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Resumen

En un problema ‘clásico’ de optimización multi-objetivo (POM), la tarea principal
es el optimizar varios objetivos al mismo tiempo. El conjunto solución de un POM,
llamado conjunto de Pareto, típicamente forma un objeto de (k − 1) dimensiones,
donde k es el número de objetivos involucrados en el problema. Un problema de
optimización multi-objetivo dependiente de parámetros (POMP) se constituye de un
problema multi-objetivo donde algunos parámetros λ ∈ Rl son externos y no pueden
ser influenciados por el diseño de un objeto (por ejemplo, la dirección del viento en
el diseño de un carro ‘óptimo’). El conjunto solución de un POMP es en la mayoría
de los casos de k− 1 + l dimensiones. Recientemente, los algoritmos evolutivos basa-
dos en indicadores (AEBIs) han capturado el interés de muchos investigadores para
tratar POMs, esto es debido a que tales algoritmos entregan una buena aproximación
del conjunto de soluciones y usualmente tienen un mejor desempeño comparado con
algoritmos basados en dominancia de Pareto. Sin embargo, estos métodos continúan
teniendo la desventaja de necesitar un alto número de evaluaciones de la función
objetivo para obtener un representación adecuada del conjunto de soluciones.

El alcance de este trabajo de tesis es el tratamiento numérico de POMs y POMPs
utilizando búsqueda local y estrategias meméticas. Para llevar a cabo esto, el reciente
desarrollado Método de Búsqueda Dirigida (MBD) (en ingles ‘Directed Search Method
(DS)’) será adaptado a cada contexto. En el caso de POMPs, se adaptará el MBD
para realizar un movimiento sobre el espacio λ, contando o no con la información
del gradiente. Finalmente para los POMs, el objetivo es adaptar el MBD dentro del
contexto de aproximaciones utilizando el hipervolumen, y de esa manera solucionar el
problema de la ‘lenta convergencia’. Se presentará un nuevo algoritmo de búsqueda
local, el cual será integrado dentro de un algoritmo basado en el hipervolumen, para
dar lugar a un nuevo algoritmo memético. Mostraremos que estas nuevas estrategias
puede ser altamente competitivas considerando algoritmos del estado del arte sobre
estos campos.
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Abstract

In a ‘classical’ multi-objective optimization problem (MOP) the task is to optimize
several conflicting objectives concurrently. The solution set of a MOP, the so-called
Pareto set, typically forms a (k − 1)-dimensional manifold, where k is the number of
objectives involved in the MOP. A parameter dependent multi-objective optimization
problem (PMOP) consists of a MOP where in addition several parameters λ ∈ Rl

are external and cannot be influenced for the design of an object (e.g., the side
wind in the design of an ‘optimal’ car). The solution set of a PMOP is typically
k − 1 + l dimensional. Recently, indicator based evolutionary algorithms (IBEAs)
have caught the interest of many researchers for the treatment of MOPs, since they
deliver the desired approximation of the solution set and due to a usually better
performance compared to dominance based algorithms. Nevertheless, these methods
still suffer the drawback that many function evaluations are required to obtain a
suitable representation of the solution set.

The scope of this thesis project is the numerical treatment of both MOPs and
PMOPs by means of local search and memetic strategies. For this, the recently
developed Directed Search method will be adapted to the given contexts. In the case
of PMOPs, we adapt the DS to perform a movement over λ-space with and without
gradient information. Finally, for MOPs we aim to adapt the DS for the context
of hypervolume approximations to overcome the problem of ‘slow convergence’. We
present a new local search algorithm and a new memetic algorithm using the SMS-
EMOA. We will show that the novel local search strategies and the new memetic
strategy will be highly competitive to state-of-the-art algorithms in these fields.
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1 | Introduction

All along, humankind has the desire for being always better according to what has
been done in the past, but getting better is not a simple task. Nowadays, if one
wonders what ’better’ is, the answer would not come quickly to our minds. Likely,
it would be crucial to define firstly one or more features over which the decision will
be done in order to select the ’best’ among two or more elements. As an example,
one can imagine the process to construct a motorcycle. Such a vehicle involves many
characteristics regarding its construction, but for now ’quality’ and ’cost’ have been
chosen to convey our ideas in a straightforward manner.

Figure 1.1: 2013 Honda CBR 1000 RR. This image was taken from [1].

HondaTM for instance is one of the most important motorcycle makers that pro-
duces a certain number of motorcycle models, each model has different features in-

1



2

volved that depend on the quality of the materials that are made. In order to find a
proper way to produce motorcycles, one has to look carefully at that process. People,
who are in charge of the whole production process, are interested in how their motor-
cycles would be attractive for their clients due to their quality, but without forgetting
the production cost that will affect directly the profit. So, by selecting one of the
produced models (in this case the one in Figure 1.1), we notice that our selected
features might be seen now as goals for the company. Analyzing deeply the problem,
we realize that both goals are in conflict, what generates two different settings. The
first setting is when the production cost is reduced in a significant way, therefore,
the motorcycle quality will be punished in order to obtain a cheaper product. This
possible setting will provoke higher profit by one sale but also losses for the company
since people may look for another motorcycle with better quality. Otherwise, in the
second setting, the aim is to maximize quality. This will cause that the production
cost increase what represents fewer profit, as well as, the motorcycle cost will not be
affordable for most of the clients which generates less sales. Due to the above expla-
nations our decision becomes difficult. The latter is because, we can see that there is
not only one solution for our problem but rather an entire set of solutions. Summariz-
ing the previous ideas, an important question comes now to our minds, ‘how should
we construct the motorcycle in order to benefit the company by increasing the profit
and the sales in the market?’. To answer that question, it is important first to have
a set of good solutions and the ‘how’ is answered by one field called optimization.

Arguably, optimization may help us to find elements which are the best choices of
a given problem. For instance, it would find proper solutions regarding the balance
between cost and quality in the previous example. We can say that optimization is an
important and active field for research, since it plays an important role in everyday life,
for example in activities such as decision-making, designing of goods like our example,
system control and others. Two important sub-fields of optimization are: (i) single-
objective optimization which tries to solve problems with only one objective under
some circumstances and (ii) multi-objective optimization that is when a problem has
multiple objectives which are in conflict with each other and all objectives have to
be optimized concurrently. The latter is defined as a multi-objective optimization
problem (MOP).

Due to its importance and relation with many things in the real world, it is im-
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INTRODUCTION 3

portant to improve the knowledge related to optimization. Here, we mention some
application domains that involve MOPs: engineering applications (electrical , aero-
nautical , robotics and control), industrial applications (scheduling, management,
design and manufacture), scientific applications (chemistry, physics, medicine and
computer science), etc [2].

Entering deeper into the subject, it is known that the solution set of a MOP, the
so-called Pareto set, typically forms a (k − 1)-dimensional manifold, where k is the
number of objectives involved in the problem [3]. Currently, there are many methods
and techniques to tackle MOPs, such as scalarization methods [4, 5], subdivision
techniques [6], and the so-called multi-objective evolutionary algorithms (MOEAs)
[7, 8]. For the treatment of MOPs especially MOEAs have caught the interest of many
researchers (see, e.g., book of Deb [9] and references therein), since they are applicable
to a wide range of problems. Other remarkable feature is their global nature what
makes the algorithm in principle not dependent on the initial candidate set. Finally,
we can say that they typically allow us to compute a finite size representation of the
Pareto set in a single run of. Among MOEAs, there is a recent trend in the design
of algorithms that are based on a particular performance indicator, the so-called
indicator-based evolutionary algorithms (IBEAs) [10, 11]. Reasons for that include
the improvement of the numerical treatment of the problem (e.g., the speed up of
the convergence rate) and the fact that such optimal archives (i.e., optimal w.r.t. the
given indicator) are in certain cases most appropriate for the related decision making
problem.

On the other hand, it is known that MOEAs tend to converge slowly, what is
a severe drawback of this kind of algorithms. That drawback leads to use a rela-
tively high number of function evaluations to obtain a suitable representation of the
set of interest. As a possible remedy, researchers have proposed memetic strategies
in the recent past (e.g., [12]). Memetic strategies hybridize local search strategies
mainly coming from mathematical programming with MOEAs in order to obtain fast
and reliable global search procedures. Ever since memetic strategies were proposed
and many researchers have reported successful results, nevertheless, questions remain
open, what keeps researchers working on this field.

Nowadays, optimization is still growing since other kinds of problems are arising
related to MOPs, such as parameter dependent multi-objective optimization problems

CINVESTAV Computer Science Department



4 Chapter 1

(PMOPs) which occur in many real world applications. Problems of this kind depend
on an external parameter λ ∈ Rl which describes the influence of the other parameters
in the objective functions [13, 14]. The latter motivates researchers to develop new
tools in order to tackle them.

1.1 Motivation

There is a necessity for developing more efficient algorithms to tackle both MOPs and
PMOPs, since such problems are related to real world applications.

For MOPs a faster and reliable way to approximate the solution set is required,
since in many situations the cost to evaluate a model is expensive computationally
speaking. Memetic strategies, as we mentioned, have been developed in order to
reach this goal. However, to find the proper balance between global and local search
becomes in a difficult task. The latter is because, when a local search is performed,
a significant improvement is expected to justify the effort.

Next to MOPs, by looking at the literature, we noticed that for PMOPs there is a
lack of methods to approximate the entire solution sets. The state-of-art algorithms
are not able to compute the solution sets in only one run but in multiple runs by
changing the value of the external parameter. This approach leads to the consumption
of a huge amount of function evaluations making the process difficult and expensive.

At present, there are many methods to help multi-objective evolutionary algo-
rithms (MOEAs), among of them a novel method was recently proposed for the
numerical treatment of MOPs. This method is called the ’Directed Search (DS)’ [15]
and contains two parts: A descent method that performs an iterative procedure to
obtain a curve of dominating points until a boundary point is reached. Further on a
new continuation method which allows to search along the Pareto set of a given MOP.
The latter has an important advantage, namely that it does not require any second
gradient information which allows to use DS for designing a new local search strategy
to hybridize evolutionary approaches. In fact, the DS can be realized gradient free.

So, as we see, DS would be integrated into evolutionary algorithms to improve
their performance, as well as, it will be interesting to adapt this method for more
problems in order to become it more robust. Thus, along this work, the design of
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INTRODUCTION 5

new methods is aimed for providing new tools to treat MOPs and PMOPs in a clever
way. The integration of local search procedures into MOEAs is our main focus in this
work, since by this it is expected to increase the rate of convergence of the resulting
algorithms.

1.2 The Problem

The scope of this thesis is to work with a certain kind of evolutionary approaches,
the so-called indicator-based evolutionary algorithms which were briefly explained in
the introduction. Algorithms of this sort use an indicator which is in simple words
is a tool to measure the approximation quality of the obtained solution set. Within
IBEAs the indicator not only assesses the final approximation of the algorithm but
also helps the algorithm to select such elements which contribute most to its value.
Since to hybridize EAs, in this case IBEAs, with local search strategies is our main
objective, the difficulty of the problem increases. In other words, to improve the value
according to a given indicator while the local search is being applied will be as our
main problem.

Finally, the DS has not been adapted for PMOPs, in order to extend their appli-
cability, that is why, we aim for performing a movement toward and along λ−space
into a PMOP. To achieve the previous aim represents a big challenge for us, since the
underlying theory has to be developed. To emphasize the presented challenges for
this work, we list them below:

• Design a local search technique for IBEAs using DS.

• Consider the external parameter λ ∈ Rl in order to extend the theory related
to DS to tackle PMOPs.

• Design a predictor-corrector method that will be capable of moving in the ‘λ-
direction’ of a given PMOP.

• Consider for both MOP and PMOP models which do not provide first or second
derivative information.
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1.3 General and Particular Aims

General Aim

To design a novel memetic strategies that are able to treat MOP and PMOP, in order
to advance the state-of-the-art.

Particular Aims

• To adapt DS for PMOPs with and without gradient information.

• To design a novel continuation method both along f -space and λ-space for
PMOPs.

• To design a new local search technique using DS for an IBEA.

• To integrate the new local search technique into a general IBEA in order to
improve its performance.

1.4 Final Contributions

In order to summarize the work done along this thesis project, we list our contributions
below:

• Local search algorithms for the treatment of MOPs and PMOPs

– The Directed Search Method for PMOPs (λ-DS)

– The Hypervolume based Directed Search (HVDS)

• Memetic multi-objective evolutionary algorithms

– Memetic version of the S metric selection evolutionary multi-objective al-
gorithm (SMS-EMOA) using HVDS only at initial stages

– Memetic version of the SMS-EMOA using HVDS as an operator

• Numerical results and comparison against the state-of-the-art methods
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• Collaboration with the TU-Dortmund University, Germany

• Contribution at the international conference ‘Genetic and Evolutionary Com-
putation Conference’ (GECCO) 2013 in Amsterdam, The Netherlands: Victor
Adrian Sosa-Hernandez, Oliver Schütze, Günter Rudolph, Heike Trautmann.
Directed Search Method for Indicator-based Multi-Objective Evolutionary Al-
gorithms, pp 1699-1702, 2013

• Contribution at the international conference ‘EVOLVE- A bridge between Prob-
ability, Set Oriented Numerics, and Evolutionary Computation’ 2013 in Lei-
den, The Netherlands: Victor Adrian Sosa-Hernandez, Oliver Schütze, Günter
Rudolph, Heike Trautmann. The Directed Search Method for Pareto Front
Approximations with Maximum Dominated Hypervolume, pp 189-205, 2013

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows: In Chapter 2, we state some
theoretical background to understand the presented work. Furthermore, we review
some methods used to solve multi-objective optimization problems. Then, we intro-
duce the Directed Search Method. Finally, we present the related work to PMOPs.
In Chapter 3, we introduce the underlying ideas of the λ-DS and we also propose
a modification of the λ-DS that is gradient free. We explain the influence of the
external parameter λ and also this chapter is used to show some numerical results
for the λ-DS with gradient information. Chapter 4 is used to explain the design of
the new local search strategy called HVDS. We present, how it is integrated into an
IBEA and first numerical results. Finally, we draw some conclusions and give some
paths for future work in Chapter 5.
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2 | Background

In this chapter, we provide the required background and related work to understand
the ideas presented in this thesis project. We start by describing important concepts
related to the theoretical background. Next to this, we present the state-of-the-art
that involves the main techniques to solve MOPs, as well as, we dedicate this chapter
also to list some tools to measure the performance over a generated approximation.
Then, we present what a memetic strategy is and we mention some works related
to PMOPs to get more acquainted to them. Finally, we present the local search
technique used throughout this work, the Directed Search Method.

2.1 Theoretical Background

In this section, we start to talk about single-objective optimization problems to collect
enough knowledge to face the problems which are going to be treated in this thesis,
MOPs and PMOPs. Next, we are going to define these problems to know about what
we have to do to solve them. Since to define Pareto optimality is very important in
order to select such elements that are better to solve the problems, we also present
the related theory.

2.1.1 Single-Objective Optimization Problem

First of all, it is important to know what a single-objective optimization problem
(SOP) is, in order to understand MOPs and PMOPs. A SOP is defined as follows:

Definition 1. A general single-objective optimization problem is defined as minimi-

9



10 Chapter 2

zing (or maximizing) a function as follows:

min
x∈S

f(x) (2.1)

s.t gi(x) ≤0 i = 1, . . . , p

hj(x) =0 j = 1, . . . , q.

where f : Rn → R, gi(x) : Rn → R, and hi(x) : Rn → R. S ⊂ Rn is defined as the
feasible region which is restricted by the constraints

S = {x : gi(x) ≤ 0 and hj(x) = 0}. (2.2)

It is important to mention that for the remainder of this thesis, we only will
instanciate unconstrained minimization problems. Given a function f : S ⊆ Rn → R,
the value f(x∗) is called a global minimum if and only if

f(x∗) ≤ f(x) ∀x ∈ S. (2.3)

Commonly, a single-objective optimization problem may have a unique solution
as we show in Figure 2.1.
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f
(x

)

Global minimum

Figure 2.1: Example of a single-objective optimization problem with a unique solu-
tion.
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2.1.2 Multi-Objective Optimization Problem

In the following, we define a continuous multi-objective optimization problem:

min
x∈S
{F (x)}, (2.4)

where S ⊆ Rn is the feasible region, which is a subset of the decision variable space
and the function F is defined as the vector of objectives functions

F : S → Rk, F (x) = (f1(x), . . . , fk(x)), (2.5)

where k ≥ 2 and where each objective fi : S → R is for sake of simplicity sufficiently
smooth [16].

