

Departamento de Computación

Modular Framework for Ambient

Intelligence Systems

Tesis que presenta

MC. Rafael Baquero Salaquardova

Para obtener el Grado de

Doctor en Ciencias

en

Ciencias de la Computación

Director de la Tesis:

Dr. José Guadalupe Rodríguez García.

México, D.F. Enero 2014

Modular Framework for Ambient Intelligence Systems

5

Acknowledgements

Many people have supported and helped me throughout the development of this work.

Above all I wish to thank my wife and daughters, Paty, Aleksandra and Karolina for their

unconditional support and love. Girls, without your love I would have never been able to do

this.

I also have an enormous debt to my parents, Mrs. Libuse Salaquardova de Baquero and

Dr. Rafael Baquero. Thank you for all your help and love throughout these years and all my

life. I also want to thank my in laws, Ing. Amalia Hajducek B. and Ing. Angel Tellez W.

Thank you for all your support and encouragement.

I wish to thank my PhD advisor Dr. José Guadalupe Rodríguez G. Thank you José for

all your guidance, advice and encouragement. I also want to thank all my classmates,

professors and friends for their support and help. Thanks guys!

Finally, I wish to express my gratitude to CONACyT for their support to perform this

work.

6

Table of Contents

Acknowledgements .. 5

Table of Contents ... 6

Table of Figures ... 10

Glossary of Abbreviations ... 12

Abstract .. 20

Resumen ... 22

1 Introduction ... 24

1.1 Ambient Intelligence. The Vision.. 24

1.2 Description of Ambient Intelligence ... 25

1.3 Problems with Ambient Intelligence ... 26

1.4 The Need for Ambient Intelligence ... 32

1.5 Developing Intelligent Environments .. 35

1.6 Simplicity for Multidisciplinary Development .. 38

1.7 IEC 61499 .. 39

1.8 Modular Framework for Ambient Intelligence Systems 41

1.8.1 Thesis Proposal ... 42

1.8.2 Modular Framework Components .. 43

2 Related Work .. 44

2.1 Building Automation Systems ... 44

2.1.1 BACnet ... 45

2.1.2 LonWorks ... 46

2.1.3 KNX .. 47

2.2 Ambient Intelligence Frameworks .. 50

2.2.1 AmIGo .. 50

Modular Framework for Ambient Intelligence Systems

7

2.2.2 Home OS ... 52

2.2.3 MPOWER ... 54

2.2.4 Soprano ... 56

2.2.5 universAAL .. 58

3 Technical Background .. 60

3.1 Ubiquitous Computing .. 60

3.1.1 Distributed Systems Aspects of Ubiquitous Computing 62

3.1.2 Implicit Human Computer Interaction .. 63

3.1.3 Context Awareness ... 65

3.1.4 Autonomy ... 66

3.1.5 Intelligence .. 67

3.2 Ambient Intelligence ... 68

3.2.1 Environment Sensing .. 69

3.2.2 Reasoning .. 71

3.2.3 Acting .. 73

3.2.4 Ambient Assisted Living .. 74

3.3 Distributed Systems ... 76

3.4 Sensors ... 79

3.4.1 Sensor Classification Schemes ... 80

3.4.2 Sensor Characteristics ... 81

3.5 Sensor and Actuator Communications Protocols .. 83

3.5.1 X-10 .. 83

3.5.2 TIA-485 .. 85

3.5.3 IEEE 802 ... 86

3.5.4 ZigBee ... 98

8

3.6 Middleware .. 99

3.6.1 Middleware Requirements .. 99

3.6.2 Middleware Classification .. 101

3.7 Component Oriented Development ... 109

3.8 Design Patterns .. 112

3.9 IEC 61499 .. 113

4 Modular Framework for Ambient Intelligence Systems .. 120

4.1 Framework Design Principles.. 120

4.2 Framework Components .. 121

4.3 Controller ... 122

4.3.1 System Adaptation and System Failure Operation 123

4.3.2 System Adaptation and System Failure Tasks .. 124

4.4 Sensors/ Actuators ... 125

4.5 Human Computer Interfaces .. 130

4.6 Function Modules .. 130

4.7 Module and Sensor/Actuator Catalog .. 131

4.8 Function Module Repository ... 132

4.9 External Communications Modules .. 132

5 Component Supervising Middleware ... 134

5.1 Middleware Description .. 135

5.2 Middleware Events .. 135

5.3 Middleware Architecture ... 138

5.3.1 Component Side Mechanism .. 139

5.3.2 Store and Forward with Component Supervision 142

5.4 Middleware Communications Interfaces ... 144

Modular Framework for Ambient Intelligence Systems

9

6 Implementation of the Modular Framework for Ambient Intelligence Systems 146

6.1 Hardware.. 147

6.2 Development Platforms ... 147

6.3 Communication Schemes .. 147

6.4 Application Programming Interface .. 147

6.4.1 Midblocks ... 149

6.4.2 Controllers .. 180

6.4.3 Components .. 181

6.4.4 Module and Sensor Actuator Catalog (MSAC) .. 183

7 Conclusions and Future Work .. 186

7.1 Framework Features Comparison .. 186

7.2 Future Work ... 189

8 References ... 194

9 Journal Articles ... 204

9.1 Sensors 2012 .. 204

10 Conference Articles .. 205

10.1 Intelligent Environments 2012 .. 205

10.2 UCAmI 2011 ... 207

10.3 CCE 2011 .. 208

10

Table of Figures

Figure 1-1. Problems with Home Automation. .. 27

Figure 1-2. Funblocks Diagram. .. 42

Figure 2-1. AmIGo Architecture. .. 50

Figure 2-2. Home OS Architecture. ... 53

Figure 2-3. Mpower Architecture. ... 54

Figure 2-4. Soprano Ambient Middleware. ... 56

Figure 3-1. Typical TIA-485 Half-Duplex Network. .. 85

Figure 3-2. IEEE 802.11 MAC Architecture. .. 93

Figure 3-3. Hidden Terminal Problem. .. 94

Figure 3-4. IEC 61499 Function Block. .. 116

Figure 3-5. Function Block Network. .. 117

Figure 3-6. Composite Function Block. ... 118

Figure 4-1. Framework Diagram. .. 122

Figure 4-2. Smart Sensor Block Diagram. ... 126

Figure 5-1. Midblocks Event Structure. ... 136

Figure 5-2. Middleware Architecture .. 138

Figure 5-3. Midblocks Component Side (CMPS) Block Diagram. 139

Figure 5-4. Middleware SFCS Block Diagram. .. 141

Figure 5-5. Middleware Communications Interface Layers. .. 145

Figure 6-1. Midblocks events. Part 1. .. 150

Figure 6-2. Midblocks events. Part 2. .. 151

Figure 6-3. Midblocks events. Part 3. .. 152

Figure 6-4. Midblocks Client Base Class .. 153

Figure 6-5. Midblocks Server Base Class .. 154

Figure 6-6. Midblocks Endpoint Base Class and Endpoint Deserializer Class 155

Figure 6-7. Midblocks Message Class ... 156

Figure 6-8. Midblocks IEEE 802.3 networking endpoint class 157

Figure 6-9. Midblocks IEEE 802.3 server class .. 158

Figure 6-10. Midblocks IEEE 802.3 client class ... 159

Figure 6-11. Midblocks event processing class and interface 160

Modular Framework for Ambient Intelligence Systems

11

Figure 6-12. Midblocks component class .. 161

Figure 6-13. Midblocks component default query event processing 162

Figure 6-14. Midblocks component data class .. 163

Figure 6-15. Midblocks component communications class ... 164

Figure 6-16. Midblocks controller class .. 165

Figure 6-17. Midblocks controller data class ... 165

Figure 6-18. Midblocks controller communications class ... 166

Figure 6-19. Midblocks Store and Forward with Component Supervision class 167

Figure 6-20. Midblocks SFCS message dispatcher class .. 167

Figure 6-21. Midblocks SFCS message receiver class .. 168

Figure 6-22. Midblocks SFCS component supervisor class .. 169

Figure 6-23. Midblocks component record class ... 170

Figure 6-24. Midblocks component event queue ... 171

Figure 6-25. Midblocks SFCS component event queue handler 172

Figure 6-26. Midblocks controller record class ... 173

Figure 6-27. Midblocks controller event queue ... 174

Figure 6-28. Midblocks SFCS controller event queue handler 175

Figure 6-29. Midblocks SFCS event processors. Part 1 .. 176

Figure 6-30. Midblocks SFCS event processors. Part 2 .. 177

Figure 6-31. Midblocks SFCS event processors. Part 3 .. 178

Figure 6-32. Funblocks network parameters form ... 181

Figure 6-33. Component Properties form .. 182

Figure 7-1. Superfall system block diagram .. 192

12

Glossary of Abbreviations

2PC Two-Phase Commit Protocol

6LowPAN IPv6 over Low-power PAN

AAL Ambient Assisted Living

ACID Atomic, Consistent, Isolated, and Durable

ACK Acknowledge

AI Artificial Intelligence

AL Application Layer

AmI Ambient Intelligence

APL Application

APS Application Support

ASHRAE American Society of Heating, Refrigerating and Air- Conditioning

Engineers

BA Building Automation

BAS Building Automation System

BPEL Business Process Execution Language

bps Bits per Second

BPSK Binary Phase Shift Keying

CMPS Component Side Part

CMPS-CR CMPS Component Registration Module

CMPS-EQ CMPS Local Event Queue

Modular Framework for Ambient Intelligence Systems

13

CMPS-MD CMPS Message Dispatcher/MEI Supervisor

CMPS-MR CMPS Message Receiver

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CS Component Supervisor

CSMA Carrier Sense Multiple Access

CTRL Controller

DBMS Database Management Systems

DCE Distributed Computing Environment

DCOM Distributed Component Object Model

DCS Distributed Control Systems

DL Data Link Layer

DS Distributed System

DTI Data Type Id field

DTP Distributed Transaction Processing

EC Execution Control

ECC Execution Control Chart

ECM External Communications Modules

EHS European Home System

EIB European Installation Bus

FBN Function Block Network

14

FFD Full Function Device

FM Function Module

FMR Function Module Repository

FSK Frequency Shift Keying

FSO Full Scale Output

FTI Failure Type Id

GDP Gross Domestic Product

HA Home Automation

HCI Human Computer Interface

HL7 Health Level 7

HTN Hierarchical Task Network

HVAC Heating, Ventilation and Air Conditioning

ICT Information and Communication Technology

IDL Interface Definition Language

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

iHCI Implicit Human Computer Interaction

IP Internet Protocol

IS Intelligent Systems

ISM Industrial, Scientific and Medical

ISO International Organization for Standardization

Modular Framework for Ambient Intelligence Systems

15

ISTAG Information Society and Technology Advisory Group

IT Information Technology

LAN Local Area Network

LSIE Large Scale Intelligent Environment

mA Miliampere

MAC Medium Access Control

MCI Middleware Communications Interface

MDLW Middleware

MEI Maximum Event Interval

MFR MAC Footer

MHR MAC Header

MHz Megahertz

MOM Message Oriented Middleware

MPDU MAC Payload Data Unit

MSAC Module and Sensor/ Actuator Catalog

MSAD Module and Sensor/ Actuator Description record

MSDU MAC Service Data Unit

NI Number of Interests

NL Network Layer

NP Number of Provides

NWK Network

16

ODP Open Distributed Processing

OOM Object-Oriented Middleware

O-QPSK Offset Quadrature Phase Shift Keying

OSGi Open Services Gateway initiative

OSI Open Systems Interconnection

PDA Personal Digital Assistant

PHR Physical Header

PHY Physical

PLC Programmable Logic Controller

PM Procedural Middleware

PPDU Physical Protocol Data Unit

PSDU Physical Service Data Unit

PSI Pounds per Square Inch

QoS Quality of Service

REI Register Event Id

RF Radio Frequency

RFD Reduced Function Device

RFID Radio Frequency Identification

RMI Remote Method Invocation

RPC Remote Procedure Call

SA Sensor, Actuator

Modular Framework for Ambient Intelligence Systems

17

SAM SOPRANO Ambient Middleware

SD&I Service Discovery and Interaction

SFCS Store and Forward/Component Supervising

SFCS-CR SFCS Component Register

SFCS-CS SFCS Component Supervisor

SFCS-EQ SFCS Event Queue

SFCS-GC SFCS Garbage Collector

SFCS-MD SFCS Message Dispatcher

SFCS-MR SFCS Message Receiver

SFSK Spread Frequency Shift Keying

SHR Synchronization Header

SIP Session Initiation Protocol

SLP Service Location Protocol

SMS Short Message Service

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

TL Transport Layer

TM Transactional Middleware

TP Transaction Processing

TTL Time-To-Live

18

UbiComp Ubiquitous Computing

UDDI Universal Description, Discovery and Integration

UDP User Datagram Protocol

UIA User Input Analyzer

UPnP Universal Plug and Play

VDC Volts Direct Current

WPAN Wireless Personal Areas Network

WS-Discovery Web Services Discovery

ZDO ZigBee Device Objects

Modular Framework for Ambient Intelligence Systems

19

20

Abstract

Ambient Intelligence (AmI) is a compelling vision of smart environments that are

reactive to people and able to make our actions safer, more efficient, more informed, more

comfortable or simply more enticing. In this vision our environments will be embedded

with visual, audio or many other types of sensing systems, pervasive devices, and networks

that can perceive and react to people, sense ongoing human activities and proactively

respond to them.

During the last decade an explosive growth in the technologies required to implement

Ambient Intelligence systems has occurred. However, due to the multidisciplinary nature of

Ambient Intelligence systems and the distinct requirements of different user groups,

integrating these developments into full-scale systems is not an easy task. To facilitate the

development of AmI systems several frameworks have been, or are currently being,

developed but as of yet none of the proposed frameworks enjoys widespread use. One of

the main drawbacks of currently available AmI frameworks is their complexity and the

learning curve required to apply them in a specific project.

In this thesis work we propose a minimalist modular framework for the development of

Ambient Intelligence systems based on the function module abstraction used in the IEC

61499 standard for distributed control systems. This framework allows for the development

of AmI systems through the integration of modules loosely joined by means of an event-

driven middleware and a Module and Sensor/ Actuator catalog. The modular design of the

framework allows the development of AmI systems which can be easily customized to a

wide variety of usage scenarios.

Modular Framework for Ambient Intelligence Systems

21

22

Resumen

La Inteligencia Ambiental (Ambient Intelligence, AmI) es un atractivo concepto de

entornos inteligentes que reaccionan a los usuarios y que hacen más seguras, más

eficientes, mejor informadas, más cómodas o simplemente más agradables nuestras

actividades. En esta visión nuestros entornos se encuentran dotados con dispositivos

sensores visuales, de audio, y de otros tipos, dispositivos pervasivos, y redes que pueden

percibir y reaccionar a las personas, determinar el desarrollo de actividades humanas y

responder de forma proactiva a ellas.

En la última década se ha producido un avance vertiginoso en las tecnologías necesarias

para la implementación de sistemas AmI. Sin embargo, debido a la naturaleza

multidisciplinaria de los sistemas de Inteligencia Ambiental y a los diversos requerimientos

de los diferentes grupos de usuarios, integrar estos desarrollos en sistemas completos no es

tarea sencilla. Para facilitar el desarrollo de sistemas AmI se han desarrollado, o se

encuentran en desarrollo, varios frameworks pero hasta el momento no se ha difundido el

uso de ninguno de ellos. Una de las principales desventajas de los frameworks AmI

disponibles en la actualidad es la curva de aprendizaje requerida para emplearlos en algún

proyecto concreto.

En esta tesis proponemos un framework modular minimalista para el desarrollo de

sistemas AmI basado en la abstracción de módulos funcionales empleada en el estándar

IEC 61499. Este framework permite el desarrollo de sistemas AmI mediante la integración

de módulos levemente acoplados unidos mediante un middleware basado en eventos y un

catálogo de Módulos y Sensores/ Actuadores. El interés en el diseño modular del

framework es permitir el desarrollo de sistemas AmI que pueden ser fácilmente

personalizados a una amplia variedad de escenarios.

Modular Framework for Ambient Intelligence Systems

23

24

1 Introduction

In this chapter Ambient Intelligence is described along with some of the challenges that

must be overcome for widespread deployment of AmI systems. An overview of the

proposed Modular Framework for Ambient Intelligence Systems is also provided.

1.1 Ambient Intelligence. The Vision

Ambient Intelligence (AmI) is a vision of smart environments that are reactive to people

and able to make our actions safer, more efficient, more informed, more comfortable or

simply more enticing. In this vision our environments will be embedded with different

types of sensing systems, pervasive devices and networks that can perceive and react to

people, sense ongoing human activities and proactively respond to them [1], [2], [20].

Ambient Intelligence (AmI) has emerged in the past 10 years as a multidisciplinary field

which involves many areas of computer science and engineering [27].

A fundamental and distinguishing aspect of AmI is interactivity. Ambient Intelligence

places emphasis on greater user-friendliness, more efficient services support, user-

empowerment, and support for human interactions. People are surrounded by intelligent

intuitive interfaces that are embedded in all kinds of objects and an environment that is

capable of recognizing and responding to the presence of different individuals in a

seamless, unobtrusive way. Technology becomes invisible, embedded in our natural

surroundings, present whenever we need it, enabled by simple, effortless and natural

interactions, autonomously acting and adaptive to users and context [3], [4].

Different appliances have successfully become integrated to our daily life surroundings

to such an extent that we use them without consciously thinking about them. Today many

of these appliances have become enhanced with computing devices which provide them

with some degree of “intelligence”. Washing machines, heating systems and even toys

come equipped with some capability for autonomous decision making. Cars have

embedded sensing mechanisms that allow them to make decisions for a safer and less

expensive journey. To achieve these “intelligent” functions, cars have dozens of sensor and

Modular Framework for Ambient Intelligence Systems

25

actuator systems that make decisions to assist the driver. Public spaces have become

increasingly occupied with tracking devices which enable a range of applications such as

sensing shoplifted objects and crowd behavior monitoring in a shopping mall [5].

Advances in the miniaturization of electronics are allowing computing devices with

various capabilities and interfaces to become part of our daily life. Sensors, actuators, and

processing units, all linked through different types of networking technologies, can now be

purchased at very affordable prices. This technology can be used with the coordination of

“intelligent” software that understands the events and relevant context of a specific

environment, takes sensible decisions on behalf of the user and adjusts the environment

according to the user’s needs and wishes [6].

Whether it is our home anticipating our arrival at night and helping us get ready in the

morning, an airport facilitating a commute, or a hospital room helping to care for a patient,

we will witness great changes in the next decades by the introduction of a wide range of

devices which will enhance diverse environments with computing power [7].

1.2 Description of Ambient Intelligence

Although AmI involves areas such a computer networks, sensors, human-computer

interfaces, ubiquitous computing, robotics and artificial intelligence it should not be

confused with any of those in particular. Even though such areas are an important part of

AmI none of them conceptually fully covers Ambient Intelligence. It is AmI which brings

together all these resources as well as other areas, such as education, health and social care,

entertainment, sports, transportation and many others to provide flexible and intelligent

services to users acting in their environments [8], [78], [79], [83].

The IST Advisory Group of the EU identified the following five technology

requirements for AmI [20]:

1. Vey unobtrusive hardware.

2. A seamless mobile/fixed communications infrastructure.

3. Dynamic and massively distributed device network.

4. Natural feeling human interfaces.

26

5. Dependability and security.

Ambient Intelligence is a digital environment that proactively, but sensibly, supports

people in their daily lives. Therefore two characteristics that an AmI system must possess

are to be sensitive and responsive. Through sensors, AmI systems gather information about

the environment, process that information to determine the activities and needs of the users,

and finally through actuators modify the environment in a form that will benefit such users

[75], [136]. A control system is a device or set of devices to manage, command, direct or

regulate the behavior of other devices or systems [128]. As such, an Ambient Intelligence

system can be viewed as a type of control system. Furthermore, AmI systems can be

viewed as an evolution of Home Automation (HA) and Building Automation (BA) systems.

1.3 Problems with Ambient Intelligence

In 2001 the Information Society and Technology Advisory Group (ISTAG) released the

report titled “Scenarios for Ambient Intelligence in 2010”. In this report four different

scenarios are presented with the aim of describing what living with Ambient Intelligence

might be like for ordinary people in 2010. Each scenario has a script designed to illustrate

the key developments in technologies, society, economy, and markets necessary to arrive to

such scenario [20]. After more than a decade of intense research which includes dozens

perhaps even hundreds of conferences, thousands of research articles and large financial

investments we do not yet live in homes where smart refrigerators keep track of our food,

smart agents negotiate carpooling on our behalf without user intervention, or in

environments that interact with us by recognizing voice commands or our daily activities

[27]. Why don’t we live in such environments yet?

A very active research field within Ambient Intelligence is the area of Ambient Assisted

Living (ALL). AAL is targeted at people with specific needs such as the handicapped, the

aged and the sick. In an AAL enabled smart home disbursement of medicine can be

monitored and managed, accidents that can occur to the elderly can be detected and

appointed caregivers summoned if necessary. However, for users without the specific needs

of the handicapped or elderly the complexity and cost of the technologies involved in

Modular Framework for Ambient Intelligence Systems

27

setting up a smart home demand a very high level of perceived benefit before they become

appealing [9].

Figure 1-1. Problems with Home Automation.

Despite the many advantages for everyday living offered by Ambient Intelligence there

has not been a widespread offer or demand of AmI. Home Automation technologies can be

seen as the stepping stones on the road to full Ambient Intelligence deployments. Although

the devices required to enable HA, such as motion sensors, programmable lighting and

video surveillance cameras have been available to consumers since the 1970s, the

technology has not been adopted in such a wide scale as, for example, cellular phones or

personal computers. While some HA technologies like lighting control are gaining

acceptance in commercial settings, broader adoption is severely lacking. According to

estimates by ABI Research only 204, 000 home automation systems were shipped globally

in 2009, although recent studies suggest that this figure may be increasing [26], [81], [82],

[135].

28

The problem of wider HA acceptance cannot be placed on a single cause but stems from

multiple factors. Brush et al. [135] conducted semi-structured visits to 14 households that

currently employ HA. The interviews involved both households of Do-It-Yourselfers

(DIYs) who have installed the automation themselves and households that have outsourced

the installation and management to professionals. In contrast to previous research, the

people involved in this study were not living in a home developed specifically as a lab but

were people who had opted to introduce HA technologies into their homes and daily lives.

The study showed four major challenges people face when deploying and using HA

systems:

1. High cost of ownership. High cost of ownership involves both the monetary cost

of the technology and the time required to install and setup the systems. Money

spent by the households on home automation varied widely from about $200 to

$120,000 US. Monetary cost was one of the most frequently mentioned

considerations determining both the brand and the amount of functionality to

install. Outsourced households require an outside consultant to come when their

system needs adjustment or repair. The cost of these consultant visits did not

seem to concern the households as much as expected, probably because the visits

were relatively infrequent and had a low cost relative to the initial installation

cost. After initial setup, consultants were primarily called only when problems

occurred. For DIYs households, in addition to monetary cost, the time cost

currently required should not be underestimated.

2. Inflexibility. Current installations are inflexible, often requiring a choice between

a single integrated system or flexibility, as well as the need for structural changes

in many installations, which limits when automation can be installed and raises

concerns about moving. Several participants, especially DIYs, did not want to be

locked in one specific vendor and expressed resistance to certain brands, e.g.

Creston and Control4, because of a perceived lack of personal control. However,

choosing to use multiple brands meant dealing with the challenge of integrating

separate systems. Integration capabilities prevented the connection of some of

the devices with network capabilities to the HA system. Perhaps one of the

biggest challenges to broad adoption is the structural changes needed to install

Modular Framework for Ambient Intelligence Systems

29

Home Automation systems. The most common trigger to install HA among the

participants was building or remodeling a house. As a result of the structural

changes performed the challenge of moving was a concern. Several participants

felt adding HA would make their house more difficult to sell.

3. Poor manageability. Living with a Home Automation system requires managing

it. The experiences of participants suggest challenges that would need to be

addressed before broader adoption of Home Automation such as support for the

iteration necessary to customize, issues with reliability, complex user interfaces

and concerns raised by reliance on consultants. Most households, even those with

unchanging set-ups, described an initial period of iteration right after they

installed their HA systems during which they customized their set-ups to their

homes and household needs. A few households described scaling back their

initially installed functionality as they became aware of a difference between

what they thought they wanted before installing automation and what

functionality they actually wanted.

Fourteen participants explicitly mentioned problems with their current system’s

reliability, which typically resulted in unpredictable behavior. Participants felt

rules in general were hard to debug when they did not work and so participants

lived with problems or turned off the rules. Lack of responsiveness was a related

frustration. Four households described waiting several minutes for a system’s

response.

The augmentation strategy many households adopted, particularly for lighting

scenes, aimed for a simple interface that could be used by anyone including

guests. While some households were more successful than others at achieving

simplicity, problems with complex user interfaces faced by participants,

particularly the technology consumers, and guests illustrate that user interface

challenges exist. Eight participants mentioned complex user interfaces as one of

the things they most dislike about home automation. The complexity of the user

interfaces could be confusing or even frightening to guests.

To handle manageability households relied on consultants, either the DIY guru

who served as the on-site consultant or professional consultants in Outsource

30

households. Participants described downsides to being reliant on a consultant

including inability to fix their own system, inability to customize and password

management.

4. Difficulty achieving security. Most automation participants had enabled, such as

lighting or media, could be used by anyone present in the house. Because

households had augmented the physical controls the functionality was available

within the house using wall switches or a remote control device. The main

exceptions were home security systems which always required passwords, and

interfaces for writing rules, which often did.

Remote access was a double-edged sword for people. The functionality was

appealing but participants worried about introducing a security risk. Households

used remote access for a variety of tasks including remotely controlling lights to

make a house appear occupied when no one was home, turning on heating before

they arrived home, checking the state of the house using cameras, or verifying

the doors had been locked. In general, participants perceived remote access to be

valuable particularly for vacation scenarios. However participants also expressed

concerns about security when enabling remote access, for example, that it would

make their house vulnerable. The level of concern of some participants was

directly related to what technology was in the house, cameras and door locks

raised higher concern compared to other devices.

Mennicken and Huang [26] identify a similar set of problems when they surveyed three

key groups of stakeholders in commercial HA offerings:

1. Inhabitants of homes equipped with automation technology.

2. People in the process of planning or building automated homes.

3. Providers of existing commercial solutions for Home Automation.

Their objective was to understand how a smart home currently develops, from the initial

idea to instrument the home to the emergent uses of its technology by household members.

The study was divided into two phases. The first phase involved interviews with seven

Home Automation professionals while the second phase involved interviewing seven

household which inhabit HA equipped homes and three households who are in the process

Modular Framework for Ambient Intelligence Systems

31

of planning homes with HA. The following issues with Home Automation technologies

were found as a result of the study:

1. Even Full Automation of Control is Not a Game Changer. Participants

mentioned that they obtained very few direct benefits or major impacts on their

lives or practices despite the cost and effort required. They described the effects

of the technology as small conveniences rather than substantial support for

routines or tasks. People perceived the technology as enhancing their comfort

level but pointed out that the technology was limited in the help it could provide.

2. The Challenge of Planning for Unfamiliar Technology. At the start of the

planning phase some participants reported not understanding potential benefits of

technologies and therefore had difficulties prioritizing those technologies against

other needs in the home. Participants without technical backgrounds reported

having to rely upon other people’s experiences and expertise, and therefore

feeling powerless. Professionals provided an interesting perspective on what this

challenge represents for users. They reported that customers have difficulties

understanding the available technology and options. One of the professionals

said: “It just doesn’t make sense to people… [that] they need power line switches

if they [just] want to have access with their smart phone. They don’t see the

connection”. Another professional illustrated this challenge by contrasting HA

with more familiar technologies: “The whole issue of home automation is still so

remote. For cars, everyone knows what’s possible”

3. The Challenge of Getting High-Level Expert Advice. Professional system

integrators typically only provided information on the systems that they offered,

and other types of home experts, such as electricians and architects, were rarely

able or willing to provide information about home automation technology. As a

result, participants reported frustration over being unable to access authoritative

and expert advice for high-level decision-making despite the existence of

experts.

4. The Tension between Comfort and Control. Although participants felt that

automation resulted in a gain in comfort for some aspects of the home, they also

perceived a loss of control with increased automation. One participant described

32

the override functions he had created for the home while another said she feared

becoming “a prisoner of the system”.

5. Experimenting and Testing. Participants with a strong technical background

often considered the installation and iterating to be a hobby.

Holroyd et al. [25] identify the following key areas as part of the problem of adoption of

HA technologies:

1. Lack of a killer feature. The lack of one clear benefit is also something that is

required for HA to penetrate the mass market.

2. Usability. Usability refers to the way an end user will interact with various smart

devices and system preferences. If a user finds a system too complicated or

unintuitive they will simply not use it.

3. Interoperability. Although various HA protocols exist, such as X-10, Lonworks

and KNX, there still exist problems when different devices are connected

together. Universal connectivity rather than individual designed and controlled

smart devices can only happen when manufacturers use open and common

standards.

4. Retrofitting. Currently Home Automation technology is frequently installed

during construction of the building or during a major renovation. Expensive

cabling and planning is required to insure that all systems and devices are

connected together and therefore introducing the technology in older buildings is

usually not an easy task.

5. Cost. Cost has long been a problem for HA manufacturers. The requirement that

all non-smart devices in the home be replaced along with expensive installation

and cabling cost means that these technologies are generally only available to the

wealthy.

1.4 The Need for Ambient Intelligence

In view of the challenges described previously for Home Automation adoption we have

to ask ourselves an important question: Do we really need Home Automation or Ambient

Intelligence technologies?

Modular Framework for Ambient Intelligence Systems

33

Yes we do, and soon.

The 12th of October of 1999, a little more than a year before the ISTAG published its

2001 scenarios report, was declared by the UN as the “Day of 6 Billion” [10]. This was the

day when according to UN estimates the world population reached 6 billion people. A bit

over a decade later, on October 31st 2011, the Population Division of the United Nations

estimated that the world population hit the 7 billion mark [11]. The population of Mexico

rose from 97.5 million people in the year to 2000 to 108.4 million in 2010 [12].

Although the rate of growth of the world population is decreasing it is still positive. The

United States Census Bureau estimates that the 8 billion marker will be reached by the year

2025, and that the world population will have reached roughly 9.4 billion people by the

year 2050 [13]. UN estimates reach roughly the same figures [14]. This increase in the

world population translates into higher demands on our society’s infrastructure, on our

planet’s environment and on natural resources.

According to the United States Energy Information Administration the world’s total

energy consumption rose from 406 quadrillion Btu in the year 2000 to 524 quadrillion Btu

in 2010. The world energy consumption is estimated to reach 630 quadrillion Btu by 2020

and 820 quadrillion Btu by 2040. This increase in energy demand results in an increase in

greenhouse gas emissions. The US EIA estimated that world-energy related carbon dioxide

emissions increased from 23.6 billion metric tons in the year 2000 to 31.2 billion metric

tons in 2010. Energy-related carbon dioxide emissions are expected to reach 36.4 billion

metric tons in 2020 and 45.5 billion metric tons in 2040 [15].

Energy awareness has become a topic of interest within Ambient Intelligence research.

Home owners have a high interest in reducing energy consumption because this translates

into monetary savings [16], [26]. Usage awareness alone has the potential to reduce

consumption by 15% in private households. However standard electricity meters and the

suppliers’ analog billing systems lack the feedback capabilities that are necessary to

increase energy awareness and positively affect customers’ behavior. Smart metering helps

to alleviate this situation by considerably reducing the time from energy consumption to

user billing. Yet current solutions to smart metering are proprietary and generally not

34

generic or flexible, which makes it necessary to research generic solutions that are

independent of any proprietary hardware or software. Besides pure monitoring, AmI could

help users increase their monetary savings and reduce their energy consumption by using

energy pricing information to control devices.

