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México, Distrito Federal. Septiembre, 2015



ii



Centro de Investigación y de Estudios

Avanzados del Instituto Politécnico
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Resumen

Muchas de las aplicaciones existentes en la ingenieŕıa, la ciencia ó la indus-
tria requieren de la resolución de problemas de optimización que involucran
varias funciones objetivo (normalmente en conflicto entre śı), las cuales deben
ser optimizadas de manera simultánea (v.g., una función objetivo no puede
ser mejorada sin deteriorar otra). Estos son los llamados problemas de op-
timización multi-objetivo (MOPs por sus siglas en inglés). Por lo anterior,
cuando resolvemos MOPs no aspiramos a obtener una única solución óptima
sino mas bien un conjunto de soluciones óptimas. Este conjunto es conocido
como “conjunto de óptimos de Pareto” y a su imagen se le conoce como
“frente de Pareto óptimo”.

Aunque existen diversas técnicas de programación matemática que nos
permiten resolver MOPs, éstas adolecen de varias desventajas, p.ej., la mayor
parte de ellas generan una única solución en cada ejecución, tienen dificul-
tades para lidiar con MOPs que cuentan con frentes de Pareto desconectados
o que tienen varios falsos frentes de Pareto y requieren que las funciones obje-
tivo y las restricciones se proporcionen en forma algebraica. Estas limitantes
han motivado el uso de algoritmos evolutivos para resolver MOPs, dando
pie a los denominados algoritmos evolutivos multi-objetivo (MOEAs por sus
siglas en inglés).

A pesar de las ventajas que presenta el uso de MOEAs con respecto a las
técnicas de programación matemática, este tipo de algoritmos también tienen
dificultades en cierto tipo de problemas. De entre dichas limitantes, quizás
la más relevante es el hecho de que los MOEAs basados en jerarquización
de Pareto (la técnica de selección más utilizada en los MOEAs que se han
propuesto en los últimos 25 años) tienen dificultades para lidiar con MOPs
que tienen muchas funciones objetivo (4 o más). Esto se debe a que el número
de soluciones no dominadas crece muy rápidamente conforme aumentamos el
número de funciones objetivo, lo que, en consecuencia, produce que la presión
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de selección se diluya a la misma velocidad. Esta limitante ha motivado un
número importante de estudios, dando pie a un área que hoy se conoce como
“optimización con muchas funciones objetivo”, cuyo objetivo fundamental
es el diseño de mecanismos de selección que escalen adecuadamente en la
presencia de 4 o más funciones objetivo.

En esta tesis estudiamos diferentes mecanismos de selección que no están
basados en la relación de dominancia Pareto con el objetivo de identificar
sus principales desventajas y limitantes. Como resultado de este estudio,
proponemos varios mecanismos de selección enfocados a la resolución de pro-
blemas de optimización con muchas funciones objetivos. Dichos mecanismos
pueden ser clasificados en tres tipos: (i) los basados en el indicador de “hiper-
volumen”, (ii) los basados en una función de aptitud llamada “maximin” y
(ii) los basados tanto en el indicador de “hipervolumen” como en la función
de aptitud “maximin”. Los diferentes mecanismos de selección propuestos
se incorporan a un MOEA, surgiendo aśı, seis nuevos algoritmos, los cuales
son comparados con respecto a MOEAs representativos del estado del arte
(SMS-EMOA y MOEA/D) usando problemas de prueba y medidas de de-
sempeño estándar de la literatura especializada. Con base en los experimen-
tos y en el análisis estad́ıstico realizado podemos decir que todos los MOEAs
propuestos son competitivos con respecto a SMS-EMOA, si consideramos so-
lamente la calidad de las soluciones encontradas, y todos ellos son superiores
a él, si consideramos el tiempo de ejecución requerido para generar dichas
soluciones. Con respecto a MOEA/D, los algoritmos aqúı propuestos son su-
periores si consideramos únicamente la calidad de las soluciones generadas,
aunque resultan inferiores si consideramos el tiempo de ejecución requerido.
Es importante mencionar que aunque el tiempo de ejecución de los algorit-
mos propuestos es mayor al requerido por el MOEA/D, éste sigue siendo
aceptable para problemas con muchas funciones objetivo.

Finalmente, cabe destacar que los MOEAs propuestos en esta tesis no
requieren de información adicional a diferencia, por ejemplo, de MOEA/D o
de los MOEAs basados en el indicador R2, que requieren de un conjunto de
pesos convexos bien distribuidos, o de los MOEAs basados en el indicador
∆p que requieren de un conjunto de referencia el cual idealmente debiera ser
el “frente de Pareto óptimo”.



Abstract

Many of the existing applications in engineering, science or industry, require
of the solution of problems involving several (normally conflicting) objective
functions, which must be simultaneously optimized (i.e., an objective func-
tion cannot be improved without worsening another one). These are the
so-called multi-objective optimization problems (MOPs). Thus, when solv-
ing MOPs, we don’t aim to obtain a single optimum solution, but a set of
them. Such set is known as the “Pareto optimal set” and its image is known
as “Pareto optimal front.”

Although a variety of mathematical programming techniques are avail-
able for solving MOPs, they have several disadvantages, e.g., most of them
generate a single solution per run, have difficulties to deal with MOPs hav-
ing disconnected Pareto fronts or with multi-frontal MOPs, and they require
that both the objective functions and the constraints are provided in algebraic
form. These limitations have motivated the use of evolutionary algorithms
for solving MOPs, giving rise to the so-called multi-objective evolutionary
algorithms (MOEAs).

In spite of the advantages that MOEAs have with respect to mathemat-
ical programming techniques, they also present difficulties in certain types
of problems. From such limitations, perhaps the most relevant is the fact
that MOEAs based on Pareto ranking (the most common selection tech-
nique adopted by the MOEAs that have been proposed in the last 25 years)
have difficulties to deal with MOPs having many objective functions (4 or
more). This problem arises because the number of nondominated solutions
grows very quickly as we increase the number of objective functions which,
in consequence, dilutes the selection pressure at the same rate. This limita-
tion has motivated an important number of studies, giving rise to an area
called “many-objective optimization”, whose main goal is to design selection
mechanisms that can properly scale in the presence of 4 or more objective
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functions.
In this thesis, we study different selection mechanisms that are not based

on the Pareto dominance relation, with the aim of identifying their main
disadvantages and limitations. As a result of this study, we propose several
selection mechanisms focused on the solution of many-objective optimiza-
tion problems. Such mechanisms can be classified in three types: (i) those
based on the “hypervolume” indicator, (ii) those based on a fitness function
called “maximin” and (iii) those based both on the “hypervolume” indicator
and the “maximin” fitness function. The proposed selection mechanisms are
incorporated into a MOEA, giving rise to six new algorithms, which are com-
pared with respect to MOEAs that are representative of the state-of-the-art
(SMS-EMOA and MOEA/D) using standard test problems and performance
measures taken from the specialized literature. Based on our experiments
and on our statistical analysis of results, we conclude that all the proposed
MOEAs are competitive with respect to SMS-EMOA, if we only consider the
quality of the solutions found, and all of them are superior to SMS-EMOA
if we consider the execution time required to generate such solutions. With
respect to MOEA/D, all the algorithms proposed here are superior if we only
consider the quality of the solutions obtained, although they are all inferior
to MOEA/D if we consider the required execution time. It is worth noticing,
however, that, although the execution time required by the algorithms pro-
posed here is higher than the time required by MOEA/D, such an execution
time remains affordable for solving many-objective optimization problems.

Finally, it is worth indicating that the MOEAs proposed in this thesis
do not require any additional information, unlike, for example, MOEA/D or
MOEAs based on the R2 indicator, which require a set of well-distributed
convex weights, or MOEAs based on the ∆p indicator, which require of a
reference set which, ideally, should be the “Pareto optimal front.”
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de los art́ıculos sometidos y mis profesores y compañeros de seminarios.
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exactas para hacerme sentir bien en los momentos dif́ıciles.

Agradezco enormemente a Ivan Negrete quien me ha acompañado y apo-
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Chapter 1

Introduction

In many applications of Engineering, Science and Industry there are problems
which involve multiple objective functions [20], which must be simultane-
ously optimized. They are known as Multi-objective Optimization Problems
(MOPs). Since their objectives are in conflict with each other, the notion of
optimality refers to the best possible trade-offs among the objectives. Conse-
quently, there is no single optimal solution but a set of solutions, the so-called
Pareto optimal set, whose image is known as the Pareto front.

There exist several mathematical programming techniques available for
solving MOPs [62]. However, these techniques have several disadvantages,
e.g., they have difficulties in MOPs with disconnected Pareto fronts or when
the problem is multi-frontal (i.e, it has many false Pareto fronts). Also, they
usually generate only one Pareto optimal solution per run. Since many ap-
plications in the real world involve solving MOPs with the above features
and it is desirable to generate a set of Pareto optimal solutions in a sin-
gle algorithm’s execution, the use of the Evolutionary Algorithms (EAs) to
solve MOPs has become increasingly popular. Such algorithms are known as
Multi-Objective Evolutionary Algorithms (MOEAs) and they have several ad-
vantages with respect to traditional mathematical programming techniques,
e.g., they can generate several Pareto optimal solutions in one run and they
are less sensitive to the shape and continuity of the Pareto front. Indeed,
MOEAs can work with objective functions which are the result of a simula-
tion.

MOEAs are stochastic search techniques inspired on Darwin’s evolution-
ary theory. They generate a random initial population (i.e., a set of candi-
date solutions to solve the MOP). After that, they apply variation operators
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(crossover and mutation) to the current solutions to generate new solutions
and, finally, they choose the solutions which will be part of the next gen-
eration. This process is repeated during a certain (pre-defined) number of
generations. For several years, the most commonly adopted method to select
solutions within a MOEA was the Pareto dominance relation. Pareto-based
MOEAs work well in MOPs with two or three objective functions. However,
in MOPs with more than three objective functions, they have an important
disadvantage: a poor scalability. The quick increase in the number of non-
dominated solutions as we increase the number of objective functions, rapidly
dilutes the effect of the selection mechanism of a MOEA [38]. This has mo-
tivated a significant amount of research regarding the scalability of MOEAs
with respect to the number of objective functions. This area is known as
many-objective optimization and usually refers to the solution of MOPs with
four or more objective functions.

In this thesis, we are interested in the study of selection mechanisms for
MOEAs which are not based on Pareto dominance to solve many-objective
optimization problems. As part of our work, we studied the following ap-
proaches: (i) those which consider one objective function at a time, (ii) those
which decompose the MOP in several single-objective problems, (iii) those
which adopt a selection scheme that does not rely on Pareto optimality and,
(iv) those which are based on a performance measure. Finally, we propose
some alternative selection mechanisms based on approaches of types (iii) and
(iv) and we incorporate them into a MOEA. Our results show that our se-
lection mechanisms are a good alternative to solve MOPs having both low
dimensionality and high dimensionality in objective function space.

1.1 Problem Statement

It is well-known that MOEAs based on Pareto dominance cannot scale with
respect to the number of objective functions. So, there has been a lot of
research regarding the design of alternative selection mechanisms. However,
the new proposals have some disadvantages, e.g., techniques which consider
one objective function at a time need to set an ordering on the objective func-
tions and this is not always possible; techniques which decompose the MOP
in several single-objective problems need to generate a set of well-distributed
convex weights and this task is difficult in several cases; techniques which
adopt a selection scheme that does not rely on Pareto optimality or tech-
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niques which are based on a performance measure might not consider all the
required aspects of an approximation of the Pareto front. Other common
disadvantages between selection schemes are that they require additional in-
formation (e.g., knowing the ideal vector or the nadir vector) or their compu-
tational cost is high. Therefore, the following question arises: Is it possible
to propose a new selection scheme for Multi-Objective Evolution-
ary Algorithms (MOEAs) which has the following features?

� It requires little additional information.

� It is computationally efficient.

� It has a good performance in terms of the two following aspects:

– It allows to find solutions that are, as close as possible, to the true
Pareto front and,

– it allows to produce solutions that are spread along the Pareto
front as uniformly as possible.

� It is scalable with respect to the number of objective functions.

1.2 General and Specific Goals of the Thesis

1.2.1 Main goal

The main goal of this thesis is to contribute to advance of the state of the
art in evolutionary multi-objective optimization, particularly regarding the
design of selection techniques for MOEAs which are not based on the concept
of Pareto optimality. Also, it is of our interest to study density estimators in
the context of many-objective problems.

1.2.2 Specific goals

1. Develop a framework of study to compare different selection techniques.
Within this framework, we aim to analyze properties such as: required
information, computational cost, performance and scalability regarding
the number of objective functions.

2. Perform a comparative study of different selection techniques which are
not based on the concept of Pareto optimality.
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3. Propose at least one new selection scheme which is not based on the
concept of Pareto optimality. This scheme must comply with desirable
features (little additional information, efficiency, good performance and
scalability).

4. Study some density estimators in the same way as selection mecha-
nisms.

5. Propose al least one new density estimator. This estimator must com-
ply with desirable features (little additional information, efficiency,
good performance and scalability).

6. Both the new selection scheme and the new density estimator must be
incorporated into a MOEA. The new MOEA should show competitive
advantages in at least some of the desirable features. The new MOEA
should be compared with respect to both MOEAs based on Pareto op-
timality and indicator-based MOEAs. Also, the study must consider
problems with low (2 and 3 objective functions) and high dimensional-
ity (4 or more objective functions).

1.2.3 Expected contributions

� A detailed analysis of selection mechanisms, which are not based on
Pareto optimality. This analysis will be focused on the following fea-
tures: scalability with respect to the number of objective functions,
computational cost, required information and performance. As part of
this analysis, an appropriate study framework will be defined in order
to identify weaknesses and strengths of each technique studied.

� A new MOEA which combines a new selection scheme (not based on
Pareto optimality) and a new density estimator. This MOEA must
be competitive with respect to the MOEAs of the state of the art
considering the features analyzed in the framework indicated before.

� A detailed analysis of the advantages and disadvantages of the schemes
proposed (the new selection scheme and the new density estimator)
when they are incorporated in an elitist MOEA. This analysis must be
based on an exhaustive statistical analysis which will consider well-
known MOEAs, standard test functions and performance measures
commonly adopted in the specialized literature.
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1.3 Structure of the Document

This document is organized as follows. Chapter 2 presents a brief intro-
duction to multi-objective optimization, including basic concepts and some
methods to solve multi-objective optimization problems. In Chapter 3, we de-
scribe what is a multi-objective evolutionary algorithm and how can we assess
its performance. Chapter 4 presents four well-known selection mechanisms
for MOEAs: one based on Pareto dominance, other based on a preference
relation, other based on decomposition and one more based on a performance
measure. In Chapters 5 and 6, we present the contributions of this thesis.
Six new MOEAs are presented, evaluated and compared with respect to well-
known MOEAs. Finally, in Chapter 7, we present our conclusions and some
possible paths for future work.
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Chapter 2

Background

Optimization is the process of finding the best possible solution to a given
problem. Problems which involve only one objective function are called
single-objective optimization problems (SOPs) and problems which involve
more than one objective function are called multi-objective optimization prob-
lems (MOPs).

In the case of SOPs, we can determine if one solution is better than
another solution by comparing their values obtained when the solution is
evaluated with the objective function. Therefore, we usually obtain a single
optimal solution (the global optimum).1

On the other hand, in MOPs, the objective functions are normally in
conflict. For this reason, solving MOPs implies finding trade-offs among all
the objective functions. Consequently, we obtain a set of optimal solutions
instead of a single one as in the case of SOPs. This is because we do not have
a single optimal solution which optimizes all objective functions at the same
time. The decision maker is responsible for choosing only one solution from
all those that are available. The notion of “optimality” normally adopted in
multi-objective optimization was originally proposed by Edgeworth in 1881
[34] and later generalized by Pareto in 1896 [65].

This chapter presents some basic concepts related to multi-objective opti-
mization. And also, it presents some optimization methods available to solve
MOPs. The most important aim of this chapter is that the reader familiar-
izes with the basic concepts, definitions and notations used in the remainder
of this document.

1The global minimum may not be unique (i.e., it may happen that different solutions
can attain the same objective function value).
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2.1 Multi-Objective Optimization

In the following, we present some general concepts and notations used in
Multi-objective optimization [21, 62].

Definition 1 (Multi-objective optimization problem) The general mul-
ti-objective optimization problem (MOP) is defined as follows:

Minimize:
~f(~x) = [f1(~x), f2(~x), · · · , fk(~x)]T (2.1)

Subject to:

gi(~x) ≤ 0 i = 1, 2, · · · , m

hj(~x) = 0 j = 1, 2, · · · , p

where ~x = [x1, x2, · · · , xn]T is the vector of decision variables. The decision
variables can be continuous or discrete; however, in this work, we are only
interested in continuous domains. fi : Rn → R, i = 1, · · · , k are the objective
functions and gi, hj : Rn → R are the inequality and equality constraint
functions, respectively. According to the type of the functions f , g and h,
we can classify MOPs as follows:

� Multi-objective linear programming. When all the objective func-
tions and the constraint functions are linear, then the multi-objective
optimization problem is called linear.

� Nonlinear multi-objective optimization. If at least one of the ob-
jective functions or the constraint functions are nonlinear, the problem
is called nonlinear.

� Convex multi-objective optimization. The multi-objective opti-
mization problem is convex if all the objective functions and the feasible
region are convex.

In this work, we are interested in solving nonlinear unconstrained MOPs.

Definition 2 (Decision variables) The decision variables are the numer-
ical quantities for which values are to be chosen in an optimization problem.
The vector ~x of n decision variables is represented by: ~x = [x1, x2, · · · , xn]T .
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Decision variable space Objective function space

x1 f1

f2x2 X ∈ Rn Z ∈ Rk

~f : Rn → Rk

~x

~z

Figure 2.1: Search spaces for a multi-objective optimization problem with two
decision variables and two objective functions. The light gray area denotes
the feasible region Ω in both spaces, the decision variable space and the
objective function space.

Definition 3 (Decision variable space) The decision variable space is the
n-dimensional space of the decision variables, in which each coordinate axis
corresponds with one component of vector ~x.

Definition 4 (Objective functions) The objective functions evaluate how
good a given solution is. They are usually denoted as fi(~x) : Rn → R.
In MOPs, we want to solve more than one objective function and they are
denoted by an objective function vector: ~f(~x) = [f1(~x), f2(~x), · · · , fk(~x)]T ,

where ~f(~x) : Rn → Rk.

Definition 5 (Objective function space) The objective function space is
the k-dimensional space of the objective functions, in which each coordinate
axis corresponds with one component of vector ~f(~x).

Definition 6 (Feasible region) The feasible region, Ω ∈ Rn, is deter-
mined bym inequality constraint functions: gi(~x) ≤ 0 such that i = 1, 2, · · · , m
and p equality constraint functions: hj(~x) = 0 such that j = 1, 2, · · · , p. We
say that a vector ~x is feasible, if it satisfies all constraint functions of the
problem (~x ∈ Ω).

In Figure 2.1, we illustrate the above definitions for a MOP with two
decision variables and two objective functions. A vector ~x in the decision
variable space (~x ∈ X ) is mapped to a vector ~z in the objective function

space (~z ∈ Z) using ~f .
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f1

f2

~z1

~z3 ~z4

~z2

Figure 2.2: Pareto dominance relation. ~z3 ≺≺ ~z2, ~z3 ≺ ~z1, ~z3 ≺ ~z4, ~z4 ≺ ~z2,
~z1 ≺ ~z2, ~z1 � ~z3, ~z4 � ~z3 and ~z2 � ~z4.

2.2 Notions of Optimality in a Multi-objective

Optimization Problem

As we mentioned above, it is not possible to find a single solution that would
be optimal for all the objective functions simultaneously when such objectives
are in conflict with each other. In MOPs, we only produce partially ordered
sets of solutions (e.g., we can say that [1, 1]T is less than [3, 3]T , but [1, 3]T

and [3, 1]T are incomparable). In the following, we present some important
concepts related to Pareto optimality.

Definition 7 (Pareto dominance) We say that a vector ~x = [x1, . . . , xn]T

dominates vector ~y = [y1, . . . , yn]T , denoted by ~x ≺ ~y, if and only if fi(~x) ≤
fi(~y) for all i ∈ {1, ..., k} and there exists an i ∈ {1, . . . , k} such that fi(~x) <
fi(~y).

Definition 8 (Weak dominance) We say that a vector ~x = [x1, . . . , xn]T

weakly dominates vector ~y = [y1, . . . , yn]T , denoted by ~x � ~y, if ~x is not worse
than ~y in all objectives.

Definition 9 (Strict dominance) We say that a vector ~x = [x1, . . . , xn]T

scrictly dominates vector ~y = [y1, . . . , yn]T , denoted by ~x ≺≺ ~y, if and only
if fi(~x) < fi(~y) for all i ∈ {1, ..., k}.

Figure 2.2 illustrates the Pareto dominance relation for a MOP with two
objective functions. For example, vector ~z3 strictly dominates ~z2, vector
~z3 dominates ~z1, vector ~z1 weakly dominates ~z3 and vectors ~z1 and ~z4 are
incomparable (i.e., ~z1 and ~z4 are both nondominated).
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x1 f1

f2x2 X ∈ Rn Z ∈ Rk

Decision variable space Objective function space

~f : Rn → Rk

Figure 2.3: Black points are nondominated vectors and they define the Pareto
optimal set in decision variable space and the Pareto front in objective func-
tion space. White points are dominated vectors (they are dominated by some
black point) and the gray point is weakly Pareto optimal.

Definition 10 (Pareto optimal) A point ~x∗ ∈ Ω is Pareto optimal, if
there is no other solution ~x ∈ Ω such that ~x ≺ ~x∗.

Definition 11 (Weak Pareto optimality) A point ~x∗ ∈ Ω is weakly Pareto
optimal if there is no ~x ∈ Ω such that ~x ≺≺ ~x∗.

Definition 12 (Kuhn-Tucker conditions for noninferiority) If a solu-
tion ~x to the general MOP is noninferior, then there exist wl ≥ 0, l = 1, · · · , k
(wl must be strictly positive for some l = 1, · · · , k), and λi ≥ 0, i = 1, · · · , m,
such that:

k
∑

l=1

wl∇fl(~x)−
m
∑

i=1

λi∇gi(~x) = 0 and (2.2)

~x ∈ Ω

λigi(~x) = 0, i = 1, · · · , m

These conditions are necessary for a noninferior solution, and when all of
the fl(~x) are concave and Ω is a convex set, they are sufficient as well.

Definition 13 (Pareto optimal set) For a given MOP, ~f(~x), the Pareto
optimal set is defined as: P∗ = {~x ∈ Ω|¬∃~y ∈ Ω : ~y ≺ ~x}.
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Definition 14 (Pareto front) Let ~f(~x) be a given MOP and P∗ the Pareto

optimal set. Then, the Pareto Front is defined as: PF∗ = {~f(~x) | ~x ∈ P∗}.

In general, it is not easy to find an analytical expression of the line or surface
that defines the Pareto front and in most cases, it turns out to be impossible.
The common procedure to generate the Pareto front is to compute a sufficient
number of points in Ω, and then choose the nondominated vectors from them.
Figure 2.3 shows the Pareto optimal set and the Pareto front of a MOP with
two decision variables and two objective functions.

Definition 15 (Ideal objective vector) The ideal objective vector is de-
noted by ~z∗ = [z∗1 , z

∗
2 , · · · , z

∗
k]T and it is obtained by minimizing each of the

objective functions individually subject to the constraints (i.e., z∗i = min fi(~x)
subject to ~x ∈ Ω).

Definition 16 (Utopian objective vector) The utopian objective vector
is denoted by ~z∗∗ = [z∗∗1 , z∗∗2 , · · · , z∗∗k ]T . It is an infeasible objective vector
whose components are formed by ~z∗∗i = ~z∗i − ǫi where ~z∗i is a component of
the ideal objective vector and ǫi > 0 is a relatively small but computationally
significant scalar.

Definition 17 (Nadir objective vector) The nadir objective vector is de-
noted by ~znad = [znad1 , znad1 , · · · , znadk ]T and its components are the upper
bounds of the Pareto optimal set.

~znad can be estimated from a payoff table which is formed by using the
decision vector obtained when calculating the ideal objective vector. Row i of
the payoff table displays the values of all objective functions calculated at the
point where fi obtained its minimal value. The value of the component znadj

can be estimated by using the maximum value of the column j. Figure 2.4
illustrates the ideal vector, the utopian vector and the nadir vector for a
MOP with two objective functions.

