduction is greater in the first
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front since it constitutes the best solutions, and this leads the search towards the Pareto

front.

Years later, the authors proposed a new method [14] called NSGA-II (Non-dominated

Sorting Genetic Algorithm II). This algorithm eliminated some of the drawbacks of NSGA

and constitutes one of the most widely used algorithms for multiobjective optimization.

The fundamental difference is the crowding distance used to obtain a better spread of the

solutions. The distance is computed by the two adjacent neighbors generating a rectangular

area around a given solution. The bigger the area, the more spread between the solutions.

In 2007, Zhang et. al [15] developed a decomposition strategy for the treatment of mul-

tiobjective optimization problems. Usually, MOEAs treat the optimization problem as a

whole, rather than a set of subproblems to optimize. The idea behind MOEA/D is to take

the initial multiobjective optimization problem, and decompose it into a number of scalar

optimization subproblems. Each problem is optimized simultaneously at each generation and

the best solutions are kept. To optimize each subproblem, the information of the neighboring

subproblems is taken into account.

2.3 Final Comments

In this section we have looked at the principles of numerical optimization for multiple ob-

jectives. The geometry of the Pareto front facilitates the use of the directed search to move

along it, since a linearization of the front gives us a good starting direction for the local

search. The concepts of continuation methods, more specifically, the predictor corrector

methods let us construct our novel approach and use it to solve real world problems.

Also, we have discussed the basic principles of continuation methods: The PC method

which approximates the curve by generating candidate solutions and then minimizing the

error to the solution curve; and the PL methods which approach the curve by a triangulation

of the space and then generating a polygonal path across such triangulation by means of its

coordinates. Further in this work, we will only consider PC methods, since the proposed

algorithm fits on the first type of continuation methods. Finally we mentioned two con-
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tinuation methods that work in principle as the DDS continuation method. First, the DS

continuation which uses gradient information, and second, the Hill Climber with Sidestep,

that omits such requirements but fails to generate a good approximation of the Pareto set

under a small number of function evaluations.

The two major state-of-the-art evolutionary algorithms described briefly here will be

used as a comparison in both the academic functions and aeronautical problem. Because

we are interested in a fair comparison between different methods, we will only compare the

new gradient free continuation method with the Hill Climber with Sidestep, since it is the

only other continuation method known up to the current date that does not use gradient

information.

Most engineering problems have constraints, be them equality, inequality or a mixture of

both types of constraints. This leads us to adapt our continuation method to the constraint

cases, to fully appreciate the strength of this new algorithm. Finally we state that there is

no one algorithm that is better than all others, but a wide variety of techniques to solve the

same problem.
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Chapter 3

Gradient Free Continuation Method

for Unconstrained Problems

In many situations in multiobjective engineering design, we have an initial Pareto optimal or

nearly Pareto optimal solution which may give us a satisfying result. However, the decision

maker may want to see other options along the Pareto front which are other potentially

interesting solutions. In this case, we can take advantage of the starting element to generate

a new set of desired solution, since the solution set forms, at least locally, a manifold. This is

the basic principle of multiobjective continuation methods, such as the ones presented in [32]

and [33]. The main drawback of them is that they require gradient information and usually

even Hessian information.

In Section 2, we have discussed the main idea behind the Directed Search method, which

given a direction in objective space, finds its corresponding direction in parameter space

such that a movement in objective space is performed. The Directed Search uses gradient

information in order to compute such directions, thus, the Discrete Directed Search was

introduced as a possible alternative. This method applies a finite differences approach to

the conventional DS in order to remove the requirement of the gradient information. It uses

a group of nearby points of each solution, to approximate the search direction. Thus, the

method can be used to save function evaluations.

The new Discrete Directed Search proved to be a valuable tool, both as a standalone algo-

rithm to find boundary points in multiobjective optimization problems, as well as integrated

in evolutionary algorithms to speed up convergence and spread [20]. Another advantage
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of this method is that, given n neighbors, where n is the number of parameters, the DDS

effectively transforms into the DS method.

In Mej́ıa’s work [36], several approaches are stated in order to reduce the time and cost to

obtain the curve of dominated points until a boundary point is reached, along with a method

to solve constrained MOPs. Finally, he proposes a continuation method which uses the DS

to move along the optimal set to cover the entire Pareto front. In Alvarado’s work [37], the

DS is modified as to remove the gradient information to create the DDS. In this work, we

propose an extended use of the DDS, inside the continuation method to remove the gradient

requirement and to take advantage of the neighboring points at each iteration. Also, we

propose a different step size control which results in a faster convergence to the boundary

point for the DDS.

The remainder of the chapter is organized as follows: In Section 3.1 we present the def-

inition of line search strategies. In Section 3.2 we present the different step size control

strategies. In Section 3.3, we propose the gradient free continuation method for uncon-

strained MOPs, and finally, in Section 3.4 we present numerical results for several academic

examples along with a comparison with MOEA/D and the HCS.

3.1 Gradient free line search

Line search strategies have been widely used either as standalone algorithms to obtain a

solution of a given MOP, or inside evolutionary algorithms to build memetic strategies [38,

39]. To solve multiobjective optimization problems, several iterative methods compute a set

of solutions in sequence, where each new solution xi+1 ∈ Rn is obtained by the previous

solution xi ∈ Rn, using a direction ν ∈ Rn and a step size t ∈ R+. We can state this iterative

method as an initial value problem (IVP)

x(0) = x0

ẋ(t) = ν(x(t)).
(3.1)

To obtain a curve of dominated points from a random starting point to a boundary point,
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F (x0)

F (x∗)

F (x1)

f1

f2

Figure 3.1: Directed Search Method. Due to the local nature of the gradient information,

the predictor step usually steers away from the desired curve.

we can use the initial value problem (3.1) to compute the solution. The Directed Search can

be stated as this IVP, and in Algorithm 1, we present the steps required to compute the

curve of dominated points.

We can see that the end point results in a straight line starting from F (x0) with direction

α. Normally, the gradient information is of local nature, and thus it is very likely that after a

few steps, the method steers away form the desired direction, and lose the expected resulting

curve, as seen on Figure 3.1. There are two options in this setting: One is to take very

small step sizes to avoid losing gradient information, but this translates into an unnecessary

amount of function evaluations. The alternative is to use large step sizes in an attempt

to reach the end point as fast as possible, but using a corrector step, to steer us in the

original desired direction. Since the purpose of this work is to reduce the number of function

evaluations needed to find optimal solutions, we will demonstrate several corrector techniques

to integrate within the DS and DDS.

The algorithm stops when the condition number of the Jacobian approaches a large

number. In this algorithm, however, we do not have a corrector step to shoot back to the

original curve. In the following, we present a basic algorithm which, given a predictor point
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Figure 3.2: Corrector step in the Directed Search Descent Method. When we move away

from the desired direction, we can shoot back using a corrector step.

Algorithm 1 Basic Directed Search Method

Require: starting point x0 ∈ Rn with rank(J(x0)) = k, tol ∈ R+, convex weight α0 ∈ Rk

Ensure: x∗ ∈ Rn, a boundary point of an MOP

1: i := 0;

2: while κ2(J(xi)) < tol do

3: compute vi := −J(xi)
+α(i);

4: compute ti ∈ R+ (see Section 3.2, in page 38)

5: xi+1 := xi + tivi;

6: choose α(i+1) ∈ Rk;

7: i := i+ 1;

8: x∗ := xi;

9: return x∗
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computed by Algorithm 1, we can correct back to the desired direction d. Figure 3.2 shows

an example of this method. Algorithm 2 shows the steps required to compute the corrector

step, as shown in Mej́ıa’s work [36].