The increase in world population places additional stress on the world’s cities

infrastructure. In a study of the impact of transport decisions on the economy and the

environment of the United Kingdom, it is estimated that traffic congestion may cost the

economy of England £22 billion a year in lost time by 2025 [17]. In the United States, the

Texas Transportation Institute estimated that in the year 2011 passengers and drivers

experienced 5.5 billion hours of travel delay, resulting in 2.9 billion gallons in wasted fuel

resulting in a congestion cost of $121 billion US dollars. It also estimated that the annual

congestion cost for each commuter was approximately $818 US dollars [18]. Traffic

congestion is increasing in major cities and delays are becoming more frequent in smaller

cities and rural areas.

World increase in traffic not only translates to traffic congestion. According to the

World Health Organization about 1.24 million people die each year as a result of road

traffic crashes. Road traffic injuries are the leading cause of death among young people,

aged 15 to 29 years. Half of those dying on the world’s roads are “vulnerable road users”:

pedestrians, cyclists and motorcyclists. Without action, road traffic crashes are predicted to

result in the deaths of around 1.9 million people annually by 2020. Additionally, every year

between 20 and 50 million people suffer non-fatal injuries, with many incurring a disability

as a result of their injury. Road traffic injuries cause considerable economic losses to

victims, their families, and to nations as a whole. An estimate carried out in 2000 suggests

that the economic cost of road traffic accidents was approximately $518 billion US.

National estimates have illustrated that road traffic crashes cost countries between 1 and

3% of their gross national product [19].

Traffic management and safety has been an interest area of AmI since the conception of

the field. One of the scenarios described in the 2001 ISTAG Scenarios for Ambient

Intelligence in 2010 report, the Carmen: traffic, sustainability & commerce scenario, was

Modular Framework for Ambient Intelligence Systems

35

targeted specifically to promote research in the areas of traffic management and safety

among others [20].

Although a reduction in the growth of the world’s population is definitely necessary,

such growth rate reduction brings additional problems regarding the needs of the elderly.

According to the World Health Organization, between 2000 and 2050 the proportion of the

World’s population over 60 years of age will double from about 11% to 22%. The absolute

number of people aged 60 years and over is expected to increase from 810 million to 2

billion over the same period. In other words, by the year 2050 one out of every five persons

in the world will be over 60 years of age; currently the proportion is one out of every 9. In

2050 older persons will outnumber the population of children (0 – 14 years) for the first

time in human history. Additionally the older population is itself ageing. Presently, the

oldest old population (aged 80 years or over) accounts for 14 percent of the population aged

60 years or over. The oldest old is the fastest growing age segment of the older population.

By 2050, 20 percent of the older population will be aged 80 years or over. The number of

centenarians (aged 100 years or over) is growing even faster, and is projected to increase

tenfold, from approximately 343,000 in 2012 to 3.2 million by 2050 [21].

This shift in the age distribution of the population is one of the more pressing matters for

Ambient Intelligence and, more specifically, the field of Ambient Assisted Living. On the

one hand people prefer to age at home [22], on the other, there may not be enough

caregivers available to provide support to the elderly. In a recent study by the AARP Public

Policy Institute, in 2010 there were more than seven potential caregivers for every person in

the high risk years of 80 plus. By 2030, it is projected that the ratio will be reduced to 4:1,

and by 2050 it is expected to further fall to 3:1 [23]. It is necessary to develop the

technologies that will allow people to age well and productively at home.

1.5 Developing Intelligent Environments

A core concept in Ambient Intelligence is the idea of a caring environment that senses

and intelligently reacts to people, anticipating their desires and intentions. This part of the

AmI vision has given context-awareness a prominent role and generated the assumption

that Artificial Intelligence should be able to detect, model, and understand daily situations

36

in a way that would allow the system to autonomously take the most appropriate actions.

This particular notion of intelligence is an integral part of some of the most enticing AmI

scenarios and has inspired a large body or research into new techniques for improving the

sensing, inference and reasoning process. However it has also become one of its most

challenged assumptions, generating a growing level of criticism that essentially questions

its feasibility in the near future [27].

Scaling up from prototypes that work in restricted environments to solutions that reliably

and robustly work in the full complexity of human environments is currently one of the

challenges of Ambient Intelligence. According to Leahu et al. [24], the problem of how

computational systems can make sense of, and respond sensibly to, a complex, dynamic

environment filled with human meaning is identical to that of Artificial Intelligence (AI).

The history of AI has been marked by numerous highs followed by crashing lows in terms

of success, recognition and funding. One such low was triggered by the undelivered

promises of early AI research, resulting in the AI funding winter of the 1970s. As the goal

of computational intelligence proved to be harder to achieve than initially expected, a

number of key areas of interest for AI began to emerge. These areas targeted individual

intelligent capabilities: planning, computer vision, natural language understanding, machine

learning, etc. In what later became known as classical AI, these problems were approached

by identifying real-world subjects relevant to the area, modeling them using symbolic

representations, and using rules of inference to manipulate those representations to derive

answers. Based on the principle of divide-and-conquer, progress was to be made in each of

these intelligent capabilities through functional decomposition and the functional modules

would eventually be combined into a complete intelligent system. It was anticipated that

this divide-and-conquer strategy would allow for measurable, incremental improvements in

AI algorithms that could eventually be merged into a single system. However researchers

slowly realized that these functional modules were related, each requiring others in order to

work. Because of this, such problems were sometimes termed AI-complete to suggest that a

solution to them would lead to a solution to the general problem of intelligence. As a

workaround to the challenge posed by AI-completeness some researchers focused on

solutions that worked in specific, situated contexts rather than solving the general problem

of intelligence.

Modular Framework for Ambient Intelligence Systems

37

Using a similar approach might aid in achieving a wider acceptance of Ambient

Intelligence. In [26] participants stated that they considered “smart” to be that which fits,

speeds up or improves their routines while avoiding unnecessary work. Another aspect of

“smartness” was that technology, no matter how powerful, needs to fit into everyday life.

Participants reported they did not see a benefit to automation if they could still perform the

same task faster or better manually. Merely being convenient was not sufficient for

automation to be considered “smart”. Technology itself is not smart, but applications of

technology could be smart. Participants felt that adding the functionality and mapping

functions to the different components was what resulted in instances of intelligence.

The development of “pseudo-intelligent” modules may lead to a wider demand of

Ambient Intelligent solutions. As noted by Mennicken and Huang [26], potential users have

difficulties understanding the benefits that this technology may bring. At the same time, the

lack of “field testing” limits the understanding by researchers of “real world” requirements

of Ambient Intelligence. “Pseudo-intelligent” modules which solve specific problems may

be the “killer app” that will bring AmI to everyday life.

Potential users also require time to adapt to the technology. In a study on smart home

interface preferences between US and Korean users, Jeong et al. found that participants

preferred to interact with a smart home using a physical device (computer, mobile phone or

remote control) rather than communication modalities such as speech or gesture. Perhaps

with frequent exposure to speech and gesture recognition interfaces people will get

accustomed to this form of interaction or, if preferences do not change, this opens

opportunities for new research in alternative natural user interfaces [25].

A key factor in the development of AmI solutions may be hobbyists and “hackers”.

Mennicken and Huang [26] and Brush et al. [135] found in their study that “hacking” of the

home was a primary motivation and a perceived major benefit for installing smart home

technology for some participants. They conclude that there may be an important open

research direction on providing support to those who want to engage with hacking the

home. Providing appropriate tools would not only support the hobby aspect of smart homes

but would also facilitate experimentation, innovation and, possibly, solutions better fitted to

the needs of individual households.

38

1.6 Simplicity for Multidisciplinary Development

Developing Ambient Intelligence systems from scratch requires a significant investment

of time and money [27], [28], [75]. As a result it would be very beneficial for hobbyists,

researchers and businesses interested in developing AmI systems to have a basic

development platform which could be used as a starting point in the development of their

own applications. We argue that the main features of such a basic development platform

should be the following [136], [81], [82], [139]:

 Flexibility. The development platform should make the least possible amount of

assumptions about the applications that will be developed. This will allow the

development platform to be used in a wide range of applications. Flexibility is

particularly important as AmI projects scale up from the vehicle, household and

office levels to building, city, country-wide and even global Ambient

Intelligence systems. These so called Large Scale Intelligent Environments

(LSIE) [29] will most likely consist of several sub-spaces each with their own

individual requirements and characteristics. As a result, a development platform

for Ambient Intelligence systems should possess the ability to adapt to many

different sub-spaces and must also scale seamlessly from small single-apartment

environments to multi-subspace scenarios.

 Ease of Use: Ambient Intelligence is a multidisciplinary field which can benefit

from contributions from researchers outside of the field of Computer Science and

from hobbyists. Therefore to encourage contributions by such researchers and

hobbyists it is very important that the development platform be as easy to use as

possible.

 Modular Design. To encourage incremental contributions it is necessary for

developers and researchers who use the development platform to be able to reuse

as easily as possible the work done by others. A modular design would provide

an easy way for developers and researchers to share their work.

There is evidence to suggest that such a development platform would promote work

reuse. An example of the benefits that a platform with such features provides can be

found in the Arduino development platforms.

Modular Framework for Ambient Intelligence Systems

39

The Arduino Uno is a microcontroller board based on the Atmel ATmega328. It has 14

digital input/output pins, six analog inputs, a 16-MHz crystal oscillator, a USB

connection, a power jack and an In Circuit Serial Programming header. It can be

powered through the USB connection or with an external power supply. The ATmega

328 has 32 KB of program memory, 2KB of RAM and 1 KB of EEPROM. Software

development for the board is done by means of a standard programming language based

on a simplified version of C++ and with a simple Processing-based IDE. Software is

transferred to the board using the USB connection [30], [31].

One of the great advantages of the Arduino is its ease of use. It takes around 20 to 30

minutes to set up the development environment and make a simple “Blinky” app (the

embedded systems equivalent of the Hello World application). As a result the Arduino

has gathered an enthusiastic user base. The Arduino is used to develop anything from

psychological and neurophysiological lab equipment to artistic light displays. Many

users, frequently from fields not related to Computer Sciences, make code and hardware

designs available freely on the Internet. Due to the modular oriented design of the

Arduino, there are many accessory boards, known as shields, available to developers.

The Arduino can be easily customized by developers by connecting shields with the

desired functionality or by developing their own shields.

It would be a great benefit to Ambient Intelligence research if a development platform

equivalent to the Arduino were available.

1.7 IEC 61499

Until recently, industrial control systems have fallen into one of two main camps, either

based on traditional distributed control systems (DCSs) or on programmable logic

controllers (PLCs). Distributed control systems, commonly used in petrochemical plants

and refineries, are structured around a few large central processors that provide supervisory

control and data acquisition and which communicate via local networks with multiple

controllers, instruments, sensors and actuators located throughout the plant. A system may

have both discrete instruments and out-stations with clusters of instruments with local

controllers. In a DCS, the main supervisory control comes from one or more central

40

processors. Instruments positioned out in the plant typically provide local closed loop

control, such as for PID control.

In contrast, for many machine control and production processes, particularly in

automotive production lines, systems have generally been designed using programmable

logic controllers (PLCs). A large PLC system will generally have a number of PLCs

communicating via one or more proprietary high-speed networks. Each PLC will typically

be connected to a large number of input and output (I/O) signals for handling sensors and

actuators. In some cases discrete instruments, for example for temperature and pressure

control, are also connected to PLCs.

With both design approaches, systems have tended to be developed by writing large

monolithic software packages, which are generally difficult to re-use in new applications

and are notably difficult to integrate with each other. The data and functionality of one

application are not readily available to other applications, even if the applications are

written in the same programming language and running in the same machine. Significant

system development time is concerned with mapping signals between devices and

providing drivers to allow different types of instruments and controllers to communicate.

Both types of systems, DCS and PLC, tend to be difficult to modify and extend and do not

provide the high degree of flexibility required for advanced and flexible automation [133].

The Function Block, first introduced by the IEC 61131 standard on programming

languages for programmable logic controllers, is a well-known and widely used construct

by control engineers. IEC 61499 defines a general model and methodology for describing

function blocks in a format that is independent of implementation. The methodology can be

used by system designers to construct distributed control systems. It allows a system to be

defined in terms of logically connected function blocks that run on different processing

resources [129].

Modular Framework for Ambient Intelligence Systems

41

1.8 Modular Framework for Ambient Intelligence

Systems

Current AmI systems are not “researcher friendly”. After more than a decade of

considerable research the field has not yet matured to the point of enabling incremental

research. Ambient Intelligence is a highly multi-disciplinary field which involves

communications, control systems, electronics, artificial intelligence, human-computer

interfaces, distributed systems and others. However there is not a common set of tools

which researchers from different disciplines can use to contribute to the field of AmI

research.

Several frameworks have been developed in an attempt to find a set of tools which

facilitate the development of commercial AmI systems and also to allow a “standard base”

for researchers of different fields to contribute to Ambient Intelligence research. So far

none of those frameworks are in widespread use. Although proposed frameworks address

important issues, such as modularity, which are vital for the development of flexible AmI

systems, they also tend to be rather complex platforms which require high investment of

both time and effort. As a result AmI systems continue to be developed on many occasions

“from scratch”. We consider this to be one of the main roadblocks towards incremental

research in the field.

To address these issues we propose a minimalist modular framework for the

development of Ambient Intelligence systems. This framework is based on the function

block abstraction used in the IEC 61499 standard for distributed control systems. Through

the use of function blocks, the framework promotes component reuse which allows

researchers from different fields to easily apply previous results in new developments.

This minimalist modular framework is also targeted at the development of commercially

viable AmI systems. Using the framework, system integrators can develop highly

customizable AmI systems where end users can add new functions with a degree of

difficulty analogous to hooking up a common home appliance or installing a new program

on a computer.

42

Figure 1-2. Funblocks Diagram.

1.8.1 Thesis Proposal

Currently the development of AmI systems is frequently performed “from the ground

up”, meaning that different sensor and actuator technologies have to be integrated with

embedded platforms and communications systems in order to have a development

environment on which to test research ideas. Unless such research is specifically focused on

AmI systems platform development, this approach is far from ideal.

The development of custom research platforms for AmI systems has two main

drawbacks. First of all sensors, actuators, embedded systems and communications can be

complex and heterogeneous thus making the development of a system with these

technologies neither simple nor brief. On the other hand, the use of custom made research

platforms discourages the reuse and third party testing of research results.

Modular Framework for Ambient Intelligence Systems

43

The Modular Framework for Ambient Intelligence Systems described in this proposal

aims at providing a standard and vendor neutral platform for AmI systems development,

both for research and commercial purposes. To encourage the reuse of research results and

therefore promote incremental research in AmI systems, our framework is based on the use

of function blocks linked through an event driven middleware. Given that our framework is

based on the use of the function blocks abstraction we call this framework Funblocks [81],

[82]. Correspondingly the middleware, which can be used in other systems that benefit

from a middleware with component supervising capabilities, is called Midblocks [139].

1.8.2 Modular Framework Components

The Funblocks framework is made up of the following components (Figure 1-2):

 Controller. Coordinates installation/removal of modules, sensors, actuators and other

components. Process system failures through the reception of failure events, and

performs communications with other systems such as Automated Repair Services.

 Middleware. Distributes events generated by system components and provides a link

between diverse communications systems such a RS-485 and Ethernet.

 Function Modules. Process sensor data and generate events for other function modules

or actuators.

 Sensor/Actuators. Sensors and actuators allow an AmI system to gather information

about the environment and to perform adjustments to said environment.

 Human Computer Interfaces. Human Computer Interfaces allow users to interact with

the AmI system.

 Module and Sensor/Actuator Catalog. Stores Module and Sensor/Actuator Records.

These records contain a description of the services provided by a class of sensor,

actuator or function block.

44

2 Related Work

Ambient Intelligence systems are required to interact with a wide variety of other

systems and devices. AmI systems have to interact with different types of sensors and

actuators in order to gather information from the environment, and to modify the

environment in a meaningful way. On occasions these sensors and actuators will come in

the form of a domotic or building automation system. Using these different types of

sensors, actuators and systems poses a challenge in the development of Ambient

Intelligence systems [136].

AmI systems have diverse applications, for example Ambient Assisted Living (AAL),

and each of these applications has its own requirements. Several frameworks, many of them

aimed at specific applications have been developed or are currently under development. In

this section a description of some of the sensor, actuator, and building automation

technologies currently available is provided. Some frameworks for the development of

Ambient Intelligence systems are also briefly described along with a review of currently

available middleware.

2.1 Building Automation Systems

Building automation system (BAS) is an umbrella term used to refer to a wide range of

computerized building control systems. From special-purpose controllers to standalone

remote stations, to larger systems including central computer stations and printers, a BAS

comprises several subsystems which are connected in various ways to form a complete

system. The system has to be designed and engineered around the building itself to serve

the services systems for which it is intended. Consequently, although the component parts

used may be identical, no two systems are the same, unless they are applied to identical

buildings with identical services and identical uses [32].

Building services include HVAC systems, electrical systems, lighting systems, fire and

security systems and lift systems. In industrial buildings they may also include the

compressed air, steam and hot water systems used for the manufacturing process. A BAS

Modular Framework for Ambient Intelligence Systems

45

may be used to monitor, control and manage all or just some of these services. In the

following sub-sections we briefly describe some of the most commonly used

communication standards in the BA industry.

2.1.1 BACnet

BACnet is a data communication protocol for BA and control networks. BACnet has

been developed under the endorsement of the American Society of Heating, Refrigerating

and Air- Conditioning Engineers (ASHRAE). It is an American national standard, a

European standard, an ISO global standard and the national standard in more than 30

countries. It is the only open protocol that was designed originally for BA and supports

functions such as scheduling, alarming and trending [32].

To achieve interoperability across a wide spectrum of equipment, the BACnet

specification consists of three major parts. The first part describes a method for

representing any type of BA equipment in a standard way. The second part defines

messages that can be sent across a computer network to monitor and control such

equipment. And the third part defines a set of acceptable LAN architectures that can be

used to convey BACnet communications.

BACnet provides a standard way of representing the functions of any device, such as

analogue and binary inputs and outputs, schedules, control loops, and alarms, by defining

collections of related information called ‘objects’, each of which has a set of ‘properties’

that further characterize it. Each analogue input, for instance, is represented by a BACnet

‘analogue input object’ which has a set of standard properties such as present value, sensor

type, location, alarm limits and so on. One of the object’s most important properties is its

identifier, a numerical name that allows BACnet to unambiguously access it. BACnet

defines 25 standard object types. A BACnet device does not need to support all object

types, but if an object type is supported, it must comply with the standard object model for

that object type.

BACnet employs the OSI Model as its reference model. The BACnet protocol defines a

number of data link / physical layers, including Ethernet, BACnet/IP, Point-To-Point over

RS-232, Master-Slave/Token-Passing over RS-485, ZigBee and LonTalk.

46

2.1.2 LonWorks

LON technology is used primarily for the decentralized processing of automation

functions in room automation. LON can carry out monitoring, controlling and regulating

functions for building services such as heating and ventilation systems. The focus of using

LON technology at the automation level is not to decentralize individual functions, but to

provide a standardized integrated bus system [33].

The heart of the LonWorks system is an integrated circuit called Neuron Chip. The

Neuron Chip was developed by Echelon Corporation and comprises three processors that

provide both communication and application processing capabilities. The Neuron Chip has

to be used in conjunction with a transceiver for a specific medium; twisted pair, power line,

radio frequency and fiber-optics. The most common medium employed in LonWorks is the

twisted pair while the types of Neuron Chip most commonly used are the 3120 and the

3150 made by Toshiba and Cypress. The Neuron Chip type 3120 is usually used in simple

devices that do not carry out complex functions, while the type 3150 is intended for more

sophisticated applications.

Both types of Neuron Chips have three internal processors where each processor carries

out different functions:

 CPU 1 is responsible for physical accessing the transmission medium. A network

interface provides access to the transceiver. This represents layer one and two of

the ISO/OSI model.

 CPU 2 is responsible for transmitting network variables and represents layers

three to six of the ISO/OSI model.

 CPU 3 processes application programs but does not access the network. This is

done by the other two CPUs.

The Neuron Chip 3120 has read-only memory which stores the LonTalk protocol, the

Neuron operating system and the predefined operating routines for input/output (I/O)

conditioning. On the other hand the Neuron Chip 3150 does not have internal ROM, but

relies instead on external memory to store the aforementioned functions and the application

program.

Modular Framework for Ambient Intelligence Systems

47

2.1.3 KNX

The KNX standard describes an open system concept for distributed home and building

automation and control. KNX covers the full scope of home and building automation and

control including lighting, shading, shutters and blinds, heating, ventilation, and air

conditioning (HVAC), and remote meter reading. KNX emerged in 2002 as a merger

between the European Installation Bus (EIB), Batibus and the European Home System

(EHS) standards. The aim of this merger was to create a single European home and

building electronic control systems standard [34], [35].

The KNX standard defines the network protocol specification, rules and definitions of

how a KNX system is managed and how devices implemented by different vendors have to

behave to achieve internetworking. The KNX protocol stack is based on the ISO/OSI

reference model. Since different communication media are supported, the KNX protocol

stack is divided into a medium-dependent and medium-independent parts. The medium-

dependent part of the protocol stack consists of the physical layer and the lower level of the

data link layer (DL) while the medium-independent part includes the upper level of the DL,

the network layer (NL), the transport layer (TL), and the application layer (AL).

For physical media KNX provides a choice of dedicated twisted-pair cabling, power line

transmission, and RF communication. Communication over IP networks as a first class

medium is currently in the draft stage.

The main KNX medium is the twisted-pair cabling variant known as KNX TP1. The

single twisted pair carries the signal as well as 29VDC link power. Data is transferred in a

character oriented manner via half-duplex bidirectional communication at a transmission

rate of 9600 bps. TP1 allows free topology wiring with cable lengths of up to 1000 meters

per physical segment. Up to four segments can be concatenated using bridges, called line

repeaters, forming a line. A line can contain up to 256 devices and up to 16 lines can be

interconnected by main lines to form an area. Finally, up to 15 main lines can be

interconnected by a common backbone line using routers called backbone couplers.

Medium access on TP1 is controlled using CSMA with bit-wise arbitration on message

priority and station address. Four priority levels are provided.

48

KNX Powerline 110 (PL110) uses the 230V/50Hz electrical power supply network for

data and power transmission (in compliance with EN 50065-1). Half-duplex bidirectional

communication is supported. KNX data is modulated using spread frequency shift keying

(SFSK) with a center frequency of 110 kHz and a maximum transmission rate of 1200 bps.

The signal is injected between phase and neutral and is superimposed on the sinusoidal

oscillation of the mains. Repeaters can be installed in three-phase networks if passive phase

coupling is no sufficient. Medium access control is based on a slotted technique to reduce

the probability of collisions: After the minimum silence period between two frames has

elapsed, two time slots are reserved for pending high-priority transmissions, followed by

seven more from which nodes with pending standard priority transmissions choose one at

random as their starting time.

KNX RF uses a sub-band in the 868 MHz frequency band reserved for short-range

devices by European regulatory bodies. Data is transmitted at a rate of 16.4 kbps using

frequency shift keying (FSK) modulation and Manchester encoding. The KNX RF frame

format is based on FT3 as specified in IEC 60870-5. To minimize hardware requirements

KNX RF not only supports bidirectional communication but unidirectional transmit-only

devices are also supported. KNX RF devices communicate peer-to-peer.

KNXnet/IP currently focuses on scenarios for enhancing central and/or remote

management. The KNXnet/IP Core Services define the packet structure and methods

required for discovery and self-description of a KNXnet/IP server and for setting up and

maintaining a communication channel between the client and the server. KNXnet/IP

specifies several service protocols. KNXnet/IP tunneling describes the point-to-point

exchange of KNX data over the IP network. Its main purpose is to replace USB or EIA-232

connections between KNX network interfaces and PC workstations or servers by tunneling

L_Data frames. Acknowledgements, sequence counters and a heartbeat mechanism are

used to ensure robustness. KNXnet/IP routing is a point-to-multipoint protocol for routing

messages between KNX lines over a high-speed IP backbone. KNXnet/IP routers send

UDP/IP multicast messages to other KNXnet/IP routers on the same IP network, which in

turn filter the messages according to their destination or group address and pass them to the

native KNX segment. KNXnet/IP device management allows configuration and diagnostic

Modular Framework for Ambient Intelligence Systems

49

of KNXnet/IP tunneling interfaces or routing devices via the IP network. While KNXnet/IP

is designed for devices with one IP and one traditional KNX network interface, the

upcoming KNX IP is also intended for end devices that are solely connected to the IP

medium.

The DL defines services to send and receive frames over the network.

Acknowledgement is available as an option for some network media. The two most

important services defined are L_Data for peer-to-peer data frame transfer and L_Poll_Data

for a master collecting data from slaves in a so-called polling group. Furthermore, the DL

defines a generic addressing scheme that is common to all available network media.

The NL uses the services provided by the DL and offers four different NL services: a

unicast service, a multicast service, a domain-wide broadcast service, and a system

broadcast service. For all four services, the individual address of the sender is used as the

source address while the destination address depends on the used service. Additionally the

NL introduces a hop count which is decremented and examined by routers and repeaters to

perform filtering based on the amount of elapsed hops of a packet.

The TL uses the NL services and adds a connection-oriented unicast service. Using this

service a device can establish a reliable unicast connection to another device. The state

machine used for this service implements an acknowledgement mechanism such that data

packets are retransmitted in case of a negative of absent acknowledgement. The four NL

services are also present unchanged in the TL.

The AL layer on top of the stack provides several AL services which can be broadly

classified in two different classes: data process exchange (process data communication) and

configuration and maintenance tasks (management communication).

The internetworking and application model specifies how data is represented in KNX

and how it is accessible via the network. Data points associated with functional blocks

(FBs) are a central concept in this model. A KNX data point may be related to a sensor

value/actuator state or it may be a parameter that controls the behavior of the user

application. The necessary association between data points is established via bindings.

KNX also specifies the application interface that is presented to user applications for

50

interacting with remote data points. Finally, profiles define which parts of the KNX

specification have to be implemented and ensure interworking of devices with the same

profile that are provided by different manufacturers.

2.2 Ambient Intelligence Frameworks

Ambient Intelligence has been a field of intense research during the last decade. As part

of the research done in the field of AmI systems several frameworks have been developed.

In this section we provide a brief description of some of these frameworks.

2.2.1 AmIGo

The AMIGO Project was a project developed by fifteen European companies and

research organizations [36–41]. The project was concluded in 2008.

Figure 2-1. AmIGo Architecture.

Modular Framework for Ambient Intelligence Systems

51

The aim of the AMIGO Project was to develop a middleware that dynamically integrates

heterogeneous systems to achieve interoperability between services and devices. Through

this middleware devices such as home appliances, multimedia players that communicate

through UPnP, and personal devices are connected in the home network to work in an

interoperable way. This interoperability across different domains can also be extended

across different homes and locations. AMIGO focused on four application domains:

Personal Computing, Mobile Computing, Consumer Electronics and Home Automation.

The AMIGO architecture follows the paradigm of Service orientation, which allows

developing software as services delivered and consumed on demand. Discovery

mechanisms can be used to find and select the functionality that a client is looking for. The

AMIGO architecture is formed by the following three main components (see Figure 2-1):

Base Middleware layer. The Base Middleware layer contains the functionality necessary

to integrate a networked environment such as discovery, interoperability, security, quality

of service, content distribution, billing, etc. This solution is based on the semantics that are

used to communicate and discover available services and devices in the network, including

those based on existing communication and discovery standards. Existing hardware and

software and new services can be discovered and composed independently. Supported

service discovery protocols are UPnP, SLP and WS-Discovery while supported service

interaction protocols are SOAP and RMI.

AMIGO’s Middleware layer is further subdivided into the following components:

a) Interoperable Service Discovery and Interaction (SD&I) middleware.

b) Semantic service discovery.

c) Service composition, adaptation and execution.

d) Domotic infrastructure.

e) Content discovery & adaptation.

f) Content storage & distribution.

52

g) Security.

h) Accounting and billing.

Intelligent User Services layer. The Intelligent User Services layer contains the

functionality needed to facilitate an ambient in-home network. This layer brokers between

users and service providers, provides context information, combines multiple sources of

information and makes pattern-based predictions. Information is tailored to user profiles

and adapts to the user’s situation and changes in context.

The Intelligent User Services layer of the AMIGO Project is formed by the following

components:

a) Context Management.

b) User modeling and profiling.

c) Awareness and notification.

d) User interface services.

e) User privacy.

Programming and Deployment framework. The Programming and Deployment

framework contains the resources necessary for programmers to develop AMIGO aware

services. This .NET/OSGi based programming framework contains libraries for service

description, encryption, etc.

2.2.2 Home OS

The goals of HomeOS are to simplify the management of home networks and the

development of applications [42], [43], [44], [45], [46], [47], [48]. It accomplishes these

goals as follows. First, it provides one place to configure and secure the home network as

one connected ensemble. Users do not have to deal with multiple different interfaces and

semantics. Second, it provides high-level abstractions to applications. Developers do not

have to worry about low-level details of devices and about device inter-connectivity.

HomeOS is responsible for enforcing user preferences for device access and coordination,

Modular Framework for Ambient Intelligence Systems

53

which does not have to be supported by individual applications. For example, if a user

dislikes noise at night, she can disable night-time access to all speakers; HomeOS will then

automatically deny access to all applications that try to use the speakers.

With HomeOS, users enable new tasks by installing new home applications. Because

homes are heterogeneous, this process must be streamlined such that users do not

inadvertently install applications that will not work in their homes. For instance, if an

application for keyless entry requires a fingerprint scanner, users without such devices

should be warned against purchasing such an application.

Figure 2-2. Home OS Architecture.

Inspired by the iPhone model, HomeOS is designed to be coupled with a HomeStore to

simplify the distribution of applications and devices. The HomeStore verifies compatibility

between homes and applications. Based on users’ desired tasks, it recommends applications

that work in their homes. If a home does not have devices required for those tasks, it

recommends appropriate devices as well. For instance, if a user wants integrated

temperature and window control, the HomeStore can recommend window controllers if

there exists an application that combines those window controllers with the user’s existing

thermostat. In addition, the HomeStore can perform basic quality checks and support rating

54

and reviewing to help identify poorly engineered applications and devices. HomeStore is

not intended to become the sole gatekeeper for home applications. Towards this end, Home

OS allows for multiple HomeStores and users can visit the one they trust most.

2.2.3 MPOWER

The MPOWER project developed a middleware platform to support the rapid

development and deployment of integrated services for the elderly and cognitively disabled.

MPOWER provides a domain specific architecture that facilitates interoperable, integrated,

secure and standardized solutions that speed up the development process and create market

possibilities for interested parties. Work was aligned with the standardization activities

within the HL7 (Health Level 7) organization which was a key prerequisite for exchanging

messages between different health providers [49], [50], [51], [52], [53].

Figure 2-3. Mpower Architecture.

As shown in Figure 2-3, the MPOWER SOA architecture consists of five layers:

Modular Framework for Ambient Intelligence Systems

55

 Application layer. Provides graphical user interfaces and serves as an entry point for

using the services.

 Business Process layer. Defines the business rules of the applications that are created

using the MPOWER middleware.

 Services layer. Contains the implementations of the services that are created within the

MPOWER platform.

 Service Components layer. Service components expose the functionality of the

components and databases in the Resource layer.

 Resource layer. This layer consists of existing custom built applications, such as

databases storing patient-administrative, medication, and management information.

Other relevant resources in this layer are smart sensors such as physiological

monitoring devices, temperature sensors and burglar alarm systems.

The services provided are grouped into the following five categories:

 Information (Medical and Social) services. These services enable management of

social information and events of the patient. For instance, these services handle

information regarding patients’ schedules, personal information, and social contacts.

 Interoperability services. These services enable interoperability of MPOWER platform

with the other platforms that are relevant for health-care application. Primarily these

services enable integration of medical services with existing medical systems of

hospitals or particular state medication systems.

 Sensor services. Sensor services provide functionality to add, remove, and adjust

devices as well as retrieve sensor information. The services expose both a management

mechanism and data access thorough an easy to use and standardized interface.

 Contextual services. These are services related to the monitoring and management of

the context of a patient. For instance, these services provide information about location

of the patient in his house. The context services are realized through a set of sensors

and actuators located in the patient’s premises.