2.3 Optimization Methods to Solve MOPs

Since the size of the Pareto optimal set might be infinite, the goal of most op-
timization methods is finding a reasonably good approximation of the Pareto
optimal front.
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~z∗∗
~z∗

f2 ~znad

f1

Figure 2.4: Ideal vector (~z∗), utopian vector (~z∗∗) and nadir vector (~znad) for
a MOP with two objective functions.

Definition 18 (Approximate Pareto front) An approximate Pareto
front is a subset of the objective space Z composed of mutually nondomi-
nated vectors (e.g., A ⊂ Z such that for any two vectors ~z1, ~z2 ∈ A is true
that ~z1 ⊀ ~z2 and ~z2 ⊀ ~z1).

Currently, it is well-accepted that the quality of an approximate Pareto
front is determined by:

� Minimizing the distance of the approximate Pareto front with respect
to the true Pareto front,

� Maximizing the spread of solutions found, so that we can have a dis-
tribution of vectors as smooth and uniform as possible and,

� Maximizing the number of elements of the approximate Pareto front.

The optimization methods to solve MOPs can be classified in many ways
according to different criteria (e.g., enumerative, deterministic and stochastic
methods [21]). Enumerative methods are the simplest search strategy, since
they evaluate each possible solution within some finite search space. It is
easy to note that these methods can be infeasible when the search space is
too large. Deterministic algorithms incorporate problem domain knowledge.
Some examples of this type of algorithms are: greedy methods which make
locally optimal choices and hill-climbing methods which use the direction of
steepest ascent from the current position. Deterministic algorithms have been
successfully used in solving a wide variety of problems. However, when the
MOP is high-dimensional, discontinuous, multimodal, and/or NP-complete,
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they are often ineffective. Since many real world multi-objective optimiza-
tion problems are irregular, stochastic search and optimization methods such
as simulated anneling, Monte Carlo methods, tabu search and evolutionary
computation have been developed as alternative approaches for solving them.
Stochastic methods require a function to assign fitness values to the possible
solutions of the problem. Also, they need mechanisms for encoding/decoding
for doing the mapping between the problem and the domain of the algorithm.
Stochastic methods can eventually find the optimum but they cannot guar-
antee finding the optimal solution. In general, they provide good solutions to
a wide range of optimization problems which traditional deterministic search
methods find difficult to solve. In this work, we are interested in solving
MOPs using evolutionary computation (we are going to describe this
type of methods in the following chapter).

Although generating the Pareto optimal set plays an important role in
multi-objective optimization, and mathematically the problem is considered
to be solved when the Pareto optimal set is found, this is not always enough
because we need to select only one solution. For this reason, we need a deci-
sion maker and her or his preferences. The operations research community
has proposed several optimization techniques (deterministic and stochastic)
to solve MOPs which are known as mathematical programming techniques.
These techniques can be linear or nonlinear. Linear programming is de-
signed to solve problems in which the objective functions and all constraint
relations are linear. Nonlinear programming techniques solve MOPs which do
not meet those restrictions but usually require convex constraint functions.
Finally, stochastic programming is used when random-valued parameters and
objective functions subject to statistical perturbations are part of the prob-
lem formulation. Cohon and Marks [24] proposed one of the most popular
classifications of techniques within the operations research community:

� A priori methods. The decision maker must define the preferences
of the objective functions before starting the search. When the deci-
sion maker has not properly defined her/his expectations, this type of
methods are not recommended.

� A posteriori methods. First, the approximate Pareto front is gen-
erated, and then, it is presented to the decision maker, who selects the
most preferred one(s) according to her/his preferences. Some disadvan-
tages of this type of methods are: they are computationally expensive,
it is difficult to generate well-distributed solutions along the Pareto
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front. Also, it is hard for the decision maker to select from a large set
of alternatives.

� Interactive methods. Both optimizer and decision maker work pro-
gressively. The optimizer produces solutions and the decision maker
provides preference information. These methods do not require to have
any previous knowledge about the preference structure. However, the
information which is presented to the decision maker should be mean-
ingful and easy to understand.

2.3.1 A priori methods

� Goal Programming. The ideas of this method were originally intro-
duced by Charnes et al. [18], but the term “goal programming” was
introduced by Charnes and Cooper [17]. It is one of the first meth-
ods explicitly created for multi-objective optimization. In this method,
the decision maker specifies aspiration levels z̄i(i = 1, · · · , k) for each
objective function and any deviations from these aspiration levels are
minimized. An objective function jointly with an aspiration level forms
a goal. This method has several variants (e.g., weighted and lexico-
graphic approaches). In the weighted approach, we must solve the
following problem:

min

k
∑

i=1

wi|fi(~x)− z̄i|, subject to: ~x ∈ Ω (2.3)

where wi are weights previously pre-defined. In the lexicographic ap-
proach, the decision maker must specify a lexicographic order on the
goals in addition to the aspiration levels. A combination of the weighted
and the lexicographic approaches is quite popular. In this case, sev-
eral objective functions may belong to the same class of importance in
the lexicographic order. In each priority class, a weighted sum of the
deviational variables is minimized.

Since goal-setting is an understandable and easy way of making de-
cisions, goal programming is a widely used method to solve practical
MOPs. However, the specification of the weighted coefficients or the
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lexicographic ordering may be difficult. Goal programming is not ap-
propiate if we wish to obtain trade-offs. More details of this method
can be found in [62].

� Lexicographic Method. In this method, the objective functions are
ranked in order to importance by the decision maker (from best to
worst). After ranking, the most important objective function is mini-
mized subject to the original constraints. If this problem has a unique
solution, it is the solution of the whole MOP. Otherwise, the second
most important objective function is minimized but a new constraint is
added. The new constraint guarantees that the most important objec-
tive function preserves its optimal value. If this problem has a unique
solution, it is the solution of the original MOP. Otherwise, the process
goes on as above. Suppose that f1 is the most important objective
function. Then the first problem is formulated as follows:

min f1(~x), subject to gj(~x) ≤ 0; j = 1, 2, · · · , m (2.4)

Let ~x∗
1, f

∗
1 = f1(~x

∗
1) be the solution to the first problem (eq. 2.4) and

f2 is the second most important objective function. Then, the second
problem is formulated as follows:

min f2(~x), subject to (2.5)

gj(~x) ≤ 0; j = 1, 2, · · · , m

f1(~x) = f ∗
1

And so on, until all k objectives have been considered. The solution
to the lexicographic problem is Pareto optimal. However, this method
has several disadvantages. The decision maker may have difficulties
in establishing an absolute order of importance among the objective
functions. Also, it is very likely that the least important objective
functions are not taken into consideration at all.

2.3.2 A posteriori methods

� Weighting Method. It was presented by Gass and Saaty [40]. This
method associates to each objective function one weighting coefficient
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and its goal is to minimize the weighted sum of the objectives. The
weighting coefficients wi are real numbers and

∑k
i=1wi = 1. In this

way, the multi-objective optimization problem is transformed into a
single objective function as follows:

min

k
∑

i=1

wifi(~x), subject to ~x ∈ Ω (2.6)

where wi ≥ 0 for all i = 1, · · · , k and
∑k

i=1wi = 1. Zadeh [86] was the
first to show that the third of the Kuhn-Tucker conditions for nonin-
ferior solutions implies that these noninferior solutions might be found
by solving a scalar optimization problem in which the objective func-
tion is a weighted sum of the components of the original vector-valued
function. Indeed, the weighting method is a simple way to generate dif-
ferent Pareto optimal solutions. Pareto optimality is guaranteed if the
weighting coefficients are positive or the solution is unique. The weak-
ness of the weighting method is that not all of the Pareto optimal points
can be found if the problem is nonconvex. The same weakness may also
occur in problems with discontinuous objective functions. More details
of this method can be found in [62].

� ǫ-Constraint Method. This method was introduced by Haimes et
al. [85]. It also follows directly from the Kuhn-Tucker conditions for
noninferior solutions. The idea of this method is to minimize one (the
most preferred or primary) objective function at a time, considering the
other objectives as constraints bounded by some allowable levels ǫj . By
varing these levels ǫj , the nondominated solutions of the problem can
be obtained. The problem to be solved is now of the form:

min fi(~x), subject to (2.7)

fj(~x) ≤ ǫj for all j = 1, · · · , k, j 6= i,

~x ∈ Ω

where i = 1, · · · , k. Thus, every Pareto optimal solution of any MOP
can be found by the ǫ-constraint method by altering the upper bounds
and the function to be minimized. In fact, even the existence of dual-
ity gaps in nonconvex problems do not disturb the functioning of the
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ǫ-constraint method. However, computationally speaking, this method
is expensive, i.e., the ǫ-constraint method needs to perform k optimiza-
tions for all fi as objective functions in order to generate one Pareto
optimal solution.

� Method of weighted metrics. This method is sometimes called
compromise programming [88] and it obtains different solutions by al-
tering the weighted coefficients wi in the weighted Lp− and Tchebycheff
metrics. The weighted Lp-problem for minimizing distances is:

min

(

k
∑

i=1

wi|fi(~x)− z∗i |
p

)1/p

, subject to ~x ∈ Ω (2.8)

for 1 ≤ p < ∞. The weighted Tchebycheff problem was originally
introduced by Bowman [9] and it is of the form:

min max
i=1,··· ,k

[wi|fi(~x)− z∗i |], subject to ~x ∈ Ω (2.9)

If p = 1, the problem to be solved is equal to the weighted problem
except for a constant (if ~z∗ is known globally). If p = 2, we have
a method of least squares. As p gets larger, the minimization of the
largest deviation becomes more and more important. Finally, when
p = ∞, the only thing that matters is the weighted relative deviation
of one objective function. Although the weighted Tchebycheff problem
can find every Pareto optimal solution, weakly Pareto optimal solutions
may also be included and they need to be filtered out. More details of
this method can be found in [62].

2.3.3 Interactive methods

� Tchebycheff Method. This method was refined by Steuer [75]. It is
an interactive weighting vector space reduction method. This method
is easy to use and it does not require complicated information. To start
with, an utopian vector below the ideal vector is established. Then, the
distance from the utopian vector to the feasible region (measured by
a weighted Tchebycheff metric) is minimized. Different solutions are
obtained with different weighting vectors in the metric. The solution
space is reduced by working with sequences of smaller and smaller
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subsets of the weighting vector space. Thus, the idea is to develop
a sequence of progressively smaller subsets of the Pareto optimal set
until a final solution is located. At each iteration, different alternative
objective vectors are presented to the decision maker and (s)he must
select the most preferred of them. The feasible region is then reduced
and alternatives from the reduced space are presented to the decision
maker for selection. We know that some of the generated solutions may
be weakly Pareto optimal. However, producing weakly Pareto optimal
solutions is overcome in the Tchebycheff method by formulating the
distance problem as a lexicographic weighted Tchebycheff problem.

� GUESS Method. This method is presented by Buchanan [16]. It
requires that the ideal vector ~z∗ and the nadir vector ~znad are available.
The general idea is to maximize the minimum weighted deviation from
the nadir objective vector. In this case, the decision maker specifies a
reference point (or a guess) ~zh and a solution with equal proportional
achievements is generated. Then, the decision maker specifies a new
reference point and the iteration continues until the decision maker
is satisfied with the solution produced. The scales of the objective
functions are normalized:

znadi − fi(~x)

znadi − z∗i
for all i = 1, · · · , k; (2.10)

The weighted max-min problem to be solved is:

max min
i=1,··· ,k

[

1

wi

znadi − fi(~x)

znadi − z∗i

]

subject to ~x ∈ Ω (2.11)

where the weighting coefficients wi are positive and they must not be

equal to zero. If wi =
znad
i −z̄hi
znad
i −z∗i

for all i = 1, · · · , k. We can write the

problem to be solved in the form:

max min
i=1,··· ,k

[

znadi − fi(~x)

znadi − zhi

]

subject to ~x ∈ Ω (2.12)

Therefore, the GUESS method is based on a trial and error procedure.
The decision maker can examine what kind of an effect her or his input
has on the solution obtained and then modify the input. The system
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does not provide any additional or supporting information about the
problem to be solved. The weakness of the GUESS method is its heavy
reliance on the availability of the nadir objective vector and we know
that it is not easy to determine it (it is usually only an approximation).
More details of this method can be found in [62].
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Multi-Objective Evolutionary
Algorithms

Mathematical programming techniques have some disadvantages such as the
following: (i) they cannot be applicable or have a poor performance in some
MOPs (e.g., problems in which the objective functions are non-differentiable
or are obtained from a simulation model); (ii) it is necessary to run those
algorithms several times to obtain several elements of the Pareto optimal set;
(iii) many of them require domain knowledge about the problem to be solved
(e.g., the derivatives of the objective functions and the constraints) and; (iv)
most of them are very sensitive to the shape or continuity of the Pareto front.
This has motivated that a number of stochastic optimization techniques had
been used to solve MOPs (e.g., simulated annealing, tabu search, ant colony
optimization and evolutionary algorithms).

Evolutionary algorithms (EAs) operate on a population of solutions and
adopt a reproduction process (to generate new solutions) and a selection
mechanism (to decide which solutions are better). In this way, EAs can
find several members of the Pareto optimal set in a single run instead of
performing several of them, which is the case for some of the conventional
stochastic processes. Rosenberg [69] first proposed the use of genetic algo-
rithms (a particular type of evolutionary algorithm) to solve MOPs at the end
of the 1960s. However, it was until 1984, when David Schaffer [71] proposed
the first actual implementation of what it is now called a Multi-Objective
Evolutionary Algorithm (MOEA). After that, several different algorithms
have been proposed and have been successfully applied to a wide variety of
problems [22, 74, 96, 46, 47, 39, 92, 29, 89, 35]. Other advantages of using
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MOEAs is that they require very little knowledge about the problem that we
want to solve and they are also less susceptible to the shape or continuity of
the Pareto front than mathematical programming techniques. Additionally,
MOEAs are easy to implement, robust, and can be easily implemented in a
parallel environment.

The goal of this chapter is to describe in detail the way in which a MOEA
works and how can we assess their performance.

3.1 Multi-Objective Evolutionary Algorithms

Single objective EAs and MOEAs share a similar structure. The main differ-
ence is the fitness assignment mechanism because a MOEA deals with more
than one objective function at a time. Finding an approximate Pareto front
is, by itself, a bi-objective problem whose objectives are:

� Minimize the distance of the generated solutions to the Pareto optimal
front and,

� maximize the diversity among the solutions as much as possible.

Therefore, the fitness assignment must consider these two objectives. The
basic structure of a MOEA is described in Algorithm 1. Usually, the initial
population is generated in a random way. The fitness assignment allows us to
rank the individuals by defining a preference relation on the objective func-
tions. Pareto optimality is the most common preference relation adopted
in MOEAs, but it’s not the only one. The selection of individuals for re-
production is normally based on the preference relation adopted for ranking
the population, but a density estimator is also required in order to generate
different solutions in a single run of a MOEA.

The key elements of a MOEA are:

1. Fitness assignment. In a MOEA, we need an additional process to
transform a fitness vector into a scalar value. Mainly, there are three
schemes to carry out this process:

� Criterion-based. This approach alternately chooses each of the
objective functions during the selection stage, i.e., in order to se-
lect an individual or group of individuals, only one objective is con-
sidered. The Vector Evaluated Genetic Algorithm (VEGA) [71]
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Algorithm 1: A generic Multi-objective Evolutionary Algorithm

1 t← 0;
2 Generate an initial population (P(t));
3 while the stopping criterion is not fulfilled do

4 Evaluate the objective vector ~f for each individual in P(t);
5 Assign the fitness of each individual in P(t). For this task, we can

use one of the following approaches (or a combination of them):
criterion-based, aggregation-based, preference-based or
indicator-based. Usually, Pareto optimality is the most common
preference relation used in MOEAs and a density estimator is also
required for breaking ties between competing nondominated
solutions;

6 Select from P(t), a group of parents (P ′(t)), preferring the fitter
ones;

7 Recombine individuals of P ′(t) to obtain an offspring population
(P ′′(t));

8 Mutate individuals in P ′′(t);
9 Combine P and P ′′(t) and select the best individuals to get the

new population (P (t + 1)). It is necessary to apply elitism (we
must prefer solutions in the nondominated front);

10 t← t + 1;

11 end
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is an example of this technique. VEGA divides the population
into k subpopulations (where k is the number of objectives of the
MOP) and a different objective is used to assign fitness within
each subpopulation.

� Aggregation-based. In this case, the objective functions are
aggregated or combined into a single scalar value. During the
optimization process, the parameters are systematically varied to
generate different elements of the Pareto optimal set. Note that,
although an aggregation-based approach can be formulated as a
preference relation, the solutions are not compared in objective
function space (vectors are mapped from Rk to R before the com-
parison).

� Preference-based. In this method, a preference relation is used
to induce a partial order of the population in objective function
space. Then, a rank (scalar score) is assigned to each solution
based on how the solution compares with respect to the other
solutions. Pareto dominance is the preference relation most com-
monly adopted in MOEAs.

� Indicator-based. This approach uses performance indicators
(also called quality indicators) to assign the fitness of each in-
dividual based on how much a solution contributes to a given
indicator. The hypervolume indicator has been the most popular
quality indicator used for this purpose [52, 35, 8, 50, 63]. However,
in recent years other quality indicators such as R2 [78, 32, 66, 45]
or ∆p [41, 77, 68, 87] have also been adopted.

2. Elitism. It refers to retaining the best solutions during the optimiza-
tion process since they could be lost when applying the evolutionary
operators. This concept plays an important role in modern MOEAs
since, along with mutation, guarantees global convergence [94, 96, 93,
54, 55, 29]. In multi-objective optimization, the implementation of
elitism is more complicated than in single-objective optimization be-
cause we have several solutions that are equally good (i.e., the elements
of the Pareto optimal set) and their number can significantly grow over
time. There are two approaches to implement elitism:

� To combine the offspring and parent populations, and then use a
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deterministic selection mechanism to preserve the best solutions
from this combined population into the next generation.

� To mantain an external set of individuals called “archive” which
stores the nondominated solutions found during the search pro-
cess. It is worth emphasizing that the size of this external archive
is normally bounded, because if it grows too much, it may dilute
the selection pressure.

3. Density Estimators. As we already know, one challenge of MOEAs
is to obtain a set of nondominated solutions which are well-distributed
along the Pareto front. For this reason, several techniques to maintain
diversity in the population have been proposed. Some of them are:

� Fitness sharing / Niching. The idea of this technique is to con-
sider fitness as a resource that needs to be shared among individ-
uals in the same niche. The size (or radius) of a neighborhood (or
niche) is controlled through the σshare value (niche radius) which
is normally a user defined parameter. Then, one must count how
many solutions are located within the same niche, and the fitness
of each individual located in the same niche is decreased propor-
tionally to the number of individuals sharing the same neighbor-
hood [43, 28]. Formally, the shared fitness FSi

of individual i is
defined by:

fSi
=

fi
∑N

j=1 φ(dij)
, (3.1)

where fi is the fitness of individual i, and φ(dij) is the sharing
function, defined by:

φ(dij) =

{

1−
(

dij
σshare

)

, dij < σshare

0, otherwise
(3.2)

where dij is the distance between individuals i and j. Note the
following:

– The definition of the σshare parameter is critical.

– Distances between solutions can be measured in genotypic or
phenotypic space.

– It is possible to adopt different topologies for defining neigh-
borhoods.
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� Hypergrids. A hypergrid divides objective function space in
regions called hypercubes [54]. Each nondominated solution oc-
cupies a hypercube. The idea is to accept nondominated solutions
belonging to underpopulated hypercubes. Although the number
of divisions in the hypergrid in each dimension is constant, the po-
sition and extension of the grid can be adapted during the search
process.

� Clustering. A clustering technique partitions a set of points in
groups (clusters) [94]. The idea is that each cluster contains points
very similar to each other and, the points of one cluster are very
different from the points of other clusters. In a MOEA, we use
clustering as follows: First, we partition the population using a
clustering technique. Second, we select the most representative
individual of each cluster (i.e., the centroid). Finally, we remove
all the other individuals in the cluster.

� Relaxed forms of Pareto dominance. Laumanns et al. [56]
proposed a relaxed form of Pareto dominance called ǫ-dominance.
ǫ-dominance defines a set of boxes of size ǫ and only one nondom-
inated solution is retained for each box (e.g., the one closest to
the lower left-hand corner). The use of ǫ-dominance guarantees
that the retained solutions are nondominated with respect to all
solutions generated during the run.

3.2 Performance Assessment of Multi-Objective

Evolutionary Algorithms

The comparison of the performance of different MOEAs is an important
issue in multi-objective optimization. The notion of performance includes
both the quality of the outcome and the computational cost for
generating that outcome. Regarding the latter aspect, we can monitor
either the number of fitness evaluations or the overall runtime on a particular
computer. In this sense, there is no difference between single and multi-
objective optimization. However, in the quality aspect, there is an important
difference:

� In single-objective optimization, we can define quality of a solution by
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means of the objective function values: the smaller (to minimize) or
the larger (to maximize) value corresponds to a better solution.

� In multi-objective optimization, we can use the concept of Pareto dom-
inance but it is also possible that two solutions are incomparable.

However, it gets even more complicated when we compare two sets of solu-
tions because some solutions in either set may be dominated by solutions in
the other set, while others may be incomparable. According to the goals of
a MOEA, we need to consider the following aspects to design a good quality
measure:

� Minimize the distance of the approximate Pareto front produced by
our algorithm with respect to the true Pareto optimal front (assuming
we know its location),

� Maximize the spread of solutions found, aiming also to have a distri-
bution of solutions as smooth and uniform as possible along the Pareto
front.

� Maximize the number of elements of the approximate Pareto optimal
set found.

Several quality measures have been proposed. The most popular are
unary quality measures. In this case, the measure assigns each approximate
Pareto front a number that reflects a certain quality aspect, and usually a
combination of them is used, e.g., [82]. Other methods are based on bi-
nary quality measures, which assign numbers to pairs of approximate Pareto
fronts, e.g., [95]. Finally, we have the attainment function approach [26],
which consists of estimating the probability of attaining arbitrary goals in
objective space from multiple approximate Pareto fronts.

For the purposes of this section it is sufficient to deal with objective func-
tion space. For each objective vector ~z = [z1, z2, · · · , zk], there is a decision

vector ~x such that ~z = ~f(~x) = [f1(~x), · · · , fk(~x)]. Also, we consider the
outcome of a MOEA (or other heuristic) as a set of incomparable solutions,
which will be denoted as approximate Pareto front.

Definition 19 Let A ⊆ Ω be a set of objective vectors. A is called an
approximate Pareto front if any element of A does not weakly dominate
any other objective vector in A. The set of all approximate Pareto fronts is
denoted by Ω.
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It is hard to evaluate an approximate Pareto front considering all aspects
such as closeness to the Pareto optimal set, diversity, etc. However, we can
make statements about the quality of approximate Pareto fronts in com-
parison to other approximate Pareto fronts. Table 3.1 shows a summary of
the relations between solutions (objective vectors) and approximate Pareto
fronts. If we consider the approximate Pareto fronts shown in Figure 3.1, we
can say that both A1 and A2 dominate A3 (A1 ≺ A3 and A2 ≺ A3) because
any objective vector in A3 is dominated by at least one vector in A1 (the
same occurs with A2). Furthermore, A1 can be considered better than A2

(A1 ⊳ A2) because it contains all objective vectors in A2 and another vector
not included in A2 (this statement is weaker than the previous one).

Weak dominance (A � B) means that any objective vector in B is weakly
dominated by a vector in A. In this case, we cannot say that A is better
than B. If A weakly dominates B, then either A is better than B or they are
equal. In the same Figure, we can see that A1 is better than A2 and A3 and,
A2 is better than A3. The dominance relation (A ≺ B) is a straightforward
extension of Pareto dominance to approximate Pareto fronts. It does not
allow that two objective vectors in A and B are incomparable, and therefore
is stricter than what we usually require. A1 andA2 dominateA3, butA1 does
not dominate A2. Strict dominance stands for the highest level of superiority
and means an approximate Pareto front is superior to another approximate
Pareto front in the sense that for any objective vector in the latter there
exists a vector in the former that is better in all objectives. For example, A1

strictly dominates A3, but A2 does not since the objective vector (11,4) is
not strictly dominated by any objective in A2. Note that there is a natural
ordering among the relations: A ≺≺ B ⇒ A ≺ B ⇒ A ⊳ B ⇒ A � B.