Algorithm 2 Corrector step for the Directed Search Method

Require: starting point x0 ∈ Rn, predicted point computed by Algorithm 1, p0 ∈ Rn, tol ∈
R+, convex weight α0 ∈ Rk

Ensure: x∗c ∈ Rn, a point in the desired direction d

1: i := 0;

2: compute t∗ := 〈F (p0)− F (x0),−α0〉;
3: compute y∗ := F (x0)− t∗α0;

4: while ||F (pi)− y∗)||2 > tol do

5: compute αi = F (pi)− y∗

6: compute vi := −J(pi)
+α(i);

7: pi+1 := pi + vi;

8: i := i+ 1;

9: x∗c := xi;

10: return x∗c

We can see that the computation of new points does not require a step size control, (i.e.

we set t = 1). This is because the method is quadratically convergence. With Algorithm 2,

we can obtain a perfect curve of dominated points for the Directed Search Method.

Two things are noted in these algorithms: The first one is the use of gradient information.

We already know that the Directed Search can be made gradient free using neighboring points

to approximate the gradient. Algorithm 3 shows the Discrete Directed search, as stated in

Alvarado’s work [37].

The approximation of the gradient is by means of neighboring points, but further reduc-

tions in the function evaluations can be made. For example, one could take some previous

points into account for the new Jacobian approximation. This technique is explored in the

gradient free continuation method. It is noted also that there will be a similar steering away

from the curve if no corrector step is performed. Algorithm 2 showed the corrector step, but
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Algorithm 3 Basic Discrete Directed Search Method

Require: starting point x0 ∈ Rn with rank(F(x0)) = k, tol ∈ R+, convex weight α0 ∈ Rk

Ensure: x∗ ∈ Rn, a boundary point of an MOP

1: i := 0;

2: while κ2(F(xi)) < tol do

3: compute neighbors xri , i = 1, . . . , r;

4: compute F(xi);

5: compute λ := −F(xi)
+αi;

6: compute vi :=
∑r

i=1 λiv
r
i ;

7: compute ti ∈ Rn (see Section 3.2)

8: xi+1 := xi + tivi;

9: choose α(i+1) ∈ Rk;

10: i := i+ 1;

11: x∗ := xi;

12: return x∗

required gradient information to be of use. We now remove such requirement and produce

a gradient free corrector step. Algorithm 4 shows this new method.

We can see that the only difference is how the Jacobian is replaced by its approximation.

Nevertheless, further reductions of the cost for the corrector can be made. For example,

since we assume that the steering away from the curve is a relatively small distance, we can

take the previous Jacobian matrix almost entirely (with the update of a few neighboring

points). This technique is not explored in this work, but is left for future research.

3.2 Step size control strategies

In the following, we discuss potential step size control strategies for minimizing the cost of the

DS and the DDS. First the Armijo conditions are presented for single objective optimization.

Then, they are extended to the context of multiobjective optimization problems. The next

subsection describes the curvature condition along with the cones of tolerance to create an
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Algorithm 4 Corrector step for the Directed Search Method

Require: starting point x0 ∈ Rn, predicted point computed by Algorithm 1, p0 ∈ Rn, tol ∈
R+, convex weight α0 ∈ Rk

Ensure: x∗c ∈ Rn, a point in the desired direction d

1: i := 0;

2: compute t∗ := 〈F (p0)− F (x0),−α0〉;
3: compute y∗ := F (x0)− t∗α0;

4: while ||F (pi)− y∗)||2 > tol do

5: compute neighbors xri , i = 1, . . . , r;

6: compute F(xi);

7: compute αi = F (pi)− y∗

8: compute λ := −F(xi)
+αi;

9: compute vi :=
∑r

i=1 λiv
r
i ;

10: pi+1 := pi + vi;

11: i := i+ 1;

12: x∗c := xi;

13: return x∗c

Cinvestav Computer Science Department



40 Chapter 3

adaptive control strategy. Finally, a step size control based on dominance is proposed. We

note that some of these control strategies can be combined to further improve the movement

in the desired curve.

3.2.1 Wolfe step size control

The Armijo condition, together with the Goldstein condition form the Wolfe conditions [24].

The Armijo condition is popular in line search strategies, and stipulates that the resulting

step size gives a sufficient decrease in the objective function f , determined by the inequality

f(xi + tνi) ≤ f(xi) + c1t∇fTi νi, c1 ∈ (0, 1) (3.2)

where c1 is a fixed constant. Equation (3.2) states that for the step size t, the graph of

F (t) = f(xi + tνi) lies below the line f(xi) + c1t∇fTi νi. By Taylor’s theorem we get

f(xi + tνi) = f(xi) + t∇fTi νi +O(t2). (3.3)

Since νi is a descent direction, this is, ∇fTi νi < 0, such t exists.

This condition is not sufficient to ensure convergence since it is satisfied for all small

enough values of t. To discard unacceptably small step sizes, the second Wolfe condition, or

curvature condition, is used

∇f(xi + tνi)
Tνi ≥ c2∇fTi νi, c2 ∈ (c1, 1) (3.4)

where c2 is a fixed constant. This condition states that t must be large enough so that the

slope of f(t) is larger than c2 times the slope of f(0). Mej́ıa [36] adapted the first Wolfe

condition for multiobjective optimization problems, and Algorithm 5 shows this resulting

strategy.

3.2.2 Curvature-based step size control

Now we present a step size control based on curvature, described thoroughly in Mej́ıa’s

work [36]. However, this method requires information of two previous steps, in order to
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Algorithm 5 Armijo step size control

Require: starting point x0 ∈ Rn, direction v ∈ Rn, initial step size t ∈ R+, λk ∈ (0, 1),

convex weight α0 ∈ Rk

Ensure: Suitable step size t ∈ R+

1: while F (x0 + tv)Tα0 > F (x)Tα0 − c1t
∑k

i=1 α
2
i do

2: t := λkt

3: return t

approximate the curve in parameter space. For these two steps, one can use any of the other

algorithms presented in this section. Figure 3.3 (borrowed from [36]) shows a graphical

example of the curvature-based control.

Algorithm 6 Curvature step size control

Require: Previous iterations’ step sizes ti−1, ti−2 ∈ R+, previous iterations’ Jacobian ap-

proximations F(xi−1),F(xi−2), ε ∈ R+

Ensure: Suitable step size t ∈ R+

1: γi := F(xi−1)−F(xi−2)
ti−1−ti−2

2: rk := ||γi||−1

3: t :=
√

2rktε− ε2

4: return t

In case the gradient information is available, one can substitute F(xi−1) and F(xi−2) for

the Jacobian of xi−1 and xi−2 respectively.

3.2.3 Cones of tolerance

Usually, when we are near the Pareto front, the step size must be very small to avoid

overshooting. The resulting point can be very far from the original point, and in some cases

it will be dominated by previous points. Mej́ıa also proposed a step size control based on the

angles between the starting point xi and the predictor point pi. This step size control strategy

works as follows: First, a step is taken using an initial step size (which can be obtained by

any other method, or as a fixed initial value). Then the angle between F (pi) − F (xi) and
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Figure 3.3: Graphical interpretation of the curvature-based control. If the curve of the

Pareto set is fixed, the step size can be computed by trigonometric equations.