 Security services. Ensure sufficient protection for any of the MPOWER enabled

services when they are used. This implies that security middleware is orthogonal to the

56

other services in a way that is an implicit part of each service, ensuring a satisfactory

security level of any combination of services in the MPOWER platform.

2.2.4 Soprano

SOPRANO’s goal is to build an AAL system for elderly people with functional

impairments [54], [55], [56], [57]. SOPRANO seeks to provide flexible and personalized IT

services that maximize the independence of elderly people with functional impairments and

help them in retaining their dignity. Examples of such services are medication reminding,

home automation, coping with increasing frailty, home safety and security, activity

monitoring, keeping healthy and active, coping with cognitive ageing and forgetfulness,

combating social isolation, and countering boredom.

Figure 2-4. Soprano Ambient Middleware.

Modular Framework for Ambient Intelligence Systems

57

The core of the SOPRANO system is SAM, the SOPRANO Ambient Middleware,

which provides its intelligence by receiving user commands and data from sensors, enriches

them semantically and provides appropriate reactions via actuators in the house. Planned

sensors are, for example, smoke, temperature, door status, location of the user by Radar or

RFID, its health status and so on. Planned actuators are speech synthesizers, digital TVs

with avatars, device regulators (for switching devices on/off or modifying their behavior),

emergency calls to a central and more. Additionally the more static context of the house

and the user shall be taken into consideration when performing concrete actions.

SAM can be divided into the following three main components (Figure 2-4):

 Context Manager. The Context Manager constantly analyzes incoming sensor events

as well as the status of networked devices and appliances and tries to deduce higher-

level context information. The results of this analysis are context parameters change

events of a high semantic level. Context is defined as the user’s situation in terms of all

the temporal, personal, organizational, environmental, and even global conditions

surrounding the user at a certain instant in time. Examples are the user’s current

activity and long lasting profile, the user’s environment like lighting and temperature,

connectivity parameters and so on. The context parameters change events are the input

of the Procedural Manager.

 Procedural Manager. The Procedural Manager provides meaningful reactions to

contextual changes or explicit user requests. Explicit user requests are handled by a

subcomponent called the User Input Analyzer or UIA. By analyzing the new situation,

the Procedural Manager compiles an abstract process description based on a repository

of process templates. The abstract process description is a standard workflow

description which contains abstract service requests instead of concrete service

bindings. It can be parameterized with contextual variables, is based on pre-defined

templates and is annotated with context-aware metadata. The procedural manager can

obtain state information by invoking ad-hoc queries to the context manager. The result

from this second step is a “plan of goals” which serves as input for the composer.

 Composer. The Composer has two objectives. First it serves as SAM’s interface to the

“real world” through sensor information. All incoming and outgoing service calls are

58

handled by the Composer. Second, it receives the “plan of goals” from the Procedural

Manager, intelligently searches, compares, composes and parameterizes adequate

concrete services in order carry out the process in a concrete manner and execute it

through actuators.

2.2.5 universAAL

The universAAL project seeks to combine the advantages and strengths of still ongoing

or already finished research projects to create a universally applicable AAL platform [58–

62]. universAAL reuses components and concepts from the AMIGO, GENESYS, OASIS,

MPOWER, PERSONA and SOPRANO projects. universAAL seeks to achieve its goals

through the development of an open source middleware targeted towards health, home

automation, entertainment, and energy efficiency applications and services. universAAL

will also provide reference use cases and a tool chain for extending platform capabilities.

Support for the creation of AAL services and applications will be provided through the

universAAL Developer Depot and uStore.

Based on the GENESYS and PERSONA projects universAAL makes use of a layered

design. The layers that make up the universAAL platform are the following:

 Middleware. The Middleware extends the native system layer of the different physical

nodes participating in an AAL system. It hides the distribution of these nodes as well

as the possible heterogeneity of their native system layers. Additionally this layer acts

as a container for the integration of the components from the above layers and

facilitates the communication among them.

 Generic Platform Services. The Generic Platform Services layer provides basic

platform services like context management, service management, and a framework for

supporting complex user interactions.

 AAL Platform Plug-Ins. On this layer special platform services can be introduced to

extend the basic functionality of the framework. This might be needed in case high-

level services have specific demands on, for example, data-mining of context

reasoning.

Modular Framework for Ambient Intelligence Systems

59

 AAL Applications and Services. The AAL Applications and Services layer encapsulates

all applications and services that directly provide support and assistance to the end

user.

60

3 Technical Background

In this section we provide some background material necessary for a proper

understanding of the Modular Framework for Ambient Intelligence Systems.

3.1 Ubiquitous Computing

Technology in computing has experienced great changes over the last years. In the past,

mainframe computers dominated the computing scene based on the principle of one

computer serving many people. In the 1980s, mainframe computers were replaced by

personal computers where the emphasis was one computer to one person. Currently, with

increased computing power available at always more affordable prices, it is common place

for multiple computers to serve one person.

As a result we inhabit an increasingly digital world, populated by a profusion of digital

devices designed to assist and automate more human tasks and activities, to enrich human

social interaction and enhance physical world interaction. The physical world environment

is being increasingly digitally instrumented and populated with embedded sensor based

control devices. These can sense our location and can automatically adapt to it, easing

access to localized services, e.g., doors open and lights switch on as we approach them.

Positioning systems can determine our current location as we move. They can be linked

with other information services to, for example, propose a map of a route to our destination.

Devices such as contactless keys and cards can be used to gain access to protected services,

situated in the environment. E-paper and e-books allow us to download current information

onto flexible digital paper, over the air, without going into any physical bookshop [63],

[64], [73].

A world in which computers disappear into the background of an environment

consisting of smart rooms and buildings was first articulated over fifteen years ago in a

vision called ubiquitous computing by Mark Weiser in 1991 [67]. The term ubiquitous,

meaning appearing or existing everywhere, combined with computing to form the term

Ubiquitous Computing (UbiComp) is used to describe ICT (Information and

Communication Technology) systems that enable information and tasks to be made

Modular Framework for Ambient Intelligence Systems

61

available everywhere, and to support intuitive human usage appearing invisible to the user.

Ubiquitous computing represents a powerful paradigm shift in computation, where people

live, work, and play in a seamless computer enabled environment, interleaved into the

world. UbiComp postulates a world where people are surrounded by computing devices

and a computing infrastructure that supports us in everything we do.

There might seem to be a paradox within the UbiComp vision in, how can something be

everywhere yet be invisible? The point here is not that one cannot see (hear or touch) the

technology but rather that its presence does not intrude into the environment, either in terms

of the physical space or the activities being performed. This description of transparency is

strongly linked to the notion that devices and functions are embedded and hidden within

larger interactive systems.

Human computer interaction (HCI) with ICT systems has conventionally been structured

using a few relatively expensive access points. This primarily uses input from keyboard and

pointing devices which are fairly obtrusive to interact with. Weiser’s vision focuses on

digital technology that is interactive yet more non obtrusive and pervasive. His main

concern was that computer interfaces are too demanding of human attention. Unlike good

tools that become an extension of ourselves, computers often do not allow us to focus on

the task at hand but rather divert us into figuring out how to get the tool to work properly.

Weiser used the analogy of writing to explain part of his vision of ubiquitous computing.

Writing started out requiring experts such as scribes to create the ink and paper used to

present the information. Only additional experts such as scholars could understand and

interpret the information. Today, hard copy text printed on paper and soft copy text

displayed on computer based devices are very pervasive. The majority of people can access

and create information without consciously thinking about the processes involved in doing

so.

Summing up, UbiComp systems are situated in human centered personalized

environments, interacting less obtrusively with humans. UbiComp systems are part of, and

used in, physical environments, sensing such physical environment. Since they are aware of

the physical environment they can adapt to it, and are able to act on and control it. Hence,

62

Weiser’s vision for ubiquitous computing can be summarized in the following core

requirements [65], [66], [67], [73]:

 Computers need to be networked, distributed and transparently accessible.

 Human computer interaction needs to be hidden more.

 Computers need to be context aware in order to optimize their operation in their

environment.

 Computers can operate autonomously, without human intervention, be self-governed,

in contrast to pure human computer interaction.

 Computers can handle a multiplicity of dynamic actions and interactions, governed by

intelligent decision making and intelligent organizational interaction. This may entail

some form of artificial intelligence in order to handle:

o incomplete and non-deterministic interactions,

o cooperation and competition between members of organizations,

o richer interaction through sharing of context, semantics and goals.

3.1.1 Distributed Systems Aspects of Ubiquitous Computing

Pervasive computers are networked computers. They offer services that can be locally

and remotely accessed. As a result ICT systems are naturally distributed and interlinked.

Multiple systems often behave as, and appear as, a single system to the user, i.e., multiple

systems are transparent or hidden from the user. Individual systems may be heterogeneous

and may be able to be attached and detached from the ICT system infrastructure at any time

[64], [73].

A key property of distributed systems is openness. Openness allows systems to avoid

having to support all their functions at design time thus avoiding closed implementation.

Distributed systems can be designed to support different degrees of openness to

dynamically discover new external services and to access them. For example, a UbiComp

camera can be set to discover printing services and to notify users that these are available.

The camera can then transmit its data to the printer for printing.

On the other hand, openness often introduces complexity and reduces availability. When

one function is active, others may need to be deactivated, e.g., some devices cannot record

Modular Framework for Ambient Intelligence Systems

63

one input while displaying another one. Openness can introduce heterogeneous functions

into a system that are incompatible and make the complete system unavailable. Openness

can reduce availability because operations can be interrupted when new services and

functions are set up.

Many systems are still designed to restrict openness and interoperability even when

there appears to be strong benefits not to do so. For example, messages stored in most home

answering machines cannot easily be exported, for auditing purposes or as part of a

discourse with others. Vendors may deliberately and selectively reduce openness, e.g.,

transparently ignore the presence of another competitor’s services, in order to preserve their

market share.

Distributed ICT systems are typically designed in terms of a layered model comprising:

 A hardware resource layer at the bottom, e.g., data source, storage and communication.

 Middleware and operating system services in the middle, e.g., to support data

processing and data manipulation

 A human computer interaction layer at the top.

Such a layered ICT model oversimplifies the UbiComp system model because it does

not reflect heterogeneous patterns of systems’ interaction. This ICT model typically

incorporates only a simple explicit human interaction and simple physical world interaction

model.

3.1.2 Implicit Human Computer Interaction

Much of human device interaction is designed to support explicit human computer

interaction which is expressed at a syntactical low level, for example to activate particular

controls in a particular order. In addition, as more tasks are automated, the variety of

devices increases and thus more devices need to interoperate to achieve a given set of tasks.

The sheer amount of explicit interaction can easily disrupt, distract and overwhelm users.

Interactive systems need to be designed to support greater degrees of implicit human

computer interaction [64], [65], [66], [67], [73].

64

The concept of the calm or disappearing computer model has several dimensions. It can

mean that programmable computers as we know them today are replaced by something

else, for example, by human brain implants that are no longer physically visible. It can

mean that computers are present but are hidden, e.g., they are implants or miniature

systems. Alternatively, the focus of the disappearing computer can mean that computers are

not really hidden; they are visible but are not noticeable as they form part of the peripheral

senses. They are not noticeable because of the effective use of implicit human computer

interaction. The forms and modes of interaction to enable computers to disappear will

depend in part on the target audience because social and cultural boundaries in relation to

technology drivers may have different profile clustering attributes. For some groups of

people, ubiquitous computing is already here. Applications and technologies, such as

mobile phones, email and chat messaging systems, are considered as a necessity by some

people in order to function on a daily basis.

The original UbiComp vision focused on making computation and digital information

access more seamless and less obtrusive. To achieve this requires in part that systems do

not need users to explicitly specify each detail of an interaction to complete a task. For

example, using many electronic devices for the first time requires users to explicitly

configure some proprietary controls of a timer interface. It should be implicit that if devices

use absolute times for scheduling actions, then the first time the device is used, the time

should be set. This type of implied computer interaction is referred to as implicit human

computer interaction (iHCI). iHCI can be defined as ‘an action, performed by the user that

is not primarily aimed to interact with a computerized system but which such a system

understands as input’.

Reducing the degree of explicit interaction with computers requires striking a careful

balance between several factors. It requires users to become comfortable with giving up

increasing control to automated systems that further intrude into their lives, perhaps without

the user being aware of it. It requires systems to be able to reliably and accurately detect the

user and usage context and to be able to adapt their operation accordingly [68].

Modular Framework for Ambient Intelligence Systems

65

3.1.3 Context Awareness

A fundamental aspect of UbiComp is context awareness [69], [70], [71], [72]. There are

three main types of context awareness supported in UbiComp:

 Physical environment context. This refers to context pertaining to some physical world

dimension or phenomena such as location, time, temperature, rainfall, light level, etc.

 Human context (or user context or person context). In this context interaction is

usefully constrained by users in terms of identity, preferences, task requirements,

activities, experience, and knowledge.

 ICT context or virtual environment context. Particularly important in a distributed

system is awareness of the services that are available internally, externally, locally and

remotely in the system.

Generally, the context aware focus of UbiComp systems is on physical world awareness,

often in relation to user models and tasks. Ubiquitous computers can utilize where they are

and their physical situation or context in order to optimize their services on behalf of users.

This is sometimes referred to as context awareness in general but more accurately refers to

physical context awareness. A greater awareness of the immediate physical environment

could, for example, reduce the energy and other costs of physical resource access.

User context awareness, also known as person awareness, refers to ubiquitous services,

resources and devices being used to support user centerd tasks and goals. For example, a

photographer may be primarily interested in capturing digital memories of people (the user

activity goal) rather than capturing memories of places or of people situated in places. For

this reason, a UbiComp camera can be automatically configured to detect faces and to put

people in focus when taking pictures.

An important design issue for context aware systems is to balance the degree of user

control and awareness of their environment, i.e. active versus passive context awareness. At

one extreme, in a (pure) active context aware system, the UbiComp system is aware of the

environment context on behalf of the user and automatically adjusts the system to the

context without the user being aware of it. This may be useful in applications where there

are strict time constraints and the user would not otherwise be able to adapt to the context

66

quickly enough. An example of this is a collision avoidance system built into a vehicle to

automatically brake when it detects an obstacle in front of it. In contrast, in a (pure) passive

context aware system, the UbiComp system is aware of the environment context on behalf

of the user but does not make any automatic adjustments. It just reports the current context

to the user without any adaptation, for example, a positioning system reports the location of

a moving object on a map.

3.1.4 Autonomy

Autonomy refers to the property of a system that enables a system to control its own

actions independently [72], [73]. An autonomous system may still be interfaced with other

systems and environments. However, it controls its own actions. Autonomous systems are

defined as systems that are self-governing and are capable of their own independent

decisions and actions. Autonomous systems may be goal or policy oriented: they operate

primarily to adhere to a policy or to achieve a goal.

Autonomous systems can be designed so that these goals can be assigned to them

dynamically, perhaps by users. Thus, rather than users needing to interact and control each

low level task interaction, users only need to interact to specify high level tasks or goals.

The system itself will then automatically plan the set of low level tasks needed and

schedule them automatically, reducing the complexity for the user. The system can also

replan in case a particular plan or schedule of tasks to achieve goals cannot be reached.

Building, maintaining and interlinking individual systems to be larger, more open, more

heterogeneous and complex systems poses a great challenge. Some systems can be

relatively simply interlinked at the network layer. However, this does not mean that these

can be so easily interlinked at the service layer, for example, interlinking two independent

heterogeneous data sources, defined using different data schemas, so that data from both

can be aggregated. Such maintenance requires a lot of additional design in order to develop

mapping and mediating data models. Complex system interaction, even for automated

systems, reintroduces humans in order to manage and maintain the system.

Rather than design systems to focus on pure automation but which end up requiring

manual intervention, systems need to be designed to operate more autonomously, to operate

Modular Framework for Ambient Intelligence Systems

67

in a self-governed way to achieve operational goals. Autonomous systems are related to

both context aware systems and intelligence as follows. System autonomy can improve

when a system can determine the state of its environment, when it can create and maintain

an intelligent behavioral model of its environment and itself, and when it can adapt its

actions to this model and to the context.

Autonomous behavior may not necessarily always act in ways that human users expect

and understand. For example, self-upgrading may make some services unresponsive while

these management processes are occurring. Users may require further explanation and

mediated support because of perceived differences between the current state of the system

and the users’ mental model of the system.

From a software engineering system perspective, autonomous systems are similar to

functionally independent systems in which systems are designed to be self-contained, single

minded, functional, systems with high cohesion that are relatively independent of other

systems (low coupling). Cohesion means the ability of multiple systems or system

components to behave as a single unit with respect to specific functions. Such systems are

easier to design to support composition, defined as atomic modules that can be combined

into larger, more complex, composite modules.

3.1.5 Intelligence

Intelligent systems (IS) are systems which use artificial intelligence (AI), also referred to

as machine intelligence, computational intelligence and include (intelligent) agent based

systems, software agents and robots [73], [74], [79], [80]. Intelligence can enable systems

to act more proactively and dynamically in order to support behaviors such as the following

in UbiComp systems:

Modeling of its physical environment. An IS can attune its behavior to act more

effectively by taking into account a model of how its environment changes when deciding

how it should act.

Modeling and mimicking its human environment. It is useful for an IS to have a model of

a human in order to better support iHCI. IS could enable humans to be able to delegate high

68

level goals to the system rather than interact with it through specifying the low level tasks

needed to complete the goal.

Handling incompleteness. Systems may also be incomplete because environments are

open to change and because system components may fail. AI planning can support re

planning to present alternative plans. Part of the system may only be partially observable.

Incomplete knowledge of a system’s environment can be supplemented by AI type

reasoning about the model of its environment in order to deduce what it cannot see is

happening.

Handling non deterministic behavior: UbiComp systems can operate in open, service

dynamic environments. Actions and goals of users may not be completely determined.

System design may need to assume that the environment is a semi deterministic

environment (also referred to as a volatile system environment) and be designed to handle

this. Intelligent systems use explicit models to handle uncertainty.

Semantic and knowledge based behavior. UbiComp systems are also likely to operate in

open and heterogeneous environments. Types of intelligent systems define powerful

models to support interoperability between heterogeneous systems and their components,

e.g., semantic based interaction.

3.2 Ambient Intelligence

It has long been a dream to have a home that responds to the occupant’s needs,

anticipating such needs and adapting to the occupant. The goals are generally to maximize

comfort and safety, optimize energy usage, enhance general well-being, and eliminate

strenuous repetitive activities. Research in this area takes on different labels in the wider

research community around the world. Terms such as Ambient Intelligence, Intelligent

Environment, Smart Spaces, and Smart Homes are often used interchangeably [78], [79].

Ambient Intelligence has been defined in several slightly different forms. The basic idea

behind AmI is that by enriching an environment with technology (e.g., sensors and devices

interconnected through a network), a system can be built that acts as an “electronic butler”,

which senses features of the users and their environment, then reasons about the

Modular Framework for Ambient Intelligence Systems

69

accumulated data, and finally selects actions to take that will benefit the users within the

environment. Therefore the operation of an AmI system can be divided into three stages

[75], [83]:

 Environment Sensing.

 Reasoning.

 Action.

Advances in networking technology and the miniaturization of devices and sensors have

the potential of making Ambient Intelligence a reality. A typical home today contains a

large number of embedded computers, each with a dedicated function and more often than

not situated at a fixed location. Embedded computers are found not only in high-tech

equipment such as PDAs, iPods, and mobile phones but also in the traditional household

appliances such as cookers, washing machines, and fridges. Although useful as individual

appliances and devices, their utility is greatly enhanced if connected through a network to

allow communication between the devices and appliances.

3.2.1 Environment Sensing

Because Ambient Intelligence is designed for real-world, physical environments,

effective use of sensors and actuators is vital. Without physical components that allow an

intelligent agent to sense and act upon the environment, an AmI system would have no

practical use. Sensors and actuators are the key that link available computational power

with physical applications. Ambient Intelligence algorithms rely on sensory data from the

real world. AmI systems perceive the environment, use this information to reason about the

environment and the actions that should be taken to change the state of the environment,

and finally adjust the state of such environment [136], [81], [82], [83].

As mentioned previously, there is a wide array of sensors available. Sensors have been

designed to measure many physical parameters such as humidity, light, radiation,

temperature, sound, strain, pressure, position, velocity, direction, detection of chemicals

and physiological sensing to support health monitoring. Many of these sensors have been

available for several years and are well documented. Recently there has been emphasis in

developing systems and devices which can determine user activities and needs or, as

70

previously described, user context. Voice recognition, movement recognition, and facial

expression recognition systems are all starting to emerge as commonly available

technologies for AmI systems. User centered sensors are a fundamental aspect of AmI

which distinguishes this field from other, similar fields, such as Home and Building

Automation [76], [77], [83].

Making sense of sensor data is a complex task. They generate large volumes of data with

unique features. Due to environmental interference and inherent variations of any

manufacturing process sensor data can be noisy. Furthermore, if a sensor fails there may be

missing values and frequently sensor data may have a spatial or temporal component to it.

As a result data from sensors frequently has to be processed and filtered in order to obtain

useful information. Kalman filters are a common technique for performing sensor data

processing.

When analyzing sensor data, AmI systems may employ a centralized or distributed

model. Sensors in the centralized model transmit data to a central server, which fuses and

analyzes the data it receives. In the distributed model, each sensor has onboard processing

capabilities and performs local computation before communicating partial results to other

nodes in the network. The choice of model will have a dramatic effect on the computational

architecture and type of sensor that is used for the task. In both cases, sensor data is

collected from disparate sources and later combined to produce information that is more

accurate, more complete, or more insightful than the individual pieces. Probabilistic

approaches have been effective for modeling sensors and combining information from

disparate sources.

Sensor data processing which is focused on filtering, disambiguation and interpretation

of sensed data before it is used by the higher level decision-making modules usually

happens at the middleware level of the system. There the various elements of the

distributed technology are integrated. Given the importance that this work has to maximize

the understanding of the environment through the sensed data, significant effort has been

directed in the scientific community at this area in search of achieving efficient and robust

middleware levels within their smart environment systems.

Modular Framework for Ambient Intelligence Systems

71

3.2.2 Reasoning

Sensing and acting provide links between AmI algorithms and the real world in which

they operate. In order to make such algorithms responsive, adaptive, and beneficial to users,

a number of types of reasoning must take place. These include user modeling, activity

prediction and recognition, decision making, and spatial-temporal reasoning [78], [79],

[80].

One feature that separates general computing algorithms from those that are responsive

to the user is the ability to model user behavior. If such a model can be built, it can be used

to customize the behavior of the AmI system toward the user. If the model results in an

accurate enough baseline, such baseline can provide a basis for detecting anomalies and

changes in resident patterns. If the model has the ability to refine itself, the environment

can then potentially adapt itself to these changing patterns. AmI user modeling can be

characterized based on the following parameters:

 The data that is used to build the model.

 The type of model that is built.

 The nature of the model-building algorithm (supervised, unsupervised).

Another aspect of reasoning is the ability to predict and recognize activities that occur in

AmI environments. Because the need for activity recognition technology is great,

researchers have explored a number of approaches to this problem. The approaches differ

according to the type of sensor data that is used for classification and the model that is

designed to learn activity definitions [80].

Different types of sensor information are effective for classifying different types of

activities. When trying to recognize actions that involve repetitive body motions (e.g.,

walking, running, sitting, standing, climbing stairs), data collected from accelerometers

positioned on the body has been used. In contrast, other activities are not as easily

distinguishable by body position. In these cases, interaction with objects of interest such as

doors, windows, refrigerators, keys, and medicine containers can be used to determine the

user's activity [83].

72

Several machine learning models have been used for activity recognition, such as Nave

Bayes classifiers and decision trees. Nave Bayes classifiers identify the activity that

corresponds with the greatest probability to the set of sensor values that were observed.

Decision trees to learn logical descriptions of the activities have also been employed. This

approach offers the advantage of generating rules that are understandable by the user, but it

is often brittle when high precision numeric data is collected. Other approaches that have

been explored are to encode the probabilistic sequence of sensor events using Markov

models, dynamic Bayes networks, and conditional random fields [83].

Decision making and control techniques allow AmI systems to automate tasks. For

example AI planning systems could be employed to not only remind individuals of their

typical next daily activity, but also to complete a task if needed. The use of temporal

reasoning with a rule-based system to identify hazardous situations and return an

environment to a safe state while contacting the resident has also been proposed.

The use of a Hierarchical Task Network (HTN) planner in AmI systems to generate

sequences of actions and contingency plans has also been researched. For example, an HTN

enabled AmI system may respond to a sensed medical emergency by calling a medical

specialist and sending health vitals using any available device (cell phone, email, or fax). If

there is no response from the specialist, the AmI system would then phone the nearest

hospital and request ambulance assistance [80], [83].

One of the first, fully-implemented, AmI decision making technology applications is the

Adaptive Home, which uses a neural network and a reinforcement learner to determine

ideal settings for lights and fans in the home. This is implemented in a home setting and has

been evaluated based on an individual living in the Adaptive Home. Another fully-

implemented automated living environment is the iDorm project. iDorm is set in a campus

dorm environment. The environment is automated using fuzzy rules learned through

observation of resident behavior. These rules can be added, modified, and deleted as

necessary, which allows the environment to adapt to changing behavior. However, unlike

the reinforcement learner approaches, automation is based on imitating resident behavior

and therefore is more difficult to employ for alternative goals such as energy efficiency

[83].

Modular Framework for Ambient Intelligence Systems

73

Very little can be done within an AmI system without an explicit or implicit reference to

where and when the meaningful events occurred. For a system to make sensible decisions it

has to be aware of where the users are and have been during some period of time. These

insights, together with other information, will provide important clues on the type of

activities the user is engaged in and the most adequate response.

Spatial and temporal reasoning have been the subject of intense research for a couple of

decades and there are well known formalisms and algorithms to deal with spatial, temporal,

and spatiotemporal reasoning. The traditional frameworks for spatial reasoning and for

temporal reasoning can be used to have a better understanding of the activities in an AmI

application. In an environment such as an airport or a home, for example, such reasoning

can be used to analyze trajectories of people within a room and classify them as "having a

clear goal" or "being erratic" [83].

3.2.3 Acting

AmI systems tie reasoning to the real world through sensing and acting. Intelligent and

assistive devices provide a mechanism by which AmI systems can execute actions and

affect the system users. There is a large variety of actuators to adjust the environment such

as heaters, air conditioners, motorized windows, lights, motorized blinds, humidifiers and

others. Furthermore, music, television, and information displays can also be adjusted to

better suit the user’s needs, therefore devices such as entertainment systems, television sets,

wall displays, HCI mirrors and others can also be considered actuators [136], [81], [82],

[83].

Another mechanism is through robots. Research in robotics has progressed to the point

where users no longer need to provide detailed instructions for a robot to move to a

specified location, but instead can formulate requests such as "bring me the medicine on the

counter". Such robot assistants are already found in nursing homes [83].

Robots are able to provide an even wider range of assistive tasks to support AmI. They

can monitor the vital signs humans and provide conversational stimulation. Robots are now

capable of exhibiting much more human-like emotions and expressions than in the past and

can even influence human decision. One such case is the museum traffic control project,

74

where a robot generated cues that caused visitors to travel to portions of the museum that

were normally avoided. Robots provide AmI systems with self-mobility and human-

likeness, which facilitates human interaction and allows the influence of AmI to more

greatly pervade human culture.

3.2.4 Ambient Assisted Living

The number of persons over 60 years is growing faster than any other age group. The

number of people in this age group was estimated to be 688 million in 2006, and is

projected to grow to almost two billion by 2050. By that time, the population of older

people will be much larger than that of children under the age of 14 years for the first time

in human history. People prefer to age at home and remain productive but there may not be

enough caregivers available to provide support to the elderly. 89% of the older adults prefer

to stay in the comfort of their own homes [89]. These changes in the world’s demographics

will also result in many challenges for society and the health care system, such as:

 Increase in diseases. It is expected that an increase in age-related diseases, such as

Alzheimer’s disease or Parkinson’s disease, will occur in the near future.

 Increase in health care costs. Rising health care costs are expected. Currently more

than 40% of the U.S. health care budget is destined to senior citizens while this age

group for only 13% of the U.S. population. Therefore, the current model of health care

will become strained as the aging population increases during the next decades.

 Shortage of caregivers. There will be a shortage of professionals trained to work with

the aging population, which means more family members have to take the role of

informal caregivers. Caring for dependent individuals at home will result in many

complications for the informal caregivers, such as higher levels of emotional distress

and physical health problems.

 Dependency. With an increase in age-related diseases, there will also be a rise in

individuals unable to live independently. As the number of senior citizens increases

there is the pressing matter of how to provide quality care to our aging population.

 Larger impact on society. Economists believe that as a society, we will be unable to

provide the human resources required for the older individuals to live in assisted living

or skilled nursing facilities. It is also estimated that annual loss to employers of various

Modular Framework for Ambient Intelligence Systems

75

working family care givers is about $33 billion ($2100 per employee) for absenteeism,

workplace disruptions, and reduced work status.

Assisted living technologies based on Ambient Intelligence are called Ambient-Assisted

Living (AAL) technologies [89], [87]. Ambient Assisted Living was conceived as one

strategy for addressing the difficulties that this forthcoming demographic shift will give rise

to. It proposes the use of Information & Communications Technologies (ICTs) to

deliver innovative applications and services that would enable the elderly to live

independently for longer, and reduce the need for long-term care. Independence is closely

associated with health; the World Health Organization (WHO) regards health as a

combination of physical, mental and social wellbeing, as distinct from the mere absence

of disease. Thus it behold AAL to contribute to the maintenance of each. Moreover, it has

been demonstrated that greater independence, implying fewer care needs, correlates with

better housing conditions. It is here that a key justification for proceeding with AAL,

rather than the mere financial, may be found.

AAL can be used for preventing, curing, and improving wellness and health conditions

of older adults. AAL tools such as medication management tools and medication reminders

allow older adults to take control of their health conditions [84], [87], [85], [89], [86], [88].

AAL technologies can also provide increased safety for the elderly by using mobile

emergency response systems, fall detection systems, and video surveillance systems. AAL

technologies can provide help with daily activities by monitoring activities of daily living

(ADL) and issuing reminders, as well as helping with mobility and automation. AAL

systems can also allow older adults to better connect and communicate with their peers, as

well as with their family and friends.

Ambient Assisted Living (AAL) tools support assisted living by being sensitive and

responsive to the presence of people [87], [88]. Ambient Assisted Living fosters the

provision of equipment and services for the independent living of elderly people, via the

seamless integration of information and communication technologies within homes and

extended homes, thus increasing their quality of life and autonomy and reducing the need

for being institutionalized. These include assistance to carry out their daily activities

through smart objects, health and activity monitoring systems including wearables as well

76

as context-aware services, enhancing safety and security, getting access to social, medical

and emergency systems, and facilitating social contacts, in addition to context-based

infotainment and entertainment.

Several recently emerging technologies are helping to make the vision of AAL a

reality[89]:

1. Smart Homes. As mentioned previously, a smart home is a regular home which has

been augmented with various types of sensors and actuators. Rich context information

can be obtained by analyzing and fusing various types of sensor data. Most smart

homes utilize such knowledge for automation and providing more comfort for the

residents, as well as for assessing the cognitive and physical health of the residents.

2. Mobile and Wearable Sensors. Most smart phones are equipped with various sensors

such as accelerometer, gyroscope, proximity sensor, and global positioning system

(GPS), which can be used for detecting user activity and mobility. Also, recent

advances in epidermal electronics and MEMS technology promise a new era of health-

related sensor technology. Researchers have already developed noninvasive sensors in

form of patches, small Holter-type devices, body-worn devices, and smart garments to

monitor health signals.

3. Robotics. Assistive robots allow older adults to overcome their physical limitations by

helping them in their daily activities. Assistive robots can be classified into three

categories: robots assisting with ADL activities, robots assisting with instrumental

activities of daily living (IADL), and robots assisting with enhanced activities of daily

living (EADL). ADL tasks include self-maintenance activities, such as feeding,

dressing, grooming, etc. IADL tasks include the ability to use instruments in daily

living, such as the successful use of the telephone, preparing food, etc. EADLs include

participation in social activities, such as engaging in hobbies.