3.2.1 Quality indicators

Quality measures have been introduced to compare the outcomes of multi-
objective optimizers in a quantitative manner. They map approximate Pareto
fronts to the set of real numbers.

Definition 20 (Quality Indicator) Anm-ary quality indicator I is a func-
tion I : Ωm → R, which assigns each vector (A1,A2, · · · ,Am) of m approxi-
mate Pareto fronts a real value I(A1, · · · ,Am).

Not a single indicator but rather a combination of different quality in-
dicators is often used in order to assess approximate Pareto fronts. Van
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relation objective vectors approximate Pareto fronts

strictly
dominates

~z1 ≺≺ ~z2 ~z1 is better than
~z2 in all objec-
tives

A ≺≺ B

every ~z2 ∈ B is
strictly dominated
by at least one ~z1 ∈
A

dominates ~z1 ≺ ~z2 ~z1 is not worse
than ~z2 in all ob-
jectives and bet-
ter in at least
one objective

A ≺ B every ~z2 ∈ B is
dominated by at
least one ~z1 ∈ A

better does not apply does not apply A ⊳ B every ~z2 ∈ B is
weakly dominated
by at least one ~z1 ∈
A and A 6= B

weakly
dominates

~z1 � ~z2 ~z1 is not worse
than ~z2 in all ob-
jectives

A � B every ~z2 ∈ B is
weakly dominated
by at least one ~z1 ∈
A

incomparable ~z1 ‖ ~z2 neither ~z1
weakly domi-
nates ~z2 nor ~z2
weakly domi-
nates ~z1

A ‖ B neither A weakly
dominates B nor B
weakly dominates
A

Table 3.1: Relations on objective vectors and approximate Pareto fronts.
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Figure 3.1: Let P be the Pareto optimal set and let A1, A2 and A3 be
approximate Pareto fronts. The following dominance relations hold. A1 ≺
A3, A2 ≺ A3, A1 ≺≺ A3, A1 � A1, A1 � A2, A1 � A3, A2 � A2, A2 � A3,
A3 � A3, A1 ⊳ A2 , A1 ⊳ A3 and A2 ⊳ A3.

Veldhuizen and Lamont [82] applied a combination of three indicators I =
(IGD, IS, IONVG), where IGD(A) denotes the average distance of objective
vectors in A to the Pareto optimal front, IS(A) measures the variance of
distances between neighboring objective vectors in A, and IONVG(A) gives
the number of elements in A.

An interpretation function maps vectors of real numbers to booleans,
e.g., we would define E(IGD(A), IGD(B)) := (IGD(A) = 0 ∧ IGD(B) > 0).
E is true if and only if IGD(A) = 0 and at the same time IGD(B) > 0 (all
objective vectors in A have zero distance to the Pareto optimal set P , and
therefore A ⊆ P and B � A for any approximate Pareto front B * P). A
combination of one or more quality indicators, I, and an interpretation func-
tion E is also called a comparison method CI,E. In the above example,
the comparison method is CIGD,E(A,B) = E(IGD(A), IGD(B)) and the con-
clusion is that CIGD ,E(A,B) ⇔ A ⊆ P ∧ B * P ∧ B � A. The comparison
method is formally defined as follows:

Definition 21 (Comparison Method) Let A, B ∈ Ω be two approximate
Pareto fronts, I = (I1, I2, · · · , Ik) a combination of quality indicators, and
E : Rk ×Rk → {false, true} an interpretation function which maps two real
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vectors of length k to a Boolean value. If all indicators in I are unary, the
comparison method CI,E defined by I and E is a function of the form

CI,E(A, B) = E(I(A), I(B)) (3.3)

where I(A′) = (I1(A′), I2(A′), · · · , Ik(A′)) for all A′ ∈ Ω. If I contains only
binary indicators, the comparison method CI,E is defined as a function of the
form

CI,E(A, B) = E(I(A, B), I(B,A)) (3.4)

where I(A′, B′) = (I1(A′, B′), I2(A′, B′), · · · , Ik(A′, B′)) for all A′, B′ ∈ Ω.

3.2.2 Linking comparison methods and dominance re-
lations

It is important to know if a comparison method CI,E(A,B) is a sufficient
condition to say that A is better than B, i.e., CI,E(A,B) ⇒ A ⊳ B, and, if
CI,E(A,B) is, in addition, a necessary condition forA ⊳ B, i.e., CI,E(A,B)⇔
A ⊳ B. The compatibility and completeness terms are used in order to
characterize a comparison method.

Definition 22 (Compatibility and Completeness) Let ◭ be an arbitrary
binary relation on approximate Pareto fronts (e.g., the relations shown in Ta-
ble 3.1). The comparison method CI,E is denoted as ◭-compatible if either
for any A,B ∈ Ω

CI,E(A,B)⇒ A ◭ B

or for any A,B ∈ Ω
CI,E(A,B)⇒ B ◭ A

The comparison method CI,E(A,B) is denoted as ◭-complete if either for any
A,B ∈ Ω

A ◭ B ⇒ CI,E(A,B)

or for any A,B ∈ Ω
B ◭ A ⇒ CI,E(A,B)

Let’s assume that we have a comparison method that is ◭-complete but
not compatible with respect to the ⊳ relation. If we use this comparison
method to compare two sets A and B with A ⊳ B (A is better than B), then
our comparison method returns true. However, there are also sets A and
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B with A ⋪ B (A is not better than B) for which the comparison method
returns true. If we use a comparison method that is ◭-compatible, then
the above situation is safe: if our comparison method yields true, we can
be sure that A is better than B. However, if the comparison method is not
⊳-complete, there may be sets A and B where A is better than B, but our
comparison method returns false. Zitzler et al. [97] presented the following
key results.

� Unary quality indicators are, in general, not capable of indicating
whether an approximate Pareto front is better than another even if
we use several of them. This also holds, if we consider approximate
Pareto fronts containing a single objective vector only.

� There are unary indicators which allow to infer if an approximate
Pareto front is not worse than another, e.g., the distance indicator
by Czyzak and Jaszkiewicz [25], the hypervolume indicator by Zitzler
and Thiele [95], or the unary ǫ-indicator presented in [97].

� Binary indicators in principle do not possess the theoretical limitations
of unary indicators. The binary ǫ-indicator proposed in [97] is capable
of detecting whether an approximate Pareto front is better than an-
other. However, not all existing binary indicators have this property.

Knowles et al. [53] presented a similar idea on the performance assess-
ment of stochastic multi-objective optimizers in which they recommend hav-
ing quality indicators that are only Pareto dominance compliant or Pareto
compliant.

Definition 23 (Pareto compliant) An indicator I : Ω → R is Pareto
compliant if for all A,B ∈ Ω : A � B ⇒ I(A) ≥ I(B), assuming that greater
indicator values correspond to higher quality (otherwise A � B ⇒ I(A) ≤
I(B)). In the context of order theory, a Pareto compliant indicator I is an
order-preserving function from (Ω,�) to (R,≥) (respectively, (R,≤)).

Many of the indicators that are employed in the MOEA literature are not
Pareto compliant. Several popular indicators are designed to assess just one
isolated aspect of an approximate Pareto front’s quality, e.g., its proximity
to the Pareto optimal front, or its spread in objective space. These quality
indicators are known as Pareto non-compliant.
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Definition 24 (Pareto Noncompliant) Any indicator that can yield for
any approximate Pareto fronts A,B ∈ Ω a preference for A over B, when B
is preferable to A with respect to weak Pareto dominance (B � A ∧ A � B,
or B ⊳ A for short), is Pareto non-compliant.

3.2.3 Unary quality indicators

Let PF be the optimal Pareto front and A an approximate Pareto front.
Next, we define some unary quality indicators:

� Error Ratio (IER): IER reports the percentage of the number of
vectors in A that are not members of PF [81, 79]. IER is Pareto
compliant and it is defined as follows:

IER =

∑|A|
i=1 ei
|A|

(3.5)

where ei = 0 when the ith vector of A is an element of PF and ei = 1
when the ith vector of A is not an element of PF . If IER = 0 then
A ⊆ PF ; but when IER = 1 none of the points in A are in PF . A
lower IER value is better.

� Generational Distance (IGD): IGD reports how far, on average, A
is from PF [23, 80, 81]. IGD is Pareto non-compliant and it is defined
as:

IGD =
1

|A|





|A|
∑

i=1

dpi





1

p

(3.6)

where |A| is the number of vectors in A, p = 2 and di is the euclidean
phenotypic distance between each member, i, of A and the closest
member in PF to that member, i. If IGD = 0, A ⊆ PF .

� Inverted Generational Distance (IIGD). IIGD does not only indi-
cate the proximity of the set A to PF , but also provides an estimate
of its maximum spread [19]. IIGD is Pareto non-compliant and it is
analogous to GD, but measured from PF to A. IIGD is defined by:

IIGD =
1

|PF|





|PF|
∑

i=1

dpi





1

p

(3.7)
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where |PF| is the number of vectors in PF , p = 2 and di is the eu-
clidean phenotypic distance between each member, i, of PF and the
closest member in A to that member, i. If IIGD = 0, A = PF .

� Spacing (IS): IS describes the spread of the vectors in A [23, 72].
This Pareto non-compliant indicator measures the distance variance of
neighboring vectors in A. Formally, IS is defined as follows:

IS =

√

√

√

√

1

|A| − 1

|A|
∑

i=1

(d̄− di)2 (3.8)

where di = minj=1··· ,|A|,i 6=j

∑k
m=1 |f

i
m − f j

m|, i, j = 1, · · · , |A|, k is the
number of objective functions and d̄ is the mean of all di. When IS = 0,
all members are spaced evenly apart. Note that this indicator assumes
that a MOEA has already converged to the true Pareto front.

� Hypervolume (IH). IH was originally proposed by Zitzler and Thiele
in [95], and it’s defined as the size of the space covered by the Pareto
optimal solutions. If Λ denotes the Lebesgue measure, IH is defined as:

IH(A, ~zref) = Λ

(

⋃

~z∈A

{~y | ~z ≺ ~y ≺ ~zref}

)

(3.9)

where ~zref ∈ Rk denotes a reference point that should be dominated
by all the Pareto optimal points. A high IH value, indicates that A is
close to PF and has a good spread towards the extreme portions of
the PF . This is the only unary indicator that is known to be strictly
Pareto compliant.

� R2-Indicator. It belongs to the family of R indicators proposed by
Hansen and Jaszkiewicz [44]. R-indicators use utility functions for eval-
uating approximate Pareto fronts. The R2-indicator is weakly mono-
tonic and simultaneously evaluates several desired aspects of an ap-
proximate Pareto front. Let U be a set of general utility functions, the
R2-indicator is thus defined as [14]:

IR2(A, U) = −
1

|U |

∑

u∈U

max
~a∈A
{u(~a)} (3.10)
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Regarding the choice of the utility functions u, there are several pos-
sibilities, such as: weighted sum, least squares, weighted Tchebycheff
metric, etc. These utility functions have an associated set of uniformly
distributed weight vectors W and a reference point ~z∗, in order to
maintain diversity. The most common utility function is the weighted
Tchebycheff metric:

R2(A : W,~z∗) =
1

|W |

∑

~w∈W

min
~a∈A

[

max
i=1,··· ,k

wi|ai − z∗i |

]

(3.11)

� ∆p Indicator (I∆p
). I∆p

was proposed by Schütze et al. [73]. It can
be seen as an “averaged Hausdorff distance” between the approximate
Pareto front and the Pareto optimal front. It is composed of slight
modifications of two well-known performance indicators: generational
distance (IGD) and inverted generational distance (IIGD). I∆p

is defined
as:

I∆p
= max(IGDp

, IIGDp
) (3.12)

with:

IGDp
=





1

|A|

|A|
∑

i=1

dpi





1

p

(3.13)

di is the euclidean phenotypic distance between each member, i, of A
and the closest member in PF to that member, i. And,

IIGDp
=





1

|PF|

|PF|
∑

i=1

dpi





1

p

(3.14)

di is the euclidean phenotypic distance between each member, i, of PF
and the closest member in A to that member, i. I∆p

simultaneously
evaluates proximity to the Pareto optimal front and spread of solutions
along it. I∆p

is Pareto non-compliant.

3.2.4 Binary quality indicators

� ǫ-Indicator (Iǫ). It is a Pareto compliant measure. Given two ap-
proximate Pareto fronts, A and B, the ǫ-indicator measures the small-
est amount, ǫ, that must be used to translate the set A, so that every
point in B is covered [97].
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Definition 25 Let’s assume, without loss of generality, a minimiza-
tion problem with k objective functions, then, an objective vector ~z1 =
[z11 , · · · , z

1
k] is said to ǫ-dominate another objective vector

~z2 = [z21 , · · · , z
2
k], denoted by ~z1 �ǫ ~v2, if and only if ∀1 ≤ i ≤ k :

z1i ≤ ǫ · z2i for a given ǫ > 0.

Loosely speaking, a vector ~z1 is said to ǫ-dominate another vector ~z2,
if we can multiply each objective value in ~z2 by a factor ǫ and the
resulting objective vector is still weakly dominated by ~z1. Therefore,
~z1 ≺≺ ~z2 implies that there exists an ǫ < 1 such that ~z1 ǫ-dominates
~z2. We define the binary ǫ-indicator Iǫ as:

Iǫ(A,B) = min{ǫ ∈ R | ∀~b ∈ B ∃~a ∈ A : ~a ≺ǫ
~b} (3.15)

So, when Iǫ(A,B) < 1, all solutions in B are dominated by a solution
in A. If Iǫ(A,B) = 1 and Iǫ(B,A) = 1, then A and B represent the
same approximate Pareto front. If Iǫ(A,B) > 1 and Iǫ(B,A) > 1, then
A and B are incomparable because they both contain solutions not
dominated by the other set.

� Two Set Coverage (ISC). It was proposed by Zitzler et al. [90] and
it is a Pareto compliant indicator. Let A,B be two approximate Pareto
fronts, ISC is defined as follows:

ISC(A,B) =
|~b ∈ B such that ∃~a ∈ A with ~a ≺ ~b|

|B|
(3.16)

If all points in A dominate or are equal to all points in B, then, by
definition ISC = 1. ISC = 0 implies that no element in B is dominated
by any element of A. In general, ISC(A,B) and ISC(B,A) both have
to be considered due to set intersections not being empty.
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Selection mechanisms for
MOEAs

An important element of MOEAs is their selection mechanism because its
aim is to guide the search. Therefore, it is a key element for ensuring that a
MOEA converges to the optimal solutions that we aim to obtain. Based on
their selection mechanism, MOEAs can be classified in two groups: (i) those
that incorporate the concept of Pareto optimality, and (ii) those that do not
use Pareto dominance to select individuals. Although the use of Pareto-based
selection (mainly through the use of some Pareto ranking scheme [21]) has
been the most popular choice within the specialized literature for the last 15
years, such type of approach has several limitations. From them, its poor
scalability when increasing the number of objective functions is, perhaps,
the most remarkable. The quick increase in the number of nondominated
solutions as we increase the number of objective functions, rapidly dilutes
the effect of the selection mechanism of a MOEA [38]. This has triggered an
important amount of research on an area called “many-objective optimiza-
tion”, which refers to the study of problems having four or more objective
functions.

In the current literature, we can identify several approaches to cope with
many-objectives problems, such as:

� To adopt or propose a preference relation that induces a finer grain
order on the solutions than that induced by the Pareto dominance
relation [31, 37, 76, 70].

� To reduce the number of objectives of the problem during the search
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process [15] or, a posteriori, during the decision making process [13, 60].

� To adopt a selection scheme that does not rely on Pareto optimality
(e.g., using compromise functions [7], alternative ranking schemes [61]
or a selection mechanism based on a performance measure (from which
hypervolume has been a popular choice, in spite of its considerably high
computational cost [91, 8]).

In this chapter, we will study four well-known selection schemes: (i) one
based on Pareto dominace (used by NSGA-II [29]), (ii) one based on alterna-
tive ranking schemes (the Maximin fitness function [4, 6, 5]), (iii) one based
on decomposition (used by MOEA/D [89]), and finally (iv) one based on a
quality indicator (used by SMS-EMOA [8]).

4.1 Pareto-dominance approach

Perhaps the most popular MOEA based on Pareto dominance is the nondom-
inated Sorting Genetic Algorithm II (NSGA-II ) [29]. This is an improved
version of the nondominated Sorting Genetic Algorithm (NSGA) [74] which
is based on the ranking procedure originally proposed by Goldberg [42]. The
NSGA-II builds a population of individuals (candidate solutions), and then
ranks and sorts each individual according to its non domination level. Af-
ter that, it applies the evolutionary operators (crossover and mutation) to
create a new pool of offspring and it combines the parents and offspring in
a single population. Finally, it partitions the new population into fronts.
Then, NSGA-II breaks ties between nondominated solutions, by comput-
ing a crowding distance. This mechanism keeps the population diverse and
helps the algorithm to produce Pareto fronts with well-distributed solutions.
Although, the NSGA-II was originally proposed 15 years ago, it is still fre-
quently adopted to compare results of current MOEAs

The ranking procedure works as follows: for each individual p (in the
objective space), we obtain the set of solutions that p dominates (we called
it Sp) and the number of solutions which dominate ~p (we called it np). All the
individuals with domination count equal to zero belong to the nondominated
front. We put the nondominated individuals in a separate set (Fi), where i
indicates the rank of the individuals which are in that set (i starts with 1).
For each solution p in the nondominated front, we visit each member q of its
set Sp and its domination count is reduced by one. We increment i by one
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Algorithm 2: Fast nondominated sort
Input : Population P
Output: Partition in fronts of the population

1 foreach p ∈ P do

2 Sp = ∅;
3 np = 0;
4 foreach q ∈ P do

5 if p. ~f ≺ q. ~f then

6 Sp = Sp ∪ {q}; //Add q to the set of solutions dominated

by p

7 else

8 if q. ~f ≺ p. ~f then

9 np = np + 1; //Increment the domination counter of p

10 end

11 end

12 end

13 if np = 0 then

14 prank = 1;
15 F1 = F1 ∪ {p}

16 end

17 end

18 i = 1; //Initialize the front counter

19 while Fi do

20 Q = ∅; //Used to store the members of the next front

21 foreach p ∈ Fi do

22 foreach q ∈ Sp do

23 nq = nq − 1;
//q belongs tho the next front

24 if nq = 0 then

25 qrank = i+ 1;
26 Q = Q ∪ {q}

27 end

28 end

29 end

30 i = i+ 1;
31 Fi = Q;

32 end
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Algorithm 3: Crowding distance

Input : Front Fi, vector of maximum and minimum values of each
objective functions (~fmax and ~fmin respectively)

Output: Each individual with its crowding distance
1 l = |Fi|;
2 foreach p ∈ Fi do
3 p.dist = 0;
4 end
5 foreach Objective function k do
6 Sort individuals Fi regarding to the kth objective function in

ascending order;
7 p1.dist = pl.dist =∞;
8 for j = 2 to l − 1 do
9 pj .dist = pj .dist + (pj+1.fk − pj−1.fk)/(fmax

f − fmin
k );

10 end

11 end

and repeat this process until all individuals have a rank. Algorithm 2 shows
this process. Since the initial domination counter of each solution can be at
most N − 1, where N is the size of the population, the total complexity is
O(mN2), where m is the number of objective functions.

To mantain diversity, NSGA-II uses the crowding distance which esti-
mates the density of solutions surrounding a particular solution in the pop-
ulation. The crowding distance value of a point is calculated as the average
distance of the two points on either side of the point in question along each of
the objective functions. This distance serves as an estimate of the perimeter
of the cuboid formed by using the nearest neighbors as the vertices. The
extreme solutions have an infinite distance value. In Algorithm 3, we show
the process to assign crowding distance to each individual in a nondominated
front. The complexity of this procedure is O(mN logN) and it is governed
by the sorting of the population regarding each objective function. Figure 4.1
illustrates these two processes (Pareto ranking and crowding distance). It is
important to note that the complexity to calculate the rank and the crowd-
ing distance of all individuals in the population is linear with respect to the
number of objective functions.

As we mentioned above, an important limitation of all selection tech-
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f1

f2

F1

F2

F3

i
i + 1

i− 1 cuboid

Figure 4.1: Pareto ranking and crowding distance in NSGA-II. Points marked
in filled circles with the same color belong to the same front. The crowding
distance of the ith solution in the first front is the average side length of the
cuboid shown with a dashed box.

niques based on Pareto dominace is the quick increase in the number of
nondominated solutions as we increase the number of objectives.

4.2 Maximin Fitness Function

The maximin fitness function (MFF) was proposed by Richard Balling and
Scott Wilson in [4],[6]. It is derived from Definition 7 (page 10) and it
works as follows. Let’s consider a MOP with K objective functions and an
evolutionary algorithm whose population is P. Let f i

k be the normalized
value of the kth objective for the ith individual in a particular generation.
Assuming minimization problems, we have that the jth individual weakly
dominates the ith individual if:

mink(f i
k − f j

k) ≥ 0 (4.1)

The ith individual, in a particular generation, will be weakly dominated by
another individual, in the generation, if:

maxj 6=i(mink(f i
k − f j

k)) ≥ 0 (4.2)

Then, the maximin fitness function of individual i is defined as:

fitnessi = maxj 6=i(mink(f
i
k − f j

k)) (4.3)
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C(−0.5)

D(−0.5)
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1

A(−1)

f2

f1

Figure 4.2: We can see that the maximin fitness function penalizes individuals
B, C and D because they are close from each other. It also rewards individual
A, because it is far away from the other individuals.

where the min is taken over all the objectives from 1 to K, and the max is
taken over all the individuals in the population from 1 to |P|, except for the
same individual i. From eq. (4.3), we can say the following:

1. Any individual whose maximin fitness is greater than zero is a domi-
nated individual,

2. Any individual whose maximin fitness is less than zero is a nondomi-
nated individual.

3. Finally, any individual whose maximin fitness is equal to zero is a
weakly-dominated individual.

The procedure to calculate the fitness of each individual of the population
is shown in Algorithm 4. The complexity of this algorithm is O(mN2), where
m is the number of objective functions and N is the population size. In
Algorithm 4, we multiply the fitness of each individual by −1 in order to
obtain a higher fitness for the individuals which are nondominated and a
lower fitness for the individuals which are dominated.

The following properties of the maximin fitness function were presented
in [5]:

1. The maximin fitness function penalizes clustering of nondominated in-
dividuals. In the limit, the maximin fitness of duplicate nondominated
individuals is zero. See Figure 4.2.

2. The maximin fitness function rewards individuals at the middle of con-
vex nondominated fronts, see Figure 4.3. Also, it rewards individuals
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Algorithm 4: Maximin Fitness Function

Input : Population P
Output: Population P with the fitness of each individual

1 foreach p ∈ P do
2 maximum← −∞;
3 foreach q ∈ P do
4 if p 6= q then
5 minimum←∞;
6 foreach Objective function do
7 if p.fk − q.fk < minimum then
8 minimum← p.fk − q.fk;
9 end

10 end
11 if minimum > maximum then
12 maximum← minimum;
13 end

14 end

15 end
16 p.fitness← −1 ∗maximum;

17 end
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Figure 4.3: In all cases, we can see that the maximin fitness function rewards
individuals at the middle of convex nondominated fronts. In (c), individual A
has a maximin fitness equal to zero because it is a weakly dominated solution,
and individual E has a positive maximin fitness equal to 0.5 because it is a
dominated solution.

at the extremes of concave nondominated fronts, see Figure 4.4. The
maximin fitness function is a continuous function of objective values.

3. The maximin fitness of dominated individuals is a metric of the distance
to the nondominated front. See Figure 4.5.

4. The max function in the maximin fitness of a dominated individual is
always controlled by a nondominated individual and is indifferent to
clustering. The max function in the maximin fitness of a nondomi-
nated individual may be controlled by a dominated or a nondominated
individual. See Figure 4.5.