2.1.3 Parameter dependent Multi-Objective Optimization Pro-

blem

As we mention in the introduction, other kind of problems related to MOPs are aris-
ing, one example of them are the parameter dependent multi-objective optimization
problems (PMOPs) which are defined as follows:

min
x∈S

Fλ(x), (2.6)

where Fλ is defined as a vector of objective functions dependent on an external pa-
rameter λ

Fλ : S → Rk,

Fλ(x) = (f1(x), · · · , fk(x)),
(2.7)

and where S ⊂ Rn. λ ∈ Rl specifies an external parameter, or parameters, to the
objective functions.

2.1.4 Decision Variables

One of the most important parts of an optimization problem are the decision variables.
They are numerical quantities that control the obtained values by evaluating them in
a certain model as it is depicted in Figure 2.2. As a simple example, we can remember
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our initial problem ‘to construct a motorcycle’, where we looked to make the decision
at two characteristics of the motorcycle ’quality’ and ’cost’. The interior features
that define these two objectives can be seen as our decision variables, for instance,
the capacity of the engine, the horsepower, the torque, etc.

Figure 2.2: Mapping variable vectors by evaluating them to the objective space.

To give a more theoretical definition, we denote a quantity of a decision variable
as xi, where i = {1, 2, . . . , n}. The vector x of n decision variables is represented by:

x =


x1

x2

...
xn

 . (2.8)

2.1.5 Jacobian Matrix

Since, we are going to deal with MOPs, it is convenient to represent the derivative
of the model. In this case ∇F (x), by using a notation which is called the Jacobian
matrix of F in x, denoted by J(x). The members of this matrix are given by all the
partial derivatives of F :

J(x) =
∂F

∂x
(x) =


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

...
∂fk
∂x1

(x) . . . ∂fk
∂xn

(x)

 =


∇f1(x)T

...
∇fk(x)T

 , (2.9)
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where ∇fi(x) denotes the gradient of objective i, i.e.,

∇fi =


∂fi
∂x1

(x)
...

∂fi
∂xn

(x)

 . (2.10)

2.1.6 Pareto Optimality

Optimality is a crucial concept in optimization, therefore, it is important to define
it for MOPs. In 1896, Vilfredo Pareto proposed an important definition called later
Pareto optimality [17] which is a generalization of the work of Edgeworth in 1881
[18]. In Figure 2.3 it is graphically defined and in the following we are going to define
it theoretically.

Definition 2. (a) Let v, w ∈ Rk. Then the vector v is less than w (v <p w), if
vi < wi for all i ∈ {1, 2, . . . , k}. The relation ≤p is defined analogously.

(b) A vector y ∈ Rn is dominated by a vector x ∈ Rn (x ≺ y) with respect to the
definition of a multi-objective optimization problem if

F (x) ≤p F (y) and F (x) 6= F (y),

else x is called non-dominated by y.

(c) A point x ∈ S is called (Pareto) optimal or a Pareto point if there exists no y ∈ S

which dominates x.
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Figure 2.3: Dominated and non-dominated solutions over the objective space. The
solution denoted by p4 is the only one that is dominated by a other solution in this
case p2. Solutions p1, p2, and p3 cannot be compared which means that they are
mutually non-dominating.

If all the objectives f1(x), f2(x), . . . , fk(x) are differentiable, the following theorem
of Kuhn and Tucker [19] states the necessary condition for Pareto optimality for
unconstrained MOPs.

Theorem 1. Let x∗ be a Pareto point of a MOP; then there exists a vector α ∈ Rk

with αi ≥ 0, i = 1, . . . , k, and
∑k

i=1 αi = 1 such that

k∑
i=1

αi∇fi(x∗) = 0. (2.11)

The theorem claims that the vector of zeros can be written as a convex combination
of the gradients of the objectives at every Pareto point. We notice that Equation
(2.11) is not a sufficient condition for Pareto optimality, but we can say that points
which satisfy Equation (2.11) are certainly ’Pareto candidates’.

Definition 3. A point x ∈ Rn is called a Karush-Kuhn-Tucker point 1 (KKT point) if
1Named after the works of Karush [20] and Kuhn and Tucker [19].
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there exist scalars α1, α2, . . . , αk ≥ 0 such that
∑k

i=1 αi = 1 and that Equation (2.11)
is satisfied.

The set of all global Pareto points is called the Pareto set, denoted by PS; an
example is shown in Figure 2.4 and the image of the Pareto set F (PS) is called the
Pareto front, in Figure 2.5 an example is presented.
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Figure 2.4: Example of a Pareto set.
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Figure 2.5: Example of a Pareto front.

A multi-objective optimization problem contains a possibly uncountable set of
solutions as we can observe in Figure 2.4. Such solutions when are evaluated, produce
vectors whose components represent trade-offs in objective space (see Figure 2.5).
Thus, to choose an acceptable solution or solutions from the final solution set is the
task for a decision maker [21].

Theorem 1 can be used to give a qualitative description of the Pareto set. For
this, define the following map:

F̃ : Rn+k → Rn+1

F̃ (x, α) =

( ∑k
i=1 αi∇fi(x)∑k
i=1 αi − 1

)
. (2.12)

If x is a Pareto point there exists by Theorem 1 a vector α∗ ∈ Rk such that
F̃ (x∗, α∗) = 0. Hence, the Pareto set and the according set of weight vectors are
contained in the preimage F̃−1(0), and we expect by the Implicit Function Theorem
[22] that this set forms a set of dimension k−1. This is indeed the case under certain
assumptions on the MOP [3].
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In the case of PMOPs, the family of Pareto sets (one for each value of λ) is thus
defined as

PS,Λ := {(x, λ) ∈ Rn+l, s.t x is a Pareto point of Fλ, λ ∈ Λ} (2.13)

where its image denoted by F (PS,Λ) will represent the family of Pareto fronts.

Unlike MOPs, we notice that PMOPs have a complete family of Pareto sets and
Pareto fronts, since they include the influence of an external parameter. As an ex-
ample, we consider the following PMOP taken from [6] to show how the solution sets
looks like. Figures 2.6 and 2.7 present a graphical representation of this problem in
both parameter space and objective space.

Fλ : Rn → Rk

Fλ(x) := (1− λ)F1(x) + λF2(x), (2.14)

where λ ∈ R and

F1, F2 : R2 → R2

F1(x1, x2) =

(
(x1 − 1)4 + (x2 − 1)2

(x1 + 1)2 + (x2 + 1)2

)
,

F2(x1, x2) =

(
(x1 − 1)2 + (x2 − 1)2

(x1 + 1)2 + (x2 + 1)2

)
.
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Figure 2.6: Family of Pareto sets of a
PMOP.
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PMOP.
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2.2 Mathematical Programming Techniques for MOPs

To give a brief insight into the developments related to MOPs and PMOPs, we have
to start by describing the main available methods to find the entire set of optimal
solutions for a multi-objective optimization problem. These methods are based on a
mathematical formulation.

2.2.1 Scalarization Methods

One way to tackle MOPs is to use scalarization methods, i.e., to transform the original
problem (defined in Equation (2.4)) into a scalar optimization problem of the form:

min
x∈S

fα(x), (2.15)

where fα : S → R and α ∈ Rk is an external parameter. Note that for a given value
of α the solution of Equation (2.15) is typically a single point rather than a (k − 1)-
manifold. Finite size Pareto set/front approximations can hence only be obtained
by choosing a clever sequence of optimization problems using Equation (2.15) which
calls for a suitable set A := α(1), . . . , α(m) ⊂ Rk of external parameters.

The general advantage of the use of scalarization methods is that they can be
tackled by any solver for scalar optimization problems. On the other hand, it is not
always ensured that the resulting set of minimizers forms a suitable approximation
of the Pareto set/front (e.g., in terms of the spread along the set of interest).

Weighted Sum Method Probably, the first scalarization method is the ‘Weighted
Sum Method’ [23, 4]. The underlying idea is to assign to each objective a certain
weight ωi ≥ 0, and to minimize the resulting weighted sum. Given a problem of the
form of Equation (2.4), the weighted sum problem can be stated as follows:

min
x∈S

k∑
i=1

ωifi(x), (2.16)

where ωi ≥ 0 for all i = 1, . . . , k and
∑k

i=1 ωi = 1 [16].

The main advantage of the Weighted Sum Method is that one can expect to
find Pareto optimal solutions by solving Equation (2.16). It can be shown that for
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problems where the Pareto front is convex all points on this set can be reached by
solving Equation (2.16) for a particular value of ω. Nevertheless, the main drawback
of this method is that optimal solutions p where F (p) lies on a concave portion of
the Pareto front, can hardly be found.

ε-Constraint Method The ’ε-Constraint Method’ [24] consists in selecting one
objective fi, i ∈ {1, . . . , k}, to be optimized, while the other objectives are treated
as constraints by setting an upper bound to each of them. This leads to the following
optimization problem:

min fi(x), (2.17)

s.t fj(x) ≤ εj, x ∈ S for all j = 1, . . . , k, j 6= e.

Theorem 2. A vector x ∈ S is Pareto optimal if and only if it is a solution of
the ε-constraint problem (defined in Equation (2.17)) for every i = 1, . . . , k, where
εj = fj(x

∗) for j = 1, . . . , k, j 6= i.

Unlike the Weighted Sum Method , by using the ε-Constraint Method, it is possible
to find optimal solutions even in non-convex regions. However, the proper choice of
the values of ε may get difficult. Further, there is no a specific criterion to select the
objective to minimize.

Weighted Tchebycheff Method The aim of the ‘Weighted Tchebycheff Method’
[25] is to find a point whose image is as close as possible to a given reference point
z ∈ Rk. For the distance assignment the weighted Tchebycheff metric is mostly used:
Let ω ∈ Rk with ωi ≥ 0, i = 1, . . . , k, and

∑k
i=1 ωi = 1, and let z = [z1, . . . , zk]

T , then
the Weighted Tchebycheff Method reads as follows:

min
x∈S

max
i=1,...,k

ωi|fi(x)− zi|. (2.18)

Note that the solution of Equation (2.18) depends on z as well as on ω. The main
advantage of the Weighted Tchebycheff Method is that by a proper choice of these
vectors every point on the Pareto front can be reached.

Theorem 3. The solution of Equation (2.18) is weakly Pareto optimal if ω ∈ Rk
+.

CINVESTAV Computer Science Department



BACKGROUND 19

Theorem 4. Let x∗ ∈ S be Pareto optimal. Then there exists ω ∈ Rk
+ such that x∗

is a solution of Equation (2.18), where z is chosen as the utopia vector of the MOP.

The utopia vector F∗ = [f∗
1 , . . . , f

∗
k ]

T of a MOP consists of the minimal objective
values f ∗

i of each function fi. On the other hand, the proper choices of z and ω might
also present delicate problems for a particular problem.

Normal Boundary Intersection Method In 1998 an alternative scalararization
method was proposed by Das and Dennis [26], the Normal Boundary Intersection
method (NBI). The NBI method computes finite size approximations of the Pareto
front in the following two steps:

1. The convex hull of individual minima (CHIM) is computed which is the (k−1)-
simplex connecting the objective values of the minima of each objective.

2. Points yi from the CHIM are selected and the point z∗i ∈ S is computed such
that the image F (x∗

i ) has the maximal distance from yi, in the direction that
is normal to the CHIM and points toward the origin.

To be more precise, let x∗
i be a global minimizer of the i-th objective, let F∗

i :=

F (x∗
i ), and denote

Φ := [F∗
1, . . . ,F

∗
k] ∈ Rk×k. (2.19)

Then the CHIM is defined as

CHIM =

{
Φω : ω ∈ Rk :

k∑
i=1

ωi = 1, ωi ≥ 1, i = 1, . . . , k

}
. (2.20)

The optimization problem in the second step is called the NBI-subproblem. Given
an initial value Φω =

∑k
i=1 ωiF

∗
i and the direction d ∈ Rk which is orthogonal to the

CHIM and points toward the origin, the NBI-subproblem can be stated in mathe-
matical terms as follows:

max
x,t

t (2.21)

s.t F (x0) + td = F (x),

x ∈ S.
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The usage of Equation (2.21) can be helpful since there are scenarios where the
aim is to steer the search in a certain direction given in objective space [26, 27].
However, solutions of Equation (2.21) do not have to be Pareto optimal. A graphical
representation of the NBI method is depicted in Figure 2.8.
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Figure 2.8: Example of the convex hull of individual minima and the quasi-normal
vector for a particular MOP.

2.2.2 Set Oriented Methods

Set oriented methods such as subdivision techniques [6, 28, 29, 30] generate an entire
set in each iteration step in a suitable sense. To perform this, the process starts with
a division over a box previously defined, then it generates outer approximations of
the set of interest until a desired granularity of the box is reached. To define the
algorithm, we have to consider a finite collection of discrete dynamical systems of the
type:

xj+1 = fm(xj), j = 0, 1, 2, . . . , (2.22)

where we assume for simplicity that each fm : Rn → Rn m = 1, . . . , s is continuous.
Hence, the aim is to compute invariant sets for the entire collection of dynamical
systems. To be more precise, the goal is to approximate a subset A ⊂ Rn such that:

fm(A) = A for m = 1, . . . , s. (2.23)
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Another method of this sort is the cell mapping approach [31]. This method
starts with the idea to see a numerical approach to solve a MOP as a dynamical
system. This method treats the search space as a discrete search space instead of
continuous. Such method proposes to increase a discretization of the search space by
dividing it into bigger hypercubes. The evolution of the dynamical system is then
reduced to a new function, which is not in Rn, but on the cell space. In the case of
solving only functions that are strictly deterministically defined, we have the so-called
simple cell mapping. This technique allows us to obtain the attractors and basins of
attractions of a dynamical system. In [32, 33] new applications of simple cell mapping
are presented in the context of multi-objective optimization.

2.2.3 Descent Directions

To use descent directions is another way to perform a local search toward the set of
optimal solutions. Given a point x ∈ Rn, a vector ν ∈ Rn is called a descent direction
if a search in that direction leads ideally to improve all the objective values. In other
words, v is a descent direction of a MOP at a point x ∈ Rn if there exists a t̃ ∈ R+

such that

F (x+ tν) <p F (x), ∀t ∈ (0, t̃). (2.24)

If all objectives of a MOP are differentiable, then Equation (2.24) is equivalent to

∇fi(x)Tν < 0, i = 1, . . . , k. (2.25)

Hence, if a descent direction ν is given for an initial point x, a solution xnew that
dominates x can be found by performing a line search, i.e.,

xnew = x+ tν, (2.26)

where t ∈ R+ is a (sufficiently small) step size. In [34, 28, 35, 36] some descent
directions have been presented. For the purpose of this work, we introduce two
descent directions in the following.

Averaged Descent Direction In [28] a descent direction is presented, in the case
of having bi-objective optimization problems (i.e., k = 2). This direction was already
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integrated into a MOEA in the work of Lara et al. in [37]. The Average Descent
Direction takes advantage of the descent cone properties of a MOP and it reads as
follows:

Theorem 5. Let x ∈ Rn, f1, f2 : Rn → R define a bi-objective MOP, and ∇fi 6= 0

for i = 1, 2. Then, the direction

ν = −1

2

(
∇f1(x)
||∇f1(x)||

+
∇f2(x)
||∇f2(x)||

)
, (2.27)

where || · || = || · ||2, is a descent direction at x for the MOP.