3.3 Distributed Systems

A distributed system can be defined as a collection of independent computers that

appears to its users as a single coherent system [90], [91], [120]. One important

characteristic of a distributed system is that differences between the various computers and

Modular Framework for Ambient Intelligence Systems

77

the ways in which they communicate are mostly hidden from users. The same holds for the

internal organization of the distributed system. Another important characteristic is that

users and applications can interact with a distributed system in a consistent and uniform

way, regardless of where and when interaction takes place.

Distributed systems must also be relatively easy to expand or scale. This characteristic is

a direct consequence of having independent computers while simultaneously hiding how

these computers actually take part in the system as a whole. A distributed system will

normally be continuously available, although perhaps some parts may be temporarily out of

order. Users and applications should not notice that parts are being replaced or fixed, or that

new parts are added to serve more users or applications.

In order to support heterogeneous computers and networks while offering a single-

system view, distributed systems are often organized by means of a layer of software that is

logically placed between a higher-level layer consisting of users and applications, and a

layer underneath consisting of operating systems and basic communication facilities, such a

distributed system is called middleware [92], [117].

There are four important goals that should be met by a distributed system [92]:

Ease of resource access. A distributed system must make it easy for the users (and

applications) to access remote resources, and to share them in a controlled and efficient

way. Typical examples of resources include things like printers, computers, storage

facilities, data, files, Web pages, and networks. There are many reasons for wanting to

share resources. One obvious reason is that of economics. For example, it is cheaper to let a

printer be shared by several users in a small office than having to buy and maintain a

separate printer for each user. Likewise, it makes economic sense to share costly resources

such as supercomputers, high-performance storage systems, imagesetters, and other

expensive peripherals. Connecting users and resources also makes it easier to collaborate

and exchange information, as is clearly illustrated by the success of the Internet with its

simple protocols for exchanging files, mail, documents, audio, and video.

Distribution transparency. An important goal of a distributed system is to hide the fact

that its processes and resources are physically distributed across multiple computers. A

78

distributed system that is able to present itself to users and applications as if it were only a

single computer system is said to be transparent. There are several types of transparency:

 Access. Hides differences in data representation and how a resource is accessed.

 Location. Hides where a resource is located.

 Migration. Hides that a resource may move to another location.

 Relocation. Hides that a resource may be moved to another location while in use.

 Replication. Hides that a resource is replicated.

 Concurrency. Hides that a resource may be shared by several competitive users.

 Failure. Hides the failure and recovery of a resource.

Openness. Another important goal of distributed systems is openness. An open

distributed system is a system that offers services according to standard rules that describe

the syntax and semantics of those services. Services are generally specified through

interfaces, which are often described in an Interface Definition Language (IDL). Interface

definitions written in an IDL nearly always capture only the syntax of services. In other

words, they specify precisely the names of the functions that are available together with the

types of the parameters, return values, possible exceptions that can be raised, etc. If

properly specified, an interface definition allows an arbitrary process that needs a certain

interface to talk to another process that provides that interface. It also allows two

independent parties to build completely different implementations of those interfaces,

leading to two separate distributed systems that operate in exactly the same way. Proper

specifications are complete and neutral. Complete means that everything that is necessary

to make an implementation has indeed been specified. Neutral means that specifications

should not prescribe what an implementation should look like. Completeness and neutrality

are important for interoperability and portability. Interoperability characterizes the extent

by which two implementations of systems or components from different manufacturers can

co-exist and work together by merely relying on each other's services as specified by a

common standard. Portability characterizes to what extent an application developed for a

distributed system can be executed, without modification, on a different distributed system

that implements the same interfaces as the first one.

Modular Framework for Ambient Intelligence Systems

79

Another important goal for an open distributed system is that it should be easy to

configure the system out of different components, possibly from different developers. It

should also be easy to add new components or replace existing ones without affecting those

components that stay in place. In other words, an open distributed system should also be

extensible.

Scalability. Scalability is one of the most important design goals for developers of

distributed systems. Scalability of a system can be measured along at least three different

dimensions:

 Size. A system can be scalable with respect to its size, meaning that more users and

resources can be easily added to the system.

 Geographic. A geographically scalable system is one in which the users and resources

may lie far apart.

 Administrative. A system is administratively scalable if it can still be easy to manage

even if it spans many independent administrative organizations.

Unfortunately, a system that is scalable in one or more of these dimensions often

exhibits some loss of performance as the system scales up.

3.4 Sensors

A sensor is a device that receives a stimulus and responds with an electrical signal [93],

[94], [97]. The stimulus is the quantity, property, or condition that is received and

converted into an electrical signal. The term sensor should be distinguished from

transducer. A transducer is a converter of any one type of energy into another, whereas a

sensor converts any type of energy into electrical energy. Transducers may be used as

actuators in various systems. An actuator may be described as an opposite to a sensor; it

converts an electrical signal into generally nonelectrical energy. For example, an electric

motor is an actuator; it converts electric energy into mechanical action.

80

3.4.1 Sensor Classification Schemes

Sensor classification schemes range from very simple to the complex. Depending on the

purpose, different classification criteria may be selected.

Not all types of stimuli can be directly converted to an electrical signal, sometimes it is

necessary to use one or more transducers before the stimulus can be converted to an

electrical signal. Accordingly sensors can be broadly classified into one of two categories

[96]:

 Direct Sensor. A direct sensor converts a stimulus into an electrical signal or modifies

an electrical signal by using an appropriate physical effect.

 Complex Sensor. A complex sensor needs one or more transducers before a direct

sensor can be employed to generate an electrical output.

Sensors can also be classified, depending on whether they require an external power

source or not, into:

 Passive. A passive sensor does not need any additional energy source and directly

generates an electric signal in response to an external stimulus. That is, the input

stimulus energy is converted by the sensor into the output signal. Examples of sensors

in this category are a thermocouple, a photodiode, and a piezoelectric sensor.

 Active. Active sensors require an external power signal for their operation, which is

called an excitation signal. That signal is modified by the sensor to produce the output

signal. Active sensors are sometimes called parametric because their own properties

change in response to an external effect and these properties can be subsequently

converted into electric signals. In this case a sensor’s parameter modulates the

excitation signal and that modulation carries information of the measured value. For

example, a thermistor is a temperature sensitive resistor. It does not generate any

electric signal, but by passing an electric current through it (excitation signal) its

resistance can be measured by detecting variations in current and/or voltage across the

thermistor. These variations presented, in ohms, directly relate to temperature through

a known transfer function.

Based on the selected reference, sensors can also be classified into the following [96]:

Modular Framework for Ambient Intelligence Systems

81

 Absolute. An absolute sensor detects a stimulus in reference to an absolute physical

scale that is independent of the measurement conditions. An example of an absolute

sensor is a thermistor. Its electrical resistance directly relates to the absolute

temperature scale of Kelvin.

 Relative. Relative sensors produce a signal that relates to some baseline reference

value. An example of a relative sensor is a thermocouple. A thermocouple produces an

electric voltage, which is a function of a temperature gradient across its wires. Thus, a

thermocouple's output signal cannot be related to any particular temperature without

referencing to a known baseline.

Finally, sensors can also be classified depending on the stimulus to which they respond

[94–97]:

 Acoustic. Wave amplitude, phase, polarization, spectrum, Wave velocity.

 Biological. Biomass types, concentration, states.

 Chemical. Substance identities, concentration, states.

 Electric. Charge, current, voltage (amplitude, phase, polarization, spectrum),

conductivity, permittivity.

 Magnetic. Magnetic field (amplitude, phase, polarization, spectrum), magnetic flux,

permeability.

 Optical. Wave amplitude, phase, polarization, spectrum, wave velocity, refractive

index, emissivity, reflectivity, absorption.

 Mechanical. Position (linear, angular), acceleration, force, stress, pressure, strain,

mass, density, moment, torque, speed of flow, rate of mass transport, shape, roughness,

orientation, stiffness, compliance, viscosity, crystallinity, structural integrity.

 Radiation. Type, energy, intensity.

 Thermal. Temperature, flux, specific heat, thermal conductivity.

3.4.2 Sensor Characteristics

The following are some of the main sensor characteristics [94], [95], [96], [97]:

82

1. Transfer Function. The transfer function shows the functional relationship between

physical input signal and electrical output signal. Usually, this relationship is

represented as a graph showing the relationship between the input and output signal,

and the details of this relationship may constitute a complete description of the sensor

characteristics. For expensive sensors that are individually calibrated, this might take

the form of the certified calibration curve.

2. Sensitivity. The sensitivity is defined in terms of the relationship between input

physical signal and output electrical signal. It is generally the ratio between a small

change in electrical signal to a small change in physical signal. As such, it may be

expressed as the derivative of the transfer function with respect to physical signal. A

thermometer would have “high sensitivity” if a small temperature change resulted in a

large voltage change.

3. Span or Dynamic Range. The range of input physical signals that may be converted to

electrical signals by the sensor is the dynamic range or span. Signals outside of this

range are expected to cause unacceptably large inaccuracy. This span or dynamic range

is usually specified by the sensor supplier as the range over which other performance

characteristics described in the data sheets are expected to apply.

4. Accuracy or Uncertainty. Uncertainty is generally defined as the largest expected error

between actual and ideal output signals. Sometimes this is quoted as a fraction of the

full-scale output or a fraction of the reading. For example, a thermometer might be

guaranteed accurate to within 5% of FSO (Full Scale Output).

5. Hysteresis. Some sensors do not return to the same output value when the input

stimulus is cycled up or down. The width of the expected error in terms of the

measured quantity is defined as the hysteresis. Typical units are percent of FSO.

6. Nonlinearity. The maximum deviation from a linear transfer function over the specified

dynamic range. There are several measures of this error. The most common compares

the actual transfer function with the “best straight line,” which lies midway between

the two parallel lines that encompass the entire transfer function over the specified

dynamic range of the device. This choice of comparison method is popular because it

makes most sensors look the best. Other reference lines may be used, so the user

should be careful to compare using the same reference.

Modular Framework for Ambient Intelligence Systems

83

7. Noise. All sensors produce some output noise in addition to the output signal. In some

cases, the noise of the sensor is less than the noise of the next element in the

electronics, or less than the fluctuations in the physical signal, in which case it is not

important. Many other cases exist in which the noise of the sensor limits the

performance of the system based on the sensor. Noise is generally distributed across

the frequency spectrum. Many common noise sources produce a white noise

distribution, which is to say that the spectral noise density is the same at all

frequencies.

8. Resolution. The resolution of a sensor is defined as the minimum detectable signal

fluctuation. Since fluctuations are temporal phenomena, there is some relationship

between the timescale for the fluctuation and the minimum detectable amplitude.

Therefore, the definition of resolution must include some information about the nature

of the measurement being carried out. Many sensors are limited by noise with a white

spectral distribution.

9. Bandwidth. All sensors have finite response times to an instantaneous change in

physical signal. In addition, many sensors have decay times, which would represent the

time after a step change in physical signal for the sensor output to decay to its original

value. The reciprocal of these times correspond to the upper and lower cutoff

frequencies, respectively. The bandwidth of a sensor is the frequency range between

these two frequencies.

3.5 Sensor and Actuator Communications Protocols

The purpose of a sensor is to respond to some kind of an input physical property

(stimulus) and to convert it into an electrical signal that is compatible with electronic

circuits. There is a wide array of communication protocols developed for use with sensors

and actuators. In this section we describe some commonly used protocols.

3.5.1 X-10

X-10 is a domotics communication standard introduced in the 1970s. The original X-10

protocol was intended to control devices and thus did not incorporate any means of

receiving data from sensors. The protocol was later expanded with the introduction of

84

extended commands to allow its use in sensors. Due to the low cost and wide availability of

X-10 based devices this standard still enjoys wide spread use.

X-10 is a power line based communication standard which employs 120 kHz bursts

synchronized with the zero crossing of the power line's alternating current waveform. A

binary ‘1’ is represented by a 1ms burst near the zero crossing while a binary ‘0’ is

represented by the absence of such burst [98].

Standard X-10 messages are composed by a Start Code, followed by a House Code and

finally a Key Code. The Start Code is represented by the unique sequence ‘1110’, while

House Codes and Key Codes employ complementary pairs for each bit.

The House Code is a 4 bit identifier intended to avoid commands destined for one house

from activating sensors or actuators in another house. The 5 bit Key Code can either

indicate the address of an X-10 module, a standard command, or can indicate the beginning

of an extended command. Addresses and commands are distinguished from each other by

means of the Key Code's LSB. If the LSB is ‘1’ then the Key Code in question is a

command, while if the LSB is a ‘0’ the Key Code is an address. When an X-10 module is

addressed through an appropriate Key Code, it will continue to respond to X-10 commands

until either a new address is issued or an “All Units Off” command is issued [99].

Standard commands are X-10 commands which allow a system to interact with actuators

and perform functions such as turning lights or devices on or off, but do not provide a

means to obtain readings from sensors. Obtaining data from sensors or sending more

complex commands to actuators requires the use of extended commands. After the

beginning of an extended command is signaled by an appropriate Key Code, the rest of the

extended command is made up of a 4-bit address, an 8-bit data field and an 8-bit command.

In order to avoid collisions, before using the medium an X-10 transmitter must wait for a

random interval between 8 and 10 zero-crossings. If during this interval there have not been

any data ‘1’ bits transmitted, the device can begin transmission. During the transmission of

each ‘0’ bit (no 120 kHz burst) the transmitter must monitor the medium for 120 KHz

bursts to detect a collision. If a collision is detected, the transmitter must abort its

transmission and recommence the transmission process.

Modular Framework for Ambient Intelligence Systems

85

3.5.2 TIA-485

The TIA-485 standard, titled Electrical Characteristics of Balanced Voltage Digital

Interface Circuits and commonly known as RS-485, specifies a balanced data-transmission

scheme for transmitting data over long distances in noisy environments [100]. The key

features of RS-485 are:

1. Balanced Interface.

2. Multipoint operation from a single 5V supply.

3. -7V to +12V bus common-mode range.

4. Up to 32 unit loads.

5. 10 Mbps maximum data rate (at 40-feet).

6. 4000 foot maximum cable length (at 100 kbps).

RS-485 employs a bus topology which can be designed for full-duplex or half-duplex

transmission (Figure 3-1). The full-duplex implementation requires two signal pairs and

transceivers with separate bus access lines for transmitter and receiver. Both full-duplex

and half-duplex implementations require operation of all nodes via control signals, such as

Driver/Receiver Enable signals, to ensure that only one driver is active on the bus at any

time. Having more than one driver accessing the bus at the same time leads to bus

contention which should be avoided at all times through software control.

Figure 3-1. Typical TIA-485 Half-Duplex Network.

RS-485 specifies a differential driver output of 1.5V minimum across a 54Ω load while

a receiver must detect a differential input down to 200mV. These values provide sufficient

86

margin for reliable data transmission even with severe signal degradation across the cable

and connectors. This robustness is the main reason why RS-485 is well suited for long-

distance networking in noisy environments [101].

Since a driver’s output depends on the current it must supply into a load, adding

transceivers to the bus increases the total load current required. RS-485 specifies a load unit

referred to as a Unit Load (UL). A UL represents a load impedance of approximately 12

kΩ. An RS-485 driver must be able to drive 32 ULs, however, current RS-485 transceivers

commonly provide reduced unit loading which allows a larger number of devices to

participate in an RS-485 bus.

RS-485 enjoys wide acceptance and is a physical layer found in popular industrial

automation protocols such as Modbus and DMX 512.

3.5.3 IEEE 802

IEEE 802 is a family of standards for Local Area Networks and Metropolitan Area

Networks published by the Institute of Electrical and Electronics Engineers. IEEE 802

contains descriptions of the networks considered as well as a reference model for protocol

standards. The networks are intended to have wide applicability in many environments

[102].

An IEEE 802 LAN is a peer-to-peer communication network that enables stations to

communicate directly on a point-to-point, or point-to-multipoint, basis without requiring

them to communicate with any intermediate switching nodes. LAN communications takes

place at moderate-to-high data rates and with short transit delays, on the order of a few

milliseconds or less. A MAN is optimized for a larger geographical area than a LAN. As

with local networks, MANs can also depend on communications channels of moderate-to-

high data rates.

IEEE 802 networks employ packet-based communications capabilities as opposed to

cell-based or isochronous networks. That is, the basic unit of transmission is a sequence of

data octets which can be of any length within a range that is dependent on the type of LAN.

For all LAN types the maximum length is in excess of 1000 octets.

Modular Framework for Ambient Intelligence Systems

87

The IEEE 802 LAN/MAN Reference Model is patterned after the ISO/IEC 7498-1 Open

Systems Interconnection (OSI) Basic Reference Model [102], [103]. These reference

models are based on a scheme composed of layers in which the services of a layer are the

capabilities it offers to a user in the next higher layer. In order to provide such services a

layer builds its functions on the services it obtains from the next lower layer.

The IEEE 802 family of standards encompass the lower two layers of the OSI Reference

Model, i.e. the Physical Layer and the Data Link Layer. In IEEE 802 the OSI Data Link

Layer is further subdivided as two sub-layers: the Logical Link Control layer defined in the

IEEE 802.2 standard and the Medium Access Control layer which is defined in each of the

standards aimed at a specific medium type.

The IEEE 802 family of standards is comprised of a large number of individual

standards covering many areas of device networking; however the most relevant standards

for sensor and actuator communication protocols are those which cover Ethernet, Wi-Fi and

WPAN.

3.5.3.1 IEEE 802.2

The services provided by the Data Link layer of the OSI reference model are aimed at

providing the means of transferring data between network-entities contained within a

network, i.e. network-entities identified by data-link-addresses [104]. These services are

used by local network layer entities to exchange packets with remote network layer entities.

As mentioned previously, in the IEEE 802 family of standards the OSI Data Link layer

is divided into a Logical Link Control sublayer (LLC) and a Medium Access Control

sublayer (MAC). The LLC uses the services exposed by the MAC sublayer to provide the

services of the Data Link layer to entities in the Network layer. The following three forms

of services are provided by the LLC sublayer:

1. Unacknowledged connectionless-mode services: This set of data transfer services

provides the means by which network entities can exchange link layer service

data units (LSDUs) without the establishment of a data link level connection.

The data transfer can be point-to-point, multicast, or broadcast.

88

2. Connection-mode services: This set of services provides the means for

establishing, using, resetting, and terminating data link layer connections. These

connections are point-to-point connections. The following are the connection-

mode services:

a. Connection establishment service. This service provides the means by

which a network entity can request or be notified of the establishment of

data link layer connections.

b. Connection-oriented data transfer service. Provides the means by which

a network entity can send or receive LSDUs over a data link layer

connection. This service also provides data link layer sequencing, flow

control, and error recovery.

c. Connection reset service. This service provides the means by which

established connections can be returned to the initial state.

d. Connection termination service. Provides the means by which a network

entity can request, or be notified of, the termination of data link layer

connections.

e. Connection flow control service. This service provides the means to

control the flow of data associated with a specified connection across the

network layer/data link layer interface.

3. Acknowledged connectionless-mode services: The acknowledged connectionless-

mode data unit exchange services provide the means by which network layer

entities can exchange LSDUs that are acknowledged at the LLC sublayer,

without the establishment of a data link connection. The services provide a

means by which a network layer entity at one station can send a data unit to

another station, request a previously prepared data unit from another station, or

exchange data units with another station. The data unit transfer is point-to-point.

The Medium Access Control sublayer performs the functions necessary to provide

packet-based, connectionless-mode data transfer services to the LLC sublayer. The main

functions performed by the MAC sublayer are the following [104]:

1. Frame delimiting and recognition.

Modular Framework for Ambient Intelligence Systems

89

2. Addressing of individual destination stations and groups of destination stations.

3. Transport of source-station addressing information.

4. Transparent data transfer of LLC Protocol Data Units (PDUs)

5. Protection against errors, generally by means of generating and checking frame

check sequences.

6. Control of access to the physical transmission medium.

Other functions of the MAC sublayer, which apply to interconnection devices such as

hubs of bridges, include the following:

1. Flow control between an end station and an interconnection device.

2. Filtering of frames according to their destination addresses to reduce the extent

of propagation of frames in parts of a LAN or MAN that do not contain

communication paths leading to the intended destination end station or stations.

Certain functions of the MAC sublayer, such as the control of access to the physical

medium, are specific to every Physical layer type and therefore both the MAC and PHY

sublayers are specified together in various other standards. The following IEEE 802

MAC/PHY standards are some of the most commonly used for sensor-actuator

communications.

3.5.3.2 IEEE 802.3

The IEEE 802.3 Working Group develops standards for Ethernet-based Local Area

Networks and Metropolitan Area Networks [105]. The term Ethernet refers to a family of

computer networking technologies for wired LANs. The original Ethernet was an

experimental coaxial cable network developed in the 1970s by Xerox at their Palo Alto

Research Center (PARC). The original Ethernet was designed to operate with a data rate of

3 Mbps using a carrier sense, multiple access, collision detect access method for LANs with

occasionally heavy traffic requirements [106], [107].

The original IEEE 802.3 standard was based on, and was very similar to, the Ethernet

Version 1.0 specification [Ethernet Technologies – CISCO docwiki]. Since then the

standard has evolved to cover different wired media types such as coaxial, twisted-pair or

90

fiber optic cables. Currently speeds range from 1 Mbps to 100 Gbps using a common media

access control specification.

IEEE 802.3 LANs consist of network nodes and interconnecting media. The network

nodes fall into two major classes:

1. Data Terminal Equipment (DTE): These are devices that are either the source or

the destination of data frames. Examples of DTEs are PCs, file servers, or print

servers.

2. Data Communications Equipment (DCE): These are intermediate network

devices that receive and forward frames across the network. DCEs may be either

standalone devices such as repeaters, switches and routers, or communications

interface units such as interface cards or modems.

The IEEE 802.3 standard provides for two distinct modes of operation: half duplex and

full duplex. A given IEEE 802.3 network operates in either half or full duplex mode at any

one time.

In half duplex mode stations share the common transmission medium through the

Carrier Sense, Multiple Access, Collision Detect (CSMA/CD) media access method. In this

method, to transmit, a station waits for a quiet period on the medium and then sends the

intended message in bit-serial form. If, after initiating a transmission, the message collides

with that of another station, then each transmitting station intentionally transmits for an

additional predefined period to ensure propagation of the collision throughout the system.

The station then remains silent for a random amount of time (backoff period) before

attempting to transmit again.

Full duplex operation allows simultaneous communication between pairs of stations

using point-to-point media, i.e. a dedicated transmission channel. Full duplex operation

does not require for stations to wait until the medium is quiet, nor do the stations monitor or

react to receive activity, as there is no contention for the shared medium in this mode. Full

duplex mode can only be used when all of the following are true:

Modular Framework for Ambient Intelligence Systems

91

1. The physical medium is capable of supporting simultaneous transmission and

reception without interference.

2. There are exactly two stations connected with a full duplex point-to-point link.

Since there is no contention for use of a shared medium, the multiple access

algorithms are unnecessary.

3. Both stations on the LAN are capable of, and have been configured to use, full

duplex operation.

The most common configuration envisioned for full duplex operation consists of a

network switch with a dedicated media segment connecting each switch port to a single

device. With the increasing availability of low cost network switches full duplex operation

is quickly becoming the norm.

3.5.3.3 IEEE 802.11

The IEEE 802.11 standard defines one medium access control (MAC) and several

physical layer (PHY) specifications to provide wireless connectivity for fixed, portable, and

moving stations within a local area [110].

Wireless networks possess characteristics that make them significantly different from

traditional wired LANs. In IEEE 802.11, the addressable unit is referred to as a station

(STA). Such STAs can be subdivided into fixed STAs, portable STAs, and mobile STAs. A

portable STA is one that is moved from location to location, but that is only used while at a

fixed location. Mobile STAs actually access the LAN while in motion.

It is not sufficient to handle portable STAs only. Mobile STAs are often battery powered

which means that power management is an important consideration in the IEEE 802.11

standard. For example, it cannot be presumed that a STA’s receiver is always powered on.

As a result the PHYs used in the IEEE 802.11 standard are fundamentally different from

wired media. Thus IEEE 802.11 PHYs:

1. Use a medium that has neither absolute nor readily observable boundaries.

2. Are unprotected from other signals that are sharing the medium.

3. Communicate over a medium significantly less reliable than wired PHYs.

92

4. Have dynamic topologies.

5. Lack full connectivity and therefore the assumption that every STA can normally

“hear” every other STA is invalid.

6. Have time-varying and asymmetric propagation properties.

7. Might experience interference from logically disjoint IEEE 802.11 networks

operating in overlapping areas.

The fundamental topological component of the IEEE 802.11 standard is the Basic

Service Set (BSS). A BSS is formed by two or more STAs linked in a way that allows the

exchange of data between said STAs, following the mechanisms dictated by the IEEE

802.11 standard [108], [109], [110]. When the BSS is independent of any other network,

the BSS is called an Independent Basic Service Set (IBSS). In an IBSS, also known as an

Ad Hoc Network, STAs communicate directly with each other.

BSSs can exchange data with each other and with other networks by means of a

Distribution System (DS). To make use of the Distribution System a dedicated STA in the

BSS must be tasked with transferring frames to/from the DS and the STAs. Such a STA is

termed an Access Point (AP) in the IEEE 802.11 standard and a BSS which includes an AP

is called an infrastructure BSS. In an infrastructure Basic Service Set all data exchange,

including the exchange of frames between STAs belonging to the infrastructure BSS, is

carried out through the AP. To access all the services of an infrastructure BSS a STA must

first become “associated”. Such associations are dynamic and involve the use of a

Distribution System Service (DSS) described in the IEEE 802.11 standard.

By joining infrastructure Basic Service Sets through a Distribution System the IEEE

802.11 standard provides for the creation of wireless networks of arbitrary size and

complexity. The service set resulting from joining two or more infrastructure BSSs is called

an Extended Service Set (ESS).

The final topology supported in the IEEE 802.11 standard is the Mesh BSS (MBSS). An

MBSS is an IEEE 802.11 LAN consisting of autonomous STAs. Inside the MBSS, all

STAs establish wireless links with neighbor STAs to mutually exchange messages.

Messages can be transferred between STAs that are not in direct communication with each

Modular Framework for Ambient Intelligence Systems

93

other by using a multi-hop mechanism. From the data delivery point of view, it appears as

if all STAs in an MBSS are directly connected at the MAC layer even if the STAs are not

within range of each other. The multi-hop capability enhances the range of the STAs and

benefits wireless LAN deployments. STAs in a mesh BSS might be sources, sinks, or

propagators of traffic.

Figure 3-2. IEEE 802.11 MAC Architecture.

Due to the distinct characteristics of the wireless medium (WM) and the diverse

topologies defined in the standard, IEEE 802.11 offers several methods of medium access

control:

1. DCF. Distributed Coordination Function (DCF) is the fundamental access

method of the IEEE 802.11 MAC [110] (Figure 3-2). DCF is a contention based

medium access control method which implements a Carrier Sense, Multiple

Access, Collision Avoidance mechanism. In DCF, STAs monitor the WM to

determine when said medium is available for transmission. When the WM is

determined to be available, the STA waits a random back off period during

which it continues to monitor the WM. If at the end of the back off period the

medium is still available the STA then transmits its frame. Since collisions

cannot be detected in a WM the STA expects to receive an Acknowledge (ACK)

frame to determine that the transmission was successful. If such a frame is not

94

received the STA assumes that a collision has occurred and the process is

repeated.

Depending upon the placement of the STAs in a BSS and the physical

obstacles located between them, it is possible that a STA might be unable to

detect the transmissions of another STA. As a result, a STA may begin

transmission assuming the WM is available when in fact the medium is being

used by a another “hidden” STA.

Figure 3-3. Hidden Terminal Problem.

IEEE 802.11 offers a refinement of the CSMA/CA method, the Request To

Send/ Clear To Send (RTS/CTS) mechanism, which can be used under these and

other circumstances.

The RTS/CTS medium access method requires that a sender STA begin by

transmitting an RTS frame to the receiver STA. The receiver STA must then

send a CTS frame back to the sender to indicate that the handshake has been

successful and ensure that the medium has been reserved for the particular sender

and receiver for the transmission. The RTS and CTS frames include information

about the time period that the medium will be occupied. This information is used

by the rest of the STAs to determine that the medium is busy even if they are

unable to detect the transmissions from the sender STA.

Modular Framework for Ambient Intelligence Systems

95

2. PCF. The Point Coordination Function (PCF) is an optional medium access

method that uses an alternating cycle of Contention Periods and Contention Free

Periods [110]. During the CPs STAs contend for use of the WM using the DCF

method described previously. During the CFP the AP polls each STA allowing it

to make use of the medium. PCF can only operate in infrastructure BSSs.

Although PCF has been implemented in a few devices it has not enjoyed

widespread acceptance, hence some authors consider this medium access

mechanism dead.

3. HCF. To support quality of service (QoS) IEEE 802.11 provides an additional

coordination function called Hybrid Coordination Function [110]. The HCF

combines functions from the DCF and PCF with QoS-specific enhancements that

allow QoS data transfers during both the CP and CFP. A STA that provides QoS

services is referred to as a QSTA in the IEEE 802.11 standard, while an AP that

provides QoS is termed a QAP. The BSS where a QAP and QSTAs operate is

referred to as a QBSS.

Use of the wireless medium in a QBSS is regulated through the use of a time

unit referred to as a Transmission Opportunity (TXOP). When a QSTA gets

access to the medium it is said to be granted a TXOP. TXOPs are characterized

by a starting time and a maximum duration, called TXOP Limit.

HCF uses both a contention-based channel access method, called the

Enhanced Distributed Channel Access (EDCA) mechanism, for contention-based

transfer and a controlled channel access, referred to as the HCF Controlled

Channel Access (HCCA) mechanism, for contention-free transfer:

a. EDCA. To differentiate traffic types, the EDCA mechanism defines four

different Access Categories (AC):

i. AC_BK. Background access category. Traffic assigned to this

access category has the lowest priority.

ii. AC_BE. Best effort access category.

iii. AC_VI. Video access category.

iv. AC_VO. Voice access category. Traffic assigned to this access

category has the highest priority.

96

Every QSTA in a QBSS maintains four transmit queues, one for each

AC. Each queue contends for the channel using a method called

Enhanced Distributed Channel Access Function (EDCAF). EDCAF is an

enhanced version of DCF based on the same principles of CSMA/CA and

back off periods, however the parameters used by the EDCAF of each

queue to contend for a TXOP are different. This parameter difference

ensures that the highest priority queues will have a higher opportunity of

obtaining TXOPs and hence access to the WM.

b. HCCA. The HCCA mechanism uses a QoS-aware centralized coordinator,

called a Hybrid Coordinator (HC), which is collocated with the QAP of

the QBSS. The HC has a higher access priority to the WM than the rest of

the devices in the QBSS. This allows the HC to allocate TXOPs to itself

and the other STAs in order to provide limited-duration Controlled

Access Phases (CAPs) for contention-free transfer of QoS data. TXOP

allocations and contention-free transfers of QoS traffic are based on the

HC’s QBSS-wide knowledge of the amounts of pending traffic belonging

to different Traffic Streams (TS) and/or Traffic Categories (TC).

4. MCF. Mesh Coordination Function (MCF) is an additional coordination function

usable only in an MBSS [110]. MCF has both a contention-based channel access

and a contention free channel access mechanism. The contention-based

mechanism is EDCA while the contention free mechanism is called the MCF

Controlled Channel Access (MCCA). MCCA is an optional access method that

allows mesh STAs to access the wireless medium with lower contention.

As in HCF, MCF uses TXOPs to allocate the right to transmit onto the wireless

medium. There are two types of TXOP in MCF: EDCA TXOPs and MCCA

TXOPs. The EDCA TXOP is obtained by a mesh STA winning an instance of

EDCA contention while an MCCA TXOP is obtained by gaining control of the

WM during an MCCAOP. The MCCAOP is a time interval for frame

transmissions that has been reserved by the exchange of management frames. To

initiate reservation of an MCCAOP a mesh STA transmits an MCCA Setup

Modular Framework for Ambient Intelligence Systems

97

Request frame. Said mesh STA becomes the owner of the MCCAOP reservation.