In Figure 4.5, we can see that the fitness of the nondominated individual B
is affected by the dominated individual D. Then, the maximin fitness function
penalizes nondominated individuals, if they are close to another individual
(no matter whether or not it is a dominated solution). The author of the
maximin fitness function proposed in [6] the following modified maximin
fitness function:

fitnessi = maxj 6=i,j∈ND(mink(f i
k − f j

k)) (4.4)

where ND is the set of nondominated individuals. Using eq. (4.4) to assign
the fitness of each individual, we guarantee that the fitness of a nondominated
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Figure 4.4: In all cases, we can see that the maximin fitness function rewards
individuals at the extremes of concave nondominated fronts. In (c), individ-
ual A has a maximin fitness equal to zero because it is a weakly dominated
solution, and individual E has a positive maximin fitness equal to 0.5 because
it is a dominated solution.

A(−1)
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Figure 4.5: In (b), we can see that the fitness of individuals D, E and F is
controlled by the nondominated individual B, and the value of their fitness is
a metric of the distance to the individual B. Also, we can see that the fitness
of B is affected by the dominated individual D.
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individual is controlled only by nondominated individuals, and then, we only
penalize clustering between nondominated individuals.

MFF and its modified version have been incorporated into evolution-
ary algorithms such as genetic algorithms [6, 5], particle swarm optimizers
[58, 59] and ant colony optimizers [57]. However, in those papers, only low
dimensionality MOPs were considered and no extra diversity mechanism was
adopted based on the idea that MFF penalizes clustering.

4.3 Decomposition approach

Decomposing a MOP into a number of scalar objective optimization subprob-
lems is the basic idea behind many traditional mathematical programming
methods. It is well-known that a Pareto optimal solution of a MOP, un-
der certain conditions, could be an optimal solution of a scalar optimization
problem in which the objective is an aggregation of all objective functions.
Therefore, an approximate Pareto front can be decomposed into a number of
scalar objective optimization subproblems. Several methods for constructing
aggregation functions can be found in the literature (e.g., see Subsection 2.3.2
in page 16). The most popular ones include the weighted sum approach and
Tchebycheff approach. Recently, the boundary intersection methods have
also attracted a lot of attention [27].

MOEA/D [89] is the first MOEA that associates each individual solu-
tion with some particular scalar optimization problem. It decomposes the
MOP into N scalar optimization subproblems and then it simultaneously
solves these subproblems using an evolutionary algorithm. At each genera-
tion, the best solution found so far for each subproblem survives. Although
this MOEA has a low computational cost and is able to find an approxi-
mate Pareto front with a good distribution (this depends of the approach
used to decompose the MOP), MOEA/D always needs to generate a set
of well-distributed convex weights and perhaps this is its most important
disadvantage because this task is difficult in several cases. There are some
proposals to generate these weights [27, 84]. However, none of these tech-
niques ensures obtaining a uniformly distributed set of weights for high di-
mensionality and they also have some disadvantages. For example, in [27],
when we increase the number of objective functions, the number of weights
grows according to

(

n+p−1
p

)

, where n is the number of objective functions and

p = 1
δ

(δ is the stepsize). Then, if we use δ = 0.1, this technique generates

CINVESTAV-IPN Computer Science Department



Selection mechanisms for MOEAs 47

Pareto Front

Feasible objective vector

Figure 4.6: Example of the Penalty Boundary Intersection (PBI) approach,
using the weighted vector ~w and the solution ~x.

66, 286, 1001, 3003, 8008 and 19448 weights for 3, 4, 5, 6, 7 and 8 objec-
tive functions, respectively. Since using population sizes as large as these
values suggest is not practical, it is necessary to use another technique (for
example, clustering) to select a subset of these weights for running the algo-
rithm. Algorithm 5 shows the pseudocode of MOEA/D. In [89], the authors
of MOEA/D describe three approaches to decompose a MOP into a number
of scalar optimization problems: weighted sum approach, Tchebycheff ap-
proach and boundary intersection (BI) approach. The authors mention that
boundary intersection approach obtains better approximations of the Pareto
front regarding distribution for two reasons: (i) the resultant optimal solu-
tions in the BI approach should be much more uniformly distributed than
those obtained by the Tchebycheff approach and (ii) if ~x dominates ~y, it is
still possible that gte(~x|~w, ~z∗) = gte(~y|~w, ~z∗) while it is rare for gbi, where
gte is the subproblem generated by the Tchebycheff approach and gbi is the
subproblem generated by the BI approach.

4.3.1 Boundary intersection approach

Boundary intersection (BI) approaches were designed for continuous MOPs.
Under some conditions and assuming minimization problems, the Pareto
optimal front of a continuous MOP is part of the leftmost bottom boundary
of its feasible objective region. Geometrically, these BI approaches aim to
find intersection points of the leftmost bottom boundary and a set of lines. If
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Algorithm 5: MOEA/D

Input : The number of subproblems considered (N), a uniform spread of
N convex weight vectors (W = {~w1, · · · , ~wN}) and the number of
weight vectors in the neighborhood of each weight vector (T ).

Output: Approximate Pareto optimal set (ND)
1 ND = ∅; //Set of nondominated individuals

2 Generate an initial population (P = {p1, · · · , pN});
3 foreach ~w ∈ W do

4 B(~w) = {~w1, · · · , ~wT } where ~w1, · · · , ~wT are the T closest weighting
vectors to ~w; //Set the neighborhood of ~w

5 end

6 ~z = [+∞, · · · ,+∞]; //Set the reference vector

7 while the stopping criterion is not fulfilled do

8 foreach p ∈ P do

9 i← Index of subproblem corresponding to p;
10 Randomly select two subproblems k and l from B(~wi) and their

corresponding solutions pk and pl, respectively;

11 Generate a new individual pnew from pk and pl; //Using genetic

operators

12 Apply a problem-specific repair/improvement heuristic on pnew to

produce pnew
′

;
13 foreach objective function do

14 if zk < pnew
′

.fk then

15 zk = pnew
′

.fk;
16 end

17 end

18 foreach ~wj ∈ B(~wi) do
//g is the subproblem generated with the weight

vector ~wj

19 if g(pnew
′

. ~f , ~wj , ~z) ≤ g(p. ~f , ~wj , ~z) then

20 p← pnew
′

;
21 end

22 end

23 Remove from ND all the individuals dominated by pnew
′

;

24 Add pnew
′

to ND if no individuals in ND dominate pnew
′

;

25 end

26 end
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these lines are evenly distributed in a sense, one can expect that the resultant
intersection points provide a good approximation to the whole Pareto optimal
front. The penalty boundary intersection (PBI) method can be classified as
a BI approach and it is defined as follows:

gbip(~x|~w, ~z∗) = d1 + θd2 subject to ~x ∈ Ω (4.5)

where d1 = ||(~z∗−~f(~x))T ~w||
||~w|| and d2 = ||~f(~x) − (~z∗ − d1 ~w)||. θ > 0 is a preset

penalty parameter. Let ~y be the projection of ~f(~x) on the line L generated
by the weighted vector ~w. As shown in Figure 4.6, d1 is the distance between
~z∗ and ~y and d2 is the distance between ~f(~x) and ~y.

4.4 Indicator-based approach

Since classical MOEAs based on Pareto dominance have difficulties when
we increase the number of objective functions, MOEAs based on quality
indicators have been popular in recent years. Perhaps, the most popular has
been the hypervolume indicator (IH) because it is the only unary indicator
that is known to be strictly Pareto compliant (see Subsection 3.2.1 in page
28). IH is defined as the size of the space covered by the Pareto optimal
solutions and the contribution to IH of a solution ~z reflects the influence of
that point on the quality of the approximate Pareto front. The contribution
of a solution ~x to IH is defined as follows:

CH(~z,A) = IH(A, ~yref)− IH(A \ ~z, ~yref) (4.6)

where ~z ∈ A. Then, the contribution of ~z is the space that is only covered by
~z. Figure 4.7 illustrates these two concepts. The main disadvantage of IH is
its high computational cost, since the problem of computing CH is NP-hard
(i.e., CH cannot be computed exactly in polynomial time in the number of
objective functions unless P = NP [11]).

There are several MOEAs based on IH . Knowles and Corne [52] used
a bounded archive to save the nondominated solutions found at each gen-
eration. When the archive was full and Pareto dominance could no longer
discard solutions then, they proposed to use IH as follows: calculate the
contribution of each solution to IH ; if the contribution of the new solution
was better than the contribution of the solution with the worst contribution,
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IH(A, ~yref)

f2

f1

~yref

~z8

~z2

~z1

~z3

~z4

~z5

~z6
~z7

CH(~z4,A)

Figure 4.7: Let A = {~z1, ~z2, · · · , ~z8} be the approximation of the Pareto op-
timal set and ~yref be the reference point. Then, the gray area is the hyper-
volume of set A and the hatched area is the contribution to the hypervolume
of the solution ~z4.

then the new solution would replace it; otherwise, the archive would remain
the same.

Zitzler and Künzli [91] proposed a general selection mechanism based on
a performance indicator. The general algorithm was called IBEA, and it
assigns the fitness of each individual using: F (~z) =

∑

~y∈P\{~z}−e
−I({~y},{~z})/k,

where P is the population, ~z, ~y ∈ P and k is a scalar fitness factor. When
the worst individual is eliminated, IBEA updates the fitness of all other
individuals with: F (~z) = F (~z) + e−I({~z′},{~z})/k, where ~z′ is the eliminated
individual.

Emmerich et al. [35] proposed an algorithm based on NSGA-II and the
archived strategies proposed by Knowles, Corne and Fleisher. They called it
SMS-EMOA. SMS-EMOA creates an initial population and in the following,
it generates only one solution by iteration using the operators (crossover and
mutation) of the NSGA-II. After that, it applies Pareto ranking. When the
last front has more than one solution, SMS-EMOA uses the contribution to
IH to decide which solution will be removed. Beume et al. [8] proposed not to
use the contribution to IH when in the Pareto ranking we obtain more than
one front. In that case, they proposed to use the number of solutions which
dominate to one solution (the solution that is dominated by more solutions is
removed). The authors argue that the motivation to use IH is to improve the
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distribution in the true Pareto front and then it is not necessary to perform
such improvement in fronts different of the true Pareto front. Perhaps, this
is the best known MOEA based on IH . Algorithm 6 shows the version of the
SMS-EMOA algorithm proposed in [8].

Algorithm 6: SMS-EMOA

1 t← 0;
2 Generate an initial population (P(t));
3 while the stopping criterion is not fulfilled do
4 q ← Generate a new individual from P(t);
5 Q ← P(t) ∪ {q};
6 {F1, · · · ,Fv} ← Fast-nondominated-sort(Q);
7 if v > 1 then
8 q ← Choose the individual which is dominated by more

solutions;

9 else
10 q ← Choose the individual with the worst contribution to IH ;
11 end
12 P(t + 1)← Q \ q;
13 t← t + 1;

14 end

Igel et al. [50] used an evolution strategy with Pareto ranking as a primary
criterion selection and crowding or hypervolume as a second selection crite-
rion. This approach operates in a similar way to SMS-EMOA. Mostaghim
[63] designed a MOEA based on particle swarm optimization in which IH
was used in the leader selection mechanism.

All the above approaches have an important disadvantage. It is well
known that the computation of CH has a high computational cost. When all
the individuals are nondominated, all the above approaches need to calculate
N + 1 (where N is the size of the population) times the contribution to IH .
This turns these approaches impractical when we want to solve MOPs with
many objective functions. Because of this, some researchers have proposed
techniques to approximate IH or the contribution to IH . In the next chapter,
we will study them and also we will make a new proposal to address this
problem.

As we mentioned in previous chapters, there are other indicators like
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the R2-indicator (IR2) or the ∆p-indicator (I∆p
). After the study on the

properties of IR2 presented by Brockhoff et al. [14], a number of proposals
of MOEAs based on IR2 have been introduced [78, 45, 66, 83]. Although
IR2-based MOEAs can solve MOPs with many objective functions at an
affordable computational cost, this type of algorithms also has an important
disadvantage: They need to generate a set of well-distributed convex weights
and this task becomes more difficult as we increase the number of objective
functions.

Recently, I∆p
was introduced [73] and some MOEAs based on it have

already been proposed [41, 68, 33]. As we saw in Chapter 3, I∆p
is composed

of slight modifications of two well-known indicators: generational distance
(IGD) [79] and inverted generational distance (IIGD) [19]. It is well-known
that for computing IGD and IIGD, it is necesary to know the true Pareto
front. Therefore, the most important disadvantage of MOEAs based on I∆p

is perhaps that they need a reference set which must contain well-distributed
solutions. Not being able to produce a good reference set could produce a
diversity loss in the population which might cause that the algorithm cannot
generate the complete Pareto front, or that it generates poorly distributed
solutions. In extreme cases, the lack of an appropriate reference set could
event prevent convergence.
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New Selection Mechanism
Based on the Hypervolume
Indicator

During the last 10 years, MOEAs based on the hypervolume indicator have
become relatively popular. However, the hypervolume indicator has one im-
portant disadvantage: its high computational cost. Because of this, MOEAs
based on the hypervolume normally become impractical when we want to
solve MOPs with many objectives. In order to address this problem, some
researchers have proposed to approximate the hypervolume indicator or the
contribution to it. In this chapter, we study some of these approximation
techniques and also an interesting property of the hypervolume called “lo-
cality”. Finally, we propose a new selection mechanism based on the hy-
pervolume indicator and on its locality property and we also show that we
can obtain better results if we use it in combination with a scheme to ap-
proximate the contribution to the hypervolume than if we use the traditional
selection mechanism adopted by the well-known SMS-EMOA (also using a
scheme to approximate the contribution to the hypervolume).
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IH(A \ ~z4, yref) IH(A \ ~z4, yref)

~yref

~z7

~yref
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CH(~z4,A) CH(~z4,A)f1
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~z6
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f2

~z4
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Figure 5.1: Let A = {~z1, ~z2, · · · , ~z7} be the approximate Pareto front. If we
move ~z4 between ~z3 and ~z5, the covered space by {A\~z4} is not affected and
only the contribution to the hypervolume of ~z4 is affected.

5.1 Hypervolume indicator

As we mentioned in Chapter 3, the hypervolume indicator, IH , is defined as
follows: If Λ denotes the Lebesgue measure, IH is defined as:

IH(A, ~zref) = Λ

(

⋃

~z∈A

{~y | ~z ≺ ~y ≺ ~zref}

)

(5.1)

where ~zref ∈ Rk denotes a reference point that should be dominated by all
the Pareto optimal points. A high IH value, indicates that A is close to PF
and has a good spread towards the extreme portions of the PF . This is the
only unary indicator that is known to be strictly Pareto compliant.

Auger et al. [2] conducted a study about the optimal µ-distributions
and the choice of the reference point in the hypervolume indicator. They
mentioned one interesting property of this indicator when k = 2 (two objec-
tive functions), called locality which says: given three consecutive points on
the Pareto front, moving the middle point will only affect the hypervolume
contribution that is solely dedicated to this point, but the joint hypervolume
contribution remains fixed. See Figure 5.1. Also, Auger et al. conducted a
similar study for d = 3 in [1] and they mentioned that the optimal placement
of a single solution is not determined by only two neighbors, anymore, as it
is the case for d = 2.

In recent years, there have been several proposals to incorporate the hy-
pervolume into a MOEA. However, in most cases, the MOEAs use the same
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competition scheme: if we have a population P and a new individual pnew,
we calculate the contribution to the hypervolume of each individual in P and
the contribution of the new individual. If pnew. ~f is better than pworst. ~f (ac-
cording to the contribution), pnew replaces pworst. Otherwise, the population
remains the same. See Section 4.4 in page 49.

As we mentioned in the previous chapter, if we use the above compe-
tition scheme into a MOEA, we need to calculate |P| + 1 contributions to
the hypervolume indicator, and then, this MOEA won’t be able to deal with
MOPs with more than five objective functions (a hypervolume-based MOEA
requires about eight hours per run to solve a MOP with five objective func-
tions). In order to address this problem, Bradstreet et al. [10] proposed a
method to calculate the contribution to the hypervolume indicator of each
solution in a fast way without calculating the hypervolume for each solution.
The main idea is the following: when we eliminate one solution of the popula-
tion, not all the contributions of the other solutions are affected. Emmerich
and Fonseca [36] proposed a dimension sweep algorithm for computing all
contributions to the hypervolume in three dimensions with a time complex-
ity equal to O(n logn). Also, they showed that for k > 3 (more than three
objective functions), the time complexity is bounded below by Ω(n log n).
It is important to note that this a lower bound but the calculation of the
minimal contribution is an NP-hard [12] problem.

Other authors have chosen to approximate the contribution to the hy-
pervolume. For example, Ishibuchi et al. [51] proposed using a number of
achievement scalarizing functions with uniformly distributed weight vectors
to approximate the hypervolume. They measure the distance from the ref-
erence point to the solution set, using scalarizing functions, see Figure 5.2.

Bader and Zitzler [3] proposed to assign a fitness to each individual using
an approximation of the hypervolume based on the idea that is not necessary
to know the exact contribution to the hypervolume of each solution, since
we only aim to obtain a good ranking of the solutions in the population.
The technique that they use to assign fitness to each individual is not easy
because they do not consider only the contribution to the hypervolume as
we defined in eq. (4.6), but also all the space dominated by one solution, see
Figure 5.3. They used Monte Carlo simulation to approximate the dominated
regions and then assign fitness. Also, they proposed a method to remove m
individuals from a population P considering the expected loss in hypervolume
that can be attributed to a particular solution when exactly m solutions are
removed, see Figure 5.4.
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Bringmann and Friedrich [12] indicated that it is not necessary to cal-
culate the hypervolume of all the individuals in the population, in order to
know the hypervolume contribution of a single solution. Let A be the ap-
proximate Pareto front; they proposed to approximate the contribution of a
solution ~z ∈ A as follows: Let BB~z be the bounding box of ~z; then, we do a
random sampling in BB~z. For each random point, we have to check if it is
uniquely dominated by ~z, and then we can approximate the contribution of
~z using:

C̃H(~z,A) =
SuccessSamples

Samples
V OL(BB~z) (5.2)

where SuccessSamples is the number of samples that were only dominated
by ~z (there does not exist another ~y ∈ A such that ~y dominates the sample)
and Samples is the total number of samples. See Figure 5.5. To determine
BB~z, we construct a bounding box, B~y, for each solution ~y ∈ A, using the
reference point ~yref as in Figure 5.5. Then, we can cut BB~z as follows: start
with the box B~z itself, iterating over all other boxes B~y, such that ~z 6= ~y.
If B~y dominates B~z in all but one dimension, then we can cut the bounding
box, B~z, in the nondominated dimension to obtain BB~z. See Figure 5.6.

5.2 A New SelectionMechanism based on the

Hypervolume and its Locality Property

Here, we propose a new selection mechanism that exploits the locality prop-
erty of the hypervolume indicator as follows. Let’s assume that at each
iteration of a MOEA, only one solution pnew is created and the current pop-
ulation is P. After that, we calculate the Euclidean distance of the new
solution to each solution in the current population:

disti = ‖pi. ~f − pnew. ~f‖ such that pi ∈ P (5.3)

and, we choose the nearest solution:

pnear such that distnear = min disti (5.4)

where i = {1, · · · , |P|}. These two solutions (the new solution, pnew, and
its nearest neighbor, pnear) compete to survive. The core idea is to move a
solution within its neighborhood with the aim of improving its contribution
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~f(~a)

~f(~b)

A

~f (~c)

~f (~d)

R = {~r}

(a)

~f(~a)

~f(~b)

~f (~c)

~f (~d)

R = {~r}

(b)

Figure 5.2: In (a) the dotted line represents a scalarizing function. Let

A = {~a,~b,~c, ~d} be the approximation of the Pareto optimal set and ~r the
reference point. Ishibuchi et al. [51] propose to measure the distance from
~r to A. In (b) many uniformly distributed weight vectors are used and the
average length is taken as an approximation of the hypervolume.
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1/4

1/2

1/3

1/31/2
1

~f (~a)

~f (~b)

~f(~c)

~f (~d)

FitnessH(~a,P ,R)

FitnessH(~c,P ,R)

R = {~r}

1/4

1

1/31/2

Figure 5.3: In this Figure, we illustrate the fitness assignment proposed by
Bader and Zitzler [3]. The space dominated by the four solutions (~a, ~b, ~c and
~d) is divided in regions. Let’s assume that we want to calculate the fitness
of individuals ~a and ~c. Regions labeled with number 1 indicate that this
portion of the space is only dominated by the solution ~a or ~c. Therefore,
this region is attributed to ~a or ~c. Regions labeled with 1/2 indicate that
this portion of the space is dominated by two solutions, and then, to each
of these two solutions, it corresponds half of this region. Regions with 1/3
and 1/4 indicate that the portion is dominated by three and four solutions,
respectively. Thus, for each of them, it corresponds a third or a fourth of
this region.
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p=1/3 p=0 p=0p=1

~f (~a)

~f (~b)

~f(~c)

~f (~d)

R = {~r}

Figure 5.4: This Figure shows the probability p that a dominated region is
lost if solution ~a is removed together with any other solution (m = 2). It
is interesting to look at the region with probability p = 1/3. If we remove

solution ~a, then only solution ~b can dominate this region and the probability
of choosing ~b is 1/3. Regions with probability p = 0 indicate that if we
remove ~a together with any solution, this region is still dominated by one of
the remaining solutions.
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BB~z3Failed sample Success sample

~yref

f2

~z2

~z1

~z4
~z5

~z6

f1

~z3

Figure 5.5: Let A = {~z1, ~z2, ~z3, ~z4, ~z5, ~z6} be the approximate Pareto front
and ~yref be the reference point. We approximate the contribution of solu-
tion ~z3 as follows. We construct the bounding box BB~z3 from the reference
point ~yref . After that, we generate random points in BB~z3 . The black points
into BB~z3 are success samples; these points are only dominated by ~z3. The
remaining random points in BB~z3 are also dominated by other points and
therefore they are failed samples. Finally, the contribution is approximately

SuccessSamples
SuccessSamples+FailedSamples

V OL(BB~z3). It is important to mention that this
is an example simply for illustrating the procedure by which we can ap-
proximate the hypervolume contribution of a solution. However, for two
dimensions, we can calculate the exact contribution, when we execute the
procedure to cut the BB~z3 .
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(a)

(b)

Figure 5.6: In (a), we can see that ~a is dominated by ~b in all objective
functions except for f3. Then, we can cut the bounding box of ~a and use ~ya
instead of ~yref because the cut region is completely covered by ~b. In (b), ~b is
better than ~a only in f1. Therefore, we cannot move the reference point and
cut the bounding box because the cut region is not completely covered by ~b.
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Figure 5.7: In (a), ~znew competes only with its nearest neighbor ~znear and
then ~znear is eliminated. In (b), we choose ~zrand randomly. Then, ~znew, ~znear
and ~zrand compete to survive and ~zrand is eliminated.

to the hypervolume. See Figure 5.7(a). However, we must consider the case
in which the new solution is located in an unexplored region (a region with
few solutions) as shown in Figure 5.7(a). In this case, it is not a good idea to
remove the new solution or its nearest neighbor. To address this problem, we
propose to choose randomly another solution, prand, such that prand 6= pnew
and prand 6= pnear. Then prand will also compete with the other two (pnew and
pnear). This is considering that the probability of choosing a solution in an
unexplored region is low. See Figure 5.7(b).

To validate our selection mechanism, we decided to incorporate it into
SMS-EMOA [8]. In Figure 5.8, we can see the results obtained by our se-
lection mechanism, without using the random solution prand, in the WFG1
and WFG4 test problems [48], with two objective functions and twenty-four
decision variables. For this experiment, we used 100 individuals and 500
generations.1 In this Figure, we can see that the modified SMS-EMOA is
able to generate a good approximation of the Pareto optimal front. How-
ever, for the WFG1 test problem, this approach can only produce a portion
of the Pareto optimal front and in the WFG4 test problem, some solutions
are dominated and the nondominated solutions are not well-distributed. In
Figure 5.9, we can see the results using the random individual. In these
figures, we can note that if we use a random solution, the distribution of
the solutions on the Pareto front significantly improves. Therefore, if we use

1Each time we generate 100 individuals; this is considered as one generation.
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our proposed selection mechanism, we can significantly improve the compu-
tational time required, since we would need to compute the contribution to
the hypervolume only three times for each iteration (regardless of the pop-
ulation size adopted) unlike SMS-EMOA which, in the worst case needs to
compute |P| + 1 contributions. Because of this, the proposed approach is
called improved SMS-EMOA (iSMS-EMOA).