F (xi) + d is computed. If this angle is greater than a given tolerance β, a reduction in

the step size is performed. Figure 3.4 shows the graphical interpretation of the cones of

tolerance, while Algorithm 7 shows the implementation of this procedure.

Algorithm 7 Cones of tolerance step size control

Require: starting point x0 ∈ Rn, direction v ∈ Rn, initial step size t ∈ R+, λk ∈ (0, 1),

convex weight α0 ∈ Rk, angle of tolerance β ∈ (0, 90]

Ensure: Suitable step size t ∈ R+

1: repeat

2: y := x0 + tv;

3: if ∠(F (x0 − α0, F (x0)− F (y) > β then

4: t := λkt;

5: until ∠(F (x0 − α0, F (x0)− F (y) ≤ β

6: return t

It has to be noted that the cone of tolerance will only work if the corrector step is applied

inside the DS or DDS. Else, the steering from the original direction may cause the cone to

accept dominated solutions which will in turn worsen the result of the local search.

Cinvestav Computer Science Department



Gradient Free Continuation Method for Unconstrained Problems 43

β

d

β

F (xi)

F (xi + t1v)
F (xi + t2v)

Figure 3.4: Graphical interpretation of the cones of tolerance control. Here we see that the

step size t1 is not acceptable since it violates the tolerance β.

3.2.4 Pareto dominance control

Finally, we propose a relatively simple step size control based on dominance. This is, if the

new point is dominated by the original point, then a backtracking step is performed. This

type of step size control works similarly to the cones of dominance, i. e., setting β = 45◦.

Figure 3.5 shows a graphical representation of the Pareto dominance for step size control.

Algorithm 8 Dominance step size control

Require: starting point x0 ∈ Rn, direction v ∈ Rn, initial step size t ∈ R+, λk ∈ (0, 1),

Ensure: Suitable step size t ∈ R+

1: while F (x0 + tv) � F (x0) do

2: t := λkt;

3: return t

3.2.5 Final comments

We have presented and discussed several step size control strategies to improve the DDS

in the search for optimal solutions. It has to be noted that the gradient free continuation

cannot use any of these strategies in the predictor step since the direction may lead to a

point not necessarily in a descent direction, which breaks all the restrictions placed on these
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Figure 3.5: Graphical representation of the Pareto dominance control. The new step size

must produce a value inside the descent cone of the set of objective functions.

methods. Thus, for the step size control in the predictor a new strategy based on directional

derivatives is proposed in the following section.

3.3 Gradient free continuation method

In the following, we propose the gradient free predictor corrector method that allows us to

perform a movement from a given solution x0 along the Pareto set. The method is based on

the DDS described previously, along with another observation. This is that a local search

along x0 leads with probability one to a movement from F (x0) along the front, since the

dimension of the kernel of J(x) is n− k+ 1 (this is, J(x)ν = 0 will happen with probability

zero for a randomly chosen ν). To adapt the continuation method, we need to address several

tasks that have to be performed for the gradient free version which will be presented in this

section.

3.3.1 Steering the search

Crucial to the continuation method are the choices for the search directions for both the

predictor and the corrector steps. In this subsection we present the possible choices for each
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step and their comparison with the gradient continuation counterpart.

Predictor

In the classical DS method, a set of predictors is generated by computing a QR-factorization

of the KKT weight α of the given point x0. These vectors form an orthonormal basis of the

tangent space of the Pareto front at F (x0). The KKT weight is computed by solving

α1 ∈ arg min
α

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

α0,i∇fi(x)

∣∣∣∣∣
∣∣∣∣∣
2

2

,

s. t. α0,i ≥ 0, i = 1, . . . , k

k∑
i=1

α0,i = 1.

(3.5)

This approach can apparently not be chosen since it requires gradient information. We

can instead use the observation made in [40], namely that J(x0)ν points along the Pareto

front for almost all directions ν ∈ S, as well as the following observation to obtain a gradient

free way of an orthonormal basis of the Pareto front as well as the KKT weight. Let νi ∈ S,

i = 1, . . . k − 1 such that J(x0)ν1, . . . , J(x0)νk−1 are linearly independent. Now, we look at

the QR-factorization

J(x0)ν1, . . . , J(x0)νk−1 = QR = (q1, . . . , qk)R. (3.6)

Then we have that the set {q1, . . . , qk−1} is the desired orthonormal basis. Then we can

select dp = qi, i ∈ {1, . . . , k − 1}, and either qk <p 0 or qk >p 0,it is

α = sgn(qk,1)
qk
‖qk‖1

(3.7)

Thus, if we choose test points xi in the neighborhood N(x0) of x0 and we set vi = xi−x0
one obtains a gradient free way to obtain both tangent vectors and KKT weight. The cost

for this is ideally given by k − 1 evaluations of F , but further evaluations may occur if

J(x0)ν1, . . . , J(x0)νk−1 are not linearly independent, but this probability will be zero if each

neighbor is chosen at random.
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Since we are limiting the use of the continuation method for two objectives, we can, in

addition, assume an improvement according to f1 for example (this is, a left-up-movement

along the Pareto front). We can then compute x1 ∈ N(x0) and then evaluate F (x1). The

desired direction given in image space is

dp = d̃ = F (x1)− F (x0), (3.8)

in the case that f1(x1) < f1(x0), otherwise we set dp = −d̃.

Corrector

Since the KKT weight α of the previous Pareto point is known, we can proceed as for the

gradient version of the continuation method. This is, we set dc = −α. Again, for two

objectives, we can express this analytically: If dp = (a, b)T , then the corrector direction is

given by

dc = − sgn(a)

 −b
a

 . (3.9)

3.3.2 Computation of F(x)

By now, it is clear that a good approximation of the Jacobian is critical for the proper

behavior of the DDS. For the approximation of F(x), the test points chosen are equally

important. We can consider points in a neighborhood for which we already know their

function values, and include them in the construction of this matrix. Although, usually,

additional test points will have to be sampled to improve the search direction.

Suppose we are given an initial point x0 ∈ Rn as well as l neighboring solutions x1, . . . , xl ∈
N(x0). By the previous discussion, we desire that further search directions are both orthog-

onal to each other and to the previous ones. To compute these directions νl+1, . . . , νr, where

r > l while maintaining orthogonality, we can proceed as follows. First we compute a

QR-factorization of the directions, i.e, of V , and get
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V = QR = (q1, . . . , ql, ql+1, . . . , qn)R, (3.10)

where Q ∈ Rn×n is an orthogonal matrix and R ∈ Rn×r is a right upper triangular matrix

with nonzero diagonal elements. This is, ri,i 6= 0 for all i = 1, . . . , r. Then we know by

construction that νi ∈ span{q1, . . . , qi} for i = 1, . . . , l, and then

〈νi, qi〉 = 0,∀ i ∈ {1, . . . , l}, j ∈ {l + 1, . . . , r}. (3.11)

Now we have

νl+i = ql+i, i = 1, . . . , r − l

xl+i = x0 + νl+i, i = 1, . . . , r − l
(3.12)

For the special case that ν1 = x1 − x0 and ν̃2 = x̃2 − x0 are given such that {ν1, ν2} are

linearly independent, the second search vector ν2 can be computed as follows

ν2 = ν̃2 − 〈ν1, ν̃2〉ν1. (3.13)

3.3.3 Step size control

In the following subsection, we propose strategies to compute suitable step sizes for the

predictor as well as for the corrector.