The receivers of the MCCA Setup Request frame are the MCCAOP responders.

The MCCAOP owner and the MCCAOP responders advertise this MCCAOP

reservation to their neighbors through an MCCAOP advertisement. MCCA

enabled neighbor mesh STAs that could cause interference during these reserved

time periods do not initiate a transmission during these reserved periods. During

its MCCAOP, the MCCAOP owner obtains a TXOP by winning an instance of

EDCA contention. Due to its reservation, the MCCAOP owner experiences no

competition from other MCCA enabled neighbor mesh STAs.

3.5.3.4 IEEE 802.15.4

IEEE 802.15.4 wireless technology is a short-range communication system intended for

Low-Rate Wireless Personal Areas Networks (WPANs) [111]. The key features of the

IEEE 802.15.4 wireless technology are low complexity, low cost, low power consumption

and low data rate transmissions to be supported by cheap, fixed or moving devices [112].

The IEEE 802.15.4 standard provides specifications for the MAC and PHY layers. For a

definition of the upper layers other standards, such as the ZigBee stack specified by the

industrial consortia ZigBee Alliance [113] and the IPv6 over Low-power PAN (6LowPAN)

[114], have been developed.

The IEEE 802.15.4 PHY operates using Direct Sequence Spread Spectrum in three

different unlicensed bands according to the geographical area where the system is

deployed:

1. The 868 MHz band in the European area with a raised-cosine-shaped Binary

Phase Shift Keying (BPSK) modulation format. The ideal transmission range is

approximately 1km.

2. The 915 MHz band in the North America and Pacific area with a raised-cosine-

shaped BPSK modulation format. The ideal transmission range is approximately

1 km.

3. The 2.4 GHz ISM band with a half-sine-shaped Offset Quadrature Phase Shift

Keying (O-QPSK) modulation format. The ideal transmission range is

approximately 200m.

98

Transmission is organized in frames which are designated as a Physical Protocol Data

Unit (PPDU). There are four types of PPDUs: a beacon frame, a data frame, an ACK frame

and a MAC command frame. All are formed with a Synchronization Header (SHR), a

Physical Header (PHR) and a Physical Service Data Unit (PSDU) which is composed of a

MAC Payload Data Unit (MPDU). The MPDU is composed of a MAC Header (MHR), a

MAC Service Data Unit (MSDU) and a MAC Footer (MFR), except for the ACK frame

who’s MPDU is composed only of an MHR and an MFR.

To improve the transmission range IEEE 802.15.4 devices can self-organize into either

star or multi-hop peer-to-peer topologies. Star topologies are preferable for small area low-

latency applications whereas peer-to-peer topologies are better suited when a large area has

to be covered and latency is not an issue. To support these topologies IEEE 802.15.4

defines two types of devices:

1. Full Function Device (FFD). FFDs contain the complete set of MAC services

and can operate either as a WPAN coordinator, or as a simple device. FFDs are

the only nodes allowed to form links with other devices.

2. Reduced Function Device (RFD). RFDs contain a subset of MAC services and

can only operate as a network device.

3.5.4 ZigBee

Following the same scheme employed in the OSI and IEEE 802 reference models the

ZigBee architecture is made up of a set of layers, with each layer performing a specific set

of services for the layer above. The IEEE 802.15.4-2004 standard defines the two lower

layers: the PHY layer and the MAC sub-layer. On top of this the ZigBee standard defines

the Network (NWK) layer and the application (APL) layer [115], [116]. The NWK layer

performs the following operations:

1. Configuring a new device. A new device can begin operation as a ZigBee

coordinator or try to join an existing network.

2. Starting a new network.

3. Joining and leaving a network.

4. NWK layer security.

Modular Framework for Ambient Intelligence Systems

99

5. Routing frames to their destination. Only ZigBee coordinators and routers can

relay messages.

6. Discovering and maintaining routes.

7. Discovering one-hop neighbors and storing one-hop neighbor information.

8. Assigning addresses to devices joining the network. Only ZigBee coordinators

and routers can assign addresses.

The APL layer consists of the application support sub-layer (APS), the ZigBee device

objects (ZDO) and the manufacturer-defined application objects. Manufacturer-defined

application objects use the application framework and share APS and security services with

the ZDO. The APS provides an interface between the NWK layer and the rest of the APL

layer components. The APS performs the following functions:

1. Maintain binding tables.

2. Forward messages between bound devices.

3. Manage group addresses.

4. Map 64-bit IEEE address to 16-bit network address, and vice versa.

5. Support reliable data transport.

6. While the ZDO performs the following functions:

7. Define the role of the device (ZigBee coordinator, router, or device).

8. Discover the devices on the network and their application. Initiate or respond to

binding requests.

9. Perform security-related tasks.

3.6 Middleware

A middleware is a software layer which allows the components of a distributed system

to interact [117]. Many different types of middleware have been developed, each based on a

different paradigm, and targeted towards the solution of a certain class of problems.

3.6.1 Middleware Requirements

The proposed requirements for a middleware are the following [118], [119], [120]:

100

Network Communication. Distributed systems need a network for communication

because the components are located on different hosts. This communication requires the

transformation of the complex data structures into a suitable format which can be

transmitted using transport protocols. Such transformations are called marshalling and

unmarshalling. To enable automatic (un-) marshalling all data involved in a request have to

be described. This can be done with the IDL.

Coordination. Coordination is required to control multiple communication points, which

exist in distributed systems. There are several mechanisms, which can influence

coordination of the components in a distributed system. These include synchronization and

activation (deactivation) policies. Synchronization is required during communication of

concurrent components. There are two ways to achieve synchronization. In synchronous

communication a component is blocked until another component completes execution of a

requested service. On the other hand when the component that requests some service from

another component remains unblocked and can continue to perform its operations, then the

communication is called asynchronous. Another coordination mechanism is activation and

deactivation policies. Activation (deactivation) allows starting (ending) a component

independently of the applications it executes.

Reliability. There are several types of reliability proposed in the literature: best effort, at-

most-once, at least-once and exactly-once. Best effort service does not give any assurance

about the successful execution of the request. At-most-once requests are guaranteed to

execute only once or none at all. At-least-once service requests are guaranteed to be

executed, possibly more than once. Exactly-once requests are guaranteed to be executed

once and only once. Distributed system implementations need to include error detection

and correction mechanisms to for reliability purposes. If some components in the system

are not available then the reliability of the system suffers. The increase reliability in such

scenarios component replication is employed. However increasing reliability decreases

performance. It is a trade-of problem.

Scalability. Scalability defines the ability of a system to adapt to changes in demand.

The limited scalability of centralized systems can be overcome by Distributed Systems. The

main challenge here is to provide the flexibility of a distributed system without changing

Modular Framework for Ambient Intelligence Systems

101

the architecture or design of the original system. In order to achieve this task middleware

has to respect the different dimensions of transparency specified by the ISO Open

Distributed Processing (ODP) reference model. For example, access transparency means

that a component can access the services of a remote component as if it were local.

Location transparency means that components are not aware of the physical location of the

components with which they interact. Migration transparency allows components to change

their location without affecting clients requesting services from these components.

Replication transparency means that requesting components do not care about the location

of the required service, it can either be the main component or a replica. Load balancing,

where requests are forwarded to a replica in order to remove load from a server, can use

replication mechanisms. A scalable system middleware needs to support access, location,

migration, and replication transparency.

Heterogeneity. The components of distributed systems can be of different types (legacy

or new components) and written in different programming languages. For example, legacy

components tend to be written in imperative languages, such as COBOL, or C while newer

components are often implemented using object-oriented programming languages. There

are different dimensions of heterogeneity in DSs such as the hardware and operating system

platforms, programming languages and the middleware itself. These differences need to be

addressed by the middleware.

3.6.2 Middleware Classification

Middleware can be classified into four main types [121]:

3.6.2.1 Transactional Middleware (TM)

Transactional middleware (TM) or transaction processing (TP) monitors were designed

to support distributed synchronous transactions. The main function of a TP monitor is the

coordination of requests between clients and servers that can process these requests. A

request is a message that asks the system to execute a transaction. TM uses clustering of the

service requests into transactions. A transaction must support ACID properties, i.e. Atomic,

Consistent, Isolated, and Durable. Atomic means that the transaction either completes

entirely or is rejected. Consistency means that the system will remain in a coherent state

102

regardless of the status of a transaction. Isolation is the ability of one transaction to be

carried out independently of other transactions that are possibly run on the same TP

monitor. Durability means that a transaction can survive system failures once the

transaction is committed and complete.

Typical products: IBM's CICS, BEA's Tuxedo, Transarc's Encina.

Network Communication: Client and server components can reside on different hosts

and therefore requests are transported via the network in a way that is transparent to client

and server components.

Coordination: TP monitors can coordinate the distributed transactions through the two-

phase commit protocol (2PC). This protocol is based on the "prepare to commit phase" and

the "commit phase". Both synchronous and asynchronous communications are supported

by TM. TM has support for various activation policies and services that can be activated

and deactivated on demand if they haven't been used for some time. The server components

can always reside in memory, hence enabling a persistent activation. Many TP monitors

support failover and possess restart capabilities, thus increasing application up time.

Reliability: TM requires the 2PC to implement distributed transactions. The transaction

can be committed, only if all processes involved in a transaction are ready to commit,

otherwise the transaction is aborted. TP monitors use transactions logs, which can undo

changes. The Failure/recovery service, which is supported by most TP monitors increases

fault-tolerance and reliability consequently. Message queues are also supported by TM,

thus enabling reliability when disk storage is used for queues. TM also supports database

management systems (DBMS) which guarantee fault-tolerance.

Scalability: TP monitors are rather scalable, because they support load balancing and

replication of server components. Load balancing is important, because TP monitors have

to cope with a lot of transactions in a limited time. In order to sustain consistent response

times, TP monitors are capable of starting additional process instances. This is an important

feature for any enterprise environment that needs to have ensured scalability.

Modular Framework for Ambient Intelligence Systems

103

Heterogeneity: Heterogeneity support is realized on different levels. TM supports

software and hardware heterogeneity, because the components can be located on different

hardware and operating system platforms. TM, as mentioned above, has DBMS support.

DBMS components can participate in transactions due to the Distributed Transaction

Processing (DTP) Protocol, adopted by the Open Group. But TM doesn't support data

heterogeneity very well, because it cannot express complex data structures and therefore

can't marshall these structures.

Advantages:

 Components are kept in consistent states (due to ACID properties of transaction)

 TM is very reliable.

 TP monitors perform better than message-oriented and procedural middleware.

 TP monitors can dispatch, schedule and prioritize multiple application requests

concurrently, thus reducing CPU overhead, response times and CPU cost for

large applications.

Disadvantages:

 TM has often unnecessary or undesirable guarantees according to ACID. If a

client is performing long-lived activities, then transactions could prevent other

clients from being able to continue.

 Marshalling and unmarshalling have to be done manually in many products.

 The lack of a common standard for defining the services that server components

offer reduces the portability of a DS between different TP monitors.

 TM runs on a smaller variety of platforms (UNIX and NT server only) compared

to other types of middleware.

3.6.2.2 Message Oriented Middleware (MOM)

Message Oriented Middleware (MOM) is a type of middleware in which communication

is carried out through messages. There are two different types of MOM: message queuing

and message passing. Message queuing is an indirect communication model where

communication is performed via a queue. Messages from one program are sent to a specific

104

queue, identified by name, where they are stored and later sent to a receiver. Message

queues require a Queue Manager and can be divided into two categories:

Persistent Message Queues. In persistent message queues messages are stored in

persistent storage, such as an underlying database, until they can be delivered. In case of a

server failure information will be restored after the server restarts. Persistent queues are

preferred when reliability is more important than performance, such as in banking fund

transfer systems.

Non-Persistent Message Queues. These types of queues do not make use of persistent

storage and hence information is lost in the event of a server failure. The advantage of non-

persistent queues is usually better performance.

In message passing, a direct communication model, information is sent directly to

interested parties.

Typical products: IBM's MQSeries and Sun's Java Message Queue.

Network Communication: Network communication in MOM is based on messages.

Messages are defined as strings of bytes that have meaning to the applications that

exchange the data. Besides application related data, messages might include control data

relevant to the message queuing system. This information is used to store, route, deliver,

retrieve and track the payload data. After receiving a message from a component the server

replies with a message which contains the results of the service execution. Most messaging

products provide good support for several communication protocols.

Coordination: MOM supports both synchronous, via message passing, and

asynchronous, via message queuing, communication. In asynchronous communications

messages are sent to a server without blocking the client. The client does not need to wait

for a reply and can proceed with other actions. Synchronous communication needs to be

implemented manually in the client. MOM supports activation on demand. This is achieved

through triggers where an application program is started whenever a request message or a

reply message has arrived on a local queue, and the application program is not already

active. The use of activation on demand decreases resource use.

Modular Framework for Ambient Intelligence Systems

105

Reliability: MOM can be seen as fault tolerant because it can use persistent queues

which are stored in persistent media. To increase reliability message queuing supports

different types of Quality of Service (QoS). These QoS types are defined as follows:

 Reliable message delivery. During exchange of messages no network packets are

lost.

 Guaranteed message delivery. Messages are delivered to the destination node

either immediately (with no latency - network is available), or eventually (with

latency - when the network is unavailable). In the latter case, middleware

guarantees that messages are delivered as long as the network becomes available

within a specified time period.

 Assured, non-duplicate message delivery. If messages are delivered they are

delivered only once.

Scalability: The publish-subscribe communications model provides location

transparency, allowing a program to send the message with a subject as the destination

property while the middleware routes the messages to all programs that have subscribed to

that subject. Although location transparency is supported, MOMs have a limited support for

access transparency. This is due to queues being used for remote and not for local

communication.

Heterogeneity: The support of data heterogeneity is rather limited, because marshalling

is not automatically generated, and needs to be implemented by programmers.

Advantages:

 MOM supports group communication, which is atomic. Either all clients receive

a delivery or none. That's why a process doesn't have to worry about what to do,

if some clients don't receive a message.

 The use of persistent queues increases reliability in MOM products.

 Support for transactional message queues is included in most MOM products,

meaning that advanced delivery guarantees are supported.

 MOM supports more network protocols than RPC.

 MOM can send messages exactly-once due to QoS, thus increasing its reliability.

106

Disadvantages:

 There is bad portability support because MOM products do not support any

standards. Applications that are made for one MOM product are not compatible

with another MOM product.

3.6.2.3 Procedural Middleware (PM)

Remote Procedure Calls (RPCs) were developed by Sun Microsystems in the early

1980s. RPCs are present on different operating systems, including most UNIX and MS

Windows systems. Windows NT, for example, supports lightweight RPCs across processes

and, with DCOM, full RPCs.

Typical products: Open Software Foundation's Distributed Computing Environment

DCE, Microsoft RPC Facility.

Network Communication: RPC defines server components as RPC programs. An RPC

program contains parameterized procedures. Remote clients can invoke these procedures

across the network using the network protocols. These protocols are low-level, such as TCP

or UDP. Communication happens as follows; if a client wants to receive some service, then

it makes a request to a server. This request consists of a message, which includes the

marshalled parameters. On the other side, the server receives this message, unmarshalls the

parameters, executes the requested service and sends the result back to the client. In order

to connect the client and server components of a distributed application using RPC as the

middleware link, it is required that every function that a client application can call should

be represented by a stub, i.e. a placeholder, for the real function on the server. We can note

that RPC is a category of middleware where marshalling and unmarshalling are

implemented automatically by the IDL compiler in stubs.

Coordination: RPC-based communication is synchronous, i.e. an RPC client is blocked

until the remote procedure has been executed or an error occurs. RPC does not support

asynchronous communication. Procedural middleware provides different forms of

activation policies. These include activation of RPC on demand and "RPC is always

available".

Modular Framework for Ambient Intelligence Systems

107

Reliability: Procedural middleware possess at-most once reliability. If RPC fails then an

exception is returned. RPC communication based on the TCP protocol can be seen as

reliable since TCP provides reliability. An application that uses TCP knows that data it

sends is received at the other end, and that it is received correctly.

Scalability: Scalability in RPC is rather limited because RPC lacks replication

mechanisms. As mentioned previously, communication is based on stubs, which provides

location transparency of the requested service to the client. This means that a client can

invoke a remote procedure as if it were local. As mentioned in the requirements section

location transparency is a prerequisite to scalability.

Heterogeneity: Heterogeneity in RPC is achieved through the IDL. It can define

interfaces that represent relations between servers and clients. IDL is programming

language independent, which means that a client does not need to know the language that

the server supports as long as the IDL compiler can translate the client's request to a server.

Advantages:

 RPC has good heterogeneity support because RPC has bindings for multiple

operating systems and programming languages.

 Marshalling and unmarshalling are automatically generated, thus simplifying the

development of DSs.

Disadvantages:

 RPCs do not support group communication.

 They have no direct support for asynchronous communication, replication and

load balancing, therefore leading to limited scalability.

 Fault tolerance is worse than for other middleware types, because many possible

faults have to be caught and dealt with in the program.

3.6.2.4 Object-oriented Middleware (OOM)

Object middleware, evolved from RPC, extends it by adding object-oriented concepts

such as inheritance, object references and exceptions. OOM allows referencing of remote

objects and can call operations from these.

108

Typical products: OMG's CORBA, Microsoft COM, Java RMI and Enterprise Java

Beans.

Network Communication: Object middleware supports distributed object requests. It is

possible for a client to request an operation on a server object on another host. To achieve

this, a client requires a reference to the server object. Marshalling of the parameters for the

network request is made automatically in the client and server stubs.

Coordination: OOM generally supports synchronous communication. The client object

remains blocked, waiting for the server object's response. This does not mean that other

synchronization types are not supported. CORBA 3.0, for example, supports both deferred

synchronous and asynchronous object requests. OOM supports different activation and

threading policies. In OOM server objects can be active all the time or started on demand.

CORBA Concurrency Service enables threading and coordinates concurrent access to

shared resources. It also guarantees consistency of the object if it is accessed by multiple

clients. CORBA also supports group communication through its Event and Notification

services.

Reliability: At most once reliability is available by default in OOM. To handle failures

during component requests OOM uses exceptions. Noticeable is the fact that due to

CORBA messaging, exactly-once reliability can be achieved. FaultTolerant CORBA, for

example, provides extra reliability in DS.

Scalability: Scalability remains limited. Some CORBA implementations support load-

balancing. Enterprise Java Beans have replication support which increases scalability.

Heterogeneity: OOM provides wide support for heterogeneity. For example CORBA

and COM both have multiple programming language bindings so that client and server

objects do not need to be written in the same programming language. Java/RMI solves

heterogeneity through its Java Virtual Machine.

Advantages:

 Marshalling and unmarshalling are generated automatically in client and server

stubs.

Modular Framework for Ambient Intelligence Systems

109

 OOM supports both synchronous and asynchronous communication.

 Most OOM products support messaging and transactions. Hence, OOM can

replace the other three types of middleware in certain applications.

Disadvantages:

 Lack of scalability.

3.7 Component Oriented Development

Component-oriented programming enables programs to be constructed from prebuilt

software components, which are reusable, self-contained blocks of computer code. These

components have to follow certain predefined standards including interface, connections,

versioning, and deployment. While OOP emphasizes classes and objects, COP emphasizes

interfaces and composition. In this sense, COP is an interface-based programming. Clients

in COP do not need any knowledge of how a component implements its interfaces, as long

as interfaces remain unchanged, clients are not affected by changes in interface

implementations [122].

Building systems out of components is a natural part of engineering systems. The

automotive industry, for instance, develops very complex cars using components of every

size from a tiny screw to complex subsystems such as engines and transmissions. The

modern automotive factory has become more of a system integrator than a manufacturer. It

is easy to name many other industries and engineering disciplines making effective use of

components by a rigorous set of standards that define interoperability. The main idea of the

component-based approach is building systems from pre-existing components. As a result

the development process of component-based systems is separated from the development

process of the components themselves [123].

System development with components is focused on the identification of reusable

entities and relations between them, based on the system requirements and the availability

of already existing components.

110

The architecture of component-based systems is significantly more demanding than that

of traditional monolithic integrated solutions. The process of building components can

follow an arbitrary development process model. However any development model will

require certain modification, since in addition to the demands on the component

functionality, a component is built to be reused. Reusability implies generality and

flexibility, and these requirements will significantly define the component characteristics.

Generality often implies more functionality, requires more design and development effort,

as well as qualified developers. Component development will also require more effort in

the testing and specification stages. Components should be tested in isolation, but also in

different configurations. Finally, documentation and delivery will require more efforts since

detailed documentation is very important for an adequate understanding of the component.

Despite the initial higher development effort required by component development,

generality and flexibility provide definite advantages. Change is inherent in software

engineering. The user requirements change, specifications change, personnel change,

budget changes, technology changes, and so on. One of the fundamental software

engineering principles is to emphasize the importance of managing change. It is important

to place primary emphasis during architecture and design on the dependencies between the

components, and on the management of those dependencies. COD provides an effective

way to follow the software engineering principle of dealing with change: planning for

change, design for change, and building for change. Components are easy to adapt to new

and changing requirements.

Software reuse allows to design and implement something once and to use it over and

over again in different contexts [124]. There are different levels of software reuse. COD

supports the highest level of software reuse because it allows various kinds of reuse

including white-box reuse, gray-box reuse, and black-box reuse. White-box reuse means

that the source of a software component is made available and can be studied, reused,

adapted, or modified. Black-box reuse is based on the principle of information hiding. The

interface specifies the services a client may request from a component. The component

provides the implementation of the interface that the clients rely on. As long as the

Modular Framework for Ambient Intelligence Systems

111

interfaces remain unchanged, components can be changed internally without affecting

clients. Gray-box reuse is somewhere in between white-box reuse and black-box reuse.

As the size and complexity of software systems grows, the identification and proper

management of interconnections among the pieces of the system becomes a central

concern. COD provides a manageable solution to deal with the complexity of software, the

constant change of systems, and the problems of software reuse.

A software component is a piece of self-contained, self-deployable computer code with

well-defined functionality and can be assembled with other components through its

interface.

From this definition, a component is a program or a collection of programs that can be

compiled and made executable. It is self-contained; thus, it provides coherent functionality.

It is self-deployable so that it can be installed and executed in an end user’s environment. It

can be assembled with other components so that it can be reused as a unit in various

contexts.

Interfaces are the means by which components connect and exchange messages. An

interface is a set of named operations that can be invoked by clients. Each operation’s

semantics is specified, and this specification plays a dual role as it serves both providers

implementing the interface and clients using the interface. Providers and clients are

ignorant of each other, the specification of the interface becomes the mediating middle that

lets the two parties work together. It is therefore important to view interfaces and their

specifications in isolation of any specific component that may implement or use such

interfaces. Interface specifications can be considered as contracts between a client of an

interface and a provider of an implementation of the interface. The contract states what the

client needs to do to use the interface. It also states what the provider has to implement to

meet the services promised by the interface.

While interfaces reside at the endpoints of interactions, message schemas reside on the

logical line between interacting parties. Messages are directional, traveling from a sender to

a receiver. Such logical lines can connect multiple senders and receivers. While the

communication line connecting senders and receivers is an abstraction that refers to

112

endpoints, the communicated messages are not. A message schema describes a set of valid

messages, usually with no constraints on particular senders or receivers. A particular

message schema may require information in a message that identifies the sender and/or the

receiver, but such identification is not a basic requirement for all messages.

3.8 Design Patterns

Design patterns are solutions to software design problems you find again and again in

real-world application development [125], [126], [127]. Patterns are formalized best

practices that the programmer himself must implement in the application. Object-oriented

design patterns typically show relationships and interactions between classes or objects,

without specifying the final application classes or objects that are involved.

The 23 Gang of Four (GoF) patterns are generally considered the foundation for all other

patterns. They are categorized in three groups: Creational, Structural, and Behavioral

 Creational Patterns. Deal with object creation mechanisms:

o Abstract Factory. Creates an instance of several families of classes.

o Builder. Separates object construction from its representation.

o Factory. Method Creates an instance of several derived classes.

o Prototype. A fully initialized instance to be copied or cloned.

o Singleton. A class of which only a single instance can exist.

 Structural Patterns. Ease the design by identifying a simple way to realize

relationships between entities:

o Adapter. Match interfaces of different classes.

o Bridge. Separates an object’s interface from its implementation.

o Composite. A tree structure of simple and composite objects.

o Decorator. Add responsibilities to objects dynamically.

o Façade. A single class that represents an entire subsystem.

o Flyweight. A fine-grained instance used for efficient sharing.

o Proxy. An object representing another object.

 Behavioral Patterns. Identify common communication patterns between objects and

realize these patterns.

Modular Framework for Ambient Intelligence Systems

113

o Chain of Responsibility. A way of passing a request between a chain of objects.

o Command. Encapsulate a command request as an object.

o Interpreter. A way to include language elements in a program.

o Iterator. Sequentially access the elements of a collection.

o Mediator. Defines simplified communication between classes.

o Memento. Capture and restore an object's internal state.

o Observer. A way of notifying change to a number of classes.

o State. Alter an object's behavior when its state changes.

o Strategy. Encapsulates an algorithm inside a class.

o Template. Method Defer the exact steps of an algorithm to a subclass.

o Visitor. Defines a new operation to a class without change.

3.9 IEC 61499

A control system is a device or set of devices to manage, command, direct or regulate

the behavior of other devices or systems. Although control systems of various types date

back to antiquity, a more formal analysis of the field began with a dynamics analysis of the

centrifugal governor, conducted by Maxwell in 1868 entitled “On Governors” [128].

Many industrial control systems fall into one of two categories, either based on

traditional distributed control systems (DCSs) or on programmable logic controllers

(PLCs). DCSs like the ones commonly found in petrochemical plants and refineries are

structured around a few large processors that provide supervisory control and data

acquisition communicating via local networks with controllers, instruments, sensors and

actuators located out in the plant. These types of systems may have both discrete

instruments and out-stations with clusters of instruments with local controllers. In a DCS

the main supervisory control comes from one or more of the central processors while

instruments positioned out in the plant typically provide local closed loop control such as

PID control.

On the other hand, many machine control and production processes such as those found

in automotive production lines have generally been designed using PLCs. A large PLC

system will generally have a number of PLCs communicating via one or more proprietary

114

high-speed networks. PLCs will generally be connected to a large number of input and

output (I/O) signals for handling sensors and actuators. In some cases discrete instruments,

for example for temperature and pressure control, are also connected to PLCs.

With both design approaches systems have tended to be developed by writing large

monolithic software packages which are generally difficult to re-use in new applications

and are notably difficult to integrate with each other. The data and functions of one

application are not easily available to other applications even if they are written in the same

programming language and are running in the same machine.

In order to promote the development of flexible solutions the concept of function blocks

was introduced in industrial systems. A function block is a robust, re-usable software

component. The function block is an abstract model representing a function that can be

implemented by software and/ or hardware. A function block can provide a software

solution to a small problem such as the control of a valve, or control a major unit of a plant,

such as a complete production line. Function blocks allow industrial algorithms to be

encapsulated in a form that can be readily understood and applied by people who are not

software specialists. Each block has a defined set of input parameters, which are read by the

internal algorithm when it executes. The results from the algorithm are written to the

block’s outputs. Complete applications can be built from networks of function blocks

formed by interconnecting block inputs and outputs [129], [133].

The function block concept was standardized for programmable logic controllers in the

International Electrotechnical Commission’s IEC 61131 standard [130]. To extend the

concept of function block outside the realm of PLCs the IEC 61499 standard was

developed. The IEC 61499 built upon the function block concept defined in IEC 61131-3 to

develop a generic standard that can also be applied in other industrial sectors; in fact

wherever there is a requirement for software components that behave as function blocks,

such as in building management systems [131].

IEC 61499 defines a general model and methodology for describing function blocks in a

format that is independent of implementation. It allows a system to be defined in terms of

logically connected function blocks that run on different processing resources. IEC 61499

Modular Framework for Ambient Intelligence Systems

115

provides terminology, models and concepts to allow the implementation of a function block

oriented distributed control system to be described in an unambiguous and formal manner.

Having a formal and standard approach to describing systems allows such systems to be

validated, compared and understood.

While previous standards employ a data or signal based communication among the

constructs and assume a cyclic execution, IEC 61499 introduces an event driven approach

of interaction among the function blocks. This means that algorithms are executed only if

an input event activates the block. As a result functions are separated from the execution

control [132], [133]. Writing a program with function blocks involves drawing a network of

function blocks and allocating them to devices for execution.

As the trend to use component based software continues, it is foreseen that industrial

controllers and instruments will either provide function blocks as part of the device

firmware or provide function block libraries from which blocks can be selected and

downloaded. System design will become the process of software component selection,

configuration and interconnection, just as much of electronic hardware design is now

primarily concerned with the selection and interconnection of IC chips. In a function block

world, the system designer’s main focus is to take standard proven encapsulated

functionality and link it together in the quickest and most intuitive way possible. The use of

function blocks is nearer to the mind-set of the industrial system designer who is familiar

with connecting physical devices together in different ways to provide a particular system

solution.

116

Figure 3-4. IEC 61499 Function Block.

The Function Block (FB), the basic construct of IEC61499, consists of a head and a

body as shown in Figure 3-4. The head is connected to the event flows and the body to the

data flows, while the functionality of the function block is provided by means of

algorithms, which process inputs and internal data and generate output data. The

sequencing of algorithm invocations is defined in the FB type specification using a variant

of state charts called Execution Control Chart (ECC).

An ECC consists of EC states, EC transitions and EC actions. An EC state may have

zero or more associated EC actions, except from the initial state that shall have no

associated EC actions. An EC action may have an associated algorithm and an event that

will be issued after the execution of the algorithm. EC transitions are directed links that

represent the transition of the FB instance from one state to another. An EC transition has

an associated Boolean expression that may contain event inputs, data inputs, and internal

variables. As soon as this expression becomes true the EC transition fires [134].

Modular Framework for Ambient Intelligence Systems

117

Figure 3-5. Function Block Network.

FB instances are interconnected to form a Function Block Network (FBN), as shown in

Figure 3-5. An FBN may be executed on a single device or on a network of interconnected

devices. A device may contain zero or more resources, where a resource is considered to be

a functional unit, contained in a device which has independent control of its operation and

may be created, configured, parameterized, started-up, deleted, etc., without affecting other

resources within a device. The event connections and behavior of every single block

completely determines the behavior of the network. An application in IEC 61499 is

composed by one or more FBNs.

118

Figure 3-6. Composite Function Block.

Composite function blocks (Figure 3-6) provide a means for building up more complex

blocks from basic and other smaller composite blocks in a hierarchical fashion. The type

definition for a composite function block contains declarations of function block instances

of selected types that are linked by data and event connections. The standard regards blocks

that are used within a composite block as component function blocks. The data connections

between component blocks define the transfer of data values between block outputs to

inputs while the event connections define the order of execution of algorithms within the

blocks. A composite function block is just a container for a network of other function

blocks. The container as such performs no specific actions except for setting input and

output variables and for the activities of its components. The network can include basic and

composite function block types.

Modular Framework for Ambient Intelligence Systems

119

120

4 Modular Framework for Ambient Intelligence

Systems

Our framework is an event-driven, minimalist, modular framework for the development

of Ambient Intelligence systems. Contrary to other AmI frameworks, our modular

framework for Ambient Intelligence systems approaches the development of AmI systems

from the point of view of distributed control systems using the function block abstraction

described in the IEC 61499 standard. This framework also makes use of a

publish/subscribe, store and forward interaction scheme which is a well-established

mechanism for the development of loosely coupled event-based distributed systems.

Due to its modular design and the use of the function module abstraction we call our

modular framework for Ambient Intelligence systems Funblocks. Developing an AmI

system using Funblocks consists of developing or reusing function blocks which provide

the desired functionality and afterwards joining these blocks through the services provided

by the framework.

4.1 Framework Design Principles

A static environment, where changes do not occur, does not require any type of

adjustment, everything is always the same. In such an environment, since no activities or

changes happen, there is no need to make any type of adaptation. We require Ambient

Intelligence because our environments are dynamic and in constant change. But, from the

point of view of Ambient Intelligence, our environments do not require constant

adjustment; rather, it is the activities of the inhabitants that trigger the need to adapt an

environment. Each activity performed by a user has a defined start and a defined stop. In

other words, each activity performed by a person can be seen as an event. As a result, an

event-driven processing system is very well suited as a basis for an Ambient Intelligence

system.