We studied the behavior of our selection mechanism with respect to the
random solution. Specifically, we wanted to know: how many times is the
random solution eliminated? For this, we performed 30 independent runs
for the test problems: DTLZ1, DTLZ2 and DTLZ6 [30] with three-objective
functions, seven decision variables for DTLZ1 and DTLZ6 and twelve de-
cision variables for DTLZ2. Also, we used WFG1, WFG3 and WFG4 [48]
with three-objective functions and twenty-four decision variables. Per run,
we calculate at each generation the number of times in which the random
solution is eliminated. Figures 5.10 and 5.11 show that the random solutions
are eliminated at the begining of the search process. And, as the search pro-
cess progresses, the new solution or its nearest neighbor is eliminated more
often.

Although in [1] it is shown that, for three dimensions, the optimal place-
ment of a single solution is not determined by only two neighbors, the com-
petition scheme based on IH and its locality property still works. This is be-
cause this selection scheme does not need to know the entire neighborhood,
it only considers to move one solution in the direction corresponding to its
nearest neighbor. Therefore, it is not important if the optimal placement
of one solution is determined by many (even all) solutions of the popula-
tion. Therefore, we can claim the following: while the Pareto front is being
generated, we need of the randomness for exploring the entire Pareto front.
Later on, we only need to exploit the “locality property” to maximize the
hypervolume indicator and improve the distribution on the Pareto front.

5.2.1 Experimental results

We validate the proposed selection mechanism comparing our iSMS-EMOA
with respect to SMS-EMOA [8] and a version of the original SMS-EMOA
that uses the fitness assignment scheme proposed in [3] instead of calculating
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Figure 5.8: Pareto fronts obtained with the modified SMS-EMOA algorithm
without using the random solution, in the WFG1 and WFG4 test problems
with two objective functions and 24 variables.
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Figure 5.9: Pareto fronts obtained with the modified SMS-EMOA algorithm
using the random solutions, in the WFG1 and WFG4 test problems with two
objective functions and 24 variables.
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Figure 5.10: Mean of 30 independent runs corresponding to the percentage of
times in which the random solution was eliminated. We considered problems
DTLZ1, DTLZ2, DTLZ6, all of them with three objective functions.
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Figure 5.11: Mean of 30 independent runs corresponding to the percentage of
times in which the random solution was eliminated. We considered problems
WFG1, WFG3 and WFG4, all of them with three objective functions.

CINVESTAV-IPN Computer Science Department



68 Chapter 5

the exact hypervolume contributions,2 and which we called “HyPE version
of SMS-EMOA (hypeSMS-EMOA)”. For this sake, we used the source code
of HyPE available in the public domain [3] adopting 104 as our number of
samples.

For our experiments, we used problems with up to five objective functions,
seven of which were taken from the Deb-Thiele-Laumanns-Zitzler (DTLZ)
test suite [30] and seven more were taken from the Walking Fish Group
(WFG) toolkit [48]. We used k = 5 for DTLZ1, DTLZ3 and DTLZ6 and
k = 10 for the remaining test problems. We used kfactor = 2 and lfactor = 10
for the WFG test problems. In Appendix A, we describe these two sets of
test problems. For each test problem, we performed 30 independent runs.
For all algorithms, we adopted the parameters suggested by the authors of
NSGA-II: pc = 0.9 (crossover probability), pm = 1/n (mutation probability),
where n is the number of decision variables. For the crossover and mutation
operators, we adopted ηc = 15 and ηm = 20, respectively. We performed
a maximum of 50,000 fitness function evaluations (we used a population
size of 100 individuals and we iterated for 500 generations). However, we
adopted four hours as our maximum running time because we know that the
computation of the exact hypervolume contribution has a high computational
cost. All MOEAs considered in our experiments were compiled using the
GNU C compiler and they were executed on a computer with a 2.66GHz
processor and 4GB in RAM.

Performance indicators

We adopted only IH to validate our results because it rewards both con-
vergence towards the Pareto front as well as the maximum spread of the
solutions obtained. Also, all of the algorithms used in this comparison have
as their aim to maximize the hypervolume and, therefore, it makes sense to
use this indicator to assess their performance. To calculate the hypervolume
indicator, we normalized the approximations of the Pareto optimal set, gen-
erated by the MOEAs, and we used yref = [y1, · · · , yk] such that yi = 1.1
as our reference point. The normalization was performed considering all ap-
proximations generated by the different MOEAs (i.e., we place, in one set, all
nondominated solutions found by SMS-EMOA, hypeSMS-EMOA and iSMS-

2It is important to mention that our aim was to validate the selection mechanism.
Therefore, we decided to use the same MOEA in all cases and we only changed the selection
mechanism. For this reason, we did not use the original HyPE.
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EMOA and from this set we calculate the maximum and minimum for each
objective function).

Discussion of results

First, we will review the results of the DTLZ test problems. In Table 5.1, we
can observe that our iSMS-EMOA obtained the first place in twelve prob-
lems, it had the second place in nine problems and it was never in the third
place. The original SMS-EMOA obtained the first place in nine problems, it
was in second place in twelve problems and it was never in the third place.
Finally, we can see that the version in which the contribution to the hyper-
volume is approximated obtained the third place in all the problems adopted.
Regarding the WFG test problems, we can see in Table 5.3 that our iSMS-
EMOA had the first place in nine problems and it had the second in twelve
problems. The original SMS-EMOA had the first place in twelve problems
and it had the second in nine problems. Finally, hypeSMS-EMOA had again
the third place in all problems. We conducted an statistical analysis using
Wilcoxon’s rank sum to validate our experiments, see Tables 5.5 and 5.6. P
is the probability of observing the given result (the null hypothesis is true).
Small values of P cast doubt on the validity of the null hypothesis. H = 0
indicates that the null hypothesis (“medians are equal”) cannot be rejected
at the 5% level. H = 1 indicates that the null hypothesis can be rejected at
the 5% level. From Tables 5.5 and 5.6, we can assess that our iSMS-EMOA
outperformed hypeSMS-EMOA significantly in all problems because in all
cases we can reject the null hypothesis “medians are equal”. With respect to
SMS-EMOA, we can see that in fourteen problems our iSMS-EMOA outper-
formed it significantly, iSMS-EMOA was outperformed significantly in nine
cases and in nineteen problems both MOEAS had a similar behavior. From
these results, we can say that iSMS-EMOA is better than hypeSMS-EMOA
and it is competitive with respect to SMS-EMOA (in fact, we can say that it
is better because it was better in most problems). Also, we can observe that
the quality of the approximate Pareto front decreases if we approximate the
hypervolume. Although, in some cases, hypeSMS-EMOA performed more
objective function evaluations than SMS-EMOA and iSMS-EMOA (this al-
gorithm was not allowed to exceed the maximum running time of 4 hours
imposed for the other approaches), it was unable to obtain better results
than any of the other approaches.

However, if we consider the running time that each MOEA required to ob-
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tain the approximate Pareto front, see Tables 5.2 and 5.4, hypeSMS-EMOA is
the fastest in both sets of test problems: DTLZ and WFG. Our iSMS-EMOA
came third only in one problem, DTLZ1 with three objective functions, and it
ranked second in the remaining problems. Finally, SMS-EMOA ranked third
in twenty DTLZ test problems and in twenty-one WFG test problems and it
came second in one DTLZ test problem. We can also observe that our iSMS-
EMOA significantly decreased the running time required by SMS-EMOA.
For example, in the DTLZ test problems with five objective functions, SMS-
EMOA consumes the maximum allowable time (4 hours) and is unable to
converge, whereas our iSMS-EMOA requires a maximum of sixty minutes
to converge in any of the DTLZ test problems. With respect to the WFG
test problems, we can also see that our iSMS-EMOA requires less time than
SMS-EMOA. However, it is important to note that in this case, SMS-EMOA
doesn’t consume the maximum allowable time in some problems with 5 objec-
tives. This indicates that the algorithm uses Pareto ranking most of the time,
since otherwise its computational cost would had been much higher. This is
remarkable, because our iSMS-EMOA always uses hypervolume to discard
one individual, but it still requires less running time than SMS-EMOA in the
WFG test problems.

Finally, Figures 5.12, 5.13 and 5.14 show the Pareto fronts obtained by the
three algorithms in their median with respect to the hypervolume indicator
in some of the test problems adopted. Here, we can see again that hypeSMS-
EMOA loses quality in most cases, unlike our iSMS-EMOA which achieves
a good distribution. Therefore, from these experimental results we can say
that our selection mechanism based on the hypervolume and on its locality
property is an excellent option to solve MOPs. In fact, our proposal is
better than the original selection mechanism used by SMS-EMOA because
our selection mechanism is more practical to solve MOPs with many objective
functions.
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Figure 5.12: Pareto fronts obtained by the three MOEAs (hypeSMS-EMOA,
SMS-EMOA and iSMS-EMOA) in the median (with respect to the hypervol-
ume indicator) of their thirty independent runs for the test problems DTLZ1
and DTLZ2.
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Figure 5.13: Pareto fronts obtained by the three MOEAs (hypeSMS-EMOA,
SMS-EMOA and iSMS-EMOA) in the median (with respect to the hypervol-
ume indicator) of their thirty independent runs for the test problems DTLZ6
and DTLZ7.
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Figure 5.14: Pareto fronts obtained by the three MOEAs (hypeSMS-EMOA,
SMS-EMOA and iSMS-EMOA) in the median (with respect to the hypervol-
ume indicator) of their thirty independent runs for the test problems WFG1
and WFG4.
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SMS-EMOA hypeSMS-EMOA iSMS-EMOA

DTLZ Test Problems

Number of times it ranked fist
Number of times it ranked second

Number of times it ranked third

~f SMS-EMOA
IH

hypeSMS-EMOA
IH

iSMS-EMOA
IH

DTLZ1 (3) 1.1230 (0.000) 1.0785 (0.016) 1.1230 (0.001)
DTLZ2 (3) 0.7581 (0.000) 0.7415 (0.002) 0.7580 (0.000)
DTLZ3 (3) 1.3308 (0.000) 1.3307 (0.000) 1.3308 (0.000)
DTLZ4 (3) 0.7585 (0.000) 0.7442 (0.002) 0.7584 (0.000)
DTLZ5 (3) 0.2667 (0.000) 0.2651 (0.000) 0.2667 (0.000)
DTLZ6 (3) 1.0951 (0.004) 1.0726 (0.026) 1.0951 (0.005)
DTLZ7 (3) 0.5282 (0.057) 0.5138 (0.050) 0.5583 (0.044)
DTLZ1 (4) 1.3737 (0.000) 1.1833 (0.071) 1.3737 (0.000)
DTLZ2 (4) 1.0500 (0.000) 1.0121 (0.004) 1.0496 (0.000)
DTLZ3 (4) 1.4639 (0.000) 1.4639 (0.000) 1.4639 (0.000)
DTLZ4 (4) 1.0482 (0.000) 1.0192 (0.003) 1.0479 (0.000)
DTLZ5 (4) 0.5460 (0.000) 0.5131 (0.006) 0.5462 (0.000)
DTLZ6 (4) 1.2410 (0.004) 1.0706 (0.023) 1.2408 (0.004)
DTLZ7 (4) 0.5646 (0.030) 0.4875 (0.028) 0.5813 (0.022)
DTLZ1 (5) 1.5665 (0.001) 1.1579 (0.307) 1.5678 (0.000)
DTLZ2 (5) 1.4322 (0.000) 1.3996 (0.007) 1.4333 (0.000)
DTLZ3 (5) 1.6102 (0.000) 1.6102 (0.000) 1.6103 (0.000)
DTLZ4 (5) 1.3040 (0.000) 1.2619 (0.006) 1.3050 (0.000)
DTLZ5 (5) 0.9318 (0.001) 0.8472 (0.015) 0.9360 (0.001)
DTLZ6 (5) 1.4649 (0.003) 1.3033 (0.027) 1.4876 (0.002)
DTLZ7 (5) 0.5597 (0.038) 0.4566 (0.050) 0.5822 (0.006)

Table 5.1: Results obtained in the DTLZ test problems with up to five ob-
jective functions. We compare SMS-EMOA, hypeSMS-EMOA and iSMS-
EMOA using the hypervolume indicator IH . We show average values over
30 independent runs. The values in parentheses correspond to the standard
deviations.
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SMS-EMOA hypeSMS-EMOA iSMS-EMOA

DTLZ Test Problems

Number of times it ranked fist
Number of times it ranked second

Number of times it ranked third

~f SMS-EMOA
time

hypeSMS-EMOA
time

iSMS-EMOA
time

DTLZ1 (3) 365.5593 (27.897) 9.9760 (0.113) 368.4773 (40.879)
DTLZ2 (3) 486.6670 (31.554) 15.5313 (0.259) 382.9243 (36.386)
DTLZ3 (3) 499.1160 (39.988) 11.7833 (0.817) 440.1397 (38.473)
DTLZ4 (3) 523.4633 (47.806) 15.6460 (0.255) 451.0887 (36.375)
DTLZ5 (3) 381.1447 (17.116) 13.0363 (0.159) 379.8520 (27.687)
DTLZ6 (3) 403.4967 (15.122) 13.5823 (1.575) 370.1153 (24.928)
DTLZ7 (3) 485.5560 (29.970) 19.3843 (0.606) 382.2553 (26.468)
DTLZ1 (4) 1578.3723 (54.450) 12.8663 (0.193) 429.2957 (13.493)
DTLZ2 (4) 2754.8697 (100.357) 19.5447 (0.312) 441.9803 (17.658)
DTLZ3 (4) 2390.6237 (1153.111) 14.3620 (0.842) 470.9413 (86.973)
DTLZ4 (4) 2884.5260 (88.896) 19.5833 (0.375) 468.5887 (68.708)
DTLZ5 (4) 1905.9827 (107.565) 22.9647 (0.606) 418.9777 (14.317)
DTLZ6 (4) 2356.9200 (50.540) 21.8453 (0.616) 436.5570 (14.477)
DTLZ7 (4) 1844.2347 (96.855) 27.0250 (1.119) 399.1967 (13.255)
DTLZ1 (5) 14441.8333 (16.546) 15.4097 (0.242) 1797.6717 (66.814)
DTLZ2 (5) 14448.5523 (27.680) 22.6683 (0.585) 1891.2693 (81.428)
DTLZ3 (5) 12229.6320 (3327.420) 16.1650 (0.717) 2392.4797 (1266.078)
DTLZ4 (5) 14449.7207 (31.780) 22.5047 (0.425) 2052.9640 (87.407)
DTLZ5 (5) 14439.4680 (21.651) 30.3343 (1.089) 1731.5287 (109.424)
DTLZ6 (5) 14442.1650 (24.369) 30.7600 (0.978) 1749.2400 (41.552)
DTLZ7 (5) 14182.2843 (696.870) 34.9543 (1.854) 768.9817 (56.556)

Table 5.2: Results obtained in the DTLZ test problems with up to five objec-
tive functions. We compare SMS-EMOA, hypeSMS-EMOA and iSMS-EMOA
with respect to the running time required by each MOEA to obtain the ap-
proximation of the Pareto optimal set. The results are in seconds. We show
average values over 30 independent runs. The values in parentheses corre-
spond to the standard deviations.
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Number of times it ranked fist
Number of times it ranked second

Number of times it ranked third

~f SMS-EMOA
IH

hypeSMS-EMOA
IH

iSMS-EMOA
IH

WFG1 (3) 1.2097 (0.029) 0.8864 (0.033) 1.2162 (0.011)
WFG2 (3) 0.8323 (0.051) 0.6608 (0.046) 0.8293 (0.072)
WFG3 (3) 0.6367 (0.002) 0.6003 (0.006) 0.6378 (0.001)
WFG4 (3) 0.7543 (0.002) 0.6999 (0.006) 0.7540 (0.002)
WFG5 (3) 0.5573 (0.002) 0.5371 (0.003) 0.5575 (0.002)
WFG6 (3) 0.5669 (0.002) 0.5538 (0.004) 0.5668 (0.001)
WFG7 (3) 0.7521 (0.004) 0.5017 (0.029) 0.7489 (0.004)
WFG1 (4) 1.4272 (0.005) 0.9985 (0.036) 1.4219 (0.009)
WFG2 (4) 0.8659 (0.130) 0.4703 (0.206) 0.8642 (0.120)
WFG3 (4) 0.5993 (0.006) 0.5189 (0.014) 0.5957 (0.006)
WFG4 (4) 1.0346 (0.003) 0.9048 (0.013) 1.0330 (0.003)
WFG5 (4) 0.5996 (0.002) 0.5542 (0.006) 0.5995 (0.002)
WFG6 (4) 0.6128 (0.006) 0.5712 (0.008) 0.6142 (0.007)
WFG7 (4) 0.9339 (0.007) 0.3559 (0.022) 0.9288 (0.004)
WFG1 (5) 1.3657 (0.018) 1.0722 (0.041) 1.5656 (0.007)
WFG2 (5) 0.8914 (0.170) 0.5326 (0.252) 0.9233 (0.145)
WFG3 (5) 0.5926 (0.025) 0.4267 (0.026) 0.5851 (0.028)
WFG4 (5) 1.2219 (0.009) 1.0734 (0.021) 1.2777 (0.005)
WFG5 (5) 0.6562 (0.002) 0.5622 (0.011) 0.6566 (0.002)
WFG6 (5) 0.6473 (0.024) 0.5101 (0.037) 0.6469 (0.021)
WFG7 (5) 0.7680 (0.036) 0.2579 (0.018) 1.0266 (0.015)

Table 5.3: Results obtained in the WFG test problems with up to five ob-
jective functions. We compare SMS-EMOA, hypeSMS-EMOA and iSMS-
EMOA using the hypervolume indicator IH . We show average values over
30 independent runs. The values in parentheses correspond to the standard
deviations.
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SMS-EMOA hypeSMS-EMOA iSMS-EMOA

WFG Test Problems

Number of times it ranked fist
Number of times it ranked second

Number of times it ranked third

~f SMS-EMOA
time

hypeSMS-EMOA
time

iSMS-EMOA
time

WFG1 (3) 568.2757 (54.687) 25.5767 (0.207) 419.1100 (17.560)
WFG2 (3) 431.6637 (25.635) 18.6463 (0.864) 420.8630 (17.313)
WFG3 (3) 495.4100 (30.949) 25.2423 (0.296) 420.0893 (16.889)
WFG4 (3) 539.6530 (46.373) 20.7107 (0.309) 415.2110 (15.874)
WFG5 (3) 531.9113 (44.412) 26.8690 (0.138) 414.9457 (18.544)
WFG6 (3) 496.9443 (32.744) 28.4663 (0.393) 419.7743 (17.266)
WFG7 (3) 581.8233 (58.042) 26.2263 (0.633) 417.2413 (20.361)
WFG1 (4) 3734.0803 (180.641) 32.0923 (0.441) 468.2133 (44.586)
WFG2 (4) 862.0040 (48.570) 24.5730 (1.171) 397.2097 (22.681)
WFG3 (4) 957.0357 (16.880) 31.9290 (0.367) 390.2180 (17.506)
WFG4 (4) 3053.7340 (76.497) 26.0010 (0.586) 451.8720 (41.150)
WFG5 (4) 1271.6740 (11.726) 36.5713 (0.283) 391.1927 (18.414)
WFG6 (4) 1105.0230 (22.982) 37.6103 (0.541) 394.1047 (23.013)
WFG7 (4) 3165.9447 (79.757) 34.3960 (0.512) 444.5883 (39.056)
WFG1 (5) 14457.7380 (34.416) 37.8360 (0.283) 2322.8240 (157.156)
WFG2 (5) 2567.6657 (229.868) 31.0053 (1.328) 338.8497 (31.956)
WFG3 (5) 1609.6663 (40.743) 38.8517 (0.413) 264.8837 (40.684)
WFG4 (5) 14454.3767 (34.993) 31.7297 (0.774) 1894.0353 (106.299)
WFG5 (5) 3021.6070 (159.832) 44.9227 (0.158) 305.5377 (32.373)
WFG6 (5) 2916.7467 (216.336) 46.2050 (0.443) 314.7670 (30.785)
WFG7 (5) 14459.3203 (26.034) 41.7163 (0.400) 1597.0273 (97.936)

Table 5.4: Results obtained in the WFG test problems with up to five objec-
tive functions. We compare SMS-EMOA, hypeSMS-EMOA and iSMS-EMOA
with respect to the running time required by each MOEA to obtain the ap-
proximation of the Pareto optimal set. The results are in seconds. We show
average values over 30 independent runs. The values in parentheses corre-
spond to the standard deviations.
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~f

SMS-EMOA
&

iSMS-EMOA
P (H)

hypeSMS-EMOA
&

iSMS-EMOA
P (H)

DTLZ1 (3) 0.491771 (0) 0.000000 (1)
DTLZ2 (3) 0.000032 (1) 0.000000 (1)
DTLZ3 (3) 0.211295 (0) 0.000000 (1)
DTLZ4 (3) 0.000000 (1) 0.000000 (1)
DTLZ5 (3) 0.000016 (1) 0.000000 (1)
DTLZ6 (3) 0.894139 (0) 0.000011 (1)
DTLZ7 (3) 0.000066 (1) 0.000000 (1)
DTLZ1 (4) 0.630872 (0) 0.000000 (1)
DTLZ2 (4) 0.000000 (1) 0.000000 (1)
DTLZ3 (4) 0.001233 (1) 0.000014 (1)
DTLZ4 (4) 0.000000 (1) 0.000000 (1)
DTLZ5 (4) 0.000101 (1) 0.000000 (1)
DTLZ6 (4) 0.888303 (0) 0.000000 (1)
DTLZ7 (4) 0.023243 (1) 0.000000 (1)
DTLZ1 (5) 0.000000 (1) 0.000000 (1)
DTLZ2 (5) 0.000000 (1) 0.000000 (1)
DTLZ3 (5) 0.000925 (1) 0.000000 (1)
DTLZ4 (5) 0.000000 (1) 0.000000 (1)
DTLZ5 (5) 0.000000 (1) 0.000000 (1)
DTLZ6 (5) 0.000000 (1) 0.000000 (1)
DTLZ7 (5) 0.000149 (1) 0.000000 (1)

Table 5.5: Statistical analysis using Wilcoxon’s rank sum for the DTLZ
test problems. For this, we used IH , see Table 5.1. A light gray color in
the columns means that iSMS-EMOA was outperformed by another MOEA
(SMS-EMOA or hypeSMS-EMOA). A gray color means that iSMS-EMOA
was better than the other MOEA (SMS-EMOA or hypeSMS-EMOA). P is
the probability of observing the given result (the null hypothesis is true).
Small values of P cast doubt on the validity of the null hypothesis. H = 0
indicates that the null hypothesis (“medians are equal”) cannot be rejected
at the 5% level. H = 1 indicates that the null hypothesis can be rejected at
the 5% level.
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~f

SMS-EMOA
&

iSMS-EMOA
P (H)

hypeSMS-EMOA
&

iSMS-EMOA
P (H)

WFG1 (3) 0.982307 (0) 0.000000 (1)
WFG2 (3) 0.630876 (0) 0.000000 (1)
WFG3 (3) 0.105470 (0) 0.000000 (1)
WFG4 (3) 0.450840 (0) 0.000000 (1)
WFG5 (3) 0.529782 (0) 0.000000 (1)
WFG6 (3) 0.569220 (0) 0.000000 (1)
WFG7 (3) 0.014412 (1) 0.000000 (1)
WFG1 (4) 0.011228 (1) 0.000000 (1)
WFG2 (4) 0.620404 (0) 0.000000 (1)
WFG3 (4) 0.016285 (1) 0.000000 (1)
WFG4 (4) 0.055546 (0) 0.000000 (1)
WFG5 (4) 0.599689 (0) 0.000000 (1)
WFG6 (4) 0.340288 (0) 0.000000 (1)
WFG7 (4) 0.002624 (1) 0.000000 (1)
WFG1 (5) 0.000000 (1) 0.000000 (1)
WFG2 (5) 0.501144 (0) 0.000000 (1)
WFG3 (5) 0.115362 (0) 0.000000 (1)
WFG4 (5) 0.000000 (1) 0.000000 (1)
WFG5 (5) 0.264326 (0) 0.000000 (1)
WFG6 (5) 0.982307 (0) 0.000000 (1)
WFG7 (5) 0.000000 (1) 0.000000 (1)

Table 5.6: Statistical analysis using Wilcoxon’s rank sum for the WFG
test problems. For this, we used IH , see Table 5.3. A light gray color in
the columns means that iSMS-EMOA was outperformed by another MOEA
(SMS-EMOA or hypeSMS-EMOA). A gray color means that iSMS-EMOA
was better than the other MOEA (SMS-EMOA or hypeSMS-EMOA). P is
the probability of observing the given result (the null hypothesis is true).
Small values of P cast doubt on the validity of the null hypothesis. H = 0
indicates that the null hypothesis (“medians are equal”) cannot be rejected
at the 5% level. H = 1 indicates that the null hypothesis can be rejected at
the 5% level.
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5.3 Approximating the Contribution to the

Hypervolume

As we mentioned above, there are several proposals to approximate the hy-
pervolume or its contribution. However, these techniques were incorporated
into MOEAs that use the traditional selection scheme in which all individu-
als compete to survive. In this section, we propose to use the approximation
technique proposed by Bringmann and Friedrich in [12] into the selection
mechanism proposed in the previous section. There are two main motiva-
tions to adopt this approach: First, Bringmann and Friedrich proposed a
technique to approximate the contribution to the hypervolume of an indi-
vidual without having to calculate the hypervolume and our new selection
mechanism is based on the hypervolume contributions. And second, we have
the following hypothesis: since the new selection mechanism needs to cal-
culate the contribution of only three individuals, we can reduce the error of
the approximation, by increasing the number of samples and this will not
increase the running time in an excessive manner. Also, the probability of
deleting the individual with the lowest contribution is greater than if we use
the traditional competition scheme because if we randomly choose one in-
dividual of a set of three individuals, the probability of choosing the worst
individual is 1/3. And, if we choose one individual of a set of P individ-
uals, the probability of choosing the worst individual is 1/P . In addition,
we only deal with three errors and not with P errors where P is the size of
the population. Furthermore, we expect that the contributions of the new
solution and its nearest neighbor are different because our idea is to decide if
we move the current solution in the population (nearest neighbor of the new
solution) to the position of the new solution. Therefore, we expect that the
joint contribution of the other solutions is fixed and the contribution of the
new solution and its nearest neighbor are different (locality property).