Predictor

For the gradient based continuation, the step size control is given by [36]:

ti =
ε

||v||2 | 〈∇fi(x), v〉 | , i = 1, . . . , k. (3.14)

And then setting t = min ti.

To eliminate the gradient we can proceed as follows: Let x1 ∈ N(x0), then we set

ν = x1 − x0 and we obtain ‖ν‖2 = ‖x1 − x0‖2, then we get
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〈∇fi(x0), ν〉 ≈
|fi(x1)− fi(x0)|
‖x1 − x0‖2

. (3.15)

Then we can estimate ti as follows

t̃i =
ε

|fi(x1)− fi(x0)|
, i = 1, . . . , k. (3.16)

And then setting t̃ = min t̃i.

One potential drawback of this approximation is the fact that if fi(x1) is to close to fi(x0),

then the step size will get very large. It is recommended to bound the overall step size by

a maximum value tmax. Also if we use Equation (2.44) to compute the search direction ν,

the above considerations for the step size control cannot be used since for ν, there does not

exist a function value in that direction (since it is only known that ν ∈ span{ν1, . . . , νr}).
We can instead use Equation (3.17) with the estimation of the Lipschitz constant using the

neighboring information. This is, given x0 and directions vri , i = 1, . . . , r, and v = V F(x0)
+d,

the directional derivative of the j − th objective in direction v is as follows:

〈∇fj(x), v〉 = 〈∇fj(x),
r∑
i=1

λivi〉 =
r∑
i=1

λi〈∇fj(x), vi〉 =
r∑
i=1

λimj,i (3.17)

where the mj,i’s are the entries of F . Algorithm 9 details this step size control.

Algorithm 9 Directional derivative step size control (gradient free)

Require: starting point x0 ∈ Rn, ε ∈ R+, convex weight α0 ∈ Rk

Ensure: Suitable step size t ∈ R+

1: compute neighbors xri , i = 1, . . . , r;

2: compute F(xi);

3: compute λ := −F(xi)
+αi;

4: compute v :=
∑r

i=1 λiv
r
i ;

5: compute D :=
∑n

j=1

∑r
i=1 λimj,i

6: compute ti := ε
||v||2|Di| , i = 1, . . . , n

7: t = min ti

8: return t
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Corrector

To compute suitable step sizes for the corrector, refer to Section 3.2, in page 38 of this

chapter.

3.3.4 Predictor corrector iteration

In this section we present the algorithm for the continuation method that does not require

gradient information. In combination with the DDS and the step size control strategies

presented above, a powerful and novel tool is constructed. Further work to reduce the

number of function evaluations is presented also in this section.

The algorithm works as follows. Starting from a known solution xi, the next (approx-

imate) solution is obtained by selecting a predictor pi, computed by performing a step in

direction dp that points along the linearized Pareto front at F (xi). This point is only optimal

if the Pareto set P is not bended around xi, but still near to P if the step size is chosen

sufficiently small. Thus, in the second step, pi is corrected back to the Pareto set.

As with all continuation methods, the algorithm must start with an approximate solution

and also, the search will be restricted to the connected component of the Pareto set where

the point is contained in. If we have a Pareto set that has several connected components,

we will need a starting point in each one if we wish to obtain the entire set. Algorithm 10

shows one iteration of the predictor corrector step.

It is important to note that the search process can be reduced by using existing infor-

mation. For example, if the predictor pi is known, and the corrector is performed via DDS,

one can use the direction ν1 = (xi − pi)/‖xi − pi‖. Since the value of F (xi) of the previous

candidate solution xi is known, the use of ν1 comes for free in the context of the DDS. This

can be extended to other points in the neighborhood of pi whose images are known.

3.3.5 Stopping criteria

Here we present some thoughts on the stopping criteria used when moving along the Pareto

front. Two methods are presented, one associated with the convex weight of the KKT points,
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Algorithm 10 Gradient free continuation step

Require: starting point (approximate) Pareto point xi ∈ Rn

Ensure: (approximate) New Pareto optimal point along the Pareto front

1: compute x1 ∈ N(xi).

2: compute dp := F (x1)− F (xi);

3: compute F(xi);

4: compute λ := F(xi)
+dp;

5: compute vp :=
∑r

i=1 λiv
r
i ;

6: compute tp (see Algorithm 9).

7: pi := xi + tpvp;

8: compute dc such that dp ⊥ dc.

9: compute F(pi);

10: compute λ := F(pi)
+dc;

11: compute vc :=
∑r

i=1 λiv
r
i ;

12: compute tc (see Section 3.2, in page 38).

13: xi+1 := pi + tcvc;.

14: return New solution xi+1
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Figure 3.6: Example of the convex weight as a stopping criteria for an MOP with two

objectives.

and a simple threshold in the number of iterations.

Convex weight

Different stopping criteria for the continuation method are proposed. The most straight

forward criterion used is the associated convex weight in combination with the direction in

objective space. Usually, the linearization of the Pareto front at the minimum (in the context

of unconstrained minimization) of one function will be a line parallel to the axis. For two

objectives we have the following: For f1, the tangent space of F at f1 will be (0, 1), and the

convex weight associated with the end point will be (1, 0). In this sense, we know when we

are near the end of the Pareto front. Figure 3.6 shows an example of this property.
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Number of iterations

We can also limit the number of steps in the continuation method when we are not sure in

which direction do we need to go. It is common in engineering problems to be unaware of the

geometrical form of the extreme segments of the Pareto front, hence the convex weight may

not be a good stopping criteria in all cases. As a remedy, the continuation can be adapted

to use a fixed number of iterations for the movement along the Pareto front.

3.4 Numerical Results

In this section we present results of several academic functions, in order to demonstrate the

strength of the gradient free continuation method. A comparison between the Hillclimber

with Sidestep is presented as well. It is of interest to mention that only the number of

function evaluations are taken into account, but any indicator (such as ∆p or hypervolume)

can be used to assess the performance of each method. In these examples, the new method is

apparently the clear winner, since the approximations of the Pareto sets differ considerably

given the same (small) budget of function evaluations.

3.4.1 Convex problem, two objectives, two variables

We consider the following bi-objective optimization problem to test the gradient free contin-

uation method.

minimize f1, f2 : R2 → R

f1(x1, x2) = (x1 − 1)4 + (x2 − 1)2

f2(x1, x2) = (x1 + 1)2 + (x2 + 1)2

(3.18)

The Pareto set forms an “S” shaped curve connecting the points (−1,−1)T and (1, 1)T .

The search has been started at x0 = (1, 1)T , which is the minimizer of f1. We selected

to values of ε, the spread of the solutions throughout the Pareto front. For ε1 = 0.04, 63

candidate solutions were generated, spending a total of 191 function evaluations. For the
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Figure 3.7: Numerical result for the gradient free continuation method using ε = 0.04. The

number of used function evaluations was 191.

larger value ε2 = 0.08, 32 solutions were obtained using a total of 95 function evaluations.

Figures 3.7 and 3.8 show the result of the continuation method, and the difference in the

choice of ε.

3.4.2 Convex problem, two objectives, eight variables

Next, we consider the following bi-objective problem to test the gradient free continuation

method, along with the comparison between the Hill Climber with Sidestep (HCS) and

MOEA/D.

minimize f1, f2 : R2 → R

f1(x) = (x1 − 1)4 +
8∑
i=2

(xi − 1)2

f2(x) =
8∑
i=1

(xi + 1)2

(3.19)
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Figure 3.8: Numerical result for the gradient free continuation method using ε = 0.08. The

number of used function evaluations was 95.