Ambient intelligence (AmI) is a fast-growing multidisciplinary field that is expected to

have a significant impact on society. Its foundation is the enrichment of the environment,

through sensing and processing technologies, to understand, analyze, anticipate, and adapt

Modular Framework for Ambient Intelligence Systems

121

to events and to users and their activities, preferences, intentions, and behaviors. Basically,

AmI gathers real-time information from the environment along with user activities, and

combines it with historical data accumulated over time to provide user services. Interfacing

with the user is a major aspect of any AmI application. While interfaces may employ

different technologies, the underlying notion of user centricity dominates their design. In

AmI, the traditional paradigm of human–computer interaction, in which users must adapt to

computers by learning how to use them, is replaced by a new one, in which computers

adapt to users and learn how to interact with them in the most natural way.

4.2 Framework Components

To provide an overall view of Funblocks, in this section we give a brief description of

the components that constitute the framework. In later sections we will describe with

greater detail some of these components.

Our framework is formed by the following components (Figure 4-1):

1. Controller (CTRL).

2. Middleware (MDLW).

3. Middleware Communications Interface (MCI).

4. Sensors/ Actuators (SAs).

5. Human/ Computer Interface (HCI).

6. Module and Sensor/ Actuator Catalog (MSAC).

7. Function Modules (FM).

8. Function Module Repositories (FMRs).

9. External Communications Modules (ECM).

A fundamental component of Funblocks is the event-driven store and forward

middleware. This middleware, which we call Midblocks due to its use in the Funblocks

framework, provides the communication mechanism through which the components of the

system interact. An innovative feature of Midblocks is its capability to monitor the

operation of the components of the system through a component supervision mechanism.

As a result, Midblocks can be employed in other systems which require keeping track of

122

component operation such as systems with reliability requirements or systems with self-

healing capabilities. To encourage the use of Midblocks in other systems besides the

Funblocks framework careful attention was paid to the design of the middleware to avoid

any dependency issues with the modular framework for AmI systems. Due to its

independent nature from the rest of Funblocks, a detailed description of Midblocks is

provided in the next chapter.

Figure 4-1. Framework Diagram.

4.3 Controller

The purpose of the Funblocks Controller module is to supervise component interaction

during the System Adaptation and System Failure stages of operation. The main functions

performed by the Funblocks Controller (CTRL) are the following:

1. Performs configuration of new modules.

Modular Framework for Ambient Intelligence Systems

123

2. Maintains information of the SAs and modules installed in the system and makes

this information available to new modules.

3. Notifies modules when new SAs are installed.

4. Performs communication with external components, such as Automated Repair

Services.

5. Prevents the installation of modules which could generate conflicts, such as

multiple gesture recognition modules in the same area.

During “normal” operation, i.e. in the absence of system architecture changes and

malfunctions, all component interaction is carried out through the Midblocks middleware.

However, since ease of use is one of the objectives of the Funblocks framework, it becomes

necessary to consider the operation of the system during the setup, adaptation and failure

phases of the system’s lifecycle. The tasks that have to be performed during system setup

and adaptation are analogous and as a result system setup can be considered as the first

adaptation of the system to the user’s requirements.

4.3.1 System Adaptation and System Failure Operation

There are two phases of a Funblocks based system’s lifecycle where interaction is not

covered by MidBbocks:

 System Adaptation. Two types of system adaptation tasks are considered in the

Funblocks framework:

o Addition or removal of system components. New components can be added or

removed during the lifetime of a Funblocks based system in order to adjust the

system to the user’s needs.

o Changes in component grouping. In Funblocks SAs are grouped by means of an

area identifier. During the lifecycle of a Funblocks based system users might

need to modify the grouping scheme of their SAs to fine-tune the operation of

their system.

Currently, in scenarios such as Home Automation, these tasks are performed by

specialized personnel. Due to the inconvenience and cost associated with such

personnel HA systems may not be adequately tailored to user’s needs. This leads to

124

systems that instead of being a benefit to users sometimes operate “against” them

[135].

 System Failure. Real world experience shows that complex systems can and do fail.

Therefore it becomes necessary to consider how the system should respond in the event

of a failure. This is particularly important in cases where the user’s wellbeing depends

on the correct operation of the system. In these cases the system must notify

appropriate parties of the failure to ensure that corrective measures are performed as

soon as possible.

4.3.2 System Adaptation and System Failure Tasks

The CTRL aids users in performing system adaptation and notifies appropriate parties in

the event of a system failure. The main functions performed by the CTRL during these

stages of operation are the following:

 System Adaptation.

o Performs configuration of new modules. Whenever a new module or SA is

installed, the CTRL assigns the module the parameters required for it to operate.

For example, if a new sensor is installed the CTRL must provide the sensor with

the Area ID of the group to which this sensor will be assigned. If necessary the

CTRL must obtain the parameters from users through an HCI device.

o Maintains information of the SAs and modules installed in the system and makes

this information available to new modules. The operation of some modules may

depend on information provided by other modules of the system. In these cases

modules may adapt their operation depending on what other modules are

available in the system. To prevent users from having to manually tune such

modules the CTRL can, upon demand, provide information of the modules

currently installed in the system to a newly installed module. Since not all

components are expected to be able to adjust their operation, this function is only

performed if the newly installed module requests the information during its

installation process.

Modular Framework for Ambient Intelligence Systems

125

o Notifies modules when new SAs are installed. As mentioned above, the operation

of a module may depend on the availability of other modules or SAs in a system.

To allow installed modules to adjust their operation when new components

become available, the CTLR notifies existing modules whenever a new module

or SA is installed. As before, since not all modules can adapt their behaviour

when new components are introduced, this notification is only sent to modules

that have registered to be notified when changes in the system occur.

o Prevents the installation of modules which could generate conflicts, such as

multiple Gesture Recognition modules in the same area. Certain systems may

contain modules which allow to customize the system for different applications

but which cannot be simultaneously installed in the system. In other words,

modules which could generate conflicts if installed at the same time on a given

system. If the MSAD record of the component lists these failures then the CTRL

will prevent installation, or at the very least operation, of one of the modules. In

the event that the installation of the modules has been attempted the CTRL

should notify the users through an appropriate HCI device.

 System Failure

o Notifies users in case of a failure. Midblocks supervises the communication

between the components of the system and, in case a component has failed to

generate events after its MEI has expired and after attempts to obtain a response

from the component have failed, generates a failure event. In case of such a

failure the CTRL notifies users through one or more HCIs.

o Notifies external components, such as Automated Repair Services. In case of a

component failure the CTRL notifies adequate External Services. This is

particularly important for systems in which the wellbeing of the users depends on

the system and where external parties, such as caretakers, must immediately

perform corrective actions in case of a system failure.

4.4 Sensors/ Actuators

A sensor is a device that receives a stimulus and responds with an electrical signal that is

compatible with electronic circuits [136]. A smart sensor is obtained by combining a

126

sensor, an analog interface circuit, an analog to digital converter, a microcontroller, and a

communications interface [136]. Certain types of smart sensors, such as many wireless

sensors, will also include a power supply in form of a battery (see Figure 4-2).

Sensors and actuators (SAs) are two of the fundamental components of an AmI system.

Through sensors AmI systems gather information about physical environmental parameters

such as heat, humidity, temperature, ambient light intensity among others. Sensors also

allow AmI systems to collect information about the activities being performed by the

inhabitants of an environment. Through actuators AmI systems can adjust the environment

to the needs of inhabitants. Due to their digital and distributed nature, it is reasonable, and

beneficial, to expect for Ambient Intelligence systems to employ only smart sensors.

Figure 4-2. Smart Sensor Block Diagram.

There is a vast array of communications protocols available for sensors. There are

currently more than fifty communication protocols for home automation and many more

available for industrial environments. To enable the development of modular Ambient

Intelligence systems sensors must be handled in a uniform way. Towards this end, in

Funblocks we broadly classify sensors and actuators into 3 categories:

Modular Framework for Ambient Intelligence Systems

127

1. Binary Sensors/Actuators (BSAs): As the name implies binary sensors and

actuators, such as smoke detectors or garage door open-close actuators, have two

states.

2. Multi-valued Sensors/Actuators (MVSAs): Multi-valued sensors and actuators

can provide or use more than two values. Examples of these types of sensors are

temperature sensors and shade positioning actuators.

3. Special Function Sensors/Actuators (SFSAs): Sensors and actuators in this

category provide a richer means of interaction with the environment, for example

voice command recognition systems, video-based activity recognition systems,

multimedia systems, etc.

This classification allows systems developed with Funblocks to handle a vast array of

different sensors and actuators in a straightforward manner:

1. BSAs generate an event when a change of state occurs, for example, when a door

is opened or when a person enters an area. In the absence of environmental

changes, BSAs generate periodic “heartbeat” events for component monitoring

purposes.

2. MVSAs generate current reading events periodically.

3. SFSAs can generate events when a state of change occurs, for example when a

person start a certain activity, or generate events periodically, such as health

monitoring devices.

For all three types of SAs, the exact time interval between events is dependent upon the

type of sensor, the sensor’s intended use and the system’s configuration.

Handling systems such as voice recognition systems and video-based activity

recognition systems as a form sensor actuator has several advantages:

 Hardware/software specialization. By treating these types of systems as

independent components, researchers, designers and developers can focus on

developing specialized hardware and software without having to take into

consideration the rest of the hardware and software. This allows the use of

128

specialized tools and languages which might not be adequate for the

development of other parts of the AmI system.

 Data processing distribution. Incoming data from devices such as cameras or

microphones is processed in situ by specialized hardware and software without

having to transfer such data to other parts of the system. Such transfer of data

would place additional load on the network.

 Enhanced privacy and security. Collecting data from user activities poses a

threat to the privacy and security of the people inhabiting an Intelligent

Environment (IE). For example, placing cameras or microphones inside a

bedroom would be a serious privacy and security issue if the images and sounds

obtained by the devices were accessible to other parties. By processing the

images and sounds in situ and avoiding designs that would allow this type of data

to be extracted from the components such privacy and security risks can be

avoided.

In order to uniformly handle different sensor types we must establish a minimum set

of parameters which can be obtained from all sensors regardless of the type of sensor

used. This minimum set of parameters should be enough to allow an Ambient

Intelligence system perform the following operations:

 Presence. An Ambient Intelligence system must be able to detect the

insertion and removal of a sensor. This allows other components of the

system whose operation relies on the data from the sensor to take adequate

action.

 Failure. Sensors with self-diagnosing capabilities must be able to notify the

AmI system in the event of a failure.

 Grouping. Sensors and actuators require some form of grouping scheme.

This is required in order to assure proper evaluation of stimulus by the AmI

system and that a correspondence can be established between stimulus and

action.

Modular Framework for Ambient Intelligence Systems

129

 Interpretation. An AmI system must be able to adequately interpret the data

coming from sensors. In particular there must be and unequivocal way to

relate sensor readings with ambient parameters.

To provide AmI systems with the capability to perform the previously described

functions we propose the use of a simple 3 field message format:

SENSOR ID – AREA – TYPE – DATA

Where:

 Sensor ID. This is a unique numerical identifier assigned to each sensor by the

system when the device is installed.

 AREA. A numerical identifier assigned to each sensor by the system when the

device is installed. This identifier need not be unique.

 DATA. This is the data obtained from this sensor.

With this simple message format an AmI system can perform the operations described

previously:

 Presence. Presence is detected by message events generated by the sensors.

Since each sensor is assigned a unique SENSOR ID, if a sensor has failed to

generate an event after a certain time interval then the AmI system can assume

that the sensor has either been removed or has failed. For sensors that are either

critical or unable to report failures, absence of a sensor should be treated in the

same manner. This is particularly important for critical sensors since the inability

of the AmI system to receive sensor data can lead to potentially hazardous

situations.

 Failure. Sensor failure is detected either through absence of sensor messages or

by an explicit message from sensors with self-diagnosing capabilities.

 Grouping. Grouping is achieved by means of the AREA field. All sensors which

have the same AREA identifier belong to the same group.

 Interpretation. Interpretation of sensor data is achieved through a TYPE

identifier assigned to a class of sensors and read during system setup. For

130

example all temperature sensors which handle the same temperature range

should have the same TYPE identifier.

Care should be exercised when implementing the TYPE identifier and DATA field for a

particular system, or family of systems, developed with the Funblocks framework. If

sensors made by different manufacturers share the same TYPE identifier then said sensors

should be interchangeable and their DATA field should have the same format. However, if

a high degree of customization is allowed for a particular type of sensor then the use of

very specific Function Modules will be required. This results in a loss of flexibility in the

system. The use of this simple message format allows devices with very limited resources,

such as 8-bit microcontrollers, to be employed in Funblocks.

4.5 Human Computer Interfaces

There are two types of interaction users will perform with an Ambient Intelligence

system: implicit or natural interaction, and explicit interaction. Implicit interaction is

carried out by the users through their Daily Life Activities (DLAs) and, as described

previously, is detected by a Funblocks based system through SFSAs.

On the other hand, to perform activities such as system configuration or system

maintenance the users must interact explicitly with the system. HCI components allow

users to perform such explicit interactions with the system. HCIs include touch panel

interfaces and computing devices such as laptops or smartphones.

4.6 Function Modules

The intelligence, and in fact the entire useful features, of a Funblocks based system

reside in the Function Modules (FMs). FMs receive events from SAs or from other FMs;

reception of an event triggers the execution of the function block. The data required by the

FM for its execution is contained in the event. The execution of a function block can result

in events sent to actuators to perform adjustments in the environment, or in events sent to

other function blocks to trigger their actions. This allows the creation of function block

networks as described in the IEC61499 standard.

Modular Framework for Ambient Intelligence Systems

131

4.7 Module and Sensor/Actuator Catalog

In the early days of computers much of the software available to a computer came in the

form of monolithic programs which included all of the functions necessary for the program

to operate. As programs and computers became increasingly larger and more complex the

development of hardware and software as single monolithic units was no longer feasible

and the concept of modular development was introduced.

As more and more modules became available for the integration of systems, it became

an increasingly difficult task to keep track of both the modules installed, and available for

installation, in a given system. To aid users and developers in the task of customizing and

managing their systems, software and device managers were introduced. These software

and device management programs keep track of the devices and software installed in a

given system. They also ensure that any software required by a new device or program is

installed previous to the new components installation.

Furthermore, some manufacturers, such as Ubuntu Linux, keep a repository of available

modules on the Internet. As part of the installation process of a new program any software

required by the new program to operate is installed previous to the installation of the new

program. In other words, any dependencies are automatically satisfied as part of the process

of installing a new package. The advantage of this process is that system management is

tremendously simplified. The user simply needs to select a new package of installation,

wait for the installation process to complete, and the new software becomes immediately

available.

This concept is brought into the Funblocks framework through the Module and Sensor/

Actuator Catalog (MSAC) and the Function Module Repository (FMR). The Module and

Sensor/ Actuator Catalog stores MSAD records which describe the components available to

a specific Funblocks based system. The MSAD lists the functions provided by a specific

module or SA, the dependencies required by the component and the conflicts this

component may have with other components. The MSAD also provides a default

configuration for the components of an AmI system. This assists end-users and system

integrators in the configuration of an AmI system.

132

4.8 Function Module Repository

The Function Module Repository contains modules which can be directly installed from

the Internet onto a system to introduce new functionality and to satisfy dependencies. The

FMR also stores Function Modules targeted at different hardware. This allows

manufacturers to target multiple platforms, such as Intel or ARM architectures, while at the

same time it allows end users to choose the architecture best suited for their expected needs

and budget.

4.9 External Communications Modules

External Communications Modules (ECMs) provide a link to external communications

networks such as the Internet or telephone services. The use of ECMs increases the security

of the system by avoiding direct interaction of an AmI system’s components with external

entities. Currently ECMs are a planned feature of the Modular Framework for Ambient

System development which will be detailed at a later stage in the development of the

project.

Modular Framework for Ambient Intelligence Systems

133

134

5 Component Supervising Middleware

A solution to improve the reliability of a system is to perform supervising functions

through the communication mechanism used for component interaction. Examples of this

type of solution are the pneumatic control systems used in early building automation and

the 4-20mA current-loop popular in industrial measurement and control systems.

In early building automation systems compressed air was used to transmit information

between the components of the system and simultaneously supervise the system. To

achieve this, components were linked with hoses that carried compressed air which varied

in the range of 3-15psi. 3psi represents a live zero while 15psi represents 100%. Any

pressure below 3psi is a dead zero and constitutes an alarm condition [137].

The same principle is used in the 4-20mA current-loop. In this scheme a current flowing

through a wire to the sensor or actuator is varied between 4 and 20mA, with 4mA

representing a live zero and 20mA representing 100%. If the current drops below 4mA this

signals either a device failure or an open link while a current above 20mA signals a device

failure or a short circuit [137], [138].

To supervise components in distributed systems, a frequent solution is to use heartbeat

messages. In this type of scheme a special kind of message, called a heartbeat message, is

periodically sent by the component to other components in the system. The main

disadvantage of this type of scheme is that depending on the number of system

components, the frequency with which heartbeat messages are sent and the bandwidth of

the communications links, the load on the communications infrastructure can be significant.

The event based store and forward middleware is particularly well suited to provide a

supervising mechanism without the need of a separate heartbeat message. Events generated

by the system components can be considered as a type of heartbeat message. This coupled

with the need of an event management entity for the store and forward mechanism, which

can simultaneously be used to supervise the interval between events, provides the basis for

a complete component supervision solution. This is the principle we use in Midblocks, an

event based, store and forward, component supervising middleware.

Modular Framework for Ambient Intelligence Systems

135

5.1 Middleware Description

Midblocks is an event based, store and forward type of middleware in which the store

and forward entity additionally performs component supervision tasks [139], [140], [141].

Every component of a Midblocks based system specifies a maximum time interval between

the events that it generates. If a component exceeds this maximum time interval, called the

Maximum Event Interval (MEI), Midblocks will generate a failure event notifying the

component’s failure to those components that have subscribed to failure events.

A useful feature of Midblocks is that it does not assume any particular type of

communication mechanism or underlying hardware. To achieve this Midblocks makes use

of a layered design in which events are formed independent of any communications

mechanism or hardware assumptions and as the events descend through the layers

information required by the specific communication mechanism and hardware chosen is

added. As a result Midblocks can be used to provide component supervision in a large array

of different systems.

In order to use Midblocks in a particular system only two elemental requirements have

to be satisfied:

 Each component of the system must be uniquely identifiable.

 A communication link must be present, capable of sending and receiving discrete data

packets between the components and the store and forward/component supervising

module.

5.2 Middleware Events

All components in Midblocks must be assigned a unique identifier. This way event

messages can be related to the component from which the message originated. Component

identifiers in Midblocks are 48 bits long analogous to the MAC address used in IEEE 802

networks. These identifiers can either be assigned statically during system installation or

dynamically, the only requirement is that the identifiers are system wide unique.

136

All Midblocks events have the same basic structure which is the 48 bit component id,

followed by an 8 bit event type id and, depending on the type of event, additional event

data (figure 5.2.1).

Figure 5-1. Midblocks Event Structure.

Midblocks uses the following six types of events:

 Query events. When a component has exceeded its maximum MEI the Component

Supervisor (CS) module sends a query event to the component to determine if it is

responsive. If the component does not respond within an MEI then a critical failure

event is sent to those components subscribed to failure events.

 Alive events. There are two types of Alive events with different event type id which can

be issued by components. The first one is issued in response to a query event. While

the second one is issued when the component has not generated any events and its MEI

is close to expiring.

 Reset events. When an event is received by a component that is not registered with the

Message Receiver then a Reset event is issued immediately back to the component.

Upon reception of a Reset event the component should clear any pending outbound

events and perform its registration procedure.

Modular Framework for Ambient Intelligence Systems

137

 Failure events. Failure events are generated when messages are not received or cannot

be delivered to components. Failure events have an 8 bit Failure Type Id (FTI) which

indicates the type of failure detected.

 Data events. Data events are the normal events exchanged between components and

the store and forward entity in Midblocks. After the event type id, Data events have a

64 bit Data Type Id field (DTI). The possible values of the DTI are application specific

and are assigned by the system developers using Midblocks. After the DTI comes the

actual event data. Midblocks does not assume any particular structure or size for this

data.

 Register events. Register events are used to register components with the store and

forward/component supervision entity. Midblocks handles two values for the Register

Event Id field (REI). The first value is used for components that have interest in

receiving failure events, while the second value is used for components that do not

need to be notified of failure events. Following the event type id Register events have

the following fields:

o MEI. This is a 32 bit field containing the Maximum Event Interval for this

particular component expressed in milliseconds. This value is sent using network

byte order.

o NI. The Number of Interests field (NI) is a 64 bit field indicating the number of

data event types that this component has interest in. This value is sent using

network byte order.

o Interest List field. This field lists the DTIs of all the data types that this

component is interested in receiving.

o NP. The Number of Provides field (NP) is a 64 bit field indicating the number of

data event types that this component provides. This value is sent using network

byte order.

o Provides List field. This field lists the DTIs of all the data types that this

component provides.

138

5.3 Middleware Architecture

Midblocks can be broadly separated into two distinct parts (see Figure 5-2): A

component side part (CMPS) and a Store and Forward/Component Supervising entity

(SFCS).

Figure 5-2. Middleware Architecture

As with any other type of store and forward event-based middleware the primary task

performed by Midblocks is to deliver events from producers to consumers. However, unlike

Modular Framework for Ambient Intelligence Systems

139

other types of middleware Midblocks supervises the components to ensure that at least one

event is sent during a components MEI and that events are being accepted by the

components. To achieve this Midblocks requires event message supervising functions

which constantly monitor the events being accepted from components by the SFCP and the

events delivered to components from the SFCP. In order to perform adequate supervision

Midblocks does not support direct component to component interaction.

In the following sections we will begin by describing the operation of the CMPS part of

Midblocks and afterwards describe the SFCS entity.

Figure 5-3. Midblocks Component Side (CMPS) Block Diagram.

5.3.1 Component Side Mechanism

When a component is first introduced into the system it must perform a registration

procedure. The purpose of the registration procedure is to allow the SFCS to configure the

queuing and component supervision mechanisms adequately to handle the events of this

140

component and to supervise the component. Registration of the component with the SFCS

is performed by the CMPS Component Registration Module (CMPS-CR) upon request of

the component’s main process (Figure 5-3). The registration sequence has to be initiated by

the main process in order to ensure that the communications hardware and software have

been properly initialized and are able to send and receive messages. Components must use

one of two Register Event Ids to indicate whether or not they are interested in receiving

Failure events.

Inbound event messages arrive at the CMPS from the SFCS through a communications

interface and are received by the CMPS Message Receiver (CMPS-MR). Four types of

events can be received by a component: Query, Reset, Data, and Failure events. Failure

events are received only by components that have expressed interest in receiving this type

of events by using the corresponding REI during their registration procedure. Depending

upon the type of event received by the CMPS-MR the following tasks are performed:

 Query event. When a Query event is received, the CMPS-MR immediately notifies the

CMPS Message Dispatcher/MEI Supervisor (CMPS-MD) to send an appropriate Alive

event. The Query event is then discarded and no further processing of the event occurs.

 Reset event. Upon reception of a Reset event the following sequence of actions occurs:

o CMPS-MR signals the CMPS-MD to block any further event message sending,

with the exception of Register events.

o The CMPS-MR then introduces the event into the CMPS Local Event Queue

(CMPS-EQ) and will discard any further Reset events until it is signaled by the

CMPS-MD that a Register event has been sent.

o The CMPS-MD will not accept any events from the component’s Main Process

until it receives a Register event from the CMPS-CR.

o When the component’s Main Process extracts the event from the queue it must

signal the CMPS-CR to perform the registration procedure to register the

component with the SFCS.

 Data and Failure events. Data and Failure events are placed directly in the CMPS-EQ

for processing by the component’s Main Process.

Modular Framework for Ambient Intelligence Systems

141

Outbound data events are sent through the CMPS-MD and the communications

interface. The CMPS-MD monitors the time interval since the last event was sent and, in

case it approaches the component’s MEI, it issues an Alive event to signal that the

component is operating correctly.

Figure 5-4. Middleware SFCS Block Diagram.

142

5.3.2 Store and Forward with Component Supervision

The Store and Forward with Component Supervision mechanism of the middleware is

comprised of the event queue and the logic necessary to supervise the transmission and

recollection of messages from the components.

5.3.2.1 Midblocks SFCS Event Reception

On the SFCS side (see Figure 5-4) event messages are received by the SFCS Message

Receiver (SFCS-MR) from the communications interfaces. Three types of messages can be

received by the SFCS: Alive, Register and Data events. The first task performed by the

SFCS-MR is to verify the event type and the Component Id. If the event is not a Register

event and the component’s data is not registered in the SFCS Component Register (SFCS-

CR) then a Reset event for the component is issued through the same communications

interface from which the message arrived. Since Reset events are not entered into the SFCS

Event Queue (SFCS-EQ) and are not sent by the SFCS Message Dispatcher (SFCS-MD)

the data in the Component Id field of the Reset event is not important.

After verifying that the event is valid one of the following actions is performed

depending on the event type:

 Alive and Register events. Alive and Register events are directly placed in the message

queue without any further processing from the SFCS-MR.

 Data event. When the event received is a Data event the SFCS-MR scans the SFCS-CR

to determine which components are subscribed to the type of data event received. Next

the SFCS-MR attaches a Time-To-Live (TTL) field to the event, and inserts one copy

of the event into the SFCS-EQ for each recipient. The inserted events are tagged as

New events prior to insertion as explained in the following section.

5.3.2.2 Midblocks SFCS Event Processing

Events in the SFCS-EQ can be tagged with four states:

 New event.

 Ready for Delivery.

 Unable to Deliver.

Modular Framework for Ambient Intelligence Systems

143

 Processed.

Any event in the SFCS-EQ can only be in one of these states at any given time.

The SFCS Component Supervisor (SFCS-CS) constantly scans the SFCS-EQ for events

that require processing. Depending on the event type and the state of the event one of the

following actions is performed:

 New event tag - Alive event. When the SFCS-CS encounters an Alive event tagged as a

New event, it resets the timer associated with the producer component and tags the

event as Processed. If the Alive event was issued in response to a Query event then the

SFCS-CS inserts a Failure-Non critical event into the SFCS-EQ for each Failure event

subscriber. Failure events have the same structure as Data events in the SFCS-EQ

meaning that the event has a TTL field and a state tag. When the Failure event is

created it is tagged as Ready for Delivery.

 New event tag - Data event. Data events are handled in much the same way as Alive

events. The SFCS-CS resets the timer associated with the producer component and tags

the event as Ready for Delivery.

 New event tag - Register event. On encountering a Register event tagged as a New

event, the SFCS-CS creates and initializes a new timer for the component and inserts

the component’s data into the SFCS-CR. The Register event is then tagged as

Processed.

 Ready for Delivery. Events tagged as Ready for Delivery are not handled by the SFCS-

CS but are handled by the SFCS-MD. How the SFCS-MD handles Ready for Delivery

events is described later on in this section.

 Unable to Deliver. This tag indicates that the SFCS-MD was unable to deliver the

event after TTL attempts. When encountering a message tagged as Unable to Deliver

the SFCS-CS performs the following actions:

o The destination component’s data is removed from the SFCS-CR.

o Any events in the SFCS-EQ destined for the component, including the current

event, are tagged as Processed.

o Failure events of type Critical are inserted into the SFCS-EQ indicating that the

component has failed.

144

 Processed. Processed are handled by the SFCS Garbage Collector (SFCS-GC). The

SFCS-GC scans the SFCS-EQ for events tagged as Processed and removes the events

from the SFCS-EQ.

The SFCS-CS also keeps track of the time elapsed since component’s last event was

received. If a component exceeds its MEI the SFCS-CS inserts a Query event destined for

the component into the SFCS-EQ. Additionally the SFCS-CS inserts a non-critical failure

event into SFCS-EQ and resets the timer associated with the component.

5.3.2.3 Midblocks SFCS Event Delivery

Data events marked as Ready for Delivery are read from the SFCS-EQ by the SFCS-MD

on a FIFO basis and delivered to consumers via the appropriate communications interface.

If the event is delivered successfully then it is tagged as Processed, otherwise the event’s

TTL field is decremented by one. If the event’s TTL field reaches zero then the event is

tagged as Unable to Deliver and no further attempts will be made to deliver the event.

5.4 Middleware Communications Interfaces

To allow use with a wide variety of devices and communications technologies,

Midblocks employs a 3 layer design for its communication interfaces as shown in figure

Figure 5-5.

In the first layer event messages are formed without using communication specific data

such as IP addresses or node ids. Once the core event messages are formed, communication

specific parameters such as IP addresses are added to the message. Finally, in the last layer,

platform specific routines are invoked to deliver the message.

A detailed description of the message composition process can be found in section 6.4.1.

Currently, the CMPS can only use a single communications interface in each

component, however the SFCS can use multiple communications interfaces both for

inbound as well as for outbound messages. This allows the SFCS to function as a gateway

which permits components with different types of communication mechanisms to exchange

events.

Modular Framework for Ambient Intelligence Systems

145

Figure 5-5. Middleware Communications Interface Layers.

146

6 Implementation of the Modular Framework for

Ambient Intelligence Systems

For testing purposes we developed a simple temperature measurement demo application.

The demo tested the main features of the framework including registration, removal and

failure of a component. A video of the demo can be found at:

http://www.youtube.com/watch?v=y5LxC44FWwA

Two basic criteria were used during the selection process of the development tools that

were employed to develop the test implementation:

1. Keep the number of development languages at a minimum. This criterion

allowed us to focus our efforts in developing the API and the test implementation

instead of using development time for dealing with differences in programming

languages.

2. Use easily available development hardware. This criterion insured we had all the

tools required to develop the test implementation.

Based on these criteria the following tools were selected for a first implementation of

Funblocks and Midblocks:

1. Laptop PCs. Laptop PCs were chosen because it is a very easily available and

highly customizable hardware. Laptops can be customized through the use of

different operating systems, add-on peripherals, and a wide array of development

tools is available for these devices.

2. Netduino Embedded Systems. Netduino embedded development boards are easily

available on the local market and represent an easily extendable development

platform.

3. Visual C# Programming Language. This language was selected due to it being

available both for PCs and Netduino embedded systems. Although the PC and

embedded versions are not identical, they share the same syntax and most of the

libraries required for the test implementation.

http://www.youtube.com/watch?v=y5LxC44FWwA

Modular Framework for Ambient Intelligence Systems

147

6.1 Hardware

Our Modular Framework for Ambient Intelligence Systems has been implemented on the

following hardware:

Controller, SFCS and Component:

 HP Mini 110-3121 LA with Windows 7 32-bit OS and WiFi communications link.

 Asus K52F with Windows 7 64-bit OS and WiFi communications link.

 Acer 7520 with Windows 7 32-bit OS and WiFi communications link.

Component:

 Netduino Plus and Ethernet communications link

6.2 Development Platforms

Funblocks has been implemented in the following programming languages:

 Net Framework/Visual C#

 Net Micro Framework/Visual C#

6.3 Communication Schemes

The test implementation employed IP (Wi-Fi and Ethernet) links.

6.4 Application Programming Interface

An Application Programming Interface (API) is the set of symbols that are exported and

available to the users of a library to write their applications. The main characteristics that an

API should possess are [142]:

1. Easy to learn and memorize. An easy-to-learn API features consistent naming

conventions and patterns, economy of concepts, and predictability. It uses the

same name for the same concept and different names for different concepts. An

API must be minimal and consistent. A consistent API is easy to memorize

because the user can reapply what they learned in one part of the API when using

another part. A minimal API is easy to memorize because there is little to

148

remember. An API is not only the names of the classes and methods that

compose it, but also their intended semantics.

2. Leads to readable code. Readable code is less likely to contain errors because

errors are made more visible. Readable code is also easier to document and

maintain.

3. Hard to misuse. A well-designed API makes it easier to write correct code than

incorrect code and encourages good programming practices. It does not

needlessly force the user to call methods in a strict order or to be aware of

implicit side effects or semantic oddities.