One of the main advantages to compute this descent direction is that it only needs
the gradient information unlike the other approaches where in most of the cases one
has to solve a linear quadratic optimization problem. Nonetheless, the method still
has a clear disadvantage namely that it cannot be generalized for more than two
objective functions.

Descent direction of Schäffler, Schultz and Weinzierl In [34] Schäffler, Schultz
and Weinzierl presented an approach for the computation of a descent direction for
unconstrained MOPs. This descent direction is defined as follows:

Theorem 6. Let a given MOP as defined in Equation (2.4) and the map q : Rn → R
be defined by

q(x) =
k∑

i=1

α̃i∇fi(x), (2.28)

where α̃ is a solution of

min
α∈R


∥∥∥∥∥

k∑
i=1

αi∇fi(x)

∥∥∥∥∥
2

2

: αi ≥ 0, i = 1, . . . , k,
k∑

i=1

αi = 1

 . (2.29)

Then the following statements hold:

• Either q(x) = 0 or −q(x) is a descent direction.

• For each x̃ ∈ Rn, there exists a neighborhood N(x̃) and a constant Lx̃ ∈ R+
0

such that
||q(x)− q(y)||2 ≤ Lx̃||x− y||2, ∀x,y ∈ N(x̃). (2.30)

Note that if q(x) = 0, then x is a KKT point. While q is computed a test for a
first order necessary condition for optimality is being performed also.
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2.2.4 Multi-Objective Continuation Methods

Since the set of interest, the Pareto set/front, forms at least locally a manifold, it
can make sense to perform a search along this set once locally optimal solutions are
detected. Such methods are particularly advantageous if the Pareto front is connected.
In the following we describe the core of the predictor-corrector (PC) methods as
described in [38] for general implicit defined manifolds and in [3] for multi-objective
optimization.

Crucial for the PCs presented in [38, 3] is the map F̃ as described in Equation
(2.12) that transforms a MOP problem into a root finding problem: The set of interest
is now

M := {(x, α) ∈ Rn+k|F̃ (x, α) = 0}. (2.31)

To describe a PC, it is important to state some technical details. The tangent
space of M at (x, α) ∈M is given by

T(x,α)∂M = kerJ(x, α) = {u ∈ Rn+k|J(x, α)u = 0}, (2.32)

where J(x, α) denotes the Jacobian matrix of F̃ at (x, α) and ker A the kernel of a
matrix A. Well-spread tangent vectors can e.g., be obtained by computing a QR-
decomposition of J(x, α)T :

Let Q = (QN , QK) ∈ R(n+k)×(n+k) be an orthogonal matrix with QN ∈ R(n+k)×(n+1)

and QK ∈ R(n+k)×(k−1) and R = (R1, 0, . . . , 0)
T ∈ R(n+k)×(n+1), where R1 ∈ R(n+1)×(n+1)

is a right upper triangular matrix such that

F̃ ′(x, α)T =


∑k

i=1 αi∇2fi(x) 0

∇f1(x)T 1
...

...
∇fk(x)T 1

 = QR. (2.33)

Hereby, ∇2f(x) ∈ Rn×n denotes the Hessian of f at x. Then the columns of QK

build an orthonormal basis of Tx,α∂M .

In the following, we formulate the general idea of PCs: Given a point (x, α) ∈M ,
further points along M are computed in using the next two steps (for a graphical
representation see Figure 2.9):
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Figure 2.9: A predictor-corrector method. This image was taken from [39].

Predictor To predict a set {p(1), . . . , p(s)} ⊂ Rn+k of distinct and well-distributed
points that are near both to (x∗, α∗) and M , we can use Equation (2.33), i.e., by
choosing

p(i) = (x∗, α∗) + tiqi, (2.34)

where ti ∈ R \ 0 is a step size and qi the i-th column vector of QK .

Corrector Then, for i = 1, . . . , s, starting from the predicted point p(i), compute
by (typically few) iterative steps an approximated element (x(i), α(i)) ∈ M , i.e., such
that F̃ (x(i), α(i)) ≈ 0. This can e.g., be done by applying root finding methods such
as the Gauss-Newton method to F̃ .

A drawback of the above procedure is that one needs to compute or approximate
the Hessians of the objectives. To overcome this problem, in [40] a continuation
method is presented using the DS without computing Hessian information that makes
the process cheaper. In [41] a novel gradient free continuation method based on the
DS is presented, this method allows to steer the search along the solution set (Pareto
set) of a multi-objective optimization problem without using any gradient or Hessian
information.

2.2.5 The Directed Search Method

The Directed Search Method has been proposed for differentiable MOPs and it allows
us to steer the search process from a given point into a desired direction in objective
space [40] as we show in Figure 2.10. To be more precise, given a point x0 ∈ Rn, and
a vector d ∈ Rk representing the desired search direction in image space, a search
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direction ν ∈ Rn in parameter space is sought such that

lim
t→0

fi(x0 + tν)− fi(x0)

t
= di, i = 1, . . . , k. (2.35)

Figure 2.10: The directed search method.

The Equation (2.35) can be stated in matrix vector notation, therefore such a
direction vector ν solves the following system of linear equations:

J(x0)ν = d, (2.36)

where J(x) denotes the Jacobian of F at x as we state in Equation (2.9). Since
typically k << n, we can assume that the linear system in Equation (2.36) is (highly)
under-determined. Among the solutions of Equation (2.36), the one with the least
2-norm can be viewed as the greedy direction for the given context what means by
using this direction we are going to obtain the maximum gain. The wanted solution
is given by

ν+ := J(x)+d, (2.37)

where J(x)+ denotes the pseudo-inverse of J(x) (we refer e.g. to [42] for an efficient
computation of ν+). If one proceeds the search in direction d in the same manner, this
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is identical to the numerical solution of the following initial value problem (starting
from solution x0 ∈ Rn):

x(0) = x0 ∈ Rn

ẋ(t) = ν+(x(t)), t > 0.
(2.38)

If d is a ‘descent direction’ (i.e., di ≤ 0 for all i = 1, . . . , k and there exists an index
j such that dj < 0), a numerical solution of (2.38) can be viewed as a hill climber for
MOPs. In Figure 2.11, we can observe the curve of points computed by DS using a
direction d.
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Figure 2.11: A curve of dominating points obtained by the Directed Search Method.

The end point x∗ of the solution curve of (2.38) does not necessarily have to be
a Pareto point, but it is a boundary point in objective space, i.e., F (x∗) ∈ ∂F (Rn)

(where ∂F (Rn) denotes the set of bounds of a given MOP) which means that the
gradients of the objectives in x∗ are linearly dependent (and hence, that rank(J(x∗)) <

k). This fact can be used to check numerically if a current iteration is near to a
boundary point: for the condition number of the Jacobian it holds

κ2(J(x)) =

√
λmax(J(x)TJ(x))

λmin(J(x)TJ(x))
→∞ for x→ x∗, (2.39)

where λmax(A) and λmin(A) denote the largest and the smallest eigenvalue of matrix
A, respectively. (Roughly speaking, the condition number indicates how ‘near’ the
rows of J(x), i.e., the gradients of the objectives, are to be linearly independent: The
higher the value of κ2(J(x)), the closer J(x) is to a matrix with rank less than k.)
Further, one can check the (approximated) end point x∗ numerically for optimality
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by checking if ‖
∑k

i=1 α̃i∇fi(x∗)‖2 ≤ tol, where tol > 0 is a given tolerance and α̃

solves the k-dimensional quadratic optimization problem stated in Equation (2.29).

The hill climber described above shares many characteristics with the one de-
scribed in [43], where also possible choices for d are discussed.

Next to the DS descent method there exists the possibility to use the method
to search along the Pareto set as a predictor-corrector method which performs the
movement along Pareto set of a given MOP, different to the other approaches, the
2nd derivative information is not necessary. For the predictor the method uses the
orthogonal vector α to the Pareto front which is the convex weight related with
a given local Pareto point x such that

∑k
i=1 αi∇fi(x) = 0 and further we assume

that rank(J(x)) = k − 1. In this case α is orthogonal to the Pareto front, i.e,
α ⊥ Ty∂F (Rn) where Ty denotes the tangent space of ∂F (Rn). Thus, the next
idea is a search orthogonal to α as is depicted in Figure 2.12, for that reason the
QR-factorization of α is necessary to obtain the orthonormal basis of the tangent
space. In this way, we obtain an orthogonal matrix Q = (q1, . . . , qk) ∈ Rk×k and qi,

i = 1, . . . , k, its column vectors, and R = (r11, 0, . . . , 0)
T ∈ Rk×1 with r11 ∈ R\{0}.

Since α = r11q1(α ∈ span{q1}) and Q is orthogonal, the vectors (q2, . . . , qk) form the
orthonormal basis of the orthogonal hyperplane to α.
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Figure 2.12: A movement over the Pareto front using a direction d by getting the
vector α.
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Using

J(x)νi = qi, i = 2, . . . , k (2.40)

we can obtain directions νi to have a predictor point without any second gradient
information. To perform the corrector step, we can use the predictor point p and
solve Equation (2.38).

2.3 Performance Indicators

In order to assess the produced outcome set by a multi-objective optimization al-
gorithm, one needs a performance indicator to carry out this task. Most indicators
mainly look for two important concepts: Spread and convergence. For this section,
we are going to present several indicators.

2.3.1 Hypervolume

The so-called dominated hypervolume (or S metric) of a population is a commonly
accepted measure [44] for assessing the quality of an approximation. This indicator
refers to the size of the space covered or size of dominated space. The hypervolume
is described as the Lebesgue measure Λ of the union of hypercubes defined by a non-
dominated point v(i) and a reference point R expressed as

⋃
[v(i), R]. In Figure 2.13

a graphical representation of hypervolume is shown.

Definition 4. Let v(1), v(2), . . . v(µ) ∈ Rk be a non-dominated set and R ∈ Rk such
that v(i) ≺ R for all i = 1, . . . , µ. The value

Hyp(v(1), . . . , v(µ);R) = Λd

(
µ⋃

i=1

[v(i), R]

)
(2.41)

is termed the dominated hypervolume with respect to reference point R, where Λd(·)
denotes the Lebesgue measure in Rk.

This measure has a number of appealing properties but determining its value
is getting the more tedious the larger the number of objectives is considered [45].
In case of two objectives (k = 2) and lexicographically ordered non-dominated set
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Figure 2.13: Dominated hypervolume for a two objective setting.

v(1), v(2), . . . v(µ) the calculation of (2.41) reduces to

Hyp(v(1), . . . , v(µ);R) =
[
r1 − v

(1)
1

]
·
[
r2 − v

(1)
2

]
+

µ∑
i=2

[
r1 − v

(i)
1

]
·
[
v
(i−1)
2 − v

(i)
2

]
.

(2.42)
By analyzing this indicator some advantages are explained in the following:

• If R is given, Hyp(A) can be computed without further knowledge,

• Hyp is Pareto compliant. That is if (b < a) and A1 = {a, a2, . . . , aj} and
A2 = {b, a2, . . . , aj}, it follows that Hyp(A2) ≥ Hyp(A1) [21].

On the other hand, also this indicator has some disadvantages such as:

• Hyp is dependent on the choice of R,
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• the computation of Hyp(A) for k > 2 is time consuming, since the complexity
was estimated as O(nk+1) with n being the number of variables in parameter
space and k the number of objectives [46].

• the final distribution according to Hyp is not evenly distributed along the Pareto
front.

2.3.2 Hausdorff Distance

Another indicator is the Hausdorff distance [47], which is described next, step by step:

(a) The distance between two points a, b ∈ Rn is defined as

dist(a, b) := ||a− b||, (2.43)

where || · || is a norm on Rn.

(b) The distance between a point b ∈ Rn and a set A ⊂ Rn is defined as

dist(b, A) := inf
a∈A
||b− a||. (2.44)

(c) The semi-distance between two sets A, B ⊂ Rn is defined as

dist(B,A) = sup
b∈B

dist(b, A) = inf
a∈A

sup
b∈B
||a− b||. (2.45)

Note that dist(A,B) does not have to be equal to dist(B,A), i.e., dist is not
symmetric. As example consider A ⊂ B, then dist(A,B) = 0 but not necessarily
dist(B,A) = 0.

(d) The Hausdorff distance between A, B ⊂ Rn

dH(A,B) = max(dist(A,B), dist(B,A))

= max(inf
a∈A

sup
b∈B
||a− b||, inf

b∈B
sup
a∈A
||b− a||). (2.46)

One of its principal advantages is that dH defines a metric on the set of compact
subsets. However, it is important to mention that dH is sensitive to single outliers.
Such outliers can be generated when using stochastic method such as MOEAs for the
approximation of the Pareto set/front.
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2.3.3 Generational Distance and Inverted Generational Dis-

tance

The Generational Distance (GD) introduced by Van Veldhuizen and Lamont [48] is
a value representing how ’far’ the known Pareto front A is from the true Pareto front
F (Ps). This indicator is defined as follows:

Let
A = {a1, . . . , aj} (2.47)

be an archive with j vectors ai ∈ Rn, then

GD(A,F (Ps)) :=
1

j
(

j∑
i=1

dpi )
1/p, (2.48)

where p = 2 and di is the Euclidean distance (in objective space) between the image
of ai and the nearest member of the true Pareto front.

In Cruz and Coello’s work [49], the Inverted Generational Distance (IGD) is pro-
posed. IGD uses as a reference a discretization of the true Pareto front F (Ps), and
compares each of its elements with respect to the front A produced by an algorithm.
This intends to reduce some of the problems that occur with the generational dis-
tance metric when an algorithm generates very few non-dominated solutions. In the
following IGD is defined:

Let {y1, . . . , yz} be a discretization of Pareto front, z ∈ N, and A is defined as in
(2.47), then

IGD(A,F (Ps)) :=
1

z
(

z∑
i=1

dspi )
1/p, (2.49)

where ds denotes the Euclidean distance from yi to A.

The disadvantage for both methods is that if we increase the size of one of this
sets the values for both GD and IGD get lower (i.e., the approximation appears to
be ’better’).

2.3.4 Averaged Hausdorff Distance

In [50] a new performance indicator ∆p is proposed, which can be seen as an ’averaged
Hausdorff distance’ (AHD) between the image of A and the true Pareto front and
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the approximation. This new metric is composed by the indicators GD and IGD but
with little changes that we describe below:

Given a candidate set A = {a1, . . . , aj} and a discretization of the Pareto front
F (Ps) = {y1, . . . , yz}, then

GDp(A,F (Ps)) :=

(
1

j

j∑
i=1

dpi

)1/p

(2.50)

is the averaged semi-distance from the image of A to the discretization of the Pareto
front and

IGDp(A,F (Ps)) :=

(
1

z

z∑
i=1

dspi

)1/p

(2.51)

is the averaged semi-distance of the yi’s to the image of A. Finally, we define ∆p as:

∆p := max(GDp(A), IGDp(A)). (2.52)

Hence, it holds ∆∞ = dH and ∆p with p <∞ can be considered as the averaged
Hausdorff distance.

2.4 Evolutionary algorithms

In order to obtain an approximation of the Pareto set, one has to perform a series of
separate runs in the case of the traditional mathematical programming techniques.
In contrast, subdivision techniques and evolutionary algorithms (EA) can help us to
find several members of the Pareto-optimal set in a single run of the algorithm. The
EAs that tackle MOPs, are called multi-objective evolutionary algorithms (MOEAs)
[2, 51, 21]. A multi-objective evolutionary algorithm normally shares the structure
and concepts analogous to its genetic counterparts. Normally, a structure or indi-
vidual is an encoded solution to some problem and the set of individuals is called
population. Within a MOEA there exist evolutionary operators that act over the
population generating solutions with higher and higher fitness. This fitness is going
to determine which element will survive for the next generation. The main operators
are mutation, recombination and selection [21]. A basic structure of an MOEA is
shown in Algorithm 1.
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Algorithm 1 Generic Evolutionary Algorithm
Require: A model of a problem to solve.
Ensure: A candidate set for the given problem.
1: Generate (randomly) an initial population.
2: while the stopping-criteria is not reached do

3: Compute the fitness for each individual.
4: Apply the evolutionary operators (recombination and mutation) to generate

the offspring.
5: Select the elements for the next iteration.
6: end while

MOEAs arise aiming to generate solutions over a MOP such that the solutions
belong to the Pareto set. Some examples for this sort of approaches are NSGA-II [7],
MOEA/D [8], SMS-EMOA [52], ∆p-EMOA[10].