In this case our gradient free continuation method spends a total of 561 function evalu-

ations (we did not consider the number of function evaluations used to reach the front, but

using the DDS, we would use around 20 or 30 additional function calls), while MOEA/D

spends 588. The HCS spends over 4000 function evaluations and results in a worse approx-

imation of the Pareto front. We can see clearly that our method beats MOEA/D in terms

of approximation as well. Figure 3.9 shows the result of each method in parameter and

objective space.

3.4.3 Witting problem

The following problem is also a bi-objective problem, taken from [21].

minimize f1, f2 : R2 → R

f1(x1, x2) =
1

2

(√
1 + (x1 + x2)2 +

√
1 + (x1 − x2)2 + x1 − x2 + λe−(x1−x2)

2
)

f2(x1, x2) =
1

2

(√
1 + (x1 + x2)2 +

√
1 + (x1 − x2)2 −−x1 + x2 + λe−(x1−x2)

2
) (3.20)

For λ = 0.85, the Pareto front contains a dent. The front consists of one concave and
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Figure 3.9: Numerical result for the gradient free continuation method, HCS and MOEA/D.

Our method surpasses the other algorithms in terms of function evaluations and in the

approximation of the Pareto front.

two convex parts (see Figure 3.10). We selected this example to show that the continuation

method can obtain segments in concave regions of the Pareto front. On this problem our

method uses 673 function evaluations, while the HCS uses 2030. Figure 3.10 shows the result

of both continuation methods. The HCS obtains a good approximation but compared to the

budget, the DDS continuation method outperforms the HCS in this example as well.

3.4.4 Okabe 1

The Okabe test function 1 is a benchmark model, described in [41]. It is of interest for the

multiobjective optimization community since any slight change on the parameters greatly

affects the values in objective space. The function is given by
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Figure 3.10: Numerical result for the gradient free continuation method and the HCS. Our

method surpasses the other algorithm in terms of function evaluations and in the approxi-

mation of the Pareto front.

minimize f1, f2 : R2 → R

g1 = cos
( π

12

)
x1 − sin

( π
12

)
x2

g2 = sin
( π

12

)
x1 + cos

( π
12

)
x2

f1(x1, x2) = g1

f2(x1, x2) =
√

2π −
√
|g1|+ 2 3

√
g2 − 3 cos (g1)− 3

(3.21)

Again, we have taken as starting point, the minimizer of f1. We have compared the

results of the continuation method with the HCS and MOEA/D. In this settings, the DDS

continuation method uses 570 function evaluations, while MOEA/D uses 675. The HCS

has trouble approximating the Pareto front and uses more than 10000 function evaluations.

Figure 3.11 shows the result of the DDS continuation method, the HCS and MOEA/D.
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Figure 3.11: Numerical result for the DDS continuation method, HCS and MOEA/D. Our

method surpasses the other algorithm in terms of function evaluations and in the approxi-

mation of the Pareto front.

3.4.5 Final comments

We have compared our gradient free continuation method with the Hill Climber with Sidestep,

another continuation method which does not require gradient information. The results show

that the novel approach described in this work outperforms in both function evaluations and

the quality of the Pareto set approximation. It is clear that our new proposed method is

useful in academic examples, but it is left to test it on a real world problem in order to test

its strengths and limitations.

Also, we have tested our continuation method against MOEA/D, a state-of-the-art evolu-

tionary algorithm. In order to be as fair as possible in our comparison, we fixed the number

of elements in the population to match the solutions found in the continuation method. The

fact that the function budget is limited, hinders the performance of this algorithm.

In order to adapt our method to fit any given problem, we need to address constraints,

since they are commonly found on engineering applications. In the following chapters we

will show an improvement on the continuation method to handle such constraints.
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Chapter 4

Constraint Handling

Constraints represent one of the major concerns in most optimization problems. The fact

that the design space is somehow restricted to certain aspects makes it difficult to find feasible

solutions. But constraints are not only found in academic functions. Nearly all engineering

problems have a budget in costs, in raw materials, hours of work, etc. A farmer cannot plant

an unlimited number of crops in an infinite patch of land. In the same way, wings of aircrafts

cannot be one inch in thickness, even though that would reduce in great measure the costs.

So, we, as problem solvers, need to attack constraints to produce optimal solutions while

staying inside the feasible regions for the decision makers to accept our results. Most evo-

lutionary algorithms use penalty functions which usually lowers the fitness of an individual

depending on how much are the constraints violated [42]. Other approaches have been

considered, such as repairing procedures, which turn infeasible solutions to feasible ones us-

ing heuristic procedures; separation of objectives and constraints, such as in co-evolution

strategies; or hybrid mechanisms which use a combination of different elements of other

techniques to avoid some of their weaknesses. A very good reference on constraint handling

for evolutionary algorithms can be found in [43].

For continuation methods, there is not much research done in constraint handling tech-

niques, hence their use in engineering problems is, so far, diminished. This led us to adapt

our method to address such issues. The constraint handling done in our work can be adapted

to other continuation methods by performing some small modifications, thus a groundwork

is set for further research on this topic.

In this section, we present the basic idea for handling linear constraints. Initially, some
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basic concepts are presented. Then, a basic construction of a search direction is stated as

to handle box constraints. Further on, we present a method to compute a promising search

direction while handling linear inequality constraints which can be extended to equality

constraints. Finally, we extend such methods to nonlinear constraints.

4.1 Box Constraints

Box constraints represent the most basic type of constraints inside optimization problems,

and have the following form:

minimize F (x)

such that l ≤ x ≤ u
(4.1)

where l and u are fixed vectors, and the inequalities are taken component by component.

There are several types of methods to solve box-constrained optimization problems. The

most common one is the gradient projection method [44], which is useful in simple problems

but suffers from slow convergence and is not as interesting for high accuracy solutions [45].

For the treatment of box constraints we first perform a movement along the linearized

Pareto front without using gradient information. For this, let (x, α, µ) be a KKT point of a

MOP that contains the equality constraints hi(x) : Rn → R, i = 1, . . . , p. That is, it holds:

k∑
i=1

αi∇fi(x) +

p∑
i=1

µi∇hi(x) = 0 (4.2)

where αi ≥ 0, i = 1, . . . , k and
∑k

i=1 αi = 1. Further, we assume that the rank of J(x) is

k − 1. It is known that in this case α is orthogonal to the linearized Pareto front at F (x).

Hence, a movement orthogonal to α is desired. For this, let v ∈ Rn such that 〈∇hi(x), ν〉 = 0

for all i = 1, . . . , p. Then we obtain:
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〈J(x)ν, α〉 = 〈ν, J(x)Tα〉 = 〈ν,
k∑
i=1

αi∇fi(x)〉 = 〈ν,−
p∑
i=1

µi∇hi(x)〉

= −
p∑
i=1

µi〈ν,∇hi(x)〉 = 0

(4.3)

And so, for such a direction it is either (i) J(x)ν = 0 or (ii) a movement along ν in

parameter space leads to a movement along the linearized Pareto front in objective space.

That is, if we randomly pick a direction ν that is orthogonal to all gradients of the equality

constraints at x, it will lead to a movement along the Pareto front with probability one since

the dimension of the kernel of J(x) is n − k + 1. Thus, if we choose a point y ∈ N(x) at

random, where N(x) is a small neighborhood of x we can also expect that F (x+ tν)−F (x)

is nearly orthogonal to α.