4. Easy to extend. APIs should be designed with future growth in mind.

5. Complete. Ideally, an API should be complete and let users do everything they

want. Completeness is also something that can appear over time, by

incrementally adding functionality to existing APIs. It is important to have a

clear idea of the direction of for future development so that each step is a step in

the right direction.

To achieve these characteristics, the Funblocks and Midblocks APIs are being developed

using an iterative approach.

The development of a project such as Funblocks and Midblocks is an effort that vastly

exceeds the scope of a single PhD thesis. Other AmI projects have been developed by

teams of individuals from many different companies and research institutions. As a result,

although a first stage design of the framework has been carried out and shown in this thesis,

the details of many of the components are still an ongoing research effort which will be

carried out in future stages of the project. Because of this the Funblocks and Midblocks

APIs are in a constant state of evolution.

As mentioned previously, the components of Funblocks that are currently being

developed are the following:

1. Midblocks

2. Controllers.

3. Components.

Modular Framework for Ambient Intelligence Systems

149

The following sections describe the current development of the API.

6.4.1 Midblocks

The Midblocks middleware is the part of the Modular Framework for Ambient

Intelligence Systems that has been most developed. The reason for starting the development

of the project with the middleware is that the other parts of the framework rely on the

middleware for their interaction. Therefore, the middleware is required to perform any type

of tests on the system.

The Midblocks API is divided into the following parts:

1. Event Handling.

2. Base Communications.

3. Messages.

4. Network (IEEE 802.3) Communications.

5. Event Processing.

6. Component.

7. Controller.

8. SFCS.

These API parts are described in the following sections. It is important to note that this is

still an ongoing project and therefore subject to rapid changes in the future.

6.4.1.1 Midblocks Event Handling

All Midblocks events have the same basic structure which is the 48-bit component id,

followed by an 8-bit event type id and, depending on the type of event, additional event

data (see 5.2. Middleware Events). The advantage of this event architecture scheme is the

flexibility it provides by allowing new types of events to be introduced and handled in a

uniform manner.

Midblocks events stem from the abstract base class MB_Event (see Figure 6-1, Figure

6-2 and Figure 6-3), which provides the basic structure of an event. Midblocks events

derive from this base class and must override the methods SerializeEvent and

DeserializeEvent which are methods specific to the characteristics of each event type.

150

Derived classes must also modify the _eventTypeId member variable which allows

distinguishing between different types of events.

Figure 6-1. Midblocks events. Part 1.

The currently assigned values for the _eventTypeId are the following:

Modular Framework for Ambient Intelligence Systems

151

1. MB_QueryEvent: Type id 10.

2. MB_AliveResponseEvent: Type id 11.

3. MB_AliveSignalEvent: Type id 12.

4. MB_ResetEvent: Type id 13.

5. MB_ControllerDataEvent: Type id 14.

6. MB_ComponentDataEvent: Type id 15.

7. MB_ComponentRegisterEvent: Type id 16.

8. MB_ControllerRegisterEvent: Type id 17.

Figure 6-2. Midblocks events. Part 2.

152

As mentioned in section 5.2. Middleware Events, two types of alive events are

required. The first type is an alive event which is issued to avoid a component from

exceeding its Maximum Event Interval (MEI), which is the maximum time period

between events. This type of event is represented by the MB_AliveSignalEvent class.

The second type of event, represented by the MB_AliveResponseEvent, is issued in

response to a query event generated by the Midblocks SFCS.

Figure 6-3. Midblocks events. Part 3.

6.4.1.2 Midblocks Communications

The Midblocks communications layer is based on three main concepts:

1. Communications Client. Communications clients are tasked with sending data

through a specific type of communications interface, e.g. IEEE 802.3 type

interface, RS-485, Bluetooth, etc. Communications clients are a well-known

Modular Framework for Ambient Intelligence Systems

153

concept in networking software. Midblocks clients are derived from the

MB_Client class (see Figure 6-4).

2. Communications Server. Communications servers are the counterpart for

communications clients, i.e. servers are tasked with sending data through a

specific type of communications interface. Midblocks servers are derived

from the MB_Server class (Figure 6-5).

Figure 6-4. Midblocks Client Base Class

3. End Point. A Midblocks end point represents the type of communication

interface being used, e.g. IEEE 802.3, RS-485, etc., plus all necessary

information for data reaching its destination. For example, the end point for

IEEE 802.3 type interfaces contains the interface type id, the ip address and

the port number (see Figure 6-6).

154

Figure 6-5. Midblocks Server Base Class

Modular Framework for Ambient Intelligence Systems

155

With these three concepts Midblocks can handle a large array of different types of

communication interfaces.

Figure 6-6. Midblocks Endpoint Base Class and Endpoint Deserializer Class

Midblocks communications servers are designed to operate both in single-threaded and

multi-threaded forms. Some languages, like Visual C#, cannot pass parameters to methods

156

that are launched in a new thread. As a result the MB_Server base class makes use of a

ProcessEventInitializer inner class as a way to pass parameters to a method that is launched

as a new thread.

Since no assumption is made about end points, it is necessary to have a type-specific

method which will obtain end point data from received messages. To provide support for

various types of end points Midblocks makes use of an end point deserializer class, called

MB_EndPointDeserializer (see Figure 6-6). Each end point type must implement the

EndPointDeserializer method which provides the means to obtain the end point data from

Midblocks messages. Each Midblocks server registers this deserializer method with an

instance of the MB_EndPointDeserializer class. To avoid inconsistencies, there should only

be one instance of the MB_EndPointDeserializer class per component, therefore this class

makes use of a singleton pattern.

6.4.1.3 Midblocks Messages

Midblocks messages are the combination of an event and an end point. Messages

contain the data of an event and the information necessary to route the event to its intended

destination. Midblocks messages are represented by the MB_Message class.

Figure 6-7. Midblocks Message Class

Modular Framework for Ambient Intelligence Systems

157

6.4.1.4 Midblocks Network (IEEE 802.3) Communications

Figure 6-8. Midblocks IEEE 802.3 networking endpoint class

This first implementation of Midblocks has support for IEEE 802.3 (Ethernet) and IEEE

802.11 (Wi-Fi) based communications. The implementation of IEEE networking

158

communications serves both to provide support for networking and as a template for the

implementation of other communication types.

To provide support for IEEE networks, we first derive a new class from the

MB_EndPoint class. This new class, called MB_NetEndPoint, implements the

EndPointParamsSerializer and EndPointParamsDeserializer methods (Figure 6-8).

Figure 6-9. Midblocks IEEE 802.3 server class

Modular Framework for Ambient Intelligence Systems

159

To send data over the network and to handle incoming data we derived classes from the

MB_Server and MB_Client classes. The class derived from MB_Server, called

MB_ServerUDP, implements the Bind, Close and ReceiveEvent methods (Figure 6-9).

While the class derived from MB_Client, called MB_ClientUDP, implements the Close,

Connect, and SendEvent methods.

Figure 6-10. Midblocks IEEE 802.3 client class

160

6.4.1.5 Midblocks Event Processing

To allow future introduction of new events, an expandable event processing scheme is

used in Midblocks.

Figure 6-11. Midblocks event processing class and interface

Event processing is done through classes that implement the MBI_EventProcessor

interface. Instances of said classes are the registered with an instance of the

MB_IncomingEventProcessor class (see Figure 6-11). MB_IncomingEventProcessor serves

as a form of switchboard that selects the appropriate processor based on the event type.

MB_IncomingEventProcessor is used by MB_Server to select the correct processor to

process each incoming event. To ensure that each event is processed adequately, there must

Modular Framework for Ambient Intelligence Systems

161

be only one event processor per component type. Therefore MB_IncomingEventProcessor

makes use of a singleton pattern.

6.4.1.6 Midblocks Component

Figure 6-12. Midblocks component class

Components in Midblocks are represented by the MB_Component class (). Instances of

this class have two modes of operation, dependent on the value of the supervise MEI

member variable:

162

1. Independently Supervised MEI. In this mode of operation a separate thread is

launched to supervise that the component does not exceed its Maximum Event

Interval.

2. In-line Supervised MEI. In this mode of operation MEI supervision is performed

in the component’s main event loop or in an independent user-provided thread.

Figure 6-13. Midblocks component default query event processing

In the Independently Supervised MEI mode Midblocks provides a default query event

handling mechanism by implementing MBI_EventProcessor interface in a class called

MB_QueryEventProcessor (Figure 6-13). The default behaviour is simply to respond to

query events with an alive signal event. If a component requires further processing upon

reception of a query event the In-line Supervised MEI mode of operation must be employed

Modular Framework for Ambient Intelligence Systems

163

and an independent MEI supervision thread must be employed by the user or query event

supervision must be performed in the component’s main loop.

Each component employs an instance of the MB_IncomingEventProcessor class to

handle incoming events. Regardless of the MEI supervision method employed in a

particular component, if the component must process other events, such as data events, the

classes implementing the MBI_EventProcessor interface must be defined to handle said

events, and instances of these classes must be registered in the components

MB_IncomingEventProcessor object at component startup.

Figure 6-14. Midblocks component data class

To handle component parameters in an efficient manner, Midblocks provides the

MB_ComponentData class which encapsulates the following parameters (see Figure 6-14):

1. Component Id.

2. Maximum Event Interval

3. Interests List.

4. Provides List.

The interests list is an array of integer which specifies the types of events that a

component should receive. The values, and meaning, of these integers are application

164

specific. The provides list, on the other hand, is an array of integers that specifies the types

of data that a component provides. The interests list and the provides list are used as a

mechanism to connect data generators and data consumers.

Since Midblocks components are designed to be independent of a specific

communications mechanism, it is necessary to encapsulate the details of communications

handling independently from component behaviour. This is achieved by providing a class,

called MB_ComponentComms (Figure 6-15), which encapsulates communications details.

Figure 6-15. Midblocks component communications class

Currently, Midblocks components can handle only one communications interface

however, by separating component behaviour from communications interface interaction,

we expect to introduce the capability of handling multiple communications interfaces in

future versions of Midblocks components.

6.4.1.7 Midblocks Controller

Controller implementation is very similar to component implementation. Controllers are

represented by the MB_Controller class (see Figure 6-16)

Currently controllers receive notifications only when a component exceeds its MEI.

However future versions of Midblocks could use more than one notification for controller,

for example, one type of notification when a component has exceeded its MEI and a second

type of notification when it has been necessary to send a query event to a component.

Modular Framework for Ambient Intelligence Systems

165

Figure 6-16. Midblocks controller class

The use of more than one notification type could be useful in scenarios such as

diagnosing component or communications links which have intermittent failures.

Figure 6-17. Midblocks controller data class

To provide this type of flexibility Midblocks makes use of an interests list for controllers

analogous to the interests list used in components. It is important to note, however, that the

166

set of interests identifiers used for component data and the set of interests identifiers used

for controller notifications are independent. To facilitate the handling of controller

parameters Midblocks provides a MB_ControllerData class that is analogous to the

MB_ComponentData class used for component data handling (Figure 6-17).

Figure 6-18. Midblocks controller communications class

As in the case of components, to allow use of diverse types of communication

mechanisms it is necessary to encapsulate the details of communications handling in the

controller by means of a class called MB_ControllerComms (Figure 6-18).

6.4.1.8 Midblocks Store and Forward with Component Supervision

The core of the Midblocks Store and Forward with Component Supervision handling is

encapsulated in the MB_SFCS class (see Figure 6-19). This class provides the tools to start,

stop, and obtain the running status of a Midblocks SFCS part. To perform the store and

forward, and component supervision tasks, the Midblocks SFCS class uses three main

members:

1. A message receiver object.

2. A message dispatcher object.

3. A component supervisor object.

Modular Framework for Ambient Intelligence Systems

167

These three objects have to be started and stopped in a specific order to avoid generating

false component failure events.

Figure 6-19. Midblocks Store and Forward with Component Supervision class

The message dispatcher, represented by the MB_SFCSMessageDispatcher class (Figure

6-20), is used to send events to components.

Figure 6-20. Midblocks SFCS message dispatcher class

168

Since there must be only one message dispatcher in every instance of a Midblocks SFCS

a singleton pattern is used in the MB_SFCSMessageDispatcher class.

The message dispatcher can handle several different types of communication interfaces

simultaneously. To provide this functionality, the message dispatcher contains an array of

references to the communications interfaces being employed. Registration of a

communications interface is performed by means of the RegisterClient method. All

communications interfaces that will be used in the message dispatcher must be registered

before the starting the Midblocks SFCS.

Figure 6-21. Midblocks SFCS message receiver class

The counterpart of the message dispatcher is the message receiver, which is represented

by the MB_SFCSMessageReceiver class (see Figure 6-21). The message receiver is tasked

with receiving event messages from components and triggering the processing of said

messages. As with the message dispatcher, the message receiver can make use of multiple

communications interfaces. To register the communications interfaces that will be used for

message reception the MB_SFCSMessageReceiver class has a RegisterServer method. All

communications interfaces that will be used by the message receiver must be registered

before starting the Midblocks SFCS. There should also be only one instance of the message

Modular Framework for Ambient Intelligence Systems

169

receiver per SFCS, therefore a singleton pattern is used in the MB_SFCSMessageReceiver

class.

Figure 6-22. Midblocks SFCS component supervisor class

Component supervision is done by means of the component supervisor, whose behavior

is encapsulated in the MB_SFCSComponentSupervisor class. The component supervisor

performs a loop verifying the time elapsed since each component sent its last event. If the

time elapsed is larger than the component’s MEI then one of the following two tasks is

performed by the component supervisor:

1. If the component has not been sent a query event, the component supervisor

sends a query event to the component and updates the component’s record last

activity field.

2. If the component has been sent a query event previously, and has not responded

to the query event, the component is eliminated from the SFCS and controllers

are notified of the component’s failure.

The parameters associated with each component are handled through instances of the

MB_ComponentRecord class (see Figure 6-23). When a component registers with the

Midblocks SFCS the following sequence of events happens:

170

1. An instance of the MB_ComponentRecord class is created to handle the

component’s parameters.

2. An instance of the MB_ComponentEventQueue class (Figure 6-24) is created by

the Midblocks component event queue handler to store the component’s

outgoing messages.

3. The component record’s last activity field is updated to begin supervising the

component.

4. Controllers subscribed to component registration notification events are notified

of the components registration.

Figure 6-23. Midblocks component record class

Modular Framework for Ambient Intelligence Systems

171

The component’s event queue serves as a temporary buffer for events that are destined

for the component. These messages are dequeued by the message dispatcher and sent to the

component. If a component exceeds its MEI and fails to respond to a query event, then the

component’s event queue, along with the component’s record, is destroyed and

notifications are sent to the controllers.

Figure 6-24. Midblocks component event queue

Component queue management is performed through the component event queue

handler. The component event queue handler is represented by the

MB_SFCSComponentEventQueue class (see Figure 6-25). Since there must be only one

component event queue handler in each Midblocs SFCS, the

MB_SFCSComponentEventQueue class makes use of a singleton pattern.

Creation and deletion of component event queues is performed as part of the registration

and removal process of a component using the RegisterComponent and RemoveComponent

methods of the component event queue handler. To avoid any potential inconsistencies,

other parts of the Midblocks SFCS do not have direct access to the component event

queues.

172

Insertion and extraction of events into the event queues is performed by means of the

EnqueueForComponent, EnqueueForInterested, and Dequeue methods of the component

event queue handler. EnqueueForComponent is used to send an event to a specific

component. This method is used to send query events to components that have exceeded

their MEI. The EnqueueForInterested method is used to send events to all components that

have subscribed to a certain type of event. The message dispatcher uses the Dequeue

method to extract the next message destined for a component. The Dequeue method returns

the next message destined for a component and simultaneously deletes the message from

the queue.

Figure 6-25. Midblocks SFCS component event queue handler

Modular Framework for Ambient Intelligence Systems

173

Controller handling in the Midblocks SFCS is analogous to component handling.

Parameters associated with a controller are handled by means of an instance of the

MB_ControllerRecord class (see Figure 6-26). This class contains the information

necessary to send failure events to controllers. Contrary to components, controllers are not

expected to send events periodically and therefore no supervision is performed on

controllers.

Figure 6-26. Midblocks controller record class

When a controller registers with the Midblocks SFCS the following sequence of events

happens:

1. An instance of the MB_ControllerRecord class is created to handle the

component’s parameters.

2. An instance of the MB_ControllerEventQueue class (Figure 6-27) is created by

the Midblocks component event queue handler to store the component’s

outgoing messages.

174

3. Controllers subscribed to controller registration notification events are notified of

the components registration.

Since controllers are not supervised there is no last activity field associated to a

controller.

Figure 6-27. Midblocks controller event queue

Controller event queue behavior is encapsulated in the MB_ControllerEventQueue class

(Figure 6-27). Controller event queues are managed by means of the controller event queue

handler which is represented by the MB_SFCSControllerEventQueue class (Figure 6-28).

As with component queues, other parts of the Midblocks SFCS do not have direct access to

component queues.

Creation and deletion of controller event queues is performed as part of the registration

and removal process of a controller using the RegisterController and RemoveController

methods of the component event queue handler.

Insertion and extraction of events into the event queues is performed by means of the

EnqueueForController, EnqueueForInterested, and Dequeue methods of the controller

event queue handler. EnqueueForController is used to send an event to a specific

controller. This method is intended for future applications of Midblocks such as self-

Modular Framework for Ambient Intelligence Systems

175

organizing systems and is currently unused by Funblocks. The EnqueueForInterested

method is used to send events to all controllers that have subscribed to a certain type of

event. The message dispatcher uses the Dequeue method to extract the next message

destined for a controller. The Dequeue method returns the next message destined for a

controller and simultaneously deletes the message from the queue.

Figure 6-28. Midblocks SFCS controller event queue handler

Incoming events are processed in the Midblocks SFCS by means of event processors,

i.e. classes that implement the MBI_EventProcessor interface. This scheme allows future

versions or particular applications of Midblocks to handle new events easily. If new events

are required for some application, or in future versions of Midblocks, it is only necessary to

implement the event handling logic in new classes that implement the MBI_EventProcessor

interface.

176

Figure 6-29. Midblocks SFCS event processors. Part 1

Modular Framework for Ambient Intelligence Systems

177

Figure 6-30. Midblocks SFCS event processors. Part 2

178

Figure 6-31. Midblocks SFCS event processors. Part 3

Currently, the following event processors have been implemented (see Figure 6-29,

Figure 6-30, and Figure 6-31):

1. Component Alive Signal Event Processor. Upon reception of an alive signal

event, the component alive signal event processor, represented by the class

MB_ComponentAliveSignalEventProcessor, updates the component’s last

activity field.

2. Component Alive Response Event Processor. When an alive response event

arrives, the alive response event processor, represented by the

MB_ComponentAliveResponseEventProcessor class, updates the component’s

last activity field and resets the component’s queried field.

Modular Framework for Ambient Intelligence Systems

179

3. Component Data Event Processor. When a data event arrives, the data event

processor, represented by the MB_ComponentDataEventProcessor, updates the

component’s last activity field and places the data event in the event queue of the

component’s subscribed for this type of data event using the

EnqueueForInterested method of the component event queue handler.

4. Component Register Event Processor. Upon reception of a component register

event, the component register event processor performs the component

registration procedure described previously. Currently if a component has

registered previously, its event queue is cleared, its record is deleted and the

component is registered again with the new parameters. This behavior may

change in future versions of Midblocks so that when a component re-registers

controllers are notified.

5. Controller Register Event Processor. When a controller register event is

received, the controller register event processor performs the controller

registration procedure described previously. As with components, if a controller

has registered previously the current procedure is to delete the controller’s event

queue, delete its record, and perform the registration procedure with the new

parameters. This behavior can also change in future versions of Midblocks to

notify controllers in case of a re-registration.

180

6.4.2 Controllers

As mentioned previously, the purpose of the Funblocks Controller module is to

supervise component interaction during the System Adaptation and System Failure stages

of operation. The main functions performed by the Funblocks Controller (CTRL) are the

following:

1. Performs configuration of new modules.

2. Maintains information of the SAs and modules installed in the system and makes

this information available to new modules.

3. Notifies modules when new SAs are installed.

4. Performs communication with external components, such as Automated Repair

Services.

5. Prevents the installation of modules which could generate conflicts, such as

multiple gesture recognition modules in the same area.

Field Description

Component Id A unique local identifier for this component.

Type 1 – SA, 2 – FM, 3 – HCI, 4 – Controller.

Provides A comma separated integer list of the type of information that the

component provides or the type of function that it performs. For

example temperature sensor, or ambient light sensor. This

identifier is the same one used in the MSAC.

Conflicts A comma separated list of the types with which this component

conflicts.

Area Area that the component is assigned to.

Additional Text string that provides additional information such as the units

used for the component (if any) or the measurement range of the

component (in case of a sensor).

Table 6-1. Controller Catalog Schema

Modular Framework for Ambient Intelligence Systems

181

To maintain a detailed description of the current state of the system Funblocks

Controllers must maintain a catalog of currently registered components. This is achieved by

maintaining an array of component descriptors which have the schema described in Table

6-1.

6.4.3 Components

Currently Funblocks Controllers operate with a fixed IP address when using IEEE 802.3

communications interfaces. This may create conflicts in networks where the address

required by the controller is in use by another device or in networks that assign addresses

dynamically to devices. As a result Funblocks Components currently require a Network

Parameter configuration form (Figure 6-32) to obtain the information necessary to contact

the Funblocks controller.

Figure 6-32. Funblocks network parameters form

Although this method is adequate for testing purposes it defeats the ease-of-use

objective of Funblocks. As a result, a mechanism which allows autonomous discovery of

controllers is required in Funblocks. Several service discovery protocols, such as the

Simple Service Discovery Protocol (SSDP) or the Service Location Protocol (SLP), have

182

been proposed. However these service discovery protocols have not been developed with

resource constrained micro-controllers in mind. Since many of the devices that will be used

in Funblocks, particularly sensors, are based on resource constrained micro-controllers it is

necessary to evaluate, and probably adapt, these service discovery protocols to insure that

they will perform adequately in Funblocks.

Current Funblocks Components employ a simple Component Properties form to

configure the component prior to its introduction into a Funblocks-based system (see Figure

6-33).

Figure 6-33. Component Properties form

There is no algorithm used at this moment for the assignment of component

identification numbers, the component id is assigned sequentially/randomly. The benefit of

encoding information, such as the assigned area, should be evaluated and compared with

the simplicity of assigning component ids sequentially. With the current design of

Funblocks the use of a component id assignment algorithm vs. a sequential component

assignment scheme does not provide a major benefit. This is due to the single controller

architecture currently being employed in Funblocks. However this single controller

architecture is expected to change in future version of Funblocks to improve the robustness

Modular Framework for Ambient Intelligence Systems

183

of a Funblocks-based system against controller or communications link failures. In a

multiple-controller scenario encoding additional information in the component id may be

useful to provide self-organizing and self-healing capabilities to Funblocks-based systems.

Data type ids provide a logical link between the components of a Funblocks-based

system. To promote component reuse between Funblocks-based research projects it is

important to maintain consistent data type ids between applications.

6.4.4 Module and Sensor Actuator Catalog (MSAC)

As described in section 4.7 Funblocks makes use of a Module and Sensor/ Actuator

Catalog (MSAC) and the Function Module Repository (FMR). The Module and Sensor/

Actuator Catalog stores MSAD records which describe the components available to a

specific Funblocks based system. The MSAD lists the functions provided by a specific

module or SA, the dependencies required by the component and the conflicts this

component may have with other components. The MSAD also provides a default

configuration for the components of an AmI system. This assists end-users and system

integrators in the configuration of an AmI system.

The current test implementation of Funblocks uses the schema described in Table 6-2 for

the MSAD records.

Presently, in the test implementation of Funblocks, if an FM which requires data sources

not available in the system is inserted, the MSAC is searched to find the first MSAD that

describes a component which can provide the required data. This allows for a very

rudimentary form of service composition. However, for Funblocks to be an effective tool in

the integration of Ambient Intelligence systems, it is necessary to develop algorithms which

can provide goal-based system composition. A first step in the development of said

algorithms will be to develop an AmI system description language which can be used to

describe the services required from the system by an end user.

184

Field Description

Record id A unique identifier for this MSAD record.

Name Name (human readable text string) of the component.

Type An integer describing the type of component: 0-SA, 1-FM, 2-Ctlr,

3-HCI.

Provides Comma separated list of data type ids provided by this component.

Required SAs Comma separated list of SA data type ids required by this

component.

Required FMs Comma separated list of FM data type ids required by this

component.

Conflicts SAs Comma separated list of SA data type ids that the data provided by

this component conflicts with.

Conflicts FMs Comma separated list of FM data type ids that the data provided

by this component conflicts with.

Latest version Latest version of the component (applies to FM only).

Platforms Comma separated list of the platforms for which this component is

available (applies to FM only).

MEI Default MEI for this component (applies to SAs and FMs only).

Description A human readable text description of the component.

Table 6-2. MSAD Schema

To provide support for multiple platforms, a second set of records is used to obtain an URI

to the correct package from a FMR. The schema for this set of records is described in Table

6-3.

This is a description of the current state of the development of the Modular Framework

for Ambient Intelligence systems and these are some of the challenges currently being

worked on in the development of the Funblocks framework. It is expected that the solutions

to some of these problems will give rise to further research articles.

Modular Framework for Ambient Intelligence Systems

185

Field Description

Id Unique identifier.

Platform Platform for which this FM is destined.

Version Version of the FM.

Type Id FM type id.

URI URI from which the Function Module can be downloaded.

Table 6-3. FMR Schema

186

7 Conclusions and Future Work

Funblocks provides an extremely flexible framework for the development of Ambient

Intelligence systems. Contrary to other AmI frameworks, Funblocks makes no assumption

about the types of environments or devices that can be handled in an AmI system. As a

result Funblocks can be used transparently with existing systems such as home/building

automation systems, security systems, etc.

By considering AmI systems as a type of distributed control systems, and by making use

of the IEC 61499 function block abstraction, Funblocks can be used to develop AmI

systems which can be customized to a wide range of different usage scenarios. Additionally

the use of the function block abstraction allows AmI systems developed with the Funblocks

framework to be easily modified by users with little or no technical experience. Funblocks

is also language and hardware independent, which means that the framework can be used

with a vast variety of devices ranging from 8 bit microcontrollers to servers.

The use of a middleware with supervising capabilities allows AmI systems developed

with Funblocks to monitor the operational state of their components and, whenever

possible, to take corrective actions in case of component failure. Since the middleware

makes use of a publish/subscribe paradigm with a store and forward entity for component

interaction it can easily be reused in other event-based systems which require component

monitoring.

To provide an idea of the benefits of using Funblocks in the development of an AmI

system in the following section we provide a brief comparison with other frameworks.

7.1 Framework Features Comparison

Ambient Intelligence is a currently a field of intense research but as of yet there is not an

AmI systems development framework that enjoys widespread use. A possible reason for the

lack of a widely used framework may be that the majority of current proposals tend to be

rather complex, which means that a research or development team has to invest significant

effort in order to be able to use the framework. Ease of use has been one of our main goals

during the development of Funblocks.

Modular Framework for Ambient Intelligence Systems

187

The problems that have been approached by the developers of different frameworks are

varied, and as a result the characteristics of the frameworks are also diverse. In [143]

Becker describes a set of system and service qualities that an Ambient Assisted Living

system should possess. This set of system and service qualities are valid in general for any

Ambient Intelligence system. The system and service qualities that should be achieved by

AmI systems are the following:

 Affordability: The services and the required technical installation and resources must

be affordable.

 Usability and User Experience: If the system requires some explicit interaction with

the user, the system should perform the interaction accordingly with the user´s

capabilities and the user should have a positive experience during such interaction.

 Suitability. The services provided by the system must meet the demands of the user and

the user must benefit from the services, otherwise acceptance of the system will decline

over time.

 Dependability. The system must be robust against misuse, errors, hardware component

crashes and shortage of resources. Furthermore the system must guarantee a minimum

of privacy and security for the users. Finally the system must be safe to use and not

pose a risk to its users.

 Adaptability. Systems must be able to adapt themselves at runtime. Systems must

monitor themselves, users and the environment and based on the information gathered

perform one of the following:

 Self-configuration. Integrate dynamically new components and remove existing

components not required any more.

 Self-healing. Denotes the ability of detecting component problems and taking

appropriate measures.

 Self-optimization. The ability of the system to adapt its algorithmic behavior to

application requirements changes.

 Self-protection. Denotes the ability of the system to protect itself against misuse.

 Extensibility. In order to adapt to new demands the system must be able to extend itself

with new devices and services.

188

 Resource Efficiency. Available resources such as processors, memory, communications

bandwidth and energy have to be used as efficiently as possible.

 Heterogeneity. The system will typically consist of several subsystems provided by

different manufacturers.

 Amigo MPOWER SOPRANO universAAL Funblocks

Purpose
Dynamic

Interoperability
AAL AAL AAL

General

Purpose

Architecture SOA SOA SOA SOA
Function

Block

Platform .NET/OSGi

Web

Services,

HTTP,

SOAP

OSGi OSGi
Platform

Independent

Component

Supervision
No No Yes No Yes

Module

Repository
No No No Yes Yes

Sensor

Handling

Through

wrappers

Network

enabled

As OSGi

bundles

Networked

enabled

Native prot.

support

Table 7-1. Framework Features.

In table 7.1 we provide a brief list of some of the features of the frameworks described

previously along with the corresponding features of Funblocks. The criteria used for the

comparison are the following:

 Purpose. As mentioned before frameworks tend to be targeted toward the solution of

specific problems such as AAL.

 Architecture. Current frameworks are based on different paradigms being SOA the

most popular. The architecture selected for the framework will have a strong impact on

Modular Framework for Ambient Intelligence Systems

189

its system and service qualities. Particularly affordability, adaptivity, extensibility, and

heterogeneity are influenced by the choice of architecture.

 Platform. The platform selected for the implementation of the system will have a direct

impact on the affordability and heterogeneity of the system and is therefore an

important consideration in the selection of a framework.

 Component Supervision. Component supervision is an important feature which helps

improve the dependability of a system.

 Module Repository. The use of a Module Repository allows end user customization of

the system hence improving usability and user experience.

 Sensor Handling. AmI systems have to interact with a vast array of existing sensor

technologies. The choice of the sensor handling scheme in the framework will have a

direct impact on the affordability and heterogeneity of the system.

7.2 Future Work

There is still much work to do developing Funblocks. The current design of Funblocks

does not allow the use of redundancy in components such as the controller and the message

queue. As a result these components represent single points of failure. The use of redundant

controllers and redundant message queues must be addressed in order to provide a higher

degree of reliability. Once the issue of redundancy has been addressed self-healing and

service composition capabilities must be introduced in Funblocks. This is particularly

important for wide area systems where communications links could fail leading to a

fragmented system. It would be desirable for each fragment to reconfigure itself into an

independent AmI system perhaps with limited capabilities.

Midblocks is currently the most developed component of the Modular Framework for

Ambient Intelligence systems. The Midblocks middleware has applications outside of the

Funblocks framework. It will be important for the development of Midblocks to test it in

applications other than Funblocks.

One such area in which Midblocks could be tested is in the field of mobile-based fall

detection systems.

190

Everybody has experienced an unwanted fall, whether in childhood while training to

walk, or occasionally in adulthood. The fall experience is thus well-known to everybody.

However a fall is difficult to describe precisely which makes it hard to devise a means for

its detection. Falls are commonly defined as “inadvertently coming to rest on the ground,

floor or other lower level, excluding intentional change in position to rest in furniture, wall

or other objects”.

Globally, falls are a major public health problem. An estimated 424 000 fatal falls occur

each year, making it the second leading cause of unintentional injury death, after road

traffic injuries. Falls account for 40% of all injury deaths. Rates vary depending on the

country and the studied population. Fall fatality rate for people aged 65 and older in the

United States of America (USA) is 36.8 per 100 000 population (46.2 for men and 31.1 for

women) whereas in Canada mortality rate for the same age group is 9.4 per 10 000

population. Mortality rate for people age 50 and older in Finland is 55.4 for men and 43.1

for women per 100 000 population. Over 80% of fall-related fatalities occur in low- and

middle-income countries. In Mexico, falls account for 30% of deaths of people aged 65 and

older.