2.4.1 Indicator-Based Evolutionary Algorithms

There is a trend to use a performance indicator to select such elements whose contri-
bution helps to improve the value of this measure. These MOEAs are called indicator-
based evolutionary algorithms (IBEAs). Nowadays, they have caught the interest of
many researchers to treat multi-objective optimization problems. This is due to the
fact that they yield a good approximation of the solution set and usually yield a
better performance than dominance-based algorithms over a given indicator. Never-
theless, as we mentioned in the first chapter, since they are a sort of MOEAs, they
also still suffer the same problem namely the slow convergence. Examples of this kind
of approaches are the SMS-EMOA [53] using the hypervolume, the one in [10] which
uses the AHD, among others. For the purpose of this thesis it is important to explain
the SMS-EMOA, since we use this algorithm to integrate one of our proposed local
search procedures.

SMS-EMOA The S metric selection evolutionary multi-objective algorithm (SMS-
EMOA) was proposed in [53] by Emmerich, Beume and Naujoks. In this algorithm the
hypervolume governs the selection operator, which allows to get at the final a good
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approximation according to the hypervolume. The main idea is to integrate new
points in the population by replacing such elements whose contribution to hypervol-
ume is the worst, Figure 2.14 shows graphically this contribution. In the following,
we are going to explain this algorithm step by step.

Algorithm 2 SMS-EMOA algorithm
Require: A model of a problem to solve.
Ensure: A candidate for the given problem.
1: Initialize randomly a population P ⊂ S with µ elements.
2: while the stopping-criteria is not reached do

3: Generate an offspring x ∈ S from P by variation.
4: Integrate x into the population P := P ∪ {x}.
5: Build the ranking of fronts G1, . . . , Gh from P .
6: Compute the hypervolume contribution for each point m ∈ Gh.
7: Find and discard from P the point m∗ with the least hypervolume contribution

P := P\{m∗}.
8: end while

The first important thing of this algorithm is that it updates the population by
creating only one new individual for each iteration. The algorithm starts with an
initial population µ of n elements. As second step a new individual is generated
by means of random variation operators ’crossover and mutation’. The third step
includes the new element in the population, therefore the size of the population is
now n + 1. In order to take a decision of which elements are kept in the population
the algorithm builds a ranking taken from the NSGA-II [7]. This ranking separates
the population into h different fronts (G1, . . . , Gh) with respect to the degree of non-
dominance. Finally, the algorithm computes the contribution of each element that
belongs to the front Gh according to the hypervolume. Gh is the worst ranked front,
and the element with the least hypervolume contribution will be discarded from the
population. This process is repeated until a certain number of iterations will be
reached. SMS-EMOA keeps elements that are dominated what overcome to lose
diversity for the succeeding populations. A pseudo code of SMS-EMOA can be read
in Algorithm 2.
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Figure 2.14: Hypervolume contribution for each point in the approximation.

2.5 Memetic Strategies

An important drawback of the multi-objective evolutionary algorithms is their rate of
convergence, which is typically slow. That is why, the idea of exploiting all available
knowledge about a problem is a way to accelerate the search process [54].

Memetic algorithms were introduced by Moscato [55] in 1989, who took the roots
of this term from the word ’meme’ presented by Dawkins in [56]. In this work it was
established that meme refers to the unit of transmission in the context of cultural
evolution. Speaking now about evolutionary algorithms, the term refers to improve
certain elements into the population with a local search mechanism.

The local search procedures improve in this case one or some elements during the
global search procedure performed by the MOEA. The combination between a local
strategy and a global search using MOEAs is called memetic evolutionary algorithm.
Many researchers have reported successful results by the hybridization of the MOEAs.
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However, there exist many open questions such as:

• When we should apply the procedure?

• Which elements should be improved?, and

• How much we should improved these elements?

An interesting strategy can be seen in [57] where the authors presented a local
search procedure called the ’Hill Climber with Sidestep’ (HCS). Such mechanism
allows us to perform a movement toward and along the Pareto front with and without
gradient information. Within the work the authors integrated HCS into two state-
of-the-art algorithms the NSGA-II [7] and SPEA2 [58]. The way to apply the local
search is different for each algorithm, for NSGA-II the HCS is applied only to such
elements that are the best of a given generation in order to pull the members toward
the Pareto front, while the local search into SPEA2 is acting as an operator with a
lower probability. Another example of a memetic strategy is proposed in [59]. In this
work, the authors in particular use the DS as a local search procedure but its gradient
free version in a general purpose evolutionary algorithm, in this case the MOEA/D
[8]. This work makes an effort to demonstrate the advantage to integrate the DS into
evolutionary algorithms in order to improve their performance which is also the aim
for this work.

2.6 Parameter dependent Multi-Objective Optimiza-

tion

Up to now a question still missing to answer ’How could a parameter dependent multi-
objective optimization problem be treated?’. In this section, we are going to give a
brief state-of-the-art of the field, since it is important for this thesis to convey what
has been done a what is missing to do in this topic. Probably, the first study in the
field of parameter dependent optimization was the work of A.S. Manne in the year of
1953 [60]. Since then, the study around this field keeps growing. In the following we
summarize some important work within literature.
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To start this summary, we are going to mention an interesting work titled ’Non-
Linear Parametric Optimization’ present by Bank et al. in [60]. Through this volume
is intended to explain theoretical terms, notation about a parameter dependent single-
objective problems and it is possible also to find important definitions, explanations
about the properties of a parametric problem, and methods to solve this sort of prob-
lems. In [61] the term of ’Fitness Dynamism’ is explained which occurs when the
fitness landscape being optimized is non-stationary, in other words the structures as
individuals or schemata have a fitness varying over time. Although, this work contains
important concepts, the prior goal is to try to solve dynamic single-objective problems
by using an evolutionary algorithm and not a PMOP. By following the same line in
[62] a multi-population evolutionary algorithm is proposed to tackle time-dependent
optimization problems which changes the optimum over time. Next to these works
in [63] the author states that within static environments, the adaptation is done for
the optimal solutions, but in the case of dynamic environment, the adaptation should
be done toward the characteristics of environmental changes that can be adapted.
The last idea remarks the importance to adapt a solution in order to get solutions
when the function changes. To perform such adaptation a dynamic Pareto optimum
genetic algorithm is proposed. Different to the previous approaches in [64] similar-
ities between dynamic optimization and multi-objective optimization are presented
in order to intend to solve financial time series by a multi-objective ranking method
using Pareto optimality with an evolutionary algorithm.

In the following, we present some works which consider now multiple objectives.
In Farina, Deb, and Amato’s work [13] it is defined what dynamic multi-objective
optimization is. Also, the work contains some test case applications and many results
related with problems which depend of an external parameter are presented. They
also establish a classification of the dynamic multi-objective optimization problems.
Finally, they proposed a dynamic MOEA to get several solutions of the Pareto set and
front including the influence of one external parameter. A similar work could be seen
in [65]. The work in [14] makes a good insight into PMOPs, but only treats problems
with uniquely one external parameter by using numerical path following algorithms.
It is also included geometrical properties of the solution set, parameter dependent
multi-objective optimization problem studies and connections to bifurcation theory.

Analyzing all these things, we can realize that there are many things to do in
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order to improve the state-of-the-art related to MOPs and PMOPs.
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3 | Directed Search for Parameter de-

pendent MOPs

We consider again our first example ’the motorcycle problem’, but now changing
the goals to speed and safety. We can say that these two goals can be affected by
external factors as the side wind, humidity, heat and so on. Such factors can be seen
as external parameters to the original problem. These external parameters will affect
the solution set of the problem. Therefore, an entire family of solution sets arises
(i.e., one Pareto set for each value of the external parameter).

Here, we present a new version of the Directed Search Method to treat parameter
dependent multi-objective problems (PMOPs) as defined in Equation (2.6). This
new version is called λ-DS. Further, we design a novel continuation method to steer
a search process over λ-space using λ-DS. To overcome the problem to need gradient
information, we present also a gradient free version of this method. Finally, some
numerical results and comparisons are shown to test our novel method.

3.1 λ-Directed Search Method

As it was presented in Chapter 2, the Directed Search Method showed its potential
to tackle MOPs, what motivates us to extend its applicability to treat PMOPs. In
order to present the ideas of DS for PMOPs, we are going to modify Equation (2.7)
for our needs. In particular, it is advantageous (at least formally) to treat λ as a
’normal’ parameter leading to the following problem:

F : Rn+l → Rk+l
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F (x, λ) =


f1(x, λ)

...
fk(x, λ)

λ

 =


g1(x, λ)

...
gk+l(x, λ)

 . (3.1)

Using Equation (3.1), we are able to write Equation (2.35) which is the original
DS equation, but now including the influence of the external parameter λ. Hence,
given a point (x, λ) ∈ Rn+l in parameter space, and a vector d ∈ Rk+l in objective
space, we are interested in finding a direction vector ν such that:

lim
t→0

gi((x, λ) + tν)− gi(x, λ)

t
= 〈∇gi(x, λ), ν〉 = di, i = 1, . . . , k + l, (3.2)

where ν = (νf , νλ)
T ∈ Rn+l, vf ∈ Rn, vλ ∈ Rl and d = (df , dλ)

T ∈ Rk+l, df ∈ Rk,
dλ ∈ Rl.

The Jacobian matrix of the map described in Equation (3.1) is given by

J(x, λ) =


∇xf1(x, λ) ∇λf1(x, λ)

...
...

∇xfk(x, λ) ∇λfk(x, λ)

0 Il

 :=

(
Jx Jλ

0 Il

)
∈ R(k+l)×(n+l), (3.3)

where Jx ∈ Rk×n, Jλ ∈ Rk×l, and Il is the (l × l)-identity matrix.

Using the Jacobian matrix, as in the classical DS, we can state Equation (3.2) in
matrix vector notation as (

Jx Jλ

0 Il

)(
νf

νλ

)
=

(
df

dλ

)
. (3.4)

By solving Equation (3.4), we notice that

Ilνλ = dλ ⇒ νλ = dλ (3.5)

and
Jxνf + Jλνλ = df ⇒ Jxνf = df − Jλdλ (3.6)
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where the influence of λ appears since now it is treated as a ‘normal’ parameter.

Remark 1. Since the influence of λ has an unknown and maybe unwanted behavior,
one could use another approach, namely to obtain ν by solving(

Jx 0

0 Il

)(
νf

νλ

)
=

(
df

dλ

)
, (3.7)

which means, to perform the movement in λ-direction while keeping the ‘classical’
search in f -direction, in other words using the classical DS to get the direction ν(i.e.,
ignoring the influence of λ).

Either using Equation (3.4) or Equation (3.7) a direction ν ∈ Rn+l can be com-
puted by solving a system of linear equations. In practice, usually the number of
parameters is higher than the number of objectives for a PMOP, which implies that
the solution of the system is not going to be unique. To overcome this situation,
the solution with the smallest Euclidean norm that solves the system can be chosen
leading to

ν+ = J(x0, λ0)
+d, (3.8)

where J(x0, λ0)
+ ∈ R(n+l)×(k+l) denotes the pseudo-inverse of J(x0, λ0).

The next result states the pseudo-inverse of J under certain (mild) assumptions:

Proposition 1. Let J :=

(
Jx Jλ

0 Il

)
be as in Equation (3.3), further let rank(Jx) =

k, and Jλ be a invertible matrix. Then the pseudo-inverse of J is given by

J+ =

(
J+
x −J+

x Jλ

0 Il

)
. (3.9)

Proof. Let J :=

(
Jx Jλ

0 Il

)
where rank(J) = k + l then as defined in [66]

J+ = JT (JJT )−1. (P1.1)
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It is

JJT =

(
Jx Jλ

0 Il

)(
JT
x 0

JT
λ Il

)
=

(
JxJ

T
x + JλJ

T
λ Jλ

JT
λ Il

)
. (P1.2)

We know that the inverse of a block matrix is given by(
A B

C D

)−1

=

(
S−1
D −A−1BS−1

A

−D−1CS−1
A S−1

A

)−1

, (P1.3)

where
SA = D − CA−1B, (P1.4)

SD = A−BD−1. (P1.5)

Writing JJT as in Equation (P1.3), we obtain

A = JxJ
T
x + JλJ

T
λ , (P1.6)

B = Jλ, (P1.7)

C = JT
λ , (P1.8)

D = Il. (P1.9)

Using Equations (P1.6), (P1.7), (P1.8) and (P1.9), we get for SA and SD

SA = Il − JT
λ (JxJ

T
x + JλJ

T
λ )

−1Jλ, (P1.10)

SD = JxJ
T
x + JλJ

T
λ − JλIlJ

T
λ = JxJ

T
x + JλJ

T
λ − JλJ

T
λ = JxJ

T
x . (P1.11)

By replacing these values in the members of Equation (P1.3), we get the following:

S−1
D = (JxJ

T
x )

−1, (P1.12)

−A−1BS−1
A = −((JxJT

x + JλJ
T
λ )

−1Jλ(Il − JT
λ (JxJ

T
x + JλJ

T
λ )

−1Jλ)
−1)

= −((Il − JT
λ (JxJ

T
x + JλJ

T
λ )

−1Jλ)J
−1
λ (JxJ

T
x + JλJ

T
λ ))

−1

= −(J−1
λ (JxJ

T
x + JλJ

T
λ )− JT

λ (JxJ
T
x + JλJ

T
λ )

−1JλJ
−1
λ (JxJ

T
x + JλJ

T
λ ))

−1

= −(J−1
λ (JxJ

T
x + JλJ

T
λ )− JT

λ )
−1

= −(J−1
λ JxJ

T
x + J−1

λ JλJ
T
λ − JT

λ )
−1

= −(J−1
λ JxJ

T
x + JT

λ − JT
λ )

−1

= −(J−1
λ JxJ

T
x )

−1

= −((JxJT
x )

−1Jλ)
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− A−1BS−1
A = −((JxJT

x )
−1Jλ), (P1.13)

−D−1CS−1
A = −(IlJT

λ (JxJ
T
x )

−1) = −(JT
λ (JxJ

T
x )

−1), and (P1.14)

S−1
A = (Il − JT

λ (JxJ
T
x + JλJ

T
λ )

−1Jλ)
−1, (P1.15)

therefore

(JJT )−1 =

(
(JxJ

T
x )

−1 −((JxJT
x )

−1Jλ)

−(JT
λ (JxJ

T
x )

−1) (Il − JT
λ (JxJ

T
x + JλJ

T
λ )

−1Jλ)
−1

)
. (P1.16)

Finally, by solving Equation (P1.1), we obtain:

J+ = JT (JJT )−1

=

(
JT
x 0

JT
λ Il

)(
(JxJ

T
x )

−1 −((JxJT
x )

−1Jλ)

−(JT
λ (JxJ

T
x )

−1) (Il − JT
λ (JxJ

T
x + JλJ

T
λ )

−1Jλ)
−1

)
since J+

x = JT
x (JxJ

T
x )

−1,

=

(
J+
x −(J+

x Jλ)

0 Il

)
.

Hence, J+ =

(
J+
x −(J+

x Jλ)

0 Il

)
as claimed.