We designed an experimental test to validate these last claims. We show
experimentally our hypothesis in the following sections. In Algorithm 7, we
can see the procedure to approximate the contribution to the hypervolume
of one individual in the population. And we can see our alternative selection
mechanism in Algorithm 8.
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Algorithm 7: Approximating the contribution to the hypervolume of
individual ~x.
Input : Current population (Pt), individual (~x), reference point

(~yref), and the number of samples (nsamples).
Output: Approximation of the contribution to the hypervolume of

individual ~x, C̃H(~x,Pt).

/*Defining the bounding box */

1 ~ybox ← ~yref ;
2 foreach ~xi ∈ Pt such that ~xi 6= ~x do
3 if ~x is dominated by ~xi in all objective functions except in fk then
4 ~ybox[k]← ~xi[k];
5 end

6 end

/*Calculating the volume of the box BBx */

7 volumeBBx ← 1;
8 foreach Objective function k do
9 volumeBBx ← (volumeBBx)(~ybox[k]− ~x[k]);

10 end

/*Doing sampling */

11 SuccessSamples← 0;
12 for j ← 1 to nsamples do
13 Generate a random point ~xr, such that ~xr ∈ BBx;
14 if Not exists another point ~xi ∈ Pt such that ~xi dominates ~xr then
15 SuccessSamples← SuccessSamples + 1;
16 end

17 end

18 return SuccessSamples
nsamples

(volumeBBx);
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Algorithm 8: Alternative selection mechanism based on the hypervol-
ume.
Input : Current population (Pt) and the new solution (~xnew).
Output: The new population (Pt+1).

/*Calculate the distance of each solution in Pt to ~xnew */

1 foreach ~xi ∈ Pt do
2 disti ← ‖~xi − ~xnew‖;
3 end

/*Choose the nearest solution to ~xnew */

4 ~xnear | distnear = min disti;

/*Choose one random solution */

5 Choose randomly ~xrand such that ~xrand ∈ Pt and ~xrand 6= ~xnew and
~xrand 6= ~xnear;

/*Approximate the contributions to the hypervolume, using

Algorithm 7 */

6 C̃new ← C̃H(~xnew,Pt);

7 C̃near ← C̃H(~xnear,Pt);

8 C̃rand ← C̃H(~xrand,Pt);

/*Remove the solution with the worst contribution */

9 ~xworst | C̃worst = min{C̃new, C̃near, C̃rand};
10 Pt+1 ← P \ ~xworst;
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5.3.1 Experimental results

To validate our alternative selection mechanism based on the hypervolume
indicator, we incorporated it into the original SMS-EMOA [8] and we called it
“approximate version of improved SMS-EMOA (aviSMS-EMOA)”. For our
experiments, we used problems with up to six objective functions, seven
of which were taken from the Deb-Thiele-Laumanns-Zitzler (DTLZ) test
suite [30] and seven more were taken from the Walking Fish Group (WFG)
toolkit [48]. We used k = 5 for DTLZ1, DTLZ3 and DTLZ6 and k = 10
for the remaining test problems. We used kfactor = 2 and lfactor = 10 for
the WFG test problems. For each test problem, we performed 30 indepen-
dent runs. For all algorithms, we adopted the parameters suggested by the
authors of NSGA-II: pc = 0.9 (crossover probability), pm = 1/n (mutation
probability), where n is the number of decision variables. For the crossover
and mutation operators, we adopted ηc = 15 and ηm = 20, respectively. We
performed a maximum of 50,000 fitness function evaluations (we used a pop-
ulation size of 100 individuals and we iterated for 500 generations). However,
we adopted four hours as our maximum running time because we know that
the computation of the exact hypervolume contribution has a high computa-
tional cost. All MOEAs considered in our experiments were compiled using
the GNU C compiler and they were executed on a computer with a 2.66GHz
processor and 4GB in RAM.

5.3.2 Performance indicators

We adopted IH again to validate our results because it rewards both con-
vergence towards the Pareto front as well as the maximum spread of the
solutions obtained. Also, most of the algorithms used in this section have
as their aim to maximize the hypervolume and, therefore, it makes sense to
use this indicator to assess their performance. To calculate the hypervolume
indicator, we normalized the approximations of the Pareto optimal set, gen-
erated by the MOEAs, and we used yref = [y1, · · · , yk] such that yi = 1.1
as our reference point. The normalization was performed considering all ap-
proximations generated by the different compared MOEAs (i.e., we place, in
one set, all nondominated solutions found and from this set we calculate the
maximum and minimum for each objective function).

Only in some experiments, we consider other two quality indicators. The
first one is called “two set coverage (ISC)” and has the aim of assessing only
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the convergence of the MOEAs. As we mentioned in Chapter 3, it is a Pareto
compliant binary indicator. Let A,B be two approximations of the Pareto
optimal set, ISC is defined as follows:

ISC(A,B) =
|~b ∈ B such that ∃~a ∈ A with ~a ≺ ~b|

|B|

If all points in A dominate or are equal to all points in B, then by definition
ISC = 1. ISC = 0 implies that no element in B is dominanted by any element
of A. In general, both ISC(A,B) and ISC(B,A) have to be considered.

The second one is called “inverted generational distance” indicator (IIGD).
As we mentioned in Chapter 3, IIGD reports how far, on average, PF is from
A, where PF is the true Pareto front and A is an approximation of the true
Pareto front. IIGD is Pareto non-compliant and it is defined as:

IIGD(A) =
1

|PF|





|PF|
∑

i=1

dpi





1

p

where |PF| is the number of vectors in PF , p = 2 and di is the Euclidean
phenotypic distance between each member, i, of PF and the closest member
in A to that member, i. IIGD measures both convergence and distribution.
Since we cannot use the true Pareto front because in most cases we cannot
obtain it, we need to use a reference set that provides a reasonably good
approximation of the true Pareto front. The result of this indicator strongly
depends on this reference set.

5.3.3 Approximate version of original SMS-EMOA vs
approximate version of improved SMS-EMOA

As we saw in this section, we propose to approximate the contributions to the
hypervolume used by the selection mechanism based on the hypervolume in-
dicator and on its locality property. However, this gives rise to the following
question: why don’t we approximate the contributions in the original version
of the SMS-EMOA? Our hypothesis is that it is better to use the improved
SMS-EMOA for two reasons: First, we need to do sampling for each solution
for which we need to know its contribution. Therefore, if we use a large
number of samples, the running time drastically increases when employing
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the traditional selection mechanism adopted by the original SMS-EMOA.
This is because in this case, it is required to know the contributions of all
the individuals at each iteration, unlike the selection mechanism used by the
improved SMS-EMOA that only requires to know the contribution of three
individuals per iteration. And second, if we use the improved SMS-EMOA,
we can decrease the probability of not choosing the worst individual because
we only deal with three errors instead of dealing with P errors (P is the pop-
ulation size). Also, it is important to consider that the selection mechanism
used in the improved SMS-EMOA exploits the locality property of the hy-
pervolume. Thus, we estimate that the contributions of the new individual
and its nearest neighbor will be different and that the joint contribution of
the remaining individuals is fixed.

In order to validate our hypothesis, we compare our aviSMS-EMOA with
respect to a version of the original SMS-EMOA that approximates the contri-
butions to the hypervolume using Algorithm 7; this version is called “approx-
imate version of the original SMS-EMOA (avoSMS-EMOA).” We ran tests
with up to six objective functions because the avoSMS-EMOA algorithm has
a manageable running time up to this dimensionality. We used k(103) as our
number of samples for both algorithms, where k is the number of objective
functions (e.g., if we have a MOP with three objective functions, we use
3(103) = 3000 samples). We decided to use this number of samples with the
aim that both MOEAs can finish the search or they can execute the largest
possible number of generations in the allowable time (we must remember
that we adopted four hours as our maximum running time). However, later,
we study the behavior of our aviSMS-EMOA with respect to the number of
samples.

Tables 5.7 and 5.8 show the results of the DTLZ and WFG test problems
with respect to the hypervolume indicator. Also, they show the statistical
analysis applied to the experiments using Wilcoxon’s rank sum. In these
tables, we can see that our aviSMS-EMOA obtains better results in most
cases, avoSMS-EMOA obtained better results only in nine cases. However,
if we check the statistical analysis, we can see that avoSMS-EMOA outper-
forms our aviSMS-EMOA only in four cases because only in these cases the
hypothesis that “medians are equal” can be rejected. Moreover, our aviSMS-
EMOA obtains better results than avoSMS-EMOA in forty-seven cases and
the hypothesis that “medians are equal” can be rejected in forty-three cases.
In summary, our aviSMS-EMOA outperforms avoSMS-EMOA in forty-three
problems, it is outperformed in four problems, and both algorithms obtain
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similar results in nine problems. Now, let’s check Table 5.9, which shows
the running time required by the two algorithms to obtain the approximate
Pareto front of each test problem. In this table, we can see that our pro-
posed aviSMS-EMOA is significantly better in all cases (we can say that, on
average, it is ten times faster than avoSMS-EMOA). It is important to clar-
ify that aviSMS-EMOA is not thirty-three times faster than avoSMS-EMOA
because avoSMS-EMOA does not always calculate 100 contributions to IH
(only when after applying Pareto ranking, a single front is obtained). Also,
aviSMS-EMOA only uses the selection mechanism based on IH and its lo-
cality property when, after applying Pareto ranking, we only obtain a single
front. Otherwise, both algorithms use the number of solutions that domi-
nate certain solution as suggested by Beume et al. in [8]. This validates,
experimentally, the first part of our hypothesis with respect to the running
time.

For validating the second part, we executed both algorithms, avoSMS-
EMOA and aviSMS-EMOA, but we also calculate the exact contribution to
the hypervolume and we verify if the algorithm chooses the correct individual
to be deleted (worst individual) per iteration. With the aim of calculating the
success percentage of each selection mechanism, we consider a success when
the algorithm deletes the worst individual. Also, we calculate the percentage
in which the new solution and its nearest neighbor had different values in
their contribution to the hypervolume because we expect that most of the
time these two contributions will be different. For this experiment, we only
used problems with three and four objective functions, in order to keep the
running times within manageable values. In Table 5.10, we can see that
the alternative selection mechanism used in aviSMS-EMOA achieves a high
success rate (above 98% in all cases). This does not happen with avoSMS-
EMOA, which cannot even reach a success rate of 1%. Also, we can see that
most of the time the new solution and its nearest neighbor had a different
contribution (above 95% in most cases) as we expected due to the locality
property of the hypervolume. Thus, we can conclude that our proposed
aviSMS-EMOA is better than avoSMS-EMOA. This is an important result
because we show experimentally that we can significantly improve the current
MOEAs based on approximations of IH if we use the selection mechanism
based on the hypervolume indicator and on its locality property.
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5.3.4 HyPE version of SMS-EMOA vs approximate
version of improved SMS-EMOA

In this section, we adopt a version of the original SMS-EMOA that uses the
fitness assignment scheme proposed in [3] instead of calculating the exact
contributions and which we called “HyPE version of SMS-EMOA (hypeSMS-
EMOA)”. It is important to mention that our aim was to validate the selec-
tion mechanism. Therefore, we decided to use the same MOEA in all cases
and we only changed the selection mechanism. For this reason, we did not use
the original HyPE. For hypeSMS-EMOA, we used the source code of HyPE,
which is available in the public domain. In both techniques, we used k(103)
as our number of samples, where k is the number of objective functions.

Tables 5.11 and 5.12 show the results for the DTLZ and WFG test prob-
lems, with up to six objective functions, with respect to the hypervolume
indicator. Also, they present the statistical analysis of our experiments us-
ing Wilcoxon’s rank sum. In these tables, we can see that our aviSMS-EMOA
obtains better results than hypeSMS-EMOA in forty-eight problems and in
forty-six of these problems, the hypothesis “medians are equal” can be re-
jected. Only in eight problems, hypeSMS-EMOA obtains better results than
our aviSMS-EMOA and only in four cases, we can say that it outperforms
our aviSMS-EMOA because the hypothesis can be rejected. Summarizing,
our aviSMS-EMOA outperforms hypeSMS-EMOA in forty-six problems, it is
outperformed in four problems and in six problems both algorithms obtain
similar results. In Table 5.13, we can see the running time required by the
two algorithms and we can note that hypeSMS-EMOA is better than our
aviSMS-EMOA in all cases. However, as we saw in Tables 5.11 and 5.12 the
hypeSMS-EMOA algorithm loses quality in its solutions and although our
aviSMS-EMOA is slower than hypeSMS-EMOA, its time requirements are
still manageable (in the worst case, it requires approximately twenty-four
minutes to solve problems with up to six objective functions).

In Figures 5.15, 5.16 and 5.17, we can see the Pareto fronts obtained
by the algorithms hypeSMS-EMOA, aviSMS-EMOA and the original SMS-
EMOA, in the median of thirty independent runs (with respect to the hy-
pervolume indicator) for some of the problems used. In these figures, we can
see that hypeSMS-EMOA loses quality in the distribution of the solutions
and, in some problems, it cannot even generate the entire Pareto front (for
example, in DTLZ6, WFG1 and WFG7). On the other hand, our aviSMS-
EMOA obtains a good distribution in all cases, similar to those obtained by
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the original SMS-EMOA but at a much lower computational cost.

5.3.5 Approximate version of the improved SMS-

EMOA vs the original SMS-EMOA

In this section, we compare our aviSMS-EMOA with respect to the original
SMS-EMOA. We tested it only with up to five objective functions because
the original SMS-EMOA already exceeds the allowable time in problems with
five objective functions. Tables 5.14, 5.15, 5.16 and 5.17 show that our
aviSMS-EMOA is competitive with respect to the original SMS-EMOA. In
Tables 5.15 and 5.16, we present the results with respect to the hypervolume
indicator and we also present the results of the statistical analysis that we
made to validate our experiments, using Wilcoxon’s rank sum. Although,
in most problems, the original SMS-EMOA obtains better results than our
aviSMS-EMOA, the aim of this work was to design a new MOEA based on the
approximations of IH which can significantly reduce the computational cost of
MOEAs based on the exact calculation of IH in many-objective optimization
problems but without losing much quality. In Table 5.17, we can see that our
algorithm requires at most 24 minutes to solve problems with five objective
functions (9.5% of the allowable time), while the original SMS-EMOA spends
all the allowable time (four hours) and it is unable to finish the search.
It is important to note that our aviSMS-EMOA outperformed the original
SMS-EMOA in four problems (DTLZ6, WFG1, WFG4 and WFG7 with five
objective functions) in spite of the fact that it requires much less running
time.

Finally, in Table 5.14, we show the results corresponding to the “two
set coverage” indicator ISC . To calculate it, we merged all solutions found
by our aviSMS-EMOA in a set called A, considering all the 30 indepen-
dent runs, and we merged all solutions found by the original SMS-EMOA
in a set called B. From this table, we can say that in only eleven problems
SMS-EMOA covered some solutions generated by aviSMS-EMOA and that
aviSMS-EMOA could not cover any solution generated by SMS-EMOA, i.e.,
in these eleven problems, SMS-EMOA was better than our aviSMS-EMOA
in terms of convergence. However, in the remaining thirty-one problems, our
aviSMS-EMOA covered some solutions generated by SMS-EMOA and, there-
fore, we cannot say which algorithm is better. There were no cases in which
SMS-EMOA was able to cover all solutions generated by our aviSMS-EMOA
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Figure 5.15: Pareto fronts obtained by the three algorithms in the median
(with respect to the hypervolume indicator) of their independent runs for the
test problems DTLZ1 and DTLZ2.
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Figure 5.16: Pareto fronts obtained by the three algorithms in the median
(with respect to the hypervolume indicator) of their independent runs for the
test problems DTLZ6 and WFG1.
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Figure 5.17: Pareto fronts obtained by the three algorithms in the median
(with respect to the hypervolume indicator) of their independent runs for the
test problems WFG3 and WFG7.
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and in which aviSMS-EMOA was unable to cover any solution generated by
SMS-EMOA. Therefore, we can say that only in 26% of the problems (eleven
cases) SMS-EMOA outperforms our aviSMS-EMOA in terms of convergence.
In the other 74% of the problems (thirty-one cases) both algorithms had a
similar performance in terms of this indicator.

5.3.6 Approximate version of the improved SMS-

EMOA vs MOEA/D

Finally, in this section, we compare our aviSMS-EMOA with respect to an-
other well-known MOEA which is called MOEA/D. We chose this MOEA
because it has been an alternative to deal with many-objective optimization
problems in recent years and its computational cost is very low, see Chapter
4. For our experiments, we used the version in which MOEA/D adopts PBI
(Penalty Boundary Intersection) to decompose the MOP. We decided to use
PBI because the resulting optimal solutions with PBI are normally much
better distributed than those obtained by the Tchebycheff approach [89]. To
generate the convex weights we used the technique proposed in [27] and after
that, we applied clustering (k-means) to obtain a specific number of weights.

Tables 5.19 and 5.20 show the results for the DTLZ and WFG test prob-
lems, with up to six objective functions, with respect to the hypervolume in-
dicator. These tables also present the statistical analysis of our experiments
using Wilcoxon’s rank sum. From these results, we can say that our aviSMS-
EMOA outperforms MOEA/D in fifty-one problems, it is outperformed by
MOEA/D in only one problem and both algorithms have a similar behavior
in the remaining four problems. Table 5.18 shows that our aviSMS-EMOA
was able to cover a big percentage of the solutions generated by MOEA/D in
some problems and MOEA/D did not cover any solutions generated by our
aviSMS-EMOA in many cases. Then, we can say that the convergence of our
aviSMS-EMOA is better than the convergence of MOEA/D. Table 5.21 shows
the results with respect to IIGD in problems with three objective functions,3

the reference sets that we adopted were taken from [21]. In this table, we can
see that our aviSMS-EMOA is better than MOEA/D in most cases (ten out
of fourteen) because it obtained a better result according to IIGD and also

3We decided to use IIGD only in MOPs with three objective functions because the
results of the indicator depend of the reference set that we use and we know that generating
a good reference set in MOPs with many objective functions is a difficult task.
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the statistical analysis says that we can reject the null hypothesis (“medians
are equal”). In one case, both MOEAs have a similar behavior because the
null hypothesis cannot be rejected and only in three cases MOEA/D outper-
formed our aviSMS-EMOA. Regarding IIGD and the DTLZ test problems,
we can say that MOEA/D is better in MOPs with concave Pareto fronts
(DTLZ2, DTLZ3 and DTLZ4), both MOEAs had a similar behavior in a
MOP with a linear Pareto front (DTLZ1) and our aviSMS-EMOA is bet-
ter in MOPs with degenerate Pareto fronts (DTLZ5 and DTLZ6) and with
disconnected Pareto fronts (DTLZ7). These results are logical because we
know that in linear Pareto fronts both MOEAs converge to a uniform dis-
tribution; therefore, we expect that both MOEAS have a similar behavior.
In concave Pareto fronts we know that both MOEAs converge to a different
distribution, therefore, we expect to obtain different values in the indicator
IIGD. Finally, we know that MOEA/D has difficulties in MOPs with discon-
nected Pareto fronts or degenerate Pareto fronts, since it uses a set of well
distributed weights (in the whole objective space) to guide the search. With
respect to the running time required by each MOEA, MOEA/D outperforms
our aviSMS-EMOA because it only needs a maximum of one second to solve
MOPs with 6 objective functions while aviSMS-EMOA needs twenty-two
minutes.

Finally, we present a brief study on the effect of the population size on the
performance of these two MOEAs. It is normally assumed that if we increase
the number of objective functions, we should increase the population size as
well. However, MOEAs based on IH are not practical when we use large
populations because their computational costs increase rapidly (we need to
compute more times the contribution to IH). Our aviSMS-EMOA is more
practical in this sense for two reasons: (i) it only needs to calculate three
contributions to IH per iteration regardless of the population size and (ii)
it does not compute the exact contributions to IH , it only approximates
them. For our study, we only used the DTLZ2 test problem with 3, 4 and 5
objective functions and we used a population size equal to 300, 350 and 400
individuals, respectively. Table 5.22 shows the results. In (a), we can see
that our aviSMS-EMOA is better than MOEA/D regarding IH because it
obtains better results and we can also reject the null hypothesis in all three
cases. In (b), we can see that our aviSMS-EMOA is better than MOEA/D
in terms of convergence in two cases because aviSMS-EMOA was able to
cover some solutions found by MOEA/D and MOEA/D could not cover
any solution found by aviSMS-EMOA. Only in DTLZ2 with three objective
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functions both MOEAs have a similar behavior because MOEA/D was able
to cover some solutions found by aviSMS-EMOA and, therefore, we cannot
say if one of these MOEAs is better. With respect to the running time,
we can see in (c) that MOEA/D is much faster than our aviSMS-EMOA
because it only needs two seconds to solve problems with 3, 4 or 5 objective
functions while our aviSMS-EMOA consumes all the allowable running time
(4 hours). Although MOEA/D is very fast, it is important to keep in mind
that MOEA/D needs to generate a well-distributed set of convex weights and
this task is not easy when we increase the number of objective functions.

5.3.7 Study: aviSMS-EMOA and the number of sam-

ples

As we mentioned before (see Section 5.1), Bringmann and Friedrich proposed
a method to approximate the contribution to IH of one solution. However,
their main goal was to find the solution from a set of solutions with the least
contribution to IH . Thus, they present a way in which we can determine
the number of samples to guarantee that for any given δ and ǫ ≥ 0 the
obtained solution is with a probability of (1− δ), larger by at most a factor
of (1 + ǫ) than the least contributor. Also, Nowak et al. [64] made an
empirical study about the number of samples in the approximation method
proposed by Bringmann and Friedrich to find the least contributor. They
used δ = 10−6 and ǫ = 10−2. In one of their experiments in which they used
200 points, the number of samples was: 104 for points with dimension equal
to 3, between 104 and 105 for points with dimensions equal to 4 and 5, 105

for points with dimension equal to 6, between 105 and 106 for points with
dimension equal to 7, between 106 and 107 for points with dimension equal
to 8, 107 and 108 for points with dimensions equal to 9 and 10, 108 for points
with dimension equal to 11, 109 for points with dimension equal to 12. And,
an interesting thing is that for points with dimension greater than 12 the
number of samples can significantly decrease, e.g., for points with dimension
equal to 90 the number of samples was between 104 and 105. Some of their
conclusions were the following:

1. there is a dependence between the number of samples and the dimen-
sion,

2. the number of samples increases when two or more points differ very
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little in their contribution (this was called “hardness of approximation”
in the original work by Bringmann and Friedrich [12]) and,

3. the effect “hardness of approximation” seems to be inversely propor-
tional to the dimension when the number of points is fixed. The authors
mentioned that this can be attributed to a relatively sparse distribu-
tion of points as the dimension increases, leading to fewer occurrences
of hard cases.