According to the Centers for Disease Control and Prevention of the US (CDC) and the

World Health Organization (WHO), unintentional falls are a common occurrence among

older adults, affecting approximately 28 to 35% of adults over the age of 65. Older people

who have suffered a fall are at increased risk of falling again. A study of 325 community-

dwelling persons who had fallen found that 57% experienced at least one fall in a 12-month

follow-up period and 31% had two or more falls. 20 to 30% of people who fall suffer

moderate to severe injuries such as lacerations, hip fractures, or head traumas. Most

fractures among older adults are caused by falls. The most common are fractures of the

spine, hip, forearm, leg, ankle, pelvis, upper arm, and hand.

One of the serious consequences of a fall is the "long-lie" which is remaining on the

ground for one hour or more. Half of those who lie on the floor for an hour or longer die

within 6 months, even if there is no direct injury from the fall. Long-lies are not

uncommon. More than 20% of the patients admitted to a hospital because of a fall had been

on the ground for an hour or more. Up to 47% of non-injured fallers are unable to get up off

Modular Framework for Ambient Intelligence Systems

191

the floor without assistance. Detection of a fall might reduce the consequences of a long lie

by reducing the time between the fall and the arrival of medical attention. If an elderly

person living alone experiences a fall at home, he or she may not be able to get to the phone

or press an alarm button due to sustained injuries or loss of consciousness. Moreover, some

elderly people do not activate their personal emergency response systems, even when they

have the ability to do so.

Smartphones present a mature hardware and software platform for the development of

fall detection systems. Smartphone based fall detection retains the advantages of the

wearable fall detection methods and removes the main disadvantages of such methods.

Since smartphones are commonly used devices which have multiple functions most users

are used to carry their smartphones with them. As a result the odds of a person forgetting

his fall detection device are reduced. For this same reason smartphones can also be

considered as being less intrusive than dedicated wearable fall detection devices.

Additionally smartphones are used by people of all ages and are therefore not associated

with the fragility of the old person which can also promote the acceptance of the fall

detection device.

An application of Midblocks would be in the development of a fall detection system

which supervises a set of fall detection enabled smartphones. Since the welfare of the user

is dependent on the correct operation of the smartphone, it is important that caregivers be

notified in case of a failure of the fall detection enabled smartphone.

An early stage block diagram of such a supervised smartphone-based fall detection

system, which we call Superfall is shown in Figure 7-1. Superfall system block diagram

192

Figure 7-1. Superfall system block diagram

Modular Framework for Ambient Intelligence Systems

193

194

8 References

[1] ISTAG, “Ambient Intelligence. From Vision to Reality,” ISTAG, 2003.

[2] ISTAG, “Strategic Orientations and Priorities for IST in FP6,” ISTAG, 2002.

[3] M. Lindwer, D. Marculescu, T. Basten, R. Zimmennann, R. Marculescu, S. Jung,

and E. Cantatore, “Ambient Intelligence Visions and Achievements: Linking

Abstract Ideas to Real-World Concepts,” in Design, Automation and Test in Europe

Conference and Exhibition, 2003, pp. 10–15.

[4] Y. Punie, “The Future of Ambient Intelligence in Europe: The Need for More

Everyday Life,” Media, Technology and Everyday Life in Europe: From

Information to Communication. London, pp. 159–177, 2005.

[5] J. C. Augusto, H. Nakashima, and H. Aghajan, “Ambient Intelligence and Smart

Environments: A State of the Art,” in Handbook of Ambient Intelligence and Smart

Environments, H. Nakashima, H. Aghajan, and J. C. Augusto, Eds. Springer, 2010,

pp. 3–31.

[6] D. J. Cook and S. K. Das, “How Smart Are Our Environments? An Updated Look at

the State of the Art,” Pervasive and Mobile Computing, vol. 3, no. 2, pp. 53–73,

2007.

[7] F. Sadri, “Ambient Intelligence: A Survey,” ACM Computing Surveys, vol. 43, no.

4, 2011.

[8] J. C. Augusto, “Past, Present and Future of Ambient Intelligence and Smart

Environments,” in Agents and Artificial Intelligence, Springer, 2010, pp. 3–15.

[9] A. S. Taylor, R. Harper, L. Swan, S. Izadi, A. Sellen, and M. Perry, “Homes That

Make Us Smart,” Personal and Ubiquitous Computing, vol. 11, no. 5, pp. 383–393,

2007.

[10] UNFPA, “The Day of 6 Billion. http://www.unfpa.org/6billion/index.htm (Accessed

December 22, 2013).” .

[11] UNFPA, “Day of 7 Billion,

http://www.unfpa.org/public/home/news/events/pid/8533 (Accessed December 22,

2013).” .

[12] “Instituto Nacional de Estadistica y Geografia, http://www.inegi.org.mx/default.aspx

(Accessed December 22, 2013).” .

[13] “United States Census Bureau - World Population,

http://www.census.gov/population/international/data/worldpop/table_population.php

(Accessed December 22, 2013).” .

[14] UN, “World Population Prospects. The 2012 Revision,” United Nations Department

of Economic and Social Affair. Population Division, 2013.

[15] “US Energy Information Administration - International Energy Outlook 2013,

http://www.eia.gov/forecasts/ieo/world.cfm (Accessed December 22, 2014).” .

[16] M. Jahn, M. Jentsch, C. R. Prause, F. Pramudianto, A. Al-Akkad, and R. Reiners,

“The Energy Aware Smart Home,” in Future Information Technology (FutureTech),

2010 5th International Conference on, 2010, pp. 1–8.

[17] R. Eddington, “The Eddington Transport Study,” 2006.

[18] “TTI’s 2012 Urban Transportation Report,” Texas A&M Transportation Institute,

Texas A&M University, 2012.

Modular Framework for Ambient Intelligence Systems

195

[19] “WHO Fact Sheet No. 358. Road Traffic Injuries,” World Health Organization,

2013.

[20] ISTAG, “Scenarios for Ambient Intelligence in 2010,” ISTAG, 2001.

[21] “10 Facts on Ageing and the Life Course,” World Health Organization, 2012.

[22] “A Grass-Roots Effort to Grow Old at Home, The New York Times.” Aug-2007.

[23] D. Redfoot, L. Feinberg, and A. Houser, “The Aging of the Baby Boom and the

Growing Care Gap. A Look at Future Declines in the Availability of Family

Caregivers,” AARP Public Policy Institute, 2013.

[24] L. Leahu, P. Sengers, and M. Mateas, “Interactionist AI and the Promise of

Ubicomp, or, How to Put Your Box in the World Without Putting the World in Your

Box,” in Proceedings of the 10th international conference on Ubiquitous computing,

2008, pp. 134–143.

[25] P. Holroyd, P. Watten, and P. Newbury, “Why Is My Home Not Smart?,” in Aging

Friendly Technology for Health and Independence, Springer, 2010, pp. 53–59.

[26] S. Mennicken and E. M. Huang, “Hacking the Natural Habitat. An In-the-Wild

Study of Smart Homes, Their Development, and the People Who Live in Them,” in

Pervasive Computing, Springer, 2012, pp. 143–160.

[27] R. José, H. Rodrigues, and N. Otero, “Ambient Intelligence: Beyond the Inspiring

Vision.,” Journal of Universal Computer Science, vol. 16, no. 12, pp. 1480–1499,

2010.

[28] D. Sampaio, L. P. Reis, and R. Rodrigues, “A Survey on Ambient Intelligence

Projects,” in Information Systems and Technologies (CISTI), 2012 7th Iberian

Conference on, 2012.

[29] J. Dooley, M. Ball, and M. R. Al-Mulla, “Beyond Four Walls: Towards Large-Scale

Intelligent Environments,” in Workshop Proceedings of the 8th International

Conference on Intelligent Environments, 2012.

[30] M. Banzi, Getting Started with Arduino, 2nd Ed. O’Reilly, 2011.

[31] M. Evans, J. Noble, and J. Hochenbaum, Arduino in Action. Manning, 2013.

[32] S. Wang, Intelligent Buildings and Building Automation. Spon Press, 2010.

[33] H. Merz, T. Hansemann, and C. Hübner, Building Automation: Communication

Systems with EIB KNX, LON und BACnet. Springer, 2009.

[34] W. Kastner, G. Neugschwandtner, S. Soucek, and H. Newmann, “Communication

Systems for Building Automation and Control,” Proceedings of the IEEE, vol. 93,

no. 6, pp. 1178–1203, 2005.

[35] W. Kastner, F. Praus, G. Neugschwandtner, and W. Granzer, “KNX,” in Industrial

Electronics Handbook, Industrial Communication Systems, 2nd ed., vol. 4, B. M.

Wilamowski and J. D. Irwin, Eds. CRC Press, 2011, pp. 42.1 – 42.14.

[36] M. Janse, P. Vink, and N. Georgantas, “Amigo Architecture: Service Oriented

Architecture for Intelligent Future In-Home Networks,” in Constructing Ambient

Intelligence, Springer, 2008, pp. 371–378.

[37] C. Magerkurth, R. Etter, M. Janse, J. Kela, O. Kocsis, and F. Ramparany, “An

Intelligent User Service Architecture for Networked Home Environments,” in

Intelligent Environments, 2006. IE 06. 2nd IET International Conference on, 2006,

pp. 361–370.

[38] J. Schmalenstroeer, V. Leutnant, and R. Haeb-Umbach, “Amigo Context

Management Service with Applications in Ambient Communication Scenarios,” in

Constructing Ambient Intelligence, Springer, 2008.

196

[39] G. Thomson, D. Sacchetti, Y.-D. Bromberg, J. Parra, N. Georgantas, and V. Issarny,

“Amigo Interoperability Framework: Dynamically Integrating Heterogeneous

Devices and Services,” in Constructing Ambient Intelligence, Springer, 2008, pp.

421–425.

[40] P. Vink, N. Georgantas, and C. Magerkurth, “Amigo Architecture.

http://www.hitech-projects.com/euprojects/amigo/Seminar/amigo-handouts-

openday-nov0/08Handout%20-%20Architecture-mj.pdf (Accessed: December 22,

2013).” .

[41] “Amigo. Ambient Intelligence for the Networked Home Environment.

http://www.hitech-projects.com/euprojects/amigo/ (Accessed: December 22, 2013).”

.

[42] A. Brush, E. Filippov, D. Huang, J. Jung, R. Mahajan, F. Martinez, K. Mazhar, A.

Phanishayee, A. Samuel, J. Scott, and others, “Lab of Things: A Platform for

Conducting Studies with Connected Devices in Multiple Homes,” in Proceedings of

the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct

Publication, 2013.

[43] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and V. Bahl, “An

Operating System for the Home,” in Proceedings NSDI, 2012.

[44] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and V. Bahl, “The

Home Needs an Operating System (and an App Store),” in Proceedings of the 9th

ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

[45] W. K. Edwards, R. E. Grinter, R. Mahajan, and D. Wetherall, “Advancing the State

of Home Networking,” Communications of the ACM, vol. 54, no. 6, pp. 62–71,

2011.

[46] T. Gupta, A. Phanishayee, J. Jung, and R. Mahajan, “Towards a Storage System for

Connected Homes,” in Workshop on Large-Scale Distributed Systems and

Middleware, 2013.

[47] J. Scott, A. J. B. Brush, and R. Mahajan, “Augmenting Homes with Custom Devices

Using .NET Gadgeteer and HomeOS,” in Proceedings of BuildSys 2012, 2012.

[48] B. Ur, J. Jung, and S. Schechter, “The Current State of Access Control for Smart

Devices in Homes,” in Workshop on Home Usable Privacy and Security (HUPS),

2013.

[49] A. Grguric, S. Desic, M. Mosmondor, I. Benc, J. Krizanic, and P. Lazarevski,

“Proof-of-Concept Applications for Validation of ICT Services for Elderly Care,” in

Proceedings of the 33rd International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO 2010),

2010, pp. 355–359.

[50] A. Grgurić, I. Benc, S. Dešić, M. Mos̆mondor, J. Kriz̆anić, and P. Lazarevski,

“Designing User Interfaces for Elderly: A Case Study in Applicability of Thin vs.

Fat Clients,” in e-Health Networking Applications and Services (Healthcom), 2010

12th IEEE International Conference on, 2010.

[51] M. Mikalsen, S. Hanke, T. Fuxreiter, S. Walderhaug, L. W. Wienhofen, and N.

Trondheim, “Interoperability Services in the MPOWER Ambient Assisted Living

Platform,” in Medical Informatics Europe (MIE) Conference, 2009.

[52] A. Pitsillides, E. Themistokleous, G. Samaras, S. Walderhaug, and O. Winnem,

“Overview of MPOWER: Middleware Platform for the Cognitively Impaired and

Modular Framework for Ambient Intelligence Systems

197

Elderly,” in Proceedings of IST-Africa 2007 Conference & Exhibition, Maputo,

Mosambique, 2007.

[53] S. Walderhaug, E. Stav, and M. Mikalsen, “The MPOWER Tool Chain - Enabling

Rapid Development of Standards-based and Interoperable Homecare Applications,”

in Proceedings of Norsk Informatikk Konferanse (NIK 2007), 2007.

[54] M. Klein, A. Schmidt, and R. Lauer, “Ontology-Centred Design of an Ambient

Middleware for Assisted Living: The Case of SOPRANO,” in Towards Ambient

Intelligence: Methods for Cooperating Ensembles in Ubiquitous Environments

(AIM-CU), 30th Annual German Conference on Artificial Intelligence (KI 2007),

Osnabrück, 2007.

[55] G. Virone and A. Sixsmith, “Monitoring Activity Patterns and Trends of Older

Adults,” in Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th

Annual International Conference of the IEEE, 2008.

[56] P. Wolf, A. Schmidt, and M. Klein, “Applying Semantic Technologies for Context-

Aware AAL Services: What we can learn from SOPRANO,” in Workshop on

Applications of Semantic Technologies 09, Informatik 2009, 2009.

[57] P. Wolf, A. Schmidt, and M. Klein, “SOPRANO - An Extensible, Open AAL

Platform for Elderly People Based on Semantical Contracts,” in 3rd Workshop on

Artificial Intelligence Techniques for Ambient Intelligence (AITAmI’08), 18th

European Conference on Artificial Intelligence (ECAI 08), 2008.

[58] S. Hanke, C. Mayer, O. Hoeftberger, H. Boos, R. Wichert, M.-R. Tazari, P. Wolf,

and F. Furfari, “universAAL - An Open and Consolidated AAL Platform,” in

Ambient Assisted Living, Springer, 2011, pp. 127–140.

[59] M.-R. Tazari, F. Furfari, Á. Fides-Valero, S. Hanke, O. Höftberger, D. Kehagias, M.

Mosmondor, R. Wichert, and P. Wolf, “The universAAL Reference Model for

AAL,” in Handbook of Ambient Assisted Living, J. C. Augusto, M. Huch, A.

Kameas, J. Maitland, P. McCullagh, A. Sixsmith, and R. Wichert, Eds. IOS Press,

2012, pp. 610–625.

[60] “UNIVERsal open platform and reference Specification for Ambient Assisted

Living. http://universaal.org/ (Accessed December 22, 2013).” .

[61] “D1.3. The universAAL Reference Architecture.

http://universaal.org/images/stories/deliverables/D1.3-E.pdf (Accessed December

22, 2013),” 2013.

[62] “D2.4. universAAL Developers Handbook.

http://universaal.org/images/stories/deliverables/D2.4-D.pdf (Accessed December

22, 2013),” 2013.

[63] J. Chong, S. See, L. L. Seah, S. Ling Koh, and Y. Theng, “Ubiquitous Computing.

History, Development and Future Scenarios,” in Ubiquitous Computing: Design,

Implementation, and Usability, Y.-L. Theng and H. B. Duh, Eds. IGI Global, 2008,

pp. 1–8.

[64] E. Loureiro, G. Ferreira, H. Almeida, and A. Perkusich, “Pervasive Computing:

What is it Anyway?,” in Ubiquitous Computing: Design, Implementation, and

Usability, Y.-L. Theng and H. B. Duh, Eds. IGI Global, 2008, pp. 9–36.

[65] M. Weiser, “Some Computer Science Issues in Ubiquitous Computing,”

Communications of the ACM, vol. 36, no. 7, pp. 75–84, 1993.

[66] M. Weiser, “Hot Topics - Ubiquitous Computing,” Computer, vol. 26, no. 10, pp.

71–72, 1993.

198

[67] M. Weiser, “The Computer for the 21st Century,” Scientific American, vol. 265, no.

3, pp. 94–104, 1991.

[68] F. Karray, M. Alemzadeh, J. A. Saleh, and M. N. Arab, “Human-Computer

Interaction: Overview on State of the Art,” International Journal on Smart Sensing

and Intelligent Systems, vol. 1, no. 1, pp. 137–159, 2008.

[69] M. Baldauf, S. Dustdar, and F. Rosenberg, “A Survey on Context-Aware Systems,”

International Journal of Ad Hoc and Ubiquitous Computing, vol. 2, no. 4, pp. 263–

277, 2007.

[70] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan, and

D. Riboni, “A Survey of Context Modelling and Reasoning Techniques,” Pervasive

and Mobile Computing, vol. 6, no. 2, pp. 161–180, 2010.

[71] K. Henricksen and J. Indulska, “Developing Context-Aware Pervasive Computing

Applications: Models and Approach,” Pervasive and Mobile Computing, vol. 2, no.

1, pp. 37–64, 2006.

[72] A. Greenfield, Everyware: The Dawning Age of Ubiquitous Computing. New

Riders, 2010.

[73] S. Poslad, Ubiquitous Computing: Smart Devices, Environments and Interactions.

Wiley, 2009.

[74] C. Ramos, “Ambient Intelligence - A State of the Art from Artificial Intelligence

Perspective,” in Progress in Artificial Intelligence, 2007, pp. 285–295.

[75] L. Roalter, A. Moller, S. Diewald, and M. Kranz, “Developing Intelligent

Environments: A Development Tool Chain for Creation, Testing and Simulation of

Smart and Intelligent Environments,” in Intelligent Environments (IE), 2011 7th

International Conference on, 2011.

[76] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles,

“Towards a Better Understanding of Context and Context-Awareness,” in Handheld

and Ubiquitous Computing, 1999, pp. 304–307.

[77] A. K. Dey, “Understanding and Using Context,” Personal and Ubiquitous

Computing, vol. 5, no. 1, pp. 4–7, 2001.

[78] J. C. Augusto, “Ambient Intelligence: Basic Concepts and Applications,” in

Software and Data Technologies, Springer, 2008.

[79] J. C. Augusto, “Ambient Intelligence: The Confluence of Ubiquitous/Pervasive

Computing and Artificial Intelligence,” in Intelligent Computing Everywhere,

Springer, 2007.

[80] C. Ramos, J. C. Augusto, and D. Shapiro, “Ambient Intelligence - The Next Step for

Artificial Intelligence,” IEEE Intelligent Systems, vol. 23, no. 2, pp. 15–18, 2008.

[81] R. Baquero, J. G. Rodriguez, S. Mendoza, and D. Dominique, “Towards a Modular

Scheme for the Integration of Ambient Intelligence Systems,” in 5th International

Symposium on Ubiquitous Computing and Ambient Intelligence (UCAmI 2011),

2011.

[82] R. Baquero, J. Rodr𝚤guez, S. Mendoza, D. Decouchant, and A. P. M. Papis,

“FunBlocks. A Modular Framework for AmI System Development,” Sensors, vol.

12, no. 8, pp. 10259–10291, 2012.

[83] D. J. Cook, J. C. Augusto, and V. R. Jakkula, “Ambient Intelligence: Technologies,

Applications, and Opportunities,” Pervasive and Mobile Computing, vol. 5, no. 4,

pp. 277–298, 2009.

Modular Framework for Ambient Intelligence Systems

199

[84] A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and G. Schreier, “The Internet of

Things for Ambient Assisted Living,” in Information Technology: New Generations

(ITNG), 2010 Seventh International Conference on, 2010, pp. 804–809.

[85] M. J. O’Grady, C. Muldoon, M. Dragone, R. Tynan, and G. M. O’Hare, “Towards

Evolutionary Ambient Assisted Living Systems,” Journal of Ambient Intelligence

and Humanized Computing, vol. 1, no. 1, pp. 15–29, 2010.

[86] H. Sun, V. De Florio, N. Gui, and C. Blondia, “The Missing Ones: Key Ingredients

Towards Effective Ambient Assisted Living Systems,” Journal of Ambient

Intelligence and Smart Environments, vol. 2, no. 2, pp. 109–120, 2010.

[87] T. Kleinberger, M. Becker, E. Ras, A. Holzinger, and P. Müller, “Ambient

Intelligence in Assisted Living: Enable Elderly People to Handle Future Interfaces,”

in Universal Access in Human-Computer Interaction. Ambient Interaction, Springer,

2007, pp. 103–112.

[88] H. Sun, V. De Florio, N. Gui, and C. Blondia, “Promises and Challenges of Ambient

Assisted Living Systems,” in Information Technology: New Generations, 2009.

ITNG’09. Sixth International Conference on, 2009, pp. 1201–1207.

[89] P. Rashidi and A. Mihailidis, “A Survey on Ambient-Assisted Living Tools for

Older Adults,” IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 3,

pp. 579–590, 2013.

[90] A. D. Kshemkalyani and M. Singhal, Distributed Computing: Principles,

Algorithms, and Systems. Cambridge University Press, 2008.

[91] N. Santoro, Design and Analysis of Distributed Algorithms. Wiley, 2006.

[92] A. Puder, Distributed Systems Architecture: A Middleware Approach. Elsevier,

2006.

[93] J. Fraden, Handbook of Modern Sensors, 4th ed. Springer, 2010.

[94] J. H. Huijsing, “Smart Sensor Systems: Why? Where? How?,” in Smart Sensor

Systems, C. M. Meijer, Ed. Wiley, 2008, pp. 1–21.

[95] I. R. Sinclair, Sensors and Transducers. Newnes, 2000.

[96] J. S. Wilson, Sensor Technology Handbook. Elsevier, 2004.

[97] T. Xie and B. Wilamowski, “Sensors,” in The Industrial Electronics Handbook.

Control and Mechatronics, 2nd Ed., 2nd Ed., B. Wilamowski and J. D. Irwin, Eds.

CRC Press, 2011.

[98] J. Burroughs, “AN-236. X-10 Home Automation Using the PIC16F877A,”

http://ww1.microchip.com/downloads/en/AppNotes/00236a.pdf (Accessed December

22, 2013), 2002.

[99] “Standard and Extended X-10 Code Protocol,”

ftp://ftp.x10.com/pub/manuals/xtdcode.pdf.

[100] “Understanding EIA-485 Networks,” http://www.ccontrols.com/pdf/ExtV1N1.pdf

(Accessed December 22, 2013), 1999.

[101] T. Kugelstadt, “The RS-485 Design Guide,”

http://www.ti.com/lit/an/slla272b/slla272b.pdf (Accessed December 22, 2013), 2008.

[102] IEEE Std 802-2001. IEEE Standard for Local and Metropolitan Area Networks:

Overview and Architecture. IEEE Computer Society, 2002.

[103] ISO/IEC 7498-1. Information Technology - Open Systems Interconnection - Basic

Reference Model: The Basic Model. International Organization for Standarization

(ISO)/ International Electrotechnical Comission, 1996.

200

[104] IEEE Std 802.2, 1998 Edition(R2003). IEEE Standard for Information Technology.

Telecommunications and Information Exchange Between Systems. Local and

Metropolitan Area Networks. Specific Requirements Part 2: Logical Link Control.

LAN/MAN Standards Committee of the IEEE Computer Society, 1998.

[105] IEEE Std 802.3-2012. IEEE Standard for Ethernet. LAN/MAN Standards

Committee of the IEEE Computer Society, 2012.

[106] CISCO, “Ethernet Technologies,”

http://docwiki.cisco.com/wiki/Ethernet_Technologies (Accessed December 22,

2013), 2013.

[107] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed Packet Switching for Local

Computer Networks,” Communications of the ACM, vol. 19, no. 7, pp. 395–404,

1976.

[108] T. Carpenter and J. Barrett, CWNA Certified Wireless Network Administrator

Official Study Guide (Exam PW0-100). McGraw-Hill, 2007.

[109] D. Coleman and D. Westcott, Certified Wireless Network Administrator. Wiley,

2006.

[110] IEEE Std 802.11-2012. IEEE Standard for Information Technology.

Telecommunications and Information Exchange Between Systems. Local and

Metropolitan Area Networks. Specific Requirements Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications. LAN/MAN

Standards Committee of the IEEE Computer Society, 2012.

[111] IEEE Std 802.15.4-2011. IEEE Standard for Local and Metropolitan Area

Networks. Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs).

IEEE Computer Society, 2011.

[112] C. Buratti, M. Martalo, R. Verdone, and G. Ferrari, Sensor Networks with IEEE

802.15.4 Systems. Distributed Processing, MAC, and Connectivity. Springer, 2011.

[113] “ZigBee Alliance. http://www.zigbee.org/ (Accessed December 22, 2013).” .

[114] “The Internet Engineering Task Force. IPv6 over Low power WPAN Working

Group (Concluded). https://datatracker.ietf.org/wg/6lowpan/charter/ (Accessed

December 22, 2013).” .

[115] S. Farahani, ZigBee Wireless Networks and Transceivers. Newnes, 2008.

[116] ZigBee Specification. ZigBee Document 05347r17. ZigBee Alliance, 2007.

[117] P. A. Bernstein, “Middleware: A Model for Distributed System Services,”

Communications of the ACM, vol. 39, no. 2, pp. 86–98, 1996.

[118] W. Emmerich, “Software Engineering and Middleware: A Roadmap,” in

Proceedings of the Conference on the Future of Software Engineering, 2000, pp.

117–119.

[119] M. Lerner, G. Vanecek, N. Vidovic, and D. Vrsalovic, Middleware Networks:

Concept, Design and Deployment of Internet Infrastructure. Kluwer Academic

Publishers, 2002.

[120] A. S. Tanenbaum and M. van Steen, Distributed Systems. Principles and Paradigms,

2nd Ed. Pearson, 2007.

[121] H. Pinus, “Middleware: Past and Present a Comparison,”

http://userpages.umbc.edu/ dgorin1/451/middleware/middleware.pdf (Accessed

December 22, 2013), 2004.

[122] A. J. A. Wang and K. Qian, Component-Oriented Programming. Wiley, 2005.

Modular Framework for Ambient Intelligence Systems

201

[123] I. Crnkovic, M. Chaudron, and S. Larsson, “Component-Based Development

Process and Component Lifecycle,” in Software Engineering Advances,

International Conference on, 2006.

[124] C. Szyperski, D. Gruntz, and S. Murer, Component Software, 2nd Ed. ACM Press,

2002.

[125] F. Bushmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-

Oriented Software Architecture: A System of Patterns. John Wiley&Sons, 1996.

[126] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Design. Addison-Wesley, 1995.

[127] C. G. Lasater, Design Patterns. Wordware Publishing, 2010.

[128] R. A. Gupta and M.-Y. Chow, “Overview of Networked Control Systems,” in

Networked Control Systems, Springer, 2008, pp. 1–23.

[129] V. Viatkin, IEC 61499 Function Blocks for Embedded and Distributed Control

Systems Design. ISA, 2007.

[130] IEC 61131-3. Programmable Controllers - Part 3: Programming Languages.

Edition 2.0. International Electrotechnical Commision, 2003.

[131] IEC 61499-1. Function Blocks - Part 1: Architecture. International Electrotechnical

Commision, 2003.

[132] G. Frey and T. Hussain, “Modeling Techniques for Distributed Control Systems

Based on the IEC 61499 Standard - Current Approaches and Open Problems,” in

Discrete Event Systems, 8th International Workshop on, 2006.

[133] R. W. Lewis, Modelling Distributed Control Systems Using IEC 61499: Applying

Function Blocks to Distributed Systems. The Institution of Engineering Technology,

2008.

[134] K. Thramboulidis and G. Doukas, “IEC61499 Execution Model Semantics,” in

Innovative Algorithms and Techniques in Automation, Industrial Electronics and

Telecommunications, Springer, 2007.

[135] B. A. J. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and C. Dixon, “Home

Automation in the Wild: Challenges and Opportunities,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, 2011, pp. 2115–

2124.

[136] R. Baquero, J. G. Rodriguez, S. Mendoza, and D. Decouchant, “Towards a Uniform

Sensor-Handling Scheme for Ambient Intelligence Systems,” in Electrical

Engineering Computing Science and Automatic Control (CCE), 2011 8th

International Conference on, 2011, pp. 1–6.

[137] BAPI, “Understanding 4-20 mA Current Loops,”

http://www.bapihvac.com/CatalogPDFs/I_App_Notes/Understanding_Current_Loo

ps.pdf (Accessed December 22, 2013), 2006.

[138] TI, “AN-300. Simple Circuit Detects Loss of 4-20 mA Signal,”

http://www.ti.com/analog/docs/litabsmultiplefilelist.tsp?literatureNumber=snoa605

b&docCategoryId=1&familyId=78 (Accessed December 22, 2013), 2013.

[139] R. Baquero, J. Rodriguez, S. Mendoza, and D. Decouchant, “MidBlocks: A

Supervising Middleware for Reliable Intelligent Environments.,” in Intelligent

Environments (Workshops), 2012, pp. 389–400.

[140] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The Many Faces

of Publish/Subscribe,” ACM Computing Surveys, vol. 35, no. 2, pp. 114–131, 2003.

202

[141] S. Tarkoma and K. Raatikainen, “State of the Art Review of Distributed Event

Systems,” Helsinki University Computer Science Department. Helsinki Institute for

Information Technology, 2006.

[142] J. Blanchette, The Little Manual of API Design. Trolltech, 2008.

[143] M. Becker, “Software Architecture Trends and Promising Technology for Ambient

Assisted Living Systems,” in Assisted Living Systems - Models, Architectures and

Engineering Approaches, Proc. Dagstuhl Seminar, no. 07462, 2008.

Modular Framework for Ambient Intelligence Systems

203

204

9 Journal Articles

9.1 Sensors 2012

Baquero, R.; Rodríguez, J.; Mendoza, S.; Decouchant, D.; Papis, A.P.M. “Funblocks. A
Modular Framework for AmI System Development”; Sensors 2012, 12, 10259-10291.
Available at: http://www.mdpi.com/1424-8220/12/8/10259

http://www.mdpi.com/1424-8220/12/8/10259

Modular Framework for Ambient Intelligence Systems

205

10 Conference Articles

10.1 Intelligent Environments 2012

Rafael Baquero, José Rodriguez, Sonia Mendoza, Dominique Decouchant; “Midblocks: A
Supervising Middleware for Reliable Intelligent Environments”; Workshop Proceedings of
the 8th International Conference on Intelligent Environments, IOS Press, 2012. Available
at: http://www.booksonline.iospress.nl/Content/View.aspx?piid=30714

http://www.booksonline.iospress.nl/Content/View.aspx?piid=30714

206

Modular Framework for Ambient Intelligence Systems

207

10.2 UCAmI 2011

Rafael Baquero S., José G. Rodríguez G., Sonia Mendoza C., and Dominique Decouchant;
“Towards a Modular Scheme for the Integration of Ambient Intelligence Systems”; 5th
International Symposium on Ubiquitous Computing & Ambient Intelligence, UCAmI 2011,
December 5-9 2011, Riviera Maya, México.

208

Modular Framework for Ambient Intelligence Systems

209

10.3 CCE 2011

Rafael Baquero S., José G. Rodríguez G., Sonia Mendoza C., and Dominique Decouchant;
“Towards a Uniform Sensor-Handling Scheme for Ambient Intelligence Systems”; 8th
International Conference on Electrical Engineering, Computer Science and Automatic
Control, CCE 2011, October 26-28 2011, Mérida, Yucatán, México.

210

Modular Framework for Ambient Intelligence Systems

211

212

Modular Framework for Ambient Intelligence Systems

213

214

Modular Framework for Ambient Intelligence Systems

215

216

Modular Framework for Ambient Intelligence Systems

217

218