At last, we complete all the neccesary elements to compute ν+, therefore, we can
write Equation (3.8) using our obtained result in Equation (3.9) as follows:

ν+ = J+d =

(
J+
x −(J+

x Jλ)

0 Il

)(
df

dλ

)
=

(
J+
x df − J+

x Jλdλ

dλ

)
(3.10)

Thus, taking the direction ν+, an initial point (x0, λ0) in parameter space and a
given stepsize t, we can expect the largest progress in direction d in objective space,
this new solution is obtained by computing(

xnew

λnew

)
=

(
x0

λ0

)
+ t

(
νf
νλ

)
, (3.11)

where t ∈ R+.

The theory related to the DS to tackle PMOPs has been established, but it delivers
us only one point up to here. In the following, we will discuss a descent and a
continuation method based on the above observations.
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3.2 λ-DS Descent Method

In the above section, we have seen how to compute a direction v ∈ Rn+l of a given
point (x0, λ0) to steer the search in d-direction. Analog to the classical DS, we have
to solve an initial value problem (IVP) to obtain a curve of points toward the solution
set. To be more precise, given a point (x0, λ0) ∈ Rn+l and a direction d ∈ Rk+l where
df ≤p 0 the use of Equation (3.8) leads to the (numerical) solution of the following
initial value problem:

z(0) = (x0, λ0) ∈ Rn+l .

ż(t) = J(x(t), λ(t))+d .
(3.12)

To investigate the result obtained by Equation (3.12), we start the following anal-
ysis by investigating the end point of Equation (3.12). Given zf = (xf , λf ) such that
J+(zf )d = 0 , it is (

J+
x df − J+

x Jλdλ

dλ

)
= 0. (3.13)

In Equation (3.13), we notice that dλ = 0 and J+
x df = 0. Therefore, this implies

that xf is a KKT point of Fλ with KKT weight α = −df .

In the following, we investigate solutions of Equation (3.12) qualitatively. Let
γ : [0, tf ] → Rn+l be such a solution, and let tc be the smallest value of t ≥ 0 such
that

@ν ∈ Rn+l : J(ż(t))ν = d. (3.14)

We will call tc the critical value and γ(tc) the critical point of Equation (3.12).

A critical point zc = (xc, λc) is the end of the movement in df -direction. To prove
that our new approach work in a proper manner, we investigate the relation with a
widely used mathematical method the Normal Boundary Intersection method (NBI).
By adapting the NBI subproblem to the current context, it can be stated as follows:

max
x,λ,t

t

F (x, λ) = F (x0, λ0) + td
λ∈Λ, x∈S

.
(3.15)
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Proposition 2. Let (x∗, λ∗) be the critical point of Equation (3.12), then it is a local
solution of Equation (3.15).

Proof. Let g(x, λ, t) := t and hi(x, λ, t) := fi(x0, λ0) + tdi − fi(x, λ). We can as-
sume that (x∗, λ∗) is not a local solution of Equation (3.15). Then, there exist
ν = (ν̃f , ν̃λ, νn+l+1) ∈ Rn+l+1, ν̃f ∈ Rn, ν̃λ ∈ Rl and t∗ ∈ R such that

〈∇g(x∗, λ∗, t∗), ν)〉 =

〈
0

0

1

 ,


ν̃f

ν̃λ

νn+l+1


〉

< 0, and (P2.1)

〈∇hi(x
∗, λ∗, t∗), ν)〉 =

〈
−∇xfi(x

∗, λ∗)

−∇λfi(x
∗, λ∗)

di

 ,


ν̃f

ν̃λ

νn+l+1


〉

= 0, i = 1, .., k (P2.2)

By Equation (P2.1), it follows that νn+l+1 6= 0, and by Equation (P2.2), we have that

〈∇fi(x∗, λ∗), ν̃〉 = νn+l+1di, i = 1, . . . , k, (P2.3)

where ν̃ = (ν̃f , ν̃λ)
T .

Hence, for ν̃ := 1
νn+l+1

ν̃ it is J(x∗, λ∗)ν̃ = d which contradicts that (x∗, λ∗) is a critical
point of Equation (3.12).

Remark 2. Otherwise, local solutions of Equation (3.15) are also potential critical
points of Equation (3.12): Let x∗∗ be a solution of Equation (3.15) and assume that
there exists a ν ∈ Rn+l such that J(x∗∗, λ∗∗)ν = d. Then, ν̃ = (ν,−1) ∈ Rn+l+1

satisfies Equations (P2.1) and (P2.2) which is in contradiction to the assumption of
(x∗∗, λ∗∗).
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3.3 A Continuation Method Based on the λ-DS Ap-

proach

In Chapter 2, it was explained how DS is able to perform a search toward and along
the Pareto front of a MOP. Thus, in the context of PMOPs, we are particularly
interested in movements over λ-space since this is still missing. The DS theory for
PMOPs has been presented, thus we are in the position to propose a new predictor-
corrector method for the continuation along λ-space which means to move from a
point F (x, λ) on the Pareto front of the MOP for a value of λ orthogonal to this front
and along the family of fronts.

Analog to the proposition of the classical continuation method using DS, what
we are looking for is an approach that allows us to perform a movement over the
family of Pareto fronts, obviously without computing any Hessian matrix as for the
tradional continuation methods. The central idea of this new continuation method
over λ-space is to use a predictor direction in the λ-DS in order to get a predictor
point over λ-space. The predictor direction used for this is going to be based on the
geometry of the family of Pareto fronts, what we are going to explain in the following.
Next to this, we have to find a way to correct back to the family of Pareto fronts,
since those predictor points would be a bit far of the solution set, what leads to the
corrector method. In the following, we will discribe all these steps to realize such a
continuation method.

To start, we are going to introduce the normal vector η to the linearization of the
family of Pareto fronts which will allow us to compute the predictor direction. In
[3] it is stated that if x is a Pareto point with a related convex weight α, then α is
orthogonal to the linearization of the tangent space at F (x). Therefore, to adapt this
definition to the new setting, we have now to build the complete system by adding
the weight associated to λ-space, in this case β as follows:

〈

(
Jx Jλ

0 Il

)(
νf

νλ

)
,

(
α

β

)
〉 = 0. (3.16)
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To get η, we have to solve Equation (3.16) for β as follows:

= 〈

(
Jxνf + Jλνλ

νλ

)
,

(
α

β

)
〉

= 〈Jxνf + Jλνλ, α〉+ 〈νλ, β〉

= 〈Jxνf , α〉+ 〈Jλνλ, α〉+ 〈νλ, β〉( from classical DS 〈Jxνf , α〉 = 0)

= 〈νλ, JλTα〉+ 〈νλ, β〉 = 0

β = −JλTα. (3.17)

Using the obtained result of Equation (3.17), we study the normal vector η of the
tangent space of F (PS,Λ) at F (x, λ) (a graphical representation of η is presented in
Figure 3.1), because we are in the setting to make the following conjecture about it:

η =

(
α

−JλTα

)
, (3.18)

further

〈

(
Jx Jλ

0 Il

)(
νf

νλ

)
,

(
α

−JλTα

)
〉 = 0 for all ν ∈ Rn+l. (3.19)

The previous conjecture leads us to the following result, which is going to be
crucial for our continuation method over λ-space.

Proposition 3. Let y∗ be a (locally) efficient point and (x∗, λ∗) a corresponding
(locally) Pareto optimal point (i.e. g(x∗, λ∗) = y∗) of an unconstrained parametric
multi-objective optimization problem. Let

pη(x, λ) =
k+l∑
i=1

ηigi(x, λ) (3.20)

denote a convex combination of the objectives for which (x∗, λ∗) is a stationary point
(and therefore fulfills the Karush-Kuhn-Tucker condition).

Then for the vector η we have that:
η is an element of the orthogonal complement to the vector subspace (image g′(x∗, λ∗)) ⊂
Rk+l, where g′(x∗, λ∗) is the Jacobian matrix of g at the point (x∗, λ∗).
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Figure 3.1: Orthogonal vector to the linearization of the family of Pareto fronts, the
arrow represents η and the surface is the family of Pareto fronts.

Proof. From the first-order Karush-Kuhn-Tucker condition we get:

∇pη(x∗, λ∗) = 0⇐⇒
k+l∑
i=1

ηi∇gi(x∗, λ∗) = 0⇐⇒ ηT


∇g1(x∗, λ∗)T

...
∇gk+l(x

∗, λ∗)T

 = 0. (3.21)

Because of


∇g1(x∗, λ∗)T

...
∇gk+l(x

∗, λ∗)T

 = g′(x∗, λ∗) it follows that η is orthogonal to the

columns of the Jacobian matrix g′(x∗, λ∗) and thus to the image of the linear mapping
g′(x∗, λ∗).

As a corollary one obtains the statement rank g′(x∗, λ∗) < k + l, i.e. the linear
mapping g′(x∗, λ∗) : Rn+l → Rk+l is not surjective in a Pareto optimal point (x∗, λ∗).
If rank g′(x∗, λ∗) = k+ l−1, from the Proposition 3 we can conclude furthermore the
uniqueness of the assignment of a weight vector η (and therefore of a scalar-valued
function pη) to a Pareto optimal point (x∗, λ∗).

If in an appropriate neighborhood of g(x∗, λ∗) the image set g(Rn+l) behaves like
a bordered differentiable manifold of dimension k+ l, the geometrical meaning of the
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vector η can be put in even more concrete forms:

Proposition 4. Let y∗ be a globally efficient point and (x∗, λ∗) an associated globally
Pareto optimal point (i.e. g(x∗, λ∗) = y∗) of an unconstrained parametric multi-
objective optimization problem. Let pη denote a convex combination of the objectives
for which (x∗, λ∗) is a stationary point (and therefore fulfills the Karush-Kuhn-Tucker
condition). In addition be:

• rank g′(x∗, λ∗) = k + l − 1

• There is an open neighborhood N(y∗) of y∗, so that g(Rn+l)∩N(y∗) =: M is a
bordered differentiable manifold of dimension k.

Then we have:

(a) y∗ ∈ ∂M , where the (k − 1)-dimensional border manifold of M is denoted by
∂M .

(b) η is oorthogonal to the tangent plane Ty∗∂M of ∂M in y∗.

Proof. Assertion (a) will be proven by contradiction. Assume therefore that y∗ is
not an element of ∂M . It follows that y∗ is an inner point of M , i.e. that there
is a δ-neighborhood N(0, δ) of 0 ∈ Rk+l with y∗ + N(0, δ) ⊆ M . Now choose a
vector ν ∈ Rk+l

+ . Then there is a λ ∈ R, λ > 0 with (−λ) · ν ∈ N(0, δ), and
ỹ := (y∗ − λν) ∈ M ⊂ g(Rn+l) is true. Because of y∗ − ỹ = λν ∈ Rk+l

+ we can
conclude that ỹ ≤ y∗ (and ỹ ∈ g(Rn+l)), in contradiction to the global efficiency of
y∗.

The assertion (b) follows from the Proposition 3, if one can show that Ty∗∂M =

image g′(x∗, λ∗). We will prove this by contradiction. Therefore, be Ty∗∂M 6=
image g′(x∗, λ∗). As we assumed that both Ty∗∂M and image g′(x∗, λ∗) are (k − 1)-
dimensional vector subspaces of the Rk+l, it follows that image g′(x∗, λ∗) ⊆ Ty∗∂M ,
and hence: There is a vector vector δy ∈ image g′(x∗, λ∗), so that δy can be repre-
sented by δy = ξ + ϑ, where ξ ∈ Ty∗∂M , ϑ ∈ (Ty∗∂M)⊥, ϑ 6= 0. Let us denote the
corresponding inverse-image vector by δ(x, λ), i.e. g′(x∗, λ∗) · δ(x, λ) = δy.
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Now for a sufficiently small a ∈ R+ consider the curve

τ :

(−a,+a)→ Rk+l

t 7→ g((x∗, λ∗) + t · δ(x, λ))
. (3.22)

By virtue of τ ′(0) = g′(x∗, λ∗) · δ(x, δ) = δy = ξ + ϑ either +τ ′(0) or −τ ′(0) is an
element of the outward directed tangent space of the bordered manifold M in the
point y∗. For one of the two possible signs of t and for sufficiently small |t| (so that
τ(t) is represented sufficiently well by the linear approximation τ(0) + τ ′(0) · t) the
image points of the curve τ are therefore situated outside M . This is a contradiction
to the definition of M , so that the assumption Ty∗∂M 6= image g′(x∗, λ∗) must be
false.

Thanks to the previous results, which confirm our conjecture over η, we are now
able to perform a movement in λ−direction given a point (x0, λ0) ∈ PS,Λ and η ∈ Rk+l

by using λ-DS.

For a predictor point using a direction d, we can assume that:

(I) d is perpendicular with respect to the tangent space of Pareto front of Fλ and

(II) d is perpendicular to the orthogonal vector of the linearization of the family of
Pareto fronts η.

By analyzing the previous assumptions, we know that df⊥span{α}⊥ which implies
that df = µα and since 〈d, η〉 = 0, we can write the product by replacing η in the
following form:

αTJλdλ = µ||α||22 (3.23)

where dλ ∈ Rl solves Equation (3.23).

Therefore, to select a predictor direction dpred to perform the search using λ-DS,
one has to choose

dpred = (α, dλ)
T , (3.24)

such that dλ satisfies Equation (3.23).

Remark 3. For the special case when the dimension of λ is equal to 1 (λ ∈ R), we
are going to have two possibilities for d:

CINVESTAV Computer Science Department



DIRECTED SEARCH FOR PARAMETER DEPENDENT MOPS 51

• if αTJλ 6= 0, the value of the predictor direction is going to be set by

dλ =
µ||α||22
αTJλ

(3.25)

and

• if αTJλ = 0, it will imply that µ = 0 which leds to set df = 0 and since d has to
be orthogonal to η =

(
α
0

)
implies that d =

(
0
α

)
.

In order to compute a new point over λ-space using λ-DS, the following point

p := (x0, λ) + tν (3.26)

can be chosen as a predictor point, where t represents the stepsize, which is going to
be computed as the classical DS by using the following equation:

hi =
ε

〈∇gi, ν〉
, i = 1, ...k + l, (3.27)

where ε represents a small distance between our current point and the desired point,
being the other elements the ones that we already have, hence the step size is going
to be selected by the following equation:

t := min
i=1,...,k+l

hi. (3.28)

Given a predictor point p, the next step is to obtain a corrector point which is the
subsequent solution along the curve. To perform this task, we are going to take p as
initial point and solving numerically Equation (3.1) fixing the value of λ, to be more
precise dλ = 0. To compute the corrector point two approaches figure:

1. To use λ-DS descent method using df = −α.

2. To solve the following minimization problem by fixing the value of α

min
x

k∑
i=1

αifi(x, λ). (3.29)

Now, two questions come to our minds, which approach do we have to use and why?
The answer is going to appear in the final section of this chapter, since up to here,
we do not have all the elements to provide a complete answer.

Algorithm 3 presents a possible way to implement the continuation method over
λ-space from an initial KKT point (x, λ). The algorithm is composed by all the
previous results in order to make it clear, being easy to program it.
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Algorithm 3 Continuation method over λ-space using λ-DS for λ ∈ R
Require: An initial solution (x, λ), a convex weight α, a threshold ε ∈ R+, and the

number of samples ns ∈ Z+.
Ensure: A set of candidate solutions (xi, λi).
1: i := 0.
2: while i < ns do

3: Compute dλ as in Equation (3.25).
4: Set dpred as in Equation (3.24).
5: Compute ν as in Equation (3.8).
6: Compute t using Equations (3.27) and (3.28).
7: pi = (xi, λi)− sgn(dλ)tν.
8: Compute (xi+1, λi+1) by using Equation (3.29) or using Equation (3.4) setting

df = −α and dλ = 0, using in both pi as the initial point and fixing the value
of α.

9: i := i+ 1.
10: end while

3.4 On Stochastic Local Search in PMOPs

In the following section, we are going to explain the behavior of the stochastic local
search for PMOPs. To do this, we have to investigate the relation of search directions
ν ∈ Rn+l in parameter space and the related movement in objective space at a given
point (x, λ) ∈ Rn+l. To start, we can express the latter by J(x, λ)ν, which means
that:

• If a line search along ν is performed, then a new point is given by (x, λ)new =

(x, λ) + tν, where t is the step size.