The only remaining element to fulfill is the orthogonality property. This is an easy task

for box constraints: An equality constraint coming from an active inequality constraint is of

the following form

hi(x) = ±xji + aji = 0, i = 1, . . . , p, (4.4)

where aji ∈ R, and thus

∇hi(x) = (0, . . . , 0,±1, 0, . . . , 0)T , i = 1, . . . , p. (4.5)

Hence, directions ν with νji = 0 fulfill the orthogonality property. In other words, points

y ∈ N(x) should be sampled with yji = xji (this is, the coordinate value of the corresponding

active constraint is not changed).

If we, on the other hand, desire to move along the front, the handling of box constraints

can be viewed as a projection over the active constraint. This is, if the constraint is active,

this means that we cannot leave the box without violating it, but in every other direction,

we can shoot regularly. This translates to the following equation:
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〈hi(x), νi〉 = 0⇒ ν =



ν1
...

νi−1

0

νi+1

...

νn


(4.6)

And then, the movement in direction ν will not affect the current active constraints.

4.1.1 Numerical results

Now we turn our attention to an example to demonstrate the movement along a box-

constrained Pareto set.

We consider the following bi-objective MOP to test the gradient free continuation method,

along with the comparison between the Hill Climber with Sidestep.

minimize f1, f2 : R2 → R

f1(x) = (x1 − 1)4 +
8∑
i=2

(xi − 1)2

f2(x) =
8∑
i=1

(xi + 1)2

such that x1 ≥ 0.

(4.7)

Figure 4.1 shows the results on this example. The DDS continuation method uses 702

function evaluations, and generated 16 solutions. The HCS spends 7995 function evaluations

leading to 92 solutions (although most of them are clustered around several points). In this

case we can see that the DDS continuation method is better in terms of convergence and

overall cost of the procedure.
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(a) Result of the DDS Continuation method for a box-constrained MOP.
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(b) Result of the HCS for a box-constrained MOP.

Figure 4.1: Numerical result of the DDS continuation method and the HCS on a box-

constrained MOP. Left are the projections of the Pareto set onto the first three coordinates

and the candidate solutions and right analog figures in objective space.
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4.2 Equality Constraints

Equality constrained optimization constitutes one of the two types of constraints in mathe-

matics. An equality constrained optimization problem has the following form:

minimize F (x)

s. t. H(x) = 0
(4.8)

where H(x) = (h1(x), . . . , hm(x)), hi(x) : Rn → R is a set of equality constraints. Many

methods exist to solve equality constrained problems. Usually the objective function set is

treated as a quadratic programming problem, but this is restricted to quadratic functions

and linear constraints [46]. Other methods, solve the problems numerically using Lagrange

multiplier [47]. To attack equality constraints, we focus on quadratic programming as well,

adapted in the context of the discrete directed search.

The issue in attacking constraints is, as usual, the search for the direction ν that satisfies

the desired movement along the Pareto set, as well as fulfilling the active constraints. Since

we are looking at equality constraints, we know that the set of constraints is always active.

In this sense, our work is facilitated.

We can state the direction search as a general least squares problem. This is, the problem

is restated as follows:

minimize ‖Ax− b‖22
subject to Cx = d

(4.9)

where A is an n × k matrix, b is an n × 1 vector, C is an m × k matrix and d is an m × 1

vector. In the context of Directed Search, we can adapt this equation to the general search

direction problem and obtain

minimize ‖J(x)ν − d‖22
subject to H(x) = 0

(4.10)
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Since we are not looking for an optima, but rather the search direction, we need to solve

for ν. The resulting equation for computing a promising search direction is given as follows:

 2(J(x)TJ(x)) HT

H 0

 ν

λ∗

 =

 J(x)Td

0

 (4.11)

Then we can solve for ν and obtain

 ν

λ∗

 =

 2(J(x)TJ(x)) HT

H 0

+  J(x)Td

0

 (4.12)

In this equation, H is the set of active constraints, J is the Jacobian at the current

solution and d the direction of the DDS. Note that this does not cost additional function

evaluations, since we already have the value of J(x). For the gradient free approach, we

simply replace J(x) for F(x).

4.2.1 Numerical results

In the following, we consider an academic bi-objective optimization problem. Note that

there is no comparison here with the Hill Climber with Sidestep since it is not adapted to

handle constraints. However, for classical PC methods, equality constraints can be easily

adapted [24], although they require Hessian information.

minimize f1, f2 : R2 → R

f1(x) = (x1 − 1)2 + (x2 − 1)2

f2(x) = (x1 + 1)2 + (x2 + 1)2

such that x2 =
1

2
x1.

(4.13)

Figure 4.2 shows the result of the continuation method applied on MOP (4.13). The

number of function evaluations for this example is 116. The starting point used for this

example was x = (1, 1/2)T . As we can see, by solving the Least Squares problem we are able

to obtain a suitable direction for the continuation method.
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Figure 4.2: Numerical result for the gradient free continuation method on an equality con-

strained MOP. Apparently, the algorithm is able to compute a well spread set of solutions

with a low budget of function evaluations.

For nonlinear equality constraints, we can proceed as in the linear case. The matrix H

will hold the set of active constraints as well, even if they are quadratic. Since we evaluate

this matrix at the current point, no additional consideration has to be taken.

In this case we take the same MOP as before, only changing the constraints to nonlinear

ones.

minimize f1, f2 : R2 → R

f1(x) = (x1 − 1)2 + (x2 − 1)2

f2(x) = (x1 + 1)2 + (x2 + 1)2

such that h1(x) =
2∑
i=1

(xi − ci)2 = r2

(4.14)

where c ∈ R2 and r ∈ R.

The resulting set is the top left segment of a circle, going fro (1, 1) to (−1,−1). Figure

4.3 shows the result of the continuation method, using as starting point x = (1, 1)T . Figure

4.4 shows a close-up of the Pareto optimal solutions. In this case, the method moves slightly
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Figure 4.3: Numerical result for the gradient free continuation method on a nonlinear equality

constrained MOP. Apparently, the algorithm is able to compute a well spread set of solutions

with a low budget of function evaluations.

afar from the set, since there is no correction step taking place.

4.3 Inequality Constraints

Problems involving inequality constraints on control variables have been treated since the

early stages of optimization [48]. It is of interest for any decision maker to be able to limit

the available parameters at hand. Inequality constrained optimization problems have the

following form

minimize F (x)

s. t. G(x) ≤ 0
(4.15)

where G(x) = (g1(x), . . . , gp(x)) is a set of inequality constraints. As with equality con-

straints, techniques to solve them involve extended Lagrange multipliers and gradient projec-

tion methods. In this work, we propose to use the same method as with equality constraints.
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Figure 4.4: Close-up of the numerical result for the gradient free continuation method on a

nonlinear equality constrained MOP. There is no corrector step and hence, the method does

not ensure a perfect approximation.

We have to take into consideration the set of active constraints, this is, when and if, any

constraint is violated. If no constraint is active, we can proceed as in the unconstrained case.

4.3.1 Numerical results

In the following, we consider the same example as before, a bi-objective optimization prob-

lem. Again there is no comparison here with other methods, since no other continuation

method is adapted to handle this type of constraints.

minimize f1, f2 : R2 → R

f1(x) = (x1 − 1)2 + (x2 − 1)2

f2(x) = (x1 + 1)2 + (x2 + 1)2

such that x2 ≤
1

2
x1.