We do not use the complete algorithm proposed by Bringmann and
Friedrich in which they want to find the point with the least contribution
to IH from a set of points. Instead, we only use the way in which the con-
tribution is approximated. We decided to conduct a study, in which we use
102, 103, 104 and 105 samples to approximate the contribution to IH in our
aviSMS-EMOA and we consider the DTLZ2 test problem with 3, 4, 5, 6,
7, 8, 9 and 10 objective functions. We made our experiments using a pop-
ulation size equal to 100. We decided to use up to 105 samples because
according to the empirical results presented by Nowak et al. we need at
most 105 samples for solving problems with dimension greater or equal than
2 and less or equal than 7 and problems with dimension greater or equal
than 40 and less or equal than 90 to obtain a good approximation (when
δ = 10−6 and ǫ = 10−2 as suggested by Bringmann and Friedrich). And
also, for this number of samples our aviSMS-EMOA requires less than four
hours (maximum allowable running time) to obtain the approximation of the
Pareto front. Therefore, we can think that this is a good number of samples
that our aviSMS-EMOA could adopt. As in the above sections, to calculate
the hypervolume indicator, we normalized the approximations of the Pareto
optimal set, generated by aviSMS-EMOA and we used yref = [y1, · · · , yk]
such that yi = 1.1 as our reference point. The normalization was performed
considering all approximations generated by aviSMS-EMOA using a differ-
ent number of samples (i.e., we place, in one set, all nondominated solutions
found and from this set we calculate the maximum and minimum for each
objective function). In Table 5.23, we can see that aviSMS-EMOA signifi-
cantly improved the quality in its solutions when we increased the number
of samples. And, an interesting thing is that in Table 5.24 we can see that
our aviSMS-EMOA is still faster than avoSMS-EMOA (avoSMS-EMOA re-
quired 8418 seconds to solve the DTLZ2 test problems with six objective
funtions using 6000 samples while aviSMS-EMOA required 3546 seconds to
solve the same problem using 105 samples). It is important to mention that
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the running time decreases as we increase the number of objective functions
and this is because aviSMS-EMOA only uses the selection mechanism based
on IH and its locality property when, after applying Pareto ranking, we only
obtain one front. Therefore, we claim that our aviSMS-EMOA is a good
option to solve MOPs with low or high dimensionality in objective function
space.
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~f
avo

SMS-EMOA
IH

avi
SMS-EMOA

IH
P (H)

DTLZ1 (3) 1.119355 (0.000752) 1.122217 (0.000494) 0.000 (1)
DTLZ2 (3) 0.752558 (0.000827) 0.758602 (0.000340) 0.000 (1)
DTLZ3 (3) 1.328649 (0.000456) 1.328265 (0.000700) 0.000 (1)
DTLZ4 (3) 0.869511 (0.000606) 0.873943 (0.000250) 0.000 (1)
DTLZ5 (3) 0.266479 (0.000073) 0.266585 (0.000048) 0.000 (1)
DTLZ6 (3) 1.093792 (0.003768) 1.094423 (0.004341) 0.739 (0)
DTLZ7 (3) 0.550945 (0.040583) 0.552256 (0.048770) 0.000 (1)
DTLZ1 (4) 1.359120 (0.003350) 1.366684 (0.001205) 0.000 (1)
DTLZ2 (4) 1.020956 (0.002523) 1.035152 (0.001397) 0.000 (1)
DTLZ3 (4) 1.462183 (0.002832) 1.463597 (0.000130) 0.000 (1)
DTLZ4 (4) 1.021915 (0.001837) 1.035100 (0.000920) 0.000 (1)
DTLZ5 (4) 0.542823 (0.000578) 0.545064 (0.000508) 0.000 (1)
DTLZ6 (4) 1.204105 (0.005438) 1.206271 (0.004888) 0.057 (0)
DTLZ7 (4) 0.558208 (0.045049) 0.550050 (0.061062) 0.228 (0)
DTLZ1 (5) 0.000157 (0.000847) 1.541811 (0.005706) 0.000 (1)
DTLZ2 (5) 1.283019 (0.007232) 1.300072 (0.004737) 0.000 (1)
DTLZ3 (5) 1.602555 (0.003153) 1.608407 (0.003140) 0.000 (1)
DTLZ4 (5) 1.242106 (0.006623) 1.264793 (0.004457) 0.000 (1)
DTLZ5 (5) 0.928496 (0.001337) 0.930685 (0.001020) 0.000 (1)
DTLZ6 (5) 1.519338 (0.002185) 1.519103 (0.001631) 0.853 (0)
DTLZ7 (5) 0.585090 (0.009424) 0.589229 (0.020254) 0.001 (1)
DTLZ1 (6) 0.000000 (0.000000) 1.549649 (0.202423) 0.000 (1)
DTLZ2 (6) 1.643348 (0.006121) 1.655438 (0.003776) 0.000 (1)
DTLZ3 (6) 1.765905 (0.003950) 1.770941 (0.000163) 0.000 (1)
DTLZ4 (6) 1.551908 (0.011219) 1.572087 (0.006064) 0.000 (1)
DTLZ5 (6) 1.023163 (0.001465) 1.031885 (0.001188) 0.000 (1)
DTLZ6 (6) 1.634232 (0.003208) 1.631369 (0.002293) 0.000 (1)
DTLZ7 (6) 0.760641 (0.009346) 0.773352 (0.010180) 0.000 (1)

Table 5.7: Results obtained in the DTLZ test problems by avoSMS-EMOA
and aviSMS-EMOA, using the hypervolume indicator. We show average
values over 30 independent runs. The values in parentheses correspond to
the standard deviations. The third column shows the results of the statistical
analysis applied to our experiments using Wilcoxon’s rank sum. P is the
probability of observing the given result (the null hypothesis is true). Small
values of P cast doubt on the validity of the null hypothesis. H = 0 indicates
that the null hypothesis (“medians are equal”) cannot be rejected at the 5%
level. H = 1 indicates that the null hypothesis can be rejected at the 5%
level.
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~f
avo

SMS-EMOA
IH

avi
SMS-EMOA

IH
P (H)

WFG1 (3) 1.213067 (0.017999) 1.205361 (0.024067) 0.067 (0)
WFG2 (3) 0.773147 (0.090704) 0.799503 (0.074819) 0.318 (0)
WFG3 (3) 0.634272 (0.000975) 0.636772 (0.003130) 0.000 (1)
WFG4 (3) 0.745912 (0.001248) 0.752357 (0.001500) 0.000 (1)
WFG5 (3) 0.554767 (0.001288) 0.557581 (0.001661) 0.000 (1)
WFG6 (3) 0.562236 (0.001805) 0.565928 (0.001409) 0.000 (1)
WFG7 (3) 0.736256 (0.004506) 0.748956 (0.003767) 0.000 (1)
WFG1 (4) 1.416596 (0.009155) 1.414339 (0.008604) 0.245 (0)
WFG2 (4) 0.001735 (0.008153) 0.300548 (0.254003) 0.000 (1)
WFG3 (4) 0.583248 (0.003331) 0.592232 (0.006450) 0.000 (1)
WFG4 (4) 1.014467 (0.003034) 1.030276 (0.003034) 0.000 (1)
WFG5 (4) 0.591930 (0.001643) 0.598550 (0.001842) 0.000 (1)
WFG6 (4) 0.589722 (0.007086) 0.610031 (0.006558) 0.000 (1)
WFG7 (4) 0.901884 (0.007163) 0.915375 (0.006581) 0.000 (1)
WFG1 (5) 1.548501 (0.006609) 1.547656 (0.006617) 0.795 (0)
WFG2 (5) 0.022475 (0.038981) 0.407945 (0.205793) 0.000 (1)
WFG3 (5) 0.568612 (0.017204) 0.576101 (0.022876) 0.093 (0)
WFG4 (5) 1.248211 (0.005244) 1.270178 (0.004494) 0.000 (1)
WFG5 (5) 0.644069 (0.003874) 0.655659 (0.002092) 0.000 (1)
WFG6 (5) 0.516213 (0.037908) 0.598269 (0.027623) 0.000 (1)
WFG7 (5) 1.023308 (0.008889) 1.032123 (0.012809) 0.004 (1)
WFG1 (6) 1.703600 (0.010057) 1.691179 (0.014593) 0.000 (1)
WFG2 (6) 0.017461 (0.036667) 0.487496 (0.254908) 0.000 (1)
WFG3 (6) 0.550745 (0.034929) 0.590424 (0.049438) 0.000 (1)
WFG4 (6) 1.468713 (0.005597) 1.492717 (0.007779) 0.000 (1)
WFG5 (6) 0.700614 (0.003190) 0.720380 (0.002684) 0.000 (1)
WFG6 (6) 0.526582 (0.042342) 0.637238 (0.050036) 0.000 (1)
WFG7 (6) 1.014516 (0.061564) 0.907848 (0.066396) 0.000 (1)

Table 5.8: Results obtained in the WFG test problems by avoSMS-EMOA
and aviSMS-EMOA, using the hypervolume indicator. We show average
values over 30 independent runs. The values in parentheses correspond to
the standard deviations. The third column shows the results of the statistical
analysis applied to our experiments using Wilcoxon’s rank sum. P is the
probability of observing the given result (the null hypothesis is true). Small
values of P cast doubt on the validity of the null hypothesis. H = 0 indicates
that the null hypothesis (“medians are equal”) cannot be rejected at the 5%
level. H = 1 indicates that the null hypothesis can be rejected at the 5%
level.
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~f
avo

SMS-EMOA
time

avi
SMS-EMOA

time

DTLZ1 (3) ≈ 4593 s ≈ 385 s
DTLZ2 (3) ≈ 10349 s ≈ 889 s
DTLZ3 (3) ≈ 14300 s ≈ 1298 s
DTLZ4 (3) ≈ 10482 s ≈ 888 s
DTLZ5 (3) ≈ 897 s ≈ 172 s
DTLZ6 (3) ≈ 5203 s ≈ 409 s
DTLZ7 (3) ≈ 8469 s ≈ 738 s
DTLZ1 (4) ≈ 4215 s ≈ 394 s
DTLZ2 (4) ≈ 12071 s ≈ 961 s
DTLZ3 (4) ≈ 11419 s ≈ 1399 s
DTLZ4 (4) ≈ 12062 s ≈ 948 s
DTLZ5 (4) ≈ 4679 s ≈ 495 s
DTLZ6 (4) ≈ 5794 s ≈ 567 s
DTLZ7 (4) ≈ 11439 s ≈ 974 s
DTLZ1 (5) ≈ 5488 s ≈ 350 s
DTLZ2 (5) ≈ 9542 s ≈ 798 s
DTLZ3 (5) ≈ 12807 s ≈ 1346 s
DTLZ4 (5) ≈ 9558 s ≈ 776 s
DTLZ5 (5) ≈ 5950 s ≈ 557 s
DTLZ6 (5) ≈ 6878 s ≈ 649 s
DTLZ7 (5) ≈ 13077 s ≈ 1135 s
DTLZ1 (6) ≈ 8364 s ≈ 436 s
DTLZ2 (6) ≈ 8418 s ≈ 750 s
DTLZ3 (6) ≈ 14410 s ≈ 1164 s
DTLZ4 (6) ≈ 8426 s ≈ 726 s
DTLZ5 (6) ≈ 6913 s ≈ 662 s
DTLZ6 (6) ≈ 7954 s ≈ 754 s
DTLZ7 (6) ≈ 13879 s ≈ 1324 s

~f
avo

SMS-EMOA
time

avi
SMS-EMOA

time

WFG1 (3) ≈ 13915 s ≈ 1176 s
WFG2 (3) ≈ 4706 s ≈ 474 s
WFG3 (3) ≈ 6627 s ≈ 554 s
WFG4 (3) ≈ 13945 s ≈ 1230 s
WFG5 (3) ≈ 10697 s ≈ 896 s
WFG6 (3) ≈ 9574 s ≈ 736 s
WFG7 (3) ≈ 14415 s ≈ 1351 s
WFG1 (4) ≈ 11621 s ≈ 882 s
WFG2 (4) ≈ 6353 s ≈ 693 s
WFG3 (4) ≈ 7828 s ≈ 628 s
WFG4 (4) ≈ 14419 s ≈ 1238 s
WFG5 (4) ≈ 10827 s ≈ 878 s
WFG6 (4) ≈ 10351 s ≈ 799 s
WFG7 (4) ≈ 14319 s ≈ 1129 s
WFG1 (5) ≈ 7432 s ≈ 614 s
WFG2 (5) ≈ 9955 s ≈ 1007 s
WFG3 (5) ≈ 9945 s ≈ 815 s
WFG4 (5) ≈ 13473 s ≈ 1091 s
WFG5 (5) ≈ 13090 s ≈ 1123 s
WFG6 (5) ≈ 12392 s ≈ 1000 s
WFG7 (5) ≈ 12685 s ≈ 992 s
WFG1 (6) ≈ 5974 s ≈ 558 s
WFG2 (6) ≈ 13436 s ≈ 1339 s
WFG3 (6) ≈ 11710 s ≈ 1058 s
WFG4 (6) ≈ 12737 s ≈ 1042 s
WFG5 (6) ≈ 14413 s ≈ 1332 s
WFG6 (6) ≈ 14416 s ≈ 1359 s
WFG7 (6) ≈ 12346 s ≈ 992 s

Table 5.9: Time required by avoSMS-EMOA and aviSMS-EMOA for the test
problems adopted. s = seconds. Both algorithms were compiled using the
GNU C compiler and they were executed on a computer with a 2.66GHz
processor and 4GB in RAM.
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~f
avo

SMS-EMOA
success

avi
SMS-EMOA

success

avi
SMS-EMOA

diff
DTLZ1 (3) 0.010551 (0.003024) 0.973352 (0.002994) 0.898300 (0.002532)
DTLZ2 (3) 0.010578 (0.003577) 0.976261 (0.001304) 0.946450 (0.001322)
DTLZ3 (3) 0.008350 (0.003084) 0.953463 (0.011867) 0.942000 (0.005657)
DTLZ4 (3) 0.009864 (0.002434) 0.968088 (0.001255) 0.946100 (0.001700)
DTLZ5 (3) 0.009462 (0.001427) 0.869048 (0.009573) 0.920750 (0.001757)
DTLZ6 (3) 0.011180 (0.001651) 0.967014 (0.015320) 0.714150 (0.085841)
DTLZ7 (3) 0.009721 (0.003322) 0.990437 (0.001576) 0.937000 (0.002449)
DTLZ1 (4) 0.009780 (0.002375) 0.929687 (0.004549) 0.899200 (0.002768)
DTLZ2 (4) 0.009171 (0.002870) 0.958048 (0.001183) 0.946500 (0.000975)
DTLZ3 (4) 0.007843 (0.002046) 0.871917 (0.022897) 0.923600 (0.009324)
DTLZ4 (4) 0.009949 (0.002545) 0.937088 (0.001944) 0.942850 (0.001621)
DTLZ5 (4) 0.009950 (0.002343) 0.945747 (0.002642) 0.943850 (0.002725)
DTLZ6 (4) 0.010536 (0.002724) 0.963123 (0.002079) 0.930850 (0.003198)
DTLZ7 (4) 0.009045 (0.002350) 0.983524 (0.004796) 0.950350 (0.001108)
WFG1 (3) 0.009368 (0.002253) 0.981253 (0.001282) 0.954100 (0.000768)
WFG2 (3) 0.010965 (0.002512) 0.976954 (0.004540) 0.930550 (0.005005)
WFG3 (3) 0.009335 (0.001776) 0.986898 (0.000819) 0.952900 (0.001221)
WFG4 (3) 0.009588 (0.003385) 0.997338 (0.000251) 0.955500 (0.000742)
WFG5 (3) 0.009214 (0.003495) 0.981864 (0.000761) 0.958000 (0.001000)
WFG6 (3) 0.009902 (0.002373) 0.986261 (0.000806) 0.951150 (0.000963)
WFG7 (3) 0.009955 (0.003873) 0.986393 (0.000630) 0.963250 (0.000887)
WFG1 (4) 0.008880 (0.003976) 0.970744 (0.001421) 0.953550 (0.001396)
WFG2 (4) 0.011041 (0.002897) 0.930375 (0.010810) 0.931550 (0.003471)
WFG3 (4) 0.010296 (0.004187) 0.979382 (0.001668) 0.952700 (0.001453)
WFG4 (4) 0.009413 (0.002984) 0.994394 (0.000436) 0.959100 (0.000943)
WFG5 (4) 0.009564 (0.003095) 0.981475 (0.000773) 0.958550 (0.000865)
WFG6 (4) 0.010444 (0.002686) 0.971220 (0.002110) 0.951650 (0.001152)
WFG7 (4) 0.008602 (0.004414) 0.984837 (0.000790) 0.961850 (0.000726)

Table 5.10: Success rate (column called “success”) achieved by both,
avoSMS-EMOA and aviSMS-EMOA. Since the two selection mechanisms
delete the individual with the worst contribution, we define success when
the following occurs: When the algorithm deletes the true worst individ-
ual (in order to know which is the true worst individual, we compute the
exact contribution). In the case of aviSMS-EMOA, we consider the worst
individual among three individuals (new, near and rand). In the case of
avoSMS-EMOA, we consider the worst individual among all individuals in
the population. The column called “diff” shows the percentage in which the
new solution and its nearest neighbor had different values in their contribu-
tion to IH (this column can only be applied to aviSMS-EMOA).
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~f
hype

SMS-EMOA
IH

avi
SMS-EMOA

IH
P (H)

DTLZ1 (3) 1.101012 (0.006067) 1.122217 (0.000494) 0.000 (1)
DTLZ2 (3) 0.743232 (0.002097) 0.758602 (0.000340) 0.000 (1)
DTLZ3 (3) 1.328533 (0.000169) 1.328265 (0.000700) 0.487 (0)
DTLZ4 (3) 0.863879 (0.001943) 0.873943 (0.000250) 0.000 (1)
DTLZ5 (3) 0.265428 (0.000238) 0.266585 (0.000048) 0.000 (1)
DTLZ6 (3) 1.082554 (0.015066) 1.094423 (0.004341) 0.000 (1)
DTLZ7 (3) 0.534802 (0.033129) 0.552256 (0.048770) 0.000 (1)
DTLZ1 (4) 1.258490 (0.056806) 1.366684 (0.001205) 0.000 (1)
DTLZ2 (4) 1.008560 (0.003414) 1.035152 (0.001397) 0.000 (1)
DTLZ3 (4) 1.463624 (0.000067) 1.463597 (0.000130) 0.695 (0)
DTLZ4 (4) 1.014310 (0.004246) 1.035100 (0.000920) 0.000 (1)
DTLZ5 (4) 0.518095 (0.004575) 0.545064 (0.000508) 0.000 (1)
DTLZ6 (4) 1.056882 (0.017816) 1.206271 (0.004888) 0.000 (1)
DTLZ7 (4) 0.507082 (0.030202) 0.550050 (0.061062) 0.002 (1)
DTLZ1 (5) 1.237122 (0.348331) 1.541811 (0.005706) 0.000 (1)
DTLZ2 (5) 1.281626 (0.004608) 1.300072 (0.004737) 0.000 (1)
DTLZ3 (5) 1.608858 (0.000222) 1.608407 (0.003140) 0.004 (1)
DTLZ4 (5) 1.254611 (0.005040) 1.264793 (0.004457) 0.000 (1)
DTLZ5 (5) 0.871195 (0.008001) 0.930685 (0.001020) 0.000 (1)
DTLZ6 (5) 1.433997 (0.008634) 1.519103 (0.001631) 0.000 (1)
DTLZ7 (5) 0.473364 (0.056567) 0.589229 (0.020254) 0.000 (1)
DTLZ1 (6) 1.500805 (0.234972) 1.549649 (0.202423) 0.162 (0)
DTLZ2 (6) 1.658514 (0.002679) 1.655438 (0.003776) 0.000 (1)
DTLZ3 (6) 1.771045 (0.000047) 1.770941 (0.000163) 0.000 (1)
DTLZ4 (6) 1.583394 (0.003860) 1.572087 (0.006064) 0.000 (1)
DTLZ5 (6) 0.941583 (0.011495) 1.031885 (0.001188) 0.000 (1)
DTLZ6 (6) 1.460519 (0.022557) 1.631369 (0.002293) 0.000 (1)
DTLZ7 (6) 0.450393 (0.124927) 0.773352 (0.010180) 0.000 (1)

Table 5.11: Comparison of the results obtained in the DTLZ test problems
by hypeSMS-EMOA and aviSMS-EMOA, with respect to the hypervolume
indicator. We show average values over 30 independent runs. The values
in parentheses correspond to the standard deviations. The third column
shows the results of the statistical analysis applied to our experiments using
Wilcoxon’s rank sum. P is the probability of observing the given result (the
null hypothesis is true). Small values of P cast doubt on the validity of the
null hypothesis. H = 0 indicates that the null hypothesis (“medians are
equal”) cannot be rejected at the 5% level. H = 1 indicates that the null
hypothesis can be rejected at the 5% level.
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~f
hype

SMS-EMOA
IH

avi
SMS-EMOA

IH
P (H)

WFG1 (3) 1.017526 (0.067671) 1.205361 (0.024067) 0.000 (1)
WFG2 (3) 0.647049 (0.054860) 0.799503 (0.074819) 0.000 (1)
WFG3 (3) 0.606017 (0.006630) 0.636772 (0.003130) 0.000 (1)
WFG4 (3) 0.701693 (0.005039) 0.752357 (0.001500) 0.000 (1)
WFG5 (3) 0.537158 (0.002760) 0.557581 (0.001661) 0.000 (1)
WFG6 (3) 0.547413 (0.003932) 0.565928 (0.001409) 0.000 (1)
WFG7 (3) 0.558748 (0.028965) 0.748956 (0.003767) 0.000 (1)
WFG1 (4) 1.147478 (0.026432) 1.414339 (0.008604) 0.000 (1)
WFG2 (4) 0.422296 (0.256235) 0.300548 (0.254003) 0.084 (0)
WFG3 (4) 0.527767 (0.016347) 0.592232 (0.006450) 0.000 (1)
WFG4 (4) 0.932772 (0.008365) 1.030276 (0.003034) 0.000 (1)
WFG5 (4) 0.558728 (0.005313) 0.598550 (0.001842) 0.000 (1)
WFG6 (4) 0.562704 (0.011569) 0.610031 (0.006558) 0.000 (1)
WFG7 (4) 0.417145 (0.032298) 0.915375 (0.006581) 0.000 (1)
WFG1 (5) 1.245126 (0.027633) 1.547656 (0.006617) 0.000 (1)
WFG2 (5) 0.496898 (0.219141) 0.407945 (0.205793) 0.176 (0)
WFG3 (5) 0.424716 (0.034430) 0.576101 (0.022876) 0.000 (1)
WFG4 (5) 1.116985 (0.018688) 1.270178 (0.004494) 0.000 (1)
WFG5 (5) 0.564973 (0.012296) 0.655659 (0.002092) 0.000 (1)
WFG6 (5) 0.437411 (0.035684) 0.598269 (0.027623) 0.000 (1)
WFG7 (5) 0.309892 (0.022794) 1.032123 (0.012809) 0.000 (1)
WFG1 (6) 1.356902 (0.031802) 1.691179 (0.014593) 0.000 (1)
WFG2 (6) 0.369049 (0.247980) 0.487496 (0.254908) 0.072 (0)
WFG3 (6) 0.353758 (0.043983) 0.590424 (0.049438) 0.000 (1)
WFG4 (6) 1.282154 (0.024684) 1.492717 (0.007779) 0.000 (1)
WFG5 (6) 0.523809 (0.020982) 0.720380 (0.002684) 0.000 (1)
WFG6 (6) 0.369149 (0.052829) 0.637238 (0.050036) 0.000 (1)
WFG7 (6) 0.264190 (0.017844) 0.907848 (0.066396) 0.000 (1)