• If (xnew, λnew) is chosen from a neighborhood N(x0, λ0) of (x0, λ0), then we are
in the same setting. To see this, we define ν := (x,new λnew)− (x0, λ0), and we
have that (xnew, λnew) = (x0, λ0) + ν.

Looking at the second statement, in order to see what the influence of λ produces
within local search, we will consider the extreme cases. Firstly, when our point is far
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away from the solution set and then when it is near. To perform our experiments, we
consider the PMOP stated in Equation (2.14).

3.4.1 Point far away from the Pareto set

For this setting, we can assume a given point (x, λ) which is far away from the
Pareto set. In this case, the objective gradients nearly point into the same direction
(considering only x), what told us that in the extreme case by setting

g := ∇xf1(x, λ) (3.30)

then

∇xfi(x, λ) = µi∇f1(x, λ) i = 1, . . . , k. (3.31)

So, for a search direction ν ∈ Rn+l, we have that

Jν =

(
Jxνf + Jλνλ

νλ

)
, (3.32)

where Jλνλ represents the influence of λ. By decomposing Equation (3.32) the fol-
lowing result arises

Jxνf =


gTν

...
gTν

 = gTνf


µ1

...
µk

 . (3.33)

In order to see the impact of λ within local search, we can consider the approach
from Equation (3.4), the one that uses a direction for λ-space. By taking 100 points
randomly sampled from the neighborhood of a point (x0, λ0) and varying the value
of both components x and λ, we can see the movement produced by the influence of
λ in Figure 3.2 and in Figure 3.3 how the points were taken in parameter space. For
these figures, we used the following settings: (x, λ) = (10.0, 45.2, 1.0)T and the radio
for the test points is 2.0 in x and 0.3 in λ, the generated points are defined far away
from the Pareto set.

Now, considering the approach described in Equation (3.7), we can eliminate the
influence of λ, which means to sample the points only by varying the value of x. In
this case, we take the same point defined above, using now, a radio of 2.0 in x and
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0.0 in λ for the samples. In Figures 3.4 and 3.5, we can see the new movement and
how the samples were taken for this case.

By analyzing both approaches, we can conclude that the influence of λ does not
help in the search toward the family of Pareto sets, since it affects in a bad way
the movement, on the other hand, if we remove this influence, we can detect a clear
movement in direction df = ±(µ1, . . . , µk)

T ∈ Rk in objective space what is not
the case in parameter space. The latter told us that if we choose randomly a point
(xnew, λnew) from an small neighborhood of x without altering λ, we can expect
that the difference F (xnew, λnew) − F (x, λ) is a multiple of df . In the case that
F (xnew, λnew)−F (x, λ) >p 0 which means that (x, λ) dominates (xnew, λnew), we can
flip the search and use ˆ(x, λ) := (x, λ) − ν. For PMOPs, we have to pay attention
since the concept of dominance does not apply for λ-space, that is why, the promising
results are in the side to delete this component for the search. Finally, just to see the
difference between movements, we present both in Figure 3.6. As a final conclusion,
the influence of λ would be deleted, being the option to use the classical DS the best
way to reach the family of Pareto sets when we are far away.
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Figure 3.2: 100 randomly test points in the neighborhood of (x, λ) altering both
components x and λ in objective space.
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Figure 3.3: 100 randomly test points around a given point (x, λ) altering both com-
ponents x and λ in parameter space.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000  
Objective space

f1

Pareto fronts
 

f
2

F (Nx(x, λ))
F (x, λ)

Figure 3.4: 100 randomly test points in the neighborhood of (x, λ) altering just x in
objective space.
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Figure 3.5: 100 randomly test points around a given point (x, λ) altering just x in
parameter space.
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Figure 3.6: Comparison to see how the influence of λ affects the model.
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3.4.2 Point near the Pareto set

Considering the other extreme situation, i.e., to consider a point (x, λ) that lies on the
Pareto set. Thus, there exists a convex weight α ∈ Rk such that

∑k
i=1 αi∇xfi(x, λ) =

0 (which can be written as Jx(x, λ)
Tα = 0). Further, we assume that the rank of

Jx(x, λ) is k − 1. Then, it holds for any νf ∈ Rn:

〈Jx(x, λ)νf , α〉 = 〈νf , Jx(x, λ)
Tα〉 = 0. (3.34)

Hence, we have that either Jx(x, λ)νf = 0 or a movement along νf leads to
a movement along the family of Pareto fronts since Jx(x, λ)νf 6= 0 is orthogo-
nal to α. The produced movement along the family is not along λ-space and it
is regardless of the choice of νf . To see this movement, we take a Pareto point
(x, λ) = (−0.38022,−0.75514, 0.21053)T and sample points using the following pa-
rameters rx = 2.0 for x and rλ = 0.0 for λ. The result is showed in Figures 3.7 and
3.8. Just as a brief comment, if we choose a radio rλ 6= 0, the result does not change,
as it happened with the previous case when the point is far away, that is why, we do
not show figures changing this value.
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Figure 3.7: 100 randomly test points in the neighborhood of (x, λ) altering just x in
objective space.
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Figure 3.8: 100 randomly test points around a given point (x, λ) altering just x in
parameter space.

3.5 The Gradient Free Directed Search Method for

PMOPs

As we know a possible drawback of our new approach the λ-DS is the computa-
tion of the gradient. The latter can be solved by approximating the gradient which
comes, however, with additional function evaluations that will increase the cost of
the method. Nervertheless, this addition effort would come by free when use together
an evolutionary approach since several solutions exist in the neighborhood of a given
point (x, λ).

Assume a PMOP described as follows

F (x, λ) =


g1(x, λ)

...
gk+l(x, λ)

 , (3.35)

a candidate solution (x, λ) ∈ Rn+l, and r search directions νi ∈ Rn+l, i = 1, . . . , r.
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We can define the matrix F(x, λ) ∈ R(k+l)×r as follows:

F(x, λ) := (〈∇gi(x, λ), νj〉)
i = 1, . . . , k + l

j = 1, . . . , r

, (3.36)

where every entry mij of F is defined by the directional derivative of objective
gi in direction νj, i.e., mij = 〈∇gi(x, λ), νj〉. By using Equation (3.36) the following
result is crucial for the discrete λ-DS version.

Proposition 5. Let (x, λ), ν1, . . . , νr are linear independent and νi ∈ Rn+l, w ∈ Rr,
and ν :=

∑r
i=1 wiνi. Then

F(x, λ)w = J(x, λ)ν. (3.37)

Proof. It is

F(x, λ)w =


〈∇g1(x, λ), ν1〉 . . . 〈∇g1(x, λ), νr〉

...
...

...
〈∇gk + l(x, λ), ν1〉 . . . 〈∇gk + l(x, λ), νr〉



w1

...
wr

 (3.38)

and

J(x, λ)ν = J(x, λ)(
r∑

i=1

wiνi) =
r∑

i=1

wi


∇g1(x, λ)T

...
∇gk + l(x, λ)T

 νi. (3.39)

Hence, for the s-th component of both products it holds

(F(x, λ))s =
r∑

i=1

wi〈∇gs(x, λ), νi〉 = (J(x, λ)ν)s, (3.40)

and the desired identity follows.

Hence, the gradient free version of our approach λ-DS can be done by following
the next steps: Given an initial point (x0, λ0) which has been selected for local search,
as well as r test points (xi, λi), i = 1, . . . , r, we can approximate the entries of F by
using the following equation:

mij = 〈∇gi(x, λ)νj〉 =
gi(xj, λj)− gi(x0, λ0)

||(xj, λj)− (x0, λ0)||2
. (3.41)
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Thus, instead of solving Equation (3.4) to get the search direction ν, it can alter-
natively be computed by solving:

F(x, λ)w = d, (3.42)

and setting

ν :=
r∑

i=1

wiνi. (3.43)

Remark 4. To compute a direction ν that solves Equation (3.42), it is only needed
to have r = k + l test points. Therefore, if r > k + l test points are available in the
neighborhood of (x0, λ), this direction comes for free.

3.6 Numerical Results

In this final section, we will present some numerical results and discussion related to
the λ-DS continuation method using the example defined in Equation (2.14).

It is important to define firstly the approach that we are going to use to compare
our proposed method, in this case by looking at the literature, a classical continuation
method is defined in [3] where the zero set is traced using the KKT equations:

F̂ (x, α) =

(∑k
i=1 αi∇fi(x)∑k
i=1 αi − 1

)
, (3.44)

obviously, we have to make a modification to adapt this classical continuation method
to the current context, in this case, since the value of α ∈ Rk is going to be fixed, to
get the zero set, the following optimization problem has to be solved:

F̃ (x, λ) =
k∑

i=1

αi∇xfi(x, λ) = 0. (3.45)

Since to find predictor directions at a point (x, λ) implies to linearize the solu-
tion set in parameter space, second derivative information will be neccesary, since
the linearization has to be realized by a QR-factorization of J(x0, λ), what is going
to become the computation of new points expensive for this method. A graphical
representation of this method,in both parameter and objective space, can be seen in
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Figure 3.9 and Figure 3.10. As we notice the continuation keeps the value of α to
perform the search along λ-space.

Remark 5. To make our comparison fair, we assume that for both approaches auto-
matic differentiation (AD) will be used to compute the derivatives. By using AD as
shown in [67], we can estimate 5 function evaluations, while for the computation of
the Hessian matrix the value of function evaluations is set by

k(4 + 6n), (3.46)

where k is the number of objectives and n the number of variables.

Firstly, we compare the proposed continuation methods which differ in how to
compute the corrector point. The first one uses the λ-DS to do the task and the
second one solves Equation (3.45) to obtain it. To see the results, we present Table
3.1:

Information PCLDS1 PCLDS2

# of F (x, λ) 17 192

# of J(x, λ) 17 12

# of H(x, λ) 0 0

# of total F (x, λ) 102 252

Table 3.1: Comparison of the two possibilities to perform a corrector point by using
our continuation method.

In Table 3.1, we can observe that PCLDS1, the approach that uses λ-DS to get a
corrector point, is cheaper than PCLDS2, the approach that solves Equation (3.29) to
obtain a corrector point. The main reason of this is that λ-DS is able to reach quickly
a boundary point what represents an advantage if it will be used into evolutionary
algorithms. Nevertheless, speaking about accuracy and quality, if we look at Figure
3.11 and Figure 3.12 , we notice that the produced points by PCLDS1 are less accurate
than the ones produced by PCLDS2. Another important detail about PCLDS2 is that
the quality of the approximation is better, if we compare both approaches against the
produced points by the classical continuation. So, we conclude that depending on the
problem that we have at hand is the approach that we will use to obtain a corrector
point.
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Figure 3.9: Continuation method using the classical approach. KKTP is the initial
point, which is a KKT point and PC are the points over the curve.
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Figure 3.10: Continuation method using the classical approach. KKTF is the image
of the initial point and PCF are the points over the curve.
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Figure 3.11: λ-DS continuation method using both corrector approaches in parameter
space.
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Figure 3.12: λ-DS continuation method using both corrector approaches in objective
space.
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Now, for comparison purposes, we take PCLDS2 to compare it against the classi-
cal continuation method using KKT Equations, due to the approximation quality is
similar, what we do not obtain by using PCLDS1. Hence, in Table 3.2, we present
the results of each approach by counting the number of total function evaluations.

According Table 3.2, it is important to mention that our approach comes with less
cost than the classical one, since we obtain the same result, but λ-DS does not need
any second derivative information.

KKT Equations PCLDS2

# of F (x, λ) 87 192

# of J(x, λ) 216 12

# of H(x, λ) 87 0

# of total F (x, λ) 3951 252

Table 3.2: Comparison between our novel approach and the classical continuation
method.
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4 | Directed Search for Hypervolume

based MOEAs

In the previous chapter, we presented theory, results and discussion for our extension
of the Directed Search method to tackle parameter dependent multi-objective opti-
mization problems. Nevertheless, another important objective of this thesis is still
missing to be covered namely how to support IBEAs by using the DS. In this chapter,
we are going to present the design of a novel local search strategy using hypervolume
approximations in the context of MOPs. Further, we will integrate such local search
strategies into SMS-EMOA to improve its performance.

As we know, when local search strategies are used together with MOEAs, they
explore the solution set in a fine-grained way in order to improve the solution at hand.
The DS has been introduced in Chapter 2, it exploits gradient information to perform
a search toward and along the Pareto front, however, as a local searcher it has not
been used to improve the value of a given indicator. In literature, one of the most
well-accepted and used indicators is the dominated hypervolume. In the following
pages, we are going to present a new local search strategy which aims to maximize
the value of the produced hypervolume in a clever way. Such strategy is called the
hypervolume based Directed Search (HVDS). The algorithm will be firstly introduced
as a standalone procedure and will then be integrated into an IBEA to obtain a new
memetic evolutionary algorithm.
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4.1 The Hypervolume based on Directed Search

The Hypervolume based Directed Search (HVDS) is introduced as a new local search
strategy for bi-objective optimization problems. This strategy proposes a division of
the objective space into three different regions, to know the position of an element
from a given approximation. Our approach is able to perform movements toward the
Pareto front and along the solution set. This movement is according to the position
of the selected element within the three regions. The HVDS decides automatically
in which region a point is, being the only condition to be used to have gradient
information available.

4.1.1 Division of the objective space

The HVDS uses a division of the objective space to locate a point F (x), in order to
perform the necessary movement in every region of the search. By some observations,
we can divide the objective space into the following regions:

- Region I The objective vector F (x) is ‘far away’ from the Pareto (denoted by
F (x) ∈ I).

- Region II F (x) is now ‘in between’, i.e., not far away nor near to the Pareto front.

- Region III When F (x) is ‘near’ or already on the Pareto front.

In Figure 4.1, we can observe how these regions would look like (including the
reference point R = (r1, r2)

T ∈ R2 used to measure the hypervolume), leading to the
following desired movements:

1. When a vector F (x) is in Region I a greedy search toward the rough location
of the Pareto front is desired.

2. If a vector F (x) is not close nor far away and it dominates a given reference
point R. A descent direction has to be selected such that the movement in that
direction maximizes the hypervolume.
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3. Given a vector F (x) in Region III, a movement toward the Pareto front will
lead to non-significant improvements of the dominated hypervolume. Hence, a
search along the Pareto front is desired, in order to maximize the contribution
to the hypervolume of that point.
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Figure 4.1: Division of the objective space into three different regions.

To decide in which of the three regions an objective vector F (x) is, we use the
properties of the descent cone of a MOP. Those properties were defined in the work
of Brown and Smith [68]. Here, the authors consider the size of the descent at the
initial and final stages of an optimization process to state the following:

• When a point x is far from the local optima, the objectives gradients are aligned
and the descent cone is almost equal to the half-spaces associated with each
objective.

• When a point x is close to the Pareto set, the individual gradients are almost
contradictory, what provokes that the size of the descent cone is extremely
narrow.

A graphical illustration of the above defined properties can be found in Figure
4.2 (this figure was taken from [68]). In order to take advantage of this properties
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Figure 4.2: A descent cone is depicted for a 2 parameter and 2 objective MOP. The
process is during initial (a) and final (b) stages of convergence.

to assign an objective vector F (x) to one region, the angle between gradients will be
considered.

Let

gi := ∇fi(x), i = 1, 2, (4.1)

and g1, g2 6= 0, then the angle between g1 and g2 is defined by

cosα =
gT1 g2

||g1|| ||g2||
∈ [−1, 1]. (4.2)

In other words, if cos α = 1, both gradients point into the same direction (↓↓)
which happens, roughly speaking, if x is infinitely far from the Pareto set. If cos α =

0, the gradients are orthogonal to each other (←↓). Finally, when cos α = −1, the
gradients point into opposite directions (↓↑) which happens if x is on the Pareto set
(i.e., zero distance).