(4.16)

Figure 4.5 shows the result for the continuation method on MOP (4.16). Using the

evaluation of G at the point x, we are able to determine if the constraint is active or not. In
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Figure 4.5: Numerical result for the gradient free continuation method on a linear inequality

constrained MOP. Apparently, the algorithm is able to compute a well spread set of solutions

with a low budget of function evaluations.

this case, when x = (0, 0)T , the method proceeds as for the unconstrained case.

Finally, we test our gradient free continuation method in a nonlinear inequality constraint

example.

minimize f1, f2 : R2 → R

f1(x) = (x1 − 1)2 + (x2 − 1)2

f2(x) = (x1 + 1)2 + (x2 + 1)2

such that g1(x) =
2∑
i=1

x2i ≤ r2

(4.17)

where r ∈ R.

Figure 4.6 shows the result on this academic example. We can see that there the DDS

continuation method is capable of following even nonlinear inequality constraints. The lack

of a corrector step generates an increasing movement away from the set, but if the distance

between each solution is chosen to be relatively small, this error will be insignifficant.
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Figure 4.6: Numerical result for the gradient free continuation method on a nonlinear in-

equality constrained MOP. We can see that our method follows the active constraint.

4.4 Final Comments

We have demonstrated the adaptation of the DDS continuation method into different types

of constraints. The fact that no other continuation method is fitted with constraint handling

other than equality constraints [24], further shows the strength of this novel algorithm.

Even if the gradient free continuation method preforms acceptably in the academic ex-

amples, we are left to test this on an engineering application. The following chapter shows

the results of a space trajectory design problem, which fully shows that the continuation

method is useful in both academic and real-world models.
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Three-Impulse Space Trajectory

Design Problem

Space mission designs have been an issue for aerospace institutes around the world. The costs

associated with each launch have to be carefully analyzed and any change in the trajectory

after a launch can reflect a delay in time which could potentially affect the entire mission.

Optimization has been used to minimize the time from launch to destination, or to select the

best path for an orbiting object to efficiently use the gravitational pull of nearby planets.

Many authors have proposed different approaches within optimization for this space

trajectory design problems. One of the first works related to this subject was proposed by

Lawden [49], who set the foundations of optimization of space trajectories. Following his

work, Edelbaum [50] created a model for a constant gravitational field problem, as well as

defining two-impulse trajectory designs.

Work by Schütze et al. [51] addressed the problem of a low-thrust gravity-assist trajec-

tories. They used subdivision techniques to find the approximation of the Pareto set, which

are useful in engineering problems due to the disconnected components of the feasible re-

gions. Other work by Schütze et al. [52] uses NSGA-II together with an archiving strategy

to obtain the set of approximate solutions, which gives the decision maker some freedom in

the selection of optimal and near-optimal solutions.

It is clear that this area of research has been thoroughly studied, but there is still much

to do. Evolutionary algorithms have commonly been used, as well as set-oriented algorithms

for the discontinuity of the optimal solutions. To our knowledge, no continuation method
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has been used to address space trajectory designs.

5.1 Three-Impulse Test Problem

This problem, taken from [53], represents a three-impulse Low Earth Orbit (LEO) to Grav-

itational Earth Orbit (GEO) transfer. The objectives are to minimize the fuel spent, and

the time it takes to reach the final destination, the rendezvous with a target spacecraft on

the final orbit.

This movement is a three-impulse transfer between circular orbits. Given the geometry

of the initial and final orbits, a third impulse is allowed during the transfer, which is thus

divided into two arcs. In such a case, the solution space to be spanned becomes wider.

Constraints on the eccentricity and minimum distance from the planet surface are enforced

for both arcs. The vector of decision variables x is defined as follows:

� The vector is parametrized by means of the solution of Lambert’s problem between the

initial and final position, along two coast arcs, x = (tW , tT1 , r1,∆θ1, tT2)
T ∈ R5, where

r1 and ∆θ1 assign the position of the intermediate impulse, while tT1 and tT2 are the

transfer times along the first and second coast arc, respectively.

In this setting, the spacecraft departs at time tW from a circular orbit around the Earth

with radius r1 = 7, 000 km, and after a transfer time T = tT1 + t2 is injected into a circular

orbit with radius rf = 42, 000 km. An intermediate maneuver is performed at time tW + tT1

and at position defined in polar coordinates by the radius r1 and the angle ∆θ1. The

objective functions are the total transfer time T and the sum of the three impulses ∆vtot.

The search space is defined in Table 5.1. The values have been normalized from 0 to 1 inside

the continuation method.

Figure 5.1 shows the graphical representation of this test problem, along with its design

variables. The Pareto front used in the numerical examples is taken from [54].
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Table 5.1: Definition of parameters for the three-impulse test case.

Parameter Min Value Max Value Description

tW 0 1.62 Departure of the spacecraft

from the Low Earth Orbit.

tT1 0.03 21.54 Transfer time along the first

coast arc.

r1 7010 105410 Radius of the polar coordi-

nate that assigns the posi-

tion of the intermediate im-

pulse.

∆θ1 0.01 2π − 0.01 Angle of the polar coordi-

nate that assigns the posi-

tion of the intermediate im-

pulse.

tT2 0.03 21.54 Transfer time along the sec-

ond coast arc.
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r1 = 7, 000 km T = tT1 + t2

rf = 42, 000 km

tW + tT1

∆θ1

Earth

Figure 5.1: Graphical representation of the three-impulse test problem. The spacecraft

departs from an orbit around Earth and performs several movements until it reaches its final

destination.

5.2 Lambert’s Problem

The following description of the Lambert problem is taken from [53].

The solution of the two-point boundary value problem for Keplerian motion is known as

Lambert’s problem, and is represented by the determination of the orbit parameters of an

orbit having a specified transfer time tdes between two prescribed positions in space, P1 and

P2. Each coast arc of the transfer trajectory is identified by means of the assumed initial

and final positions and transfer time. The total number of design variables is thus equal to

3(N − 2) + 2.

The required velocity ∆V is evaluated from the knowledge of the orbit parameters, by

means of a simple vector operation,

∆~vi = ~vIi − ~vFi−1, i = 1, 2, . . . , N, (5.1)

where ~vIi and ~vFi are the initial and final velocities at the edges of the i−th coast arc, for
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1 < i < N − 1, while ~vF0 = ~vLEO and ~vIN = ~vF are the velocities on the initial LEO and final

target orbit, respectively.

Lambert’s algorithm simplifies greatly the structure of the feasible set, because even

when inequality constraints apply to each on of N −1 coast arcs, the constraints on the final

position of the spacecraft are satisfied inherently. The cost is increased in the computational

cost of each function evaluation, but this trade-off is of great use and does not hurt our

continuation method.

5.3 Numerical Results

In this section, we present the numerical results of the continuation method applied on the

three-impulse trajectory problem. Since the Pareto front of this problem falls into different

connected components, it is necessary for the continuation method to start on a KKT point

in each of those segments. We selected the two major components of the Pareto front as

starting elements in our test run. The initial points were obtained through Matlab’s genetic

algorithm. Even though the points are not Pareto optimal points, they are near enough to

the set as to enable the DDS continuation method to work properly.