Since cosα ∈ [−1, 1], our three defined regions can be numerically detected, by
setting two values a, b ∈ (−1, 1) with b < a. Leading to the following:

F (x) ∈ I : ⇔ cos α ≥ a,
F (x) ∈ II : ⇔ cos α ∈ (b, a),
F (x) ∈ III : ⇔ cos α ≤ b,

CINVESTAV Computer Science Department



DIRECTED SEARCH FOR HYPERVOLUME BASED MOEAS 69

In order to study which are the proper values for a and b, we introduce the
following MOP:

f1, f2 : Rn → R

fi(x) = ||x− wi||22 (4.3)

where

w1 = (1, 1, 1, 1, ...) ∈ Rn

w2 = (1,−1, 1,−1, ...) ∈ Rn

In Figures 4.3 and 4.4 a color-map of the previous problem is presented using
n = 2 and x ∈ [−5, 5]2. We can clearly see the locations of both the Pareto set
and Pareto front. Since this color-map of a cone size of a MOP into a certain range
behaves similar for other MOPs, we are in the position to define a and b in a general
manner.

To select a, we start with the fact that all what is dominated for a given reference
point R does not contributes to the hypervolume, therefore, it should be in Region
I. The latter is because shooting a point x in a greedy direction will make that F (x)

dominates R, in order to be considered when compute the hypervolume. In this case,
we recommend to select a ∈ [0.4, 0.6]. For the remainder of this work, we set a = 0.5

to perform our experiments.

The value of b can be chosen by considering how an angle is approaching to −1
because the individual gradients are almost contradictory. So, if we select b very close
to -1, we guarantee that only points which are in Region III will be considered to
perform a movement along the front. The recommended interval is b ∈ (−1,−0.9],
being our choice b = −0.9.

Finally, we can observe the result of the objective space division for our example
in Figure 4.5. As final observation, we can choose also a according to the selected
reference point R for a given problem, this leads to have a better division of the
objective space.

CINVESTAV Computer Science Department



70 Chapter 4

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x
2

Parameter space

 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.3: Color-map of the parameter space, the dark blue region represents the
Pareto set.
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Figure 4.4: Color-map of the objective space, the dark blue region represents the
Pareto front.
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Figure 4.5: Region color divisions together with a reference point R.

4.1.2 One Element Archives

We will consider in the following consider for sake of simplicity archives consisting of
one element. Subsequent considerations will show that the consideration of general
archives can be put back in many cases to such one element archives.

Given an archive A = {x} with x ∈ S. Furthermore, a reference point R =

(r1, r2)
T ∈ R2 for hypervolume calculations. The three local search regions are de-

scribed as follows:

Local search in Region I For this region large improvements are required, since
points there do not contribute to the hypervolume. In [37] was proposed to use
Equation (2.27) as a greedy descent direction for bi-objective optimization problems.
This descent direction performs large improvements in objective space, because when
x is far away both gradients point almost in the same direction. Due to the previous
fact, for Region I, we propose to use Lara’s direction coupled with an Armijo-like
step size (as in [28]) for a point located in this region. Thereby, a new point will be
given by xnew = x+ tν, using Equation (2.27) to compute ν.
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Local search in Region II Given a point x such that F (x) is in Region II. The
desired improvement can be done by finding a search direction dII <p 0 such that a
movement in that direction maximizes the hypervolume according to a given reference
point R. Since the DS allows to move in any direction in objective space, we propose
to use it in the following way:

Being ynew the image of a new point xnew obtained using DS, it is given then by

ynew = F (x) + tdII , (4.4)

where t ∈ R is a given (fixed) step size and dII has to be chosen such that it solves
the following two-dimensional problem

max
d∈R2

H(d) = (r1 − f1(x)− td1)× (r2 − f2(x)− td2), (4.5)

s.t.||d||22 = 1

If we replace the Euclidean norm by the infinity norm in the constraint of Equation
(4.5) (which drops the assumption that the movement is done with an equal step in
objective space) a straightforward computation shows that

dII,∞ = F (x)−R, (4.6)

solves the modified problem. It is important to say that by using dII,∞ (which is
easier to calculate) coupled with the DS yields no difference in the performance of
the algorithm. Figure 4.6 shows a graphical representation to select dII .

Local search in Region III In the case that the image F (x) of a given point be
in Region III, a movement along the Pareto front is sought, in order to increase the
single point contribution to the hypervolume. To achieve this objective, we propose
to linearize the Pareto front at F (x) and compute the optimal step size along dIII

to produce the maximum hypervolume contribution. That direction dIII can be
computed in the following way:

Let x be a Karush Kuhn Tucker (KKT) point. It is known that the corresponding
weight vector α s.t.

∑2
i=1 αi∇fi(x) = 0 is orthogonal to the linearized Pareto front

at F (x), and α solves the following quadratic optimization problem (see [34]):

min
α∈R2

{
‖α1∇f1(x) + α2∇f2(x)‖22 : αi ≥ 0, i = 1, 2, α1 + α2 = 1

}
(4.7)
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Figure 4.6: Direction for a point in Region II to perform the local search.

Hence, for a bi-objective problem, we can compute a solution α̃ by solving Equa-
tion (4.7) and set

dIII =

(
−α̃1

α̃2

)
(4.8)

as our new direction to perform the movement along the Pareto front using the DS.

By having dIII , it leads to the following one-dimensional problem to maximize the
hypervolume, where the step size t is now the unknown:

max
t∈R

H(t) = (r1 − f1(x)− td1)× (r2 − f2(x)− td2), (4.9)

this problem has an analytic solution when the values of the weight vector α has no
entries equal to zero. The previous ideas draw the result below.

Proposition 6. Let α >p 0, then the global maximizer of Equation (4.9) is given by

t∗ =
d1r2 + d2r1 − d1f2(x)− d2f1(x)

2d1d2
. (4.10)

Proof. If αp >p 0, then it follows by Equation (4.8) that d1, d2 6= 0. The first derivative
of H is given by

H ′(t) = 2td1d2 + d2f1(x)− r1d2 + d1f2(x)− d1r2. (P6.1)
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Setting this to zero leads to

t∗ =
d1r2 + d2r1 − d1f2(x)− d2f1(x)

2d1d2
. (P6.2)

Further, the second derivative at t∗ is given by

H ′′(t∗) = 2d1d2 < 0. (P6.3)

The negativity holds since α >p 0 and by construction of dIII , and the claim follows.

We stress that the above solution holds for the linearized problem which is of
course a simplification of the problem at hand. We have observed that the step size
t∗ leads to satisfying results in particular if (i) the Pareto front is almost linear, and
(ii) if the reference point R and the current objective vector F (x) are not too far away
from each other. For practical implementations, it is advisable to define a maximal
step size tmax to bound the search. Also note that the step size t∗ is defined for a
search in objective space while the new iteration xnew = x+ txν is obtained via a line
search in parameter space. For this, we follow the suggestion made in [69] to make
the match tx = t∗ that works particularly well for small values of t∗. Finally, we note
that the above consideration is made for KKT points. However, these computations
work also well if the candidate solution x is near to the Pareto set. In particular, dIII
points along the Pareto front as we show in Figure 4.7.

Algorithm 4 summarizes the above discussion and presents the HVDS as stan-
dalone algorithm.
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Algorithm 4 HVDS as standalone algorithm for one element archives
Require: An starting point x0, values a and b for region assignment and a reference

point R ∈ R2.
Ensure: A new solution xi.
1: i := 0.
2: repeat

3: Compute the angle between gradients θ as in Equation (4.2).
4: if θ > a then

5: Compute νI as in Equation (2.27) {F (xi) ∈ I}
6: Compute tI ∈ R+.
7: Set xi+1 = xi + tIνI .
8: else if θ ∈ (b, a) then

9: Set dII = F (xi)−R {F (xi) ∈ II}.
10: Get νII = J(xi)

+dII as in Equation (2.37).
11: Compute tII ∈ R+.
12: Set xi+1 = xi + tIIνII .
13: else

14: Get the convex weight α according to Equation (4.7). {F (xi) ∈ III}
15: Set dIII = (−α[2], α[1])T as in Equation (4.8).
16: Get νIII = J(xi)

+dIII as in Equation (2.37).
17: Compute tIII as in Equation (4.10).
18: Set xi+1 = xi + tIIIνIII .
19: end if

20: i := i+ 1.
21: until tIII = 0 or a maximum number of iterations is reached
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Figure 4.7: Direction for a point in Region III to move along the Pareto front.

4.1.3 General Archives

Now we consider the general case where the archive contains l elements, i.e., A =

{x1, . . . ,xl}. The ‘optimal’ search direction for a given point x ∈ A depends in some
cases on the location of the other elements of A. We face now the following problem,
if we increase the contribution of one point x ∈ A, another point in A could reduce its
contribution, what it is not desired for us. However, we can overcome this problem
by reducing all cases to the one element case with appropriate adjustments to the
algorithm.

In the following, we consider the local search in all three distance regions for an
archive A with l elements.

Local search in Region I If a point x ∈ A that is chosen for local search is far
away from the Pareto front, a large movement is desired regardless of the location of
the other elements of A. Hence, we propose to proceed as for the one element case
using Equation(2.27) to get a greedy direction.
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Local search in Region II Since we consider two-objective problems, the images
in objective space of A can be sorted by one of the objective values which we assume
in the following. Let xi ∈ A be given for local search a direction dII for the DS can be
obtained using the following observation. Figure 4.8 shows a scenario that suggests
that the hypervolume contribution of xnew will be obtained via a modification of
xi. Such modification will be restricted to the region between F (xi−1) and F (xi−1).
Hence, for i ∈ {2, . . . , l − 1} we propose to choose a new reference point given by

RF (xi) =

(
f1(xi+1)

f1(xi−1)

)
, (4.11)

and to proceed analog to the one element case using the direction

dII,xi
= F (xi)−RF (xi). (4.12)

For the extreme points (i.e., i ∈ {1, l}) we proceed again with RF (xi) = F (xi)−R.
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Figure 4.8: Local search in Region II for multiple archive entries.

Local search in Region III Analog to the above discussion we can proceed with
points in the third distance region. To be more precise, we propose to use the reference
point RF (xi) for intermediate points (i.e., i ∈ {2, . . . , l − 1}) and the original point R
for the extreme archive entries to perform a movement along the solution set.
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4.2 Integrating HVDS into SMS-EMOA

Here we present two attempts to integrate the local search mechanism HVDS into
an EMOA in order to obtain a fast and reliable algorithm to obtain hypervolume
approximations of a given MOP. We have chosen to take the state-of-the-art algorithm
SMS-EMOA ([52]), however, we stress that HVDS can in principle be hybridized with
any other hypervolume based EMOA.

4.2.1 HVDS at the initial stage

As first attempt, we propose to integrate the new local search mechanism as follows:
After the update of the archive in iteration step i, mi elements of the population Pi

are chosen for local improvement via HVDS, XLS will represent the set of the chosen
elements. Since it is assumed that HVDS actually improves the hypervolume value
of a given element, no consideration of the hypervolume contributions is necessary
(which is a time-consuming task), but the new iterates replaces the initial point.
This first version of the algorithm only considers to update the selected points at the
beginning, in other words m elements are chosen after initializing the population P

and then we replace them after applying HVDS. Algorithm 5 shows the pseudo-code
of this new hybrid SMS-EMOA-HVDS.

A possible drawback of this first algorithm would be when a multi-modal problem
be given, since we spend all the local search effort at the initial stage , so there is a
high probability to get stuck in a local minima.

4.2.2 HVDS as operator

Due to the possible drawback to apply the HVDS only at the beginning, we introduce
a new algorithm to overcome the problem. One of the properties of SMS-EMOA is
that it only produces one offspring at each generation. Most times, this offspring
replaces the element with the worst hypervolume contribution. Hence, by using that
observation, we are in the position to take this element in order to apply the HVDS.
It is important to mention that we have to add one extra parameter, in this case, the
probability for the application of HVDS. For this new version the HVDS will act as
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an operator with a certain probability to be applied. The following algorithm only
includes the stage to produce an offspring into the SMS-EMOA using HVDS.

Algorithm 5 SMS-EMOA-HVDS
Require: A given MOP to solve and a reference point R ∈ R2 to compute the

hypervolume.
Ensure: An approximation of the Pareto front.
1: Initialize a population P ⊂ Q with µ elements at random.
2: Choose the set XLS ⊂ P with |XLS| = m.
3: Sort elements of XLS by their f1 value.
4: for all i = 1, . . . ,m do

5: xi,0 = ith element of XLS.
6: x̃i =HVDS(xi,0, a, b, R).
7: P := P ∪ {x̃i} \ {xi,0}.
8: end for

9: repeat

10: Generate offspring x ∈ Q from P by variation.
11: P := P ∪ {x}.
12: Build ranking G1, . . . , Gh from P .
13: Compute the hypervolume contribution for each x ∈ Gh.
14: Denote by x∗ the element with the least hypervolume contribution
15: P :=P \ {x∗}
16: until stopping criterion fulfilled
17: return P
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Algorithm 6 HVDS as operator into SMS-EMOA
Require: A certain probability pr.
Ensure: A tunned new element x̃.
1: Generate offspring x ∈ Q from P by variation.
2: if rnd() <= pr then

3: x̃ =HVDS(x, a, b, R).
4: else

5: x̃ = x.
6: end if

7: P := P ∪ {x̃}.

4.3 Numerical Results

In the following, we present results of the HVDS. Here the HVDS is tested and
compared as a standalone algorithm using both versions (for one element and for
general ones). Then, we present results when HVDS is integrated into SMS-EMOA
using the two proposed approaches.

4.3.1 HVDS as Standalone Algorithm

First we test the ability of the HVDS as standalone algorithm. For this, we will
use the problem stated in Equation (4.3) and another model stated below, which are
uni-modal problems.

f1, f2 : R2 → R

f1(x) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 + x1 − x2) + λ · e−(x1−x2)2 ,

f2(x) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 − x1 + x2) + λ · e−(x1−x2)2 ,
(4.13)

where λ = 0.85. MOP (4.3) ([70], denoted by ‘Convex‘) has a convex Pareto front,
and the front of MOP (4.13) ([14], ‘Dent’) is convex-concave (see Figure 4.9).

First, we test the HVDS for one element archives. For the sake of a comparison, we
define a simple hill climber as follows: For a given point x, a further candidate solution
y is taken from a neighborhood of x. As next iterate, the solution with the highest
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Figure 4.9: Pareto fronts of MOP (4.3) (left) and MOP (4.13) (right).

hypervolume value is taken and the search is continued in the same manner. We
have chosen this strategy since it relates to a stochastic local search procedure within
hypervolume-based MOEAs. Figures 4.11, 4.12, 4.13, and 4.14 show exemplary runs
for both methods on each problem. Figure 4.10 shows the hypervolume against the
number of function evaluations for both problems and methods. Here we count five
function evaluations for the cost of one gradient evaluation which would be the case
when using automatic differentiation [67]. In both cases, HVDS is able to get higher
hypervolume values in the early stage of the algorithm. Also, we can see the smart
movement over all the objective space while the hill climber search without direction.
For Dent, the algorithm is even able to terminate after 130 function evaluations at
the optimal hypervolume value.
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Figure 4.10: Hypervolume comparison of the HVDS against the hill climber on Convex
(left) and Dent (right). The results are averaged over 20 test runs.
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Figure 4.11: Result of the HVDS on Convex.
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Figure 4.12: Result of the hypervolume hill climber on Convex.
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Figure 4.13: Result of the HVDS on Dent.
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Figure 4.14: Result of the hypervolume hill climber on Dent.
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Next, we make a first attempt to investigate the ability of the HVDS within
set based search, that is to consider general archives. For this, we have made the
following adaption of the standalone HVDS as presented in Algorithm 4: Instead of
one starting point x0 we choose an initial population X = {x(1)

0 , . . . ,x
(5)
0 } consisting

of five elements random elements. The iteration step is then performed individually
for all elements (i.e., x(j)

i+1 = x
(j)
i + tν as described in Algorithm 4) using the choice

of the reference point as proposed in Equation (4.11) for intermediate points and the
normal reference point R for extreme points.