Figure 5.2 shows the results of the continuation method using two different starting

points in two components of the Pareto front. In the upper part of the front, we see that

the continuation covered almost all that segment, but as the problem suggests, the DDS

continuation gets trapped in a local front, thus avoiding the entire coverage of the tail segment

of the front. The second iteration of the DDS continuation method managed to cover the

entire area successfully. The reference front was taken from [54], and is the result of 2, 000

runs of the evolutionary algorithms used in that work. The number of function evaluations

for the continuation method was approximately 7, 000 for each segment. We rounded to this

number since the continuation method continued to find dominated solutions (not present

in the figures) along each segment. This budget is compared with NSGA-II and MACS

(Multi-Agent Collaborative Search [54]) which used a total of 30, 000 function evaluations

to obtain this front. In Figure 5.3, we made a projection of the first three components of
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Figure 5.2: Numerical result for the gradient free continuation method on the three-impulse

trajectory problem. Left is the reference front along with the two iterations of the DDS

continuation method. Right, close-up to the covered areas.

the decision variables, and on the last three components as well. This demonstrates that the

Pareto set is disconnected, and thus, several starting points will be required if we wish to

find each segment of the Pareto set.

Figure 5.4 shows the result of the Hill Climber with Sidestep using the same budget of

number evaluations as the continuation method, and the same starting points for each run.

We can see that the HCS fails to cover the second segment of the front, as well as performing

poorly on the first segment. As with the DDS continuation method, the candidate solutions

shown in this figure are only the non-dominated ones.

Figure 5.5 shows the numerical result of Matlab’s genetic algorithm. The budget of

function evaluations for this method was 30, 000. The population was set to 500, as to

match the number of solutions found by our DDS continuation method. Matlab’s genetic

algorithm fails to obtain any solution in the second part of the front, and also misses most

of the first segment.
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Figure 5.3: Numerical result for the DDS continuation method, the HCS, and Matlab’s

genetic algorithm in parameter space. Left is the projection over the variables x1, x2 and x3.

Right, the projection over the three decision variables x3, x4 and x5.
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Figure 5.4: Numerical result for the Hill Climber with Sidestep on the three-impulse trajec-

tory problem. Left is the reference front along with the two iterations of the HCS. Right,

close-up to the covered areas.
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Figure 5.5: Numerical result for Matlab’s genetic algorithm on the three-impulse trajectory

problem. Left is the reference front along with the two iterations of the HCS. Right, close-up

to the covered areas.

Cinvestav Computer Science Department



Three-Impulse Space Trajectory Design Problem 79

5.4 Final Comments

We have tested the DDS continuation method on a three-impulse trajectory design for an

object leaving Earth and reaching a spacecraft. The results, though acceptable, need further

improvements. Our method managed to find several connected components of the Pareto set,

while lowering the total number of function evaluations, as compared with other evolutionary

algorithms.

When compared with the other gradient free continuation method, the DDS continuation

managed to outperform the HCS in both, spread and convergence of the solutions. It is

clear that continuation methods can be used to solve engineering problems, even with high

complexity as this space trajectory optimization problem. Further tests have to be performed

in order to improve the results obtained by our novel approach.
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Chapter 6

Discussion and Future Work

In this work, a novel gradient free continuation method was proposed. This method is

capable of moving along the set of optimal solutions, the Pareto set, using a predictor

corrector strategy. This algorithm surpasses other continuation methods since it eliminates

one of the major drawbacks of general continuation methods: The requirement of first order

and second order gradient information. The other only continuation method that does not

use gradient information is the Hill Climber with Sidestep.

We tested this method on a number of academic functions, and in each case, managed to

improve the results compared with other state-of-the-art algorithms, including the evolution-

ary algorithm MOEA/D and the HCS, which is another gradient free continuation method.

We were able to fully adapt the DDS continuation method to handle different types of con-

straints: From the bound constraints to the more complex nonlinear inequality constraints.

It is important to notice that continuation methods can handle equality constraints, but this

normally requires Hessian information. The DDS continuation method can handle equality

constraints, as well as inequality constraints without any gradient information.

When applied to a real-world example, a three impulse space trajectory optimization

for a satellite leaving Earth’s orbit, the DDS continuation method managed to get a nice

approximation of the Pareto front. Compared to NSGA-II, a powerful evolutionary algo-

rithm, our method reduced the number of function evaluations used by half. Although the

approximation was not as good as the one from this evolutionary algorithm, we think that

with additional parametrization, the DDS continuation method could improve the results

significantly. Since the reference Pareto front used to compare these algorithms has a non
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differentiable segment, it is believed that in fact there are several local fronts near each other,

which would explain the result of the continuation method.

The handling of constraints is an important factor to considerate when comparing against

other continuation algorithms since no other algorithm of this kind can handle the wide

variety of constraints present in almost all engineering problems. We managed to lower

the number of function evaluations in every considered MOP, in addition to obtaining a

nice spread of solutions along the front. Up until the work done in this thesis, the DDS

continuation algorithm is the only gradient free continuation method that can handle equality

and inequality constraints and obtains good approximations of Pareto sets with relatively

few function evaluations.

During the development of this thesis:

� A paper was submitted to an international journal, the IEEE Transactions on Evolu-

tionary Computation. The title of this paper is The Directed Search Method for Multi-

objective Optimization Problems Part II: Toward Memetic Strategies, and its authors:

Oliver Schütze, Adriana Lara, Sergio Alvarado, Eduardo Salinas Márquez, Carlos A.

Coello Coello, Shaul Salomon and Gideon Avigad. In this paper, the gradient free

continuation method for the treatment of unconstrained MOP’s is presented, and the

potential advantages of this method are discussed.

� The work was also presented in the international conference EVOLVE 2013 - A Bridge

Between Probability, Set-Oriented Numerics, and Evolutionary Computation, held in

Leiden, The Netherlands from July 11th to the 13th. The title of of this work is A

Gradient-free Continuation Method for Box-Constrained Multiobjective Optimization

Problems, and its authors: Eduardo Salinas Márquez and Oliver Schütze. In this

work, the DDS continuation method is adapted for the handling box constraints, and

later on, to general constraints.

There is still much research to be done, but we have proven empirically that continua-

tion methods are a powerful tool to solve constrained multiobjective optimization problems.

The low number of function evaluations and possibility of neglecting gradient informations,

Cinvestav Computer Science Department



Discussion and Future Work 83

makes it useful for non differentiable problems and engineering applications whose function

evaluations are costly in time and computational power.

6.1 Future Work

There are several interesting options regarding the DDS continuation method. Some future

improvements are presented as follows:

� The most important aspect to improve is the adaptation for more than two objectives.

We have shown that the algorithm works when k = 2, but it is left to modify it when

the Pareto front is of higher dimensions. A box recovery approach was done in Mej́ıa’s

work [36], using gradient information, thus for k = 3, there are not many modifications

to acomplish this task.

� We tested the gradient continuation method in constrained academic functions, how-

ever, it is of interest to see the behavior of our method in a real-world example with

several types of constraints.

� Another interesting improvement for the continuation method would be to work on

disconnected Pareto set. This is, to start on one segment, and then follow a dominated

path to another segment and restart the continuation steps, and so on. The stopping

criteria would need to be changed, and the step size control strategies as well, in the

dominated segments of the Pareto front, for example in ZDT3.

� There is still work to be done for the constraint handling modifications. More precisely,

the corrector step of the DDS. We used the DDS to correct back to the Pareto front,

by utilizing the convex weight. However, in the constrained case, the direction ν in

parameter space in the corrector may not correspond to the correction to the active

constraint set. Thus, the DDS would need to be adapted to shoot back to the active

constraints, without using gradient information.
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