Figures 4.15 and 4.16 show some numerical results of the application of the HVDS
over a given set of points. Table 4.1 presents a comparison of HVDS against SMS-
EMOA with population size µ = 5. It is shown that HVDS is able to get better
hypervolume approximations. However, it has to be noted that for problem Dent
none of the methods converges toward the optimal archive but the values get stuck
on the value shown in Table 4.1 even for a higher budget of function evaluations. This
might be due to the fact that only one point is iterated at each step.
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Figure 4.15: Numerical results of the 5 element HVDS on Convex.
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Figure 4.16: Numerical results of the 5 element HVDS on Dent.

HVDS SMS-EMOA

# Iterations Hypervolume # Iterations Hypervolume Best Value

Convex 1400 2100.1424 1400 1992.9788 2107.6523

Dent 885 16.6941 900 16.5721 16.8225

Table 4.1: Comparison of the 5 element HVDS and the SMS-EMOA with µ = 5. The
results are averaged over 20 test runs.

4.3.2 HVDS within SMS-EMOA

Finally, we investigate the potential of HVDS as local searcher coupled with SMS-
EMOA. For the computations using Algorithm 5, we have realized the memetic al-
gorithm as follows: To pull the current archive to the Pareto set, we have chosen to
run two HVDS runs in the beginning of the search because the relatively high cost
of this search (i.e., we have taken m1 = 3 together with a budget of 50 iterations
and mi = 0 for i > 1). To perform the tests, the modified suite of Zitzler-Deb-Thile
(ZDT) problems presented in [71] has been selected with the difference that we do
not need the twice differentiability property. We add also Convex and Dent to the
test problems. Those problems are described in Table 4.2 where is also included the
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parameters for HVDS. Finally, for the SMS-EMOA setting, we establish a probability
of 0.9 for crossover and 1/µ for mutation.

Problem Functions Domain # Variables HVDS Param.

ZDT1
f1(x) = x1 a = 0.5

f2(x) = g(x)(2−
√
f1(x)/g(x)) [0, 1]× [−1, 1]n 30 Variables b = −0.9

g(x) = 1 + 9
n−1

∑n
i=1 x

2
i R = [11, 11]

ZDT2
f1(x) = x1 a = −0.5
f2(x) = g(x)(2− (f1(x)/g(x))

2) [0, 1]× [−1, 1]n 30 Variables b = −0.9
g(x) = 1 + 9

n−1

∑n
i=1 x

2
i R = [11, 11]

ZDT3

f1(x) = x1 a = 0.5

f2(x) = g(x)(2−
√
f1(x)/g(x))− [0, 1]× [−1, 1]n 30 Variables b = −0.9

(f1(x)/g(x))sin(10πf1(x))) R = [11, 11]

g(x) = 1 + 9
n−1

∑n
i=1 x

2
i

ZDT4

f1(x) = x1 a = 0.5

f2(x) = g(x)(2−
√
f1(x)/g(x)) [0, 1]× [−5, 5]n 5 Variables b = −0.9

g(x) = 1 + 10(n− 1)+ R = [11, 11]

+
∑n

i=1(x
2
i − 10cos(4πf1(x)))

Convex
Model defined in Equation (4.3) a = 0.5

[−10, 10]n 10 Variables b = −0.9
R = [50, 50]

Dent
Model defined in Equation (4.13) a = −0.3

[−100, 100]n 2 Variables b = −0.96
R = [5, 5]

Table 4.2: Test problems.

Table 4.3 and Figure 4.18 show some numerical results on the above test problems.
Box-plots of the respective HV values after the final iteration are given in Figure 4.17.
In 4 out of 6 cases the new hybrid is superior to its base EMOA while the differences
in location of the HV values are not statistically significant for Dent and ZDT4. The
latter is certainly due to the choice of the local search since the two runs got stuck
in local minima, and hence, the effort was lost. Further variants of local search, e.g.,
the application of more but shorter HVDS runs, will be tested for HVDS as operator.
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SMS-EMOA SMS-EMOA-HVDS

Average Deviation Median Average Deviation Median

Convex 2003.867 68.956 2021.200 2161.668 18.039 2164.803

Dent 17.234 0.031 17.241 17.245 0.023 17.248

ZDT1 105.015 0.948 105.002 108.965 1.654 109.512

ZDT2 97.592 2.965 96.176 107.463 3.563 109.207

ZDT3 113.771 1.857 114.330 116.097 1.948 117.576

ZDT4 76.536 13.485 82.107 71.552 15.770 71.352

Table 4.3: HV results of SMS-EMOA with and without HVDS as local searcher after
2500 iterations of the algorithm (using the same number of function evaluations).
The values are obtained from 20 test runs. Bold quantities are the ones with highest
hypervolume.
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Figure 4.17: Box-plots of the HV at the final iteration of the SMS-EMOA and its
hybrid variant using Algorithm 5 on the considered test problems. Statistically sig-
nificant differences due to the Wilcoxon-Rank-Sum Test with α = 0.05 are marked
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Figure 4.18: Hypervolume results of SMS-EMOA and its hybrid variant using Algo-
rithm 5 on some benchmark models.
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As can be seen in Table 4.3, the first memetic version of SMS-EMOA has troubles
when it tries to tackle multi-modal problems as ZDT4. In order to overcome this
problem, we perform new experiments using HVDS as an operator. Such change
only needs a certain probability to apply the operator over the offspring that SMS-
EMOA produces, as we already mentioned. Nevertheless, the probability has to be
low, for uni-modal problems we have chosen p = 0.1 and for multi-modal problems
p = 0.001 for the entire running. Numerical results using the HVDS as operator into
SMS-EMOA are presented as follows:

SMS-EMOA SMS-EMOA-HVDS

Mod Func Var Average Dev Median Average Dev Median

Convex U 2500 10 2003.867 68.956 2012.466 2153.466 27.275 2166.596

Dent M 2500 2 111.772 6.729 105.506 114.692 4.469 115.87

ZDT1 U 2500 30 105.015 0.948 104.891 109.125 0.537 109.375

ZDT2 U 2500 30 97.592 2.965 96.172 108.016 1.495 108.643

ZDT3 M 2500 30 113.771 1.857 114.238 116.998 1.251 117.610

ZDT4 M 7500 10 62.963 14.061 61.275 83.699 7.220 85.353

ZDT6 M 7500 10 93.509 1.698 93.287 99.843 3.339 99.072

DTLZ1 M 25000 15 108.605 6.356 109.865 113.569 3.383 114.651

DTLZ2 U 1000 30 118.775 0.202 118.786 120.043 0.048 120.045

DTLZ3 M 25000 15 67.01 35.209 58.026 103.095 9.25 105.208

DTLZ4 U 1000 30 111.772 6.729 105.506 114.692 4.469 115.87

Table 4.4: HV results of SMS-EMOA with and without HVDS as operator (using
the same number of function evaluations). The values are obtained over 20 test runs.
Bold quantities are the ones with highest hypervolume.

Table 4.4 shows new results by using HVDS as an operator. Here, we can observed
that for multi-modal problems (ZDT3, ZDT4, ZDT6, DTLZ1, and DTLZ3) the second
memetic version of SMS-EMOA computes a higher hypervolume than SMS-EMOA
without HVDS using the same number of function evaluations. To perform the new
computations, we include into the test problems five new models ZDT6, DTLZ1,
DTLZ2, DTLZ3, and DTLZ4 (DTLZ problems where taken from [72]) which are
defined in Table 4.5. Considering the results obtained by using Algorithm 5 this new
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version outperforms the older having better results according to the hypervolume.

As a final remark, all DTLZ problems were tested for only two objectives.

Problem Functions Domain

ZDT6
f1(x) = 1− exp−4x1

f2(x) = g(x)(2− (f1(x)/g(x))
2) [0, 1]× [−1, 1]n

g(x) = 1 + 9
n−1

∑n
i=1 x

2
i

DTLZ1

f1(x) = (1 + g(x))0.5
∏k−1

i=1 xi

fm=2:k−1(x) = (1 + g(x))0.5(
∏k−m

i=1 xi)(1− xk−m+1) [0, 1]n

fk(x) = (1 + g(x))0.5(1− x1)

g(x) = 100(n+
∑n

i=1((xi − 0.5)2 − cos(20π(xi − 0.5))))

DTLZ2

f1(x) = (1 + g(x))
∏k−1

i=1 cos(xi
π
2
)

fm=2:k−1(x) = (1 + g(x))(
∏k−m

i=1 cos(xi
π
2
)) sin(xk−m+1

π
2
) [0, 1]n

fk(x) = (1 + g(x)) sin(x1
π
2
)

g(x) =
∑n

i=1(xi − 0.5)2

DTLZ3

f1(x) = (1 + g(x))
∏k−1

i=1 cos(xi
π
2
)

fm=2:k−1(x) = (1 + g(x))(
∏k−m

i=1 cos(xi
π
2
)) sin(xk−m+1

π
2
) [0, 1]n

fk(x) = (1 + g(x))sin(x1
π
2
)

g(x) = 100(n+
∑n

i=1((xi − 0.5)2 − cos(20π(xi − 0.5))))

DTLZ4 As DTLZ2, except all xi ∈ x are replaced by xα
i , where α > 0 [0, 1]n

Table 4.5: Definition of the new test problems for the second memetic version of the
SMS-EMOA using HVDS as an operator.

Finally, we show in the following figures (Figures 4.19, 4.20, 4.21, 4.22, 4.23, 4.24,
4.25, 4.26, 4.27, 4.28, and 4.29) a graphical comparison of this second memetic version
against the standard version of SMS-EMOA. For this we select the averaged running
of each algorithm. We can see clearly that the memetic version of the SMS-EMOA
achieve better results using the same number of function evaluations.
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Figure 4.19: SMS-EMOA-HVDS solving Convex.
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Figure 4.20: SMS-EMOA-HVDS solving Dent.

CINVESTAV Computer Science Department



92 Chapter 4

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

 

 
SMS−EMOA−HVDS
SMS−EMOA
Pareto front

Figure 4.21: SMS-EMOA-HVDS solving ZDT1.
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Figure 4.22: SMS-EMOA-HVDS solving ZDT2.

CINVESTAV Computer Science Department



DIRECTED SEARCH FOR HYPERVOLUME BASED MOEAS 93

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

 

 
SMS−EMOA−HVDS
SMS−EMOA
Pareto front

Figure 4.23: SMS-EMOA-HVDS solving ZDT3.
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Figure 4.24: SMS-EMOA-HVDS solving ZDT4.
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Figure 4.25: SMS-EMOA-HVDS solving ZDT6.
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Figure 4.26: SMS-EMOA-HVDS solving DTLZ1.
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Figure 4.27: SMS-EMOA-HVDS solving DTLZ2.
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Figure 4.28: SMS-EMOA-HVDS solving DTLZ3.
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Figure 4.29: SMS-EMOA-HVDS solving DTLZ4.
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5 | Conclusions and Future Work

One of the two main goals of this work has been the design of local search strategies for
the numerical treatment of both MOPs and PMOPs. The other important goal was
to design a novel memetic indicator based evolutionary algorithm to tackle MOPs.
In the following, we list the conclusions obtained by this work:

• In the case of PMOPs, we presented the λ-DS which is an extension of the DS.
We showed that it is advantageous to treat λ as a normal parameter what allows
to state the λ-DS formulation. By using λ-DS, it is possible to get a direction ν

by solving a system of linear equations that steers the search into any direction
in objective space. Therefore, the DS has been successfully adapted to the
context of PMOPs, leading to the algorithm λ-DS.

• We have presented a descent method using λ-DS. This method allows us to
perform a search toward the family of Pareto fronts. We showed a relation with
a widely use mathematical method, the Normal Boundary Intersection Method.
Such relation was proven for both contexts. Thereby, a critical point of the
descent method based on the λ-DS is a local solution of the NBI-subproblem,
and vice versa.

• We studied the behavior of the stochastic local search for PMOPs. In this study,
we discovered the influence of the parameter λ into a given problem. In the case
of being far away, we concluded that the influence of this external parameter
affects in a bad way the search toward the family of Pareto fronts. On the other
hand, when a point is already over the family of Pareto fronts, the influence
of λ does not affect the desired movement. Therefore, we propose to use the
classical DS to reach a point over the family of Pareto fronts.
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• We designed a predictor-corrector method over λ-space. For this PC, we defined
the orthogonal vector to the linearization of the family of Pareto fronts. This
vector allowed to compute a predictor direction. For the corrector step, we
presented two different options. Thus, the proposed approach allows us to
perform a search along λ-space without using any second gradient information.

• We presented two corrector methods. In Table 3.1, we showed a comparison
between these two methods. The PCLDS1 appears to be cheaper but it is
less accurate than PCLDS2. The PCLDS2 can produce a better continuation
method speaking about quality. Nevertheless, there is no clear winner since
both approaches have their advantages. Hence, we recommend to choose an
option according to the context.

• We have shown in Table 3.2 a fair comparison against a classical continuation
method. To show this, we had to adapt the KKT equations to the give context.
In this comparison, the λ-DS was the clear winner, being the one that uses less
function evaluation to perform such a movement in λ-space.

• Analog to the DS, we showed that the λ-DS could be used without using gradient
information. The latter can e.g. be done using neighborhood information.
We can say that this approach would be particularly advantageous when using
evolutionary algorithms, since this neighborhood information would be obtained
without cost.

• To tackle MOPs, we presented the HVDS for hypervolume approximations.
We presented a division of the objective space based on the angle between the
gradients. This division allows us to assign a given point for local search into
three different distance regions. For each of the distance regions, we designed
a specific movement. Such a movement increases the hypervolume contribution
of a given solution point x. Therefore, the HVDS is able reach points on the
Pareto front at the same time that the hypervolume increases.

• We developed the HVDS to manage one (A = {x}) and general (A = {x1, . . . ,xµ})
element archives. A comparison for the HVDS as standalone algorithm was pre-
sented in Figure 4.10 and Table 4.1. This comparison showed the behavior of
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the HVDS over the three distance regions. The HVDS obtained the highest hy-
pervolume using the same budget of function evaluations. Thereby, the HVDS
is a perfect choice to be coupled within an IBEA that uses the hypervolume.

• We designed a novel memetic hypervolume based evolutionary algorithm using
the SMS-EMOA. This algorithm outperformed the basic version of SMS-EMOA.
A problem arose in the case of multi-modal problems by using our method only
at the beginning. To solve this problem, we presented a second version of the
memetic algorithm using the HVDS as an operator. This second version of SMS-
EMOA-HVDS was able to tackle uni-modal as well as multi-modal problems.
Hence, we have successfully adapted the HVDS into an IBEA.

5.1 Future Work

There are many interesting aspects to be covered for future work. In the case of
PMOPs, to test the λ-DS on more parameter dependent models is desired since our
first results remarks a clear advantage over classical continuation approaches. A
study of the behavior of the λ-DS for l > 1 (where l represents the number of extenal
parameters) is still missing. Next, it would be desirable to design a novel evolutionary
algorithm which obtains over one single run an approximation of the complete family
of solutions. The latter idea gives us a perfect candidate to integrate the λ-DS in
order to improve its performance. Finally, it would also be interesting to design an
indicator to measure the quality of an approximation of the family of Pareto fronts.

For the HVDS, other important improvements would be interesting. First of all,
the current study was restricted to unconstrained bi-objective problems which has to
be generalized for sake of a broader applicability. To investigate other ways to assign
elements over objective space will also allows to improve our current method. Further,
it would be desirable to use the gradient free version of the Directed Search method
in the case of Regions II and III, in order to exploit the neighborhood information
available when a MOEA is used. Finally, it might be interesting to adapt the method
to other indicators, e.g, AHD [73], R2 [74], preference indicators [75, 76], among
others.
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