Table 5.12: Comparison of the results obtained in the WFG test problems
by hypeSMS-EMOA and aviSMS-EMOA, with respect to the hypervolume
indicator. We show average values over 30 independent runs. The values
in parentheses correspond to the standard deviations. The third column
shows the results of the statistical analysis applied to our experiments using
Wilcoxon’s rank sum. P is the probability of observing the given result (the
null hypothesis is true). Small values of P cast doubt on the validity of the
null hypothesis. H = 0 indicates that the null hypothesis (“medians are
equal”) cannot be rejected at the 5% level. H = 1 indicates that the null
hypothesis can be rejected at the 5% level.
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~f
hype

sms-emoa
time

avi
SMS-EMOA

time

DTLZ1 (3) ≈ 47 s ≈ 385 s
DTLZ2 (3) ≈ 106 s ≈ 889 s
DTLZ3 (3) ≈ 135 s ≈ 1298 s
DTLZ4 (3) ≈ 107 s ≈ 888 s
DTLZ5 (3) ≈ 64 s ≈ 172 s
DTLZ6 (3) ≈ 59 s ≈ 409 s
DTLZ7 (3) ≈ 98 s ≈ 738 s
DTLZ1 (4) ≈ 59 s ≈ 394 s
DTLZ2 (4) ≈ 156 s ≈ 961 s
DTLZ3 (4) ≈ 165 s ≈ 1399 s
DTLZ4 (4) ≈ 157 s ≈ 948 s
DTLZ5 (4) ≈ 143 s ≈ 495 s
DTLZ6 (4) ≈ 129 s ≈ 567 s
DTLZ7 (4) ≈ 185 s ≈ 974 s
DTLZ1 (5) ≈ 79 s ≈ 350 s
DTLZ2 (5) ≈ 188 s ≈ 798 s
DTLZ3 (5) ≈ 177 s ≈ 1346 s
DTLZ4 (5) ≈ 190 s ≈ 776 s
DTLZ5 (5) ≈ 229 s ≈ 557 s
DTLZ6 (5) ≈ 225 s ≈ 649 s
DTLZ7 (5) ≈ 296 s ≈ 1135 s
DTLZ1 (6) ≈ 98 s ≈ 436 s
DTLZ2 (6) ≈ 233 s ≈ 750 s
DTLZ3 (6) ≈ 185 s ≈ 1164 s
DTLZ4 (6) ≈ 234 s ≈ 726 s
DTLZ5 (6) ≈ 336 s ≈ 662 s
DTLZ6 (6) ≈ 340 s ≈ 754 s
DTLZ7 (6) ≈ 377 s ≈ 1324 s

~f
hype

sms-emoa
time

avi
SMS-EMOA

time

WFG1 (3) ≈ 147 s ≈ 1176 s
WFG2 (3) ≈ 98 s ≈ 474 s
WFG3 (3) ≈ 148 s ≈ 554 s
WFG4 (3) ≈ 107 s ≈ 1230 s
WFG5 (3) ≈ 153 s ≈ 896 s
WFG6 (3) ≈ 168 s ≈ 736 s
WFG7 (3) ≈ 151 s ≈ 1351 s
WFG1 (4) ≈ 233 s ≈ 882 s
WFG2 (4) ≈ 170 s ≈ 693 s
WFG3 (4) ≈ 247 s ≈ 628 s
WFG4 (4) ≈ 157 s ≈ 1238 s
WFG5 (4) ≈ 206 s ≈ 878 s
WFG6 (4) ≈ 216 s ≈ 799 s
WFG7 (4) ≈ 252 s ≈ 1129 s
WFG1 (5) ≈ 335 s ≈ 614 s
WFG2 (5) ≈ 269 s ≈ 1007 s
WFG3 (5) ≈ 378 s ≈ 815 s
WFG4 (5) ≈ 220 s ≈ 1091 s
WFG5 (5) ≈ 276 s ≈ 1123 s
WFG6 (5) ≈ 274 s ≈ 1000 s
WFG7 (5) ≈ 358 s ≈ 992 s
WFG1 (6) ≈ 383 s ≈ 558 s
WFG2 (6) ≈ 377 s ≈ 1339 s
WFG3 (6) ≈ 445 s ≈ 1058 s
WFG4 (6) ≈ 316 s ≈ 1042 s
WFG5 (6) ≈ 246 s ≈ 1332 s
WFG6 (6) ≈ 259 s ≈ 1359 s
WFG7 (6) ≈ 408 s ≈ 992 s

Table 5.13: Time required by hypeSMS-EMOA and aviSMS-EMOA for the
test problems adopted. s = seconds. Both algorithms were compiled using
the GNU C compiler and they were executed on a computer with a 2.66GHz
processor and 4GB in RAM.
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~f ISC(A,B) ISC(B,A)

DTLZ1 (3) 0.002333 0.031000
DTLZ2 (3) 0.000000 0.063333
DTLZ3 (3) 0.039333 0.276000
DTLZ4 (3) 0.000000 0.067667
DTLZ5 (3) 0.002000 0.087333
DTLZ6 (3) 0.693667 0.703333
DTLZ7 (3) 0.002333 0.001667
DTLZ1 (4) 0.000000 0.013333
DTLZ2 (4) 0.000000 0.208000
DTLZ3 (4) 0.002000 0.169333
DTLZ4 (4) 0.000000 0.192667
DTLZ5 (4) 0.000667 0.127333
DTLZ6 (4) 0.226667 0.308333
DTLZ7 (4) 0.000333 0.002000
DTLZ1 (5) 0.000000 0.112667
DTLZ2 (5) 0.000000 0.327667
DTLZ3 (5) 0.091333 0.191000
DTLZ4 (5) 0.000000 0.330667
DTLZ5 (5) 0.092333 0.044000
DTLZ6 (5) 0.273333 0.134000
DTLZ7 (5) 0.000000 0.004667

~f ISC(A,B) ISC(B,A)

WFG1 (3) 0.000000 0.003667
WFG2 (3) 0.426333 0.634667
WFG3 (3) 0.379333 0.186333
WFG4 (3) 0.078667 0.256667
WFG5 (3) 0.004333 0.061000
WFG6 (3) 0.272333 0.445333
WFG7 (3) 0.003667 0.020333
WFG1 (4) 0.000000 0.001000
WFG2 (4) 0.033000 0.966000
WFG3 (4) 0.159333 0.137333
WFG4 (4) 0.027000 0.228333
WFG5 (4) 0.003333 0.050667
WFG6 (4) 0.086000 0.387000
WFG7 (4) 0.001000 0.002667
WFG1 (5) 0.000000 0.000000
WFG2 (5) 0.029667 0.966667
WFG3 (5) 0.106667 0.207667
WFG4 (5) 0.419000 0.000667
WFG5 (5) 0.002000 0.044000
WFG6 (5) 0.023667 0.393667
WFG7 (5) 0.000000 0.000000

Table 5.14: Results obtained in the DTLZ and WFG test problems by
aviSMS-EMOA and SMS-EMOA, using the two set coverage indicator (ISC).
In this case, A is the set composed by all solutions found by aviSMS-EMOA
considering all 30 independent runs and B is the set composed by all solutions
found by SMS-EMOA considering all 30 independent runs.
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~f
avi

SMS-EMOA
IH

SMS-EMOA
IH

P (H)

DTLZ1 (3) 1.122217 (0.000494) 1.123180 (0.000283) 0.000 (1)
DTLZ2 (3) 0.758602 (0.000340) 0.759983 (0.000048) 0.000 (1)
DTLZ3 (3) 1.328265 (0.000700) 1.328074 (0.000341) 0.051 (0)
DTLZ4 (3) 0.873943 (0.000250) 0.875118 (0.000042) 0.000 (1)
DTLZ5 (3) 0.266585 (0.000048) 0.266762 (0.000021) 0.000 (1)
DTLZ6 (3) 1.094423 (0.004341) 1.095866 (0.003607) 0.145 (0)
DTLZ7 (3) 0.552256 (0.048770) 0.548923 (0.056148) 0.045 (1)
DTLZ1 (4) 1.366684 (0.001205) 1.373796 (0.000307) 0.000 (1)
DTLZ2 (4) 1.035152 (0.001397) 1.046741 (0.000063) 0.000 (1)
DTLZ3 (4) 1.463597 (0.000130) 1.463689 (0.000083) 0.000 (1)
DTLZ4 (4) 1.035100 (0.000920) 1.044891 (0.000093) 0.000 (1)
DTLZ5 (4) 0.545064 (0.000508) 0.546139 (0.000159) 0.000 (1)
DTLZ6 (4) 1.206271 (0.004888) 1.208642 (0.003669) 0.003 (1)
DTLZ7 (4) 0.550050 (0.061062) 0.579217 (0.046162) 0.000 (1)
DTLZ1 (5) 1.541811 (0.005706) 1.566729 (0.000759) 0.000 (1)
DTLZ2 (5) 1.300072 (0.004737) 1.334594 (0.000329) 0.000 (1)
DTLZ3 (5) 1.608407 (0.003140) 1.609056 (0.000319) 0.004 (1)
DTLZ4 (5) 1.264793 (0.004457) 1.299259 (0.000224) 0.000 (1)
DTLZ5 (5) 0.930685 (0.001020) 0.931459 (0.001521) 0.000 (1)
DTLZ6 (5) 1.519103 (0.001631) 1.504474 (0.002545) 0.000 (1)
DTLZ7 (5) 0.589229 (0.020254) 0.599077 (0.019488) 0.008 (1)

Table 5.15: Results obtained in the DTLZ test problems by aviSMS-EMOA
and SMS-EMOA, using the hypervolume indicator. We show average val-
ues over 30 independent runs. The values in parentheses correspond to the
standard deviations. The third column shows the results of the statistical
analysis applied to our experiments using Wilcoxon’s rank sum. P is the
probability of observing the given result (the null hypothesis is true). Small
values of P cast doubt on the validity of the null hypothesis. H = 0 indicates
that the null hypothesis (“medians are equal”) cannot be rejected at the 5%
level. H = 1 indicates that the null hypothesis can be rejected at the 5%
level.
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~f
avi

SMS-EMOA
IH

SMS-EMOA
IH

P (H)

WFG1 (3) 1.205361 (0.024067) 1.210076 (0.025345) 0.029 (1)
WFG2 (3) 0.799503 (0.074819) 0.809164 (0.067653) 0.245 (0)
WFG3 (3) 0.636772 (0.003130) 0.636873 (0.002070) 0.646 (0)
WFG4 (3) 0.752357 (0.001500) 0.754175 (0.001647) 0.000 (1)
WFG5 (3) 0.557581 (0.001661) 0.557814 (0.001690) 0.015 (1)
WFG6 (3) 0.565928 (0.001409) 0.567213 (0.001614) 0.003 (1)
WFG7 (3) 0.748956 (0.003767) 0.750817 (0.003654) 0.055 (0)
WFG1 (4) 1.414339 (0.008604) 1.422808 (0.008483) 0.000 (1)
WFG2 (4) 0.300548 (0.254003) 0.861447 (0.126454) 0.000 (1)
WFG3 (4) 0.592232 (0.006450) 0.599850 (0.006850) 0.000 (1)
WFG4 (4) 1.030276 (0.003034) 1.038021 (0.002107) 0.000 (1)
WFG5 (4) 0.598550 (0.001842) 0.599677 (0.001846) 0.000 (1)
WFG6 (4) 0.610031 (0.006558) 0.616532 (0.006956) 0.000 (1)
WFG7 (4) 0.915375 (0.006581) 0.925977 (0.007987) 0.000 (1)
WFG1 (5) 1.547656 (0.006617) 1.372422 (0.018408) 0.000 (1)
WFG2 (5) 0.407945 (0.205793) 0.913807 (0.125715) 0.000 (1)
WFG3 (5) 0.576101 (0.022876) 0.590381 (0.027869) 0.000 (1)
WFG4 (5) 1.270178 (0.004494) 1.224230 (0.008055) 0.000 (1)
WFG5 (5) 0.655659 (0.002092) 0.658808 (0.002015) 0.000 (1)
WFG6 (5) 0.598269 (0.027623) 0.631408 (0.028629) 0.000 (1)
WFG7 (5) 1.032123 (0.012809) 0.753463 (0.054363) 0.000 (1)

Table 5.16: Results obtained in the WFG test problems by aviSMS-EMOA
and SMS-EMOA, using the hypervolume indicator. We show average val-
ues over 30 independent runs. The values in parentheses correspond to the
standard deviations. The third column shows the results of the statistical
analysis applied to our experiments using Wilcoxon’s rank sum. P is the
probability of observing the given result (the null hypothesis is true). Small
values of P cast doubt on the validity of the null hypothesis. H = 0 indicates
that the null hypothesis (“medians are equal”) cannot be rejected at the 5%
level. H = 1 indicates that the null hypothesis can be rejected at the 5%
level.
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~f
avi

SMS-EMOA
time

SMS-EMOA
time

DTLZ1 (3) ≈ 385 s ≈ 197 s
DTLZ2 (3) ≈ 889 s ≈ 302 s
DTLZ3 (3) ≈ 1298 s ≈ 502 s
DTLZ4 (3) ≈ 888 s ≈ 303 s
DTLZ5 (3) ≈ 172 s ≈ 201 s
DTLZ6 (3) ≈ 409 s ≈ 236 s
DTLZ7 (3) ≈ 738 s ≈ 270 s
DTLZ1 (4) ≈ 394 s ≈ 1422 s
DTLZ2 (4) ≈ 961 s ≈ 2527 s
DTLZ3 (4) ≈ 1399 s ≈ 6093 s
DTLZ4 (4) ≈ 948 s ≈ 2589 s
DTLZ5 (4) ≈ 495 s ≈ 1695 s
DTLZ6 (4) ≈ 567 s ≈ 2157 s
DTLZ7 (4) ≈ 974 s ≈ 1402 s
DTLZ1 (5) ≈ 350 s ≈ 14431 s
DTLZ2 (5) ≈ 798 s ≈ 14449 s
DTLZ3 (5) ≈ 1346 s ≈ 14474 s
DTLZ4 (5) ≈ 776 s ≈ 14440 s
DTLZ5 (5) ≈ 557 s ≈ 14433 s
DTLZ6 (5) ≈ 649 s ≈ 14444 s
DTLZ7 (5) ≈ 1135 s ≈ 13256 s

~f
avi

SMS-EMOA
time

SMS-EMOA
time

WFG1 (3) ≈ 1176 s ≈ 369 s
WFG2 (3) ≈ 474 s ≈ 236 s
WFG3 (3) ≈ 554 s ≈ 288 s
WFG4 (3) ≈ 1230 s ≈ 340 s
WFG5 (3) ≈ 896 s ≈ 342 s
WFG6 (3) ≈ 736 s ≈ 298 s
WFG7 (3) ≈ 1351 s ≈ 388 s
WFG1 (4) ≈ 882 s ≈ 3471 s
WFG2 (4) ≈ 693 s ≈ 751 s
WFG3 (4) ≈ 628 s ≈ 783 s
WFG4 (4) ≈ 1238 s ≈ 2809 s
WFG5 (4) ≈ 878 s ≈ 1067 s
WFG6 (4) ≈ 799 s ≈ 939 s
WFG7 (4) ≈ 1129 s ≈ 2948 s
WFG1 (5) ≈ 614 s ≈ 14463 s
WFG2 (5) ≈ 1007 s ≈ 2486 s
WFG3 (5) ≈ 815 s ≈ 1424 s
WFG4 (5) ≈ 1091 s ≈ 14456 s
WFG5 (5) ≈ 1123 s ≈ 2742 s
WFG6 (5) ≈ 1000 s ≈ 2738 s
WFG7 (5) ≈ 992 s ≈ 14445 s

Table 5.17: Time required by aviSMS-EMOA and SMS-EMOA for the test
problems adopted. s = seconds. Both algorithms were compiled using the
GNU C compiler and they were executed on a computer with a processor
running at 2.66GHz and with 4GB in RAM.
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~f ISC(A,B) ISC(B,A)

DTLZ1 (3) 0.036333 0.000000
DTLZ2 (3) 0.002667 0.000333
DTLZ3 (3) 0.167667 0.003333
DTLZ4 (3) 0.001333 0.000000
DTLZ5 (3) 0.501667 0.020333
DTLZ6 (3) 0.983333 0.453667
DTLZ7 (3) 0.501333 0.000000
DTLZ1 (4) 0.000000 0.000000
DTLZ2 (4) 0.002667 0.000000
DTLZ3 (4) 0.060333 0.004667
DTLZ4 (4) 0.001667 0.000000
DTLZ5 (4) 0.285667 0.062333
DTLZ6 (4) 0.811667 0.057333
DTLZ7 (4) 0.124667 0.000000
DTLZ1 (5) 0.000000 0.000333
DTLZ2 (5) 0.002333 0.000000
DTLZ3 (5) 0.052000 0.008667
DTLZ4 (5) 0.002333 0.000000
DTLZ5 (5) 0.159000 0.055000
DTLZ6 (5) 0.423667 0.133333
DTLZ7 (5) 0.011333 0.000000
DTLZ1 (6) 0.000000 0.006000
DTLZ2 (6) 0.000333 0.000000
DTLZ3 (6) 0.025000 0.007667
DTLZ4 (6) 0.000333 0.000000
DTLZ5 (6) 0.148667 0.053000
DTLZ6 (6) 0.374000 0.089333
DTLZ7 (6) 0.000333 0.000000

~f ISC(A,B) ISC(B,A)

WFG1 (3) 0.001667 0.000000
WFG2 (3) 1.000000 0.004000
WFG3 (3) 0.922000 0.014667
WFG4 (3) 0.989333 0.000000
WFG5 (3) 0.085333 0.050000
WFG6 (3) 0.621000 0.162667
WFG7 (3) 0.165667 0.002000
WFG1 (4) 0.000000 0.000000
WFG2 (4) 1.000000 0.009333
WFG3 (4) 0.865000 0.005000
WFG4 (4) 0.811667 0.000000
WFG5 (4) 0.040667 0.010000
WFG6 (4) 0.571667 0.014667
WFG7 (4) 0.002667 0.000000
WFG1 (5) 0.000000 0.000000
WFG2 (5) 0.993333 0.020667
WFG3 (5) 0.936333 0.000000
WFG4 (5) 0.627333 0.000000
WFG5 (5) 0.007667 0.000000
WFG6 (5) 0.381333 0.010667
WFG7 (5) 0.000000 0.000000
WFG1 (6) 0.000000 0.000000
WFG2 (6) 1.000000 0.002333
WFG3 (6) 0.911333 0.000000
WFG4 (6) 0.500000 0.010667
WFG5 (6) 0.000000 0.000000
WFG6 (6) 0.333000 0.010000
WFG7 (6) 0.000000 0.000000

Table 5.18: Results obtained in the DTLZ and WFG test problems by
aviSMS-EMOA and MOEA/D, using the two set coverage indicator (ISC).
In this case, A is the set composed by all solutions found by aviSMS-EMOA
considering all 30 independent runs and B is the set composed by all solutions
found by MOEA/D considering all 30 independent runs.
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~f
pbi

MOEA/D
IH

avi
SMS-EMOA

IH
P (H)

DTLZ1 (3) 1.071328 (0.002556) 1.122217 (0.000494) 0.000 (1)
DTLZ2 (3) 0.718988 (0.000212) 0.758602 (0.000340) 0.000 (1)
DTLZ3 (3) 1.294000 (0.002000) 1.328265 (0.000700) 0.000 (1)
DTLZ4 (3) 0.709501 (0.000134) 0.873943 (0.000250) 0.000 (1)
DTLZ5 (3) 0.246682 (0.000807) 0.266585 (0.000048) 0.000 (1)
DTLZ6 (3) 0.197818 (0.029819) 1.094423 (0.004341) 0.000 (1)
DTLZ7 (3) 0.448768 (0.026011) 0.552256 (0.048770) 0.000 (1)
DTLZ1 (4) 1.311857 (0.003695) 1.366684 (0.001205) 0.000 (1)
DTLZ2 (4) 0.887228 (0.000914) 1.035152 (0.001397) 0.000 (1)
DTLZ3 (4) 1.439263 (0.004172) 1.463597 (0.000130) 0.000 (1)
DTLZ4 (4) 0.878865 (0.001268) 1.035100 (0.000920) 0.000 (1)
DTLZ5 (4) 0.471816 (0.003958) 0.545064 (0.000508) 0.000 (1)
DTLZ6 (4) 0.592195 (0.014757) 1.206271 (0.004888) 0.000 (1)
DTLZ7 (4) 0.337272 (0.008258) 0.550050 (0.061062) 0.994 (0)
DTLZ1 (5) 1.506309 (0.008970) 1.541811 (0.005706) 0.000 (1)
DTLZ2 (5) 0.987833 (0.003838) 1.300072 (0.004737) 0.000 (1)
DTLZ3 (5) 1.608395 (0.000366) 1.608407 (0.003140) 0.000 (1)
DTLZ4 (5) 0.982714 (0.003994) 1.264793 (0.004457) 0.000 (1)
DTLZ5 (5) 0.669155 (0.022872) 0.930685 (0.001020) 0.000 (1)
DTLZ6 (5) 0.802058 (0.020102) 1.519103 (0.001631) 0.018 (1)
DTLZ7 (5) 0.075921 (0.070973) 0.589229 (0.020254) 0.589 (0)
DTLZ1 (6) 1.690367 (0.003587) 1.549649 (0.202423) 0.000 (1)
DTLZ2 (6) 0.973263 (0.008725) 1.655438 (0.003776) 0.000 (1)
DTLZ3 (6) 1.766545 (0.001449) 1.770941 (0.000163) 0.661 (0)
DTLZ4 (6) 0.986331 (0.006574) 1.572087 (0.006064) 0.000 (1)
DTLZ5 (6) 0.585905 (0.017193) 1.031885 (0.001188) 0.000 (1)
DTLZ6 (6) 0.708188 (0.043127) 1.631369 (0.002293) 0.000 (1)
DTLZ7 (6) 0.013435 (0.003121) 0.773352 (0.010180) 1.000 (0)

Table 5.19: Results obtained in the DTLZ test problems by MOEA/D and
aviSMS-EMOA, using the hypervolume indicator. We show average values
over 30 independent runs. The values in parentheses correspond to the stan-
dard deviations. The third column shows the results of the statistical analysis
applied to our experiments using Wilcoxon’s rank sum. P is the probability
of observing the given result (the null hypothesis is true). Small values of
P cast doubt on the validity of the null hypothesis. H = 0 indicates that
the null hypothesis (“medians are equal”) cannot be rejected at the 5% level.
H = 1 indicates that the null hypothesis can be rejected at the 5% level.
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~f
pbi

MOEA/D
IH

avi
SMS-EMOA

IH
P (H)

WFG1 (3) 0.910507 (0.016598) 1.205361 (0.024067) 0.000 (1)
WFG2 (3) 0.145574 (0.198499) 0.799503 (0.074819) 0.000 (1)
WFG3 (3) 0.499214 (0.025639) 0.636772 (0.003130) 0.000 (1)
WFG4 (3) 0.595609 (0.013100) 0.752357 (0.001500) 0.000 (1)
WFG5 (3) 0.471079 (0.010426) 0.557581 (0.001661) 0.000 (1)
WFG6 (3) 0.453757 (0.006661) 0.565928 (0.001409) 0.000 (1)
WFG7 (3) 0.494583 (0.056148) 0.748956 (0.003767) 0.000 (1)
WFG1 (4) 1.100204 (0.057651) 1.414339 (0.008604) 0.000 (1)
WFG2 (4) 0.007223 (0.031709) 0.300548 (0.254003) 0.000 (1)
WFG3 (4) 0.287483 (0.034365) 0.592232 (0.006450) 0.000 (1)
WFG4 (4) 0.652634 (0.025612) 1.030276 (0.003034) 0.000 (1)
WFG5 (4) 0.366984 (0.015366) 0.598550 (0.001842) 0.000 (1)
WFG6 (4) 0.268060 (0.015468) 0.610031 (0.006558) 0.000 (1)
WFG7 (4) 0.293433 (0.036496) 0.915375 (0.006581) 0.000 (1)
WFG1 (5) 1.206775 (0.062432) 1.547656 (0.006617) 0.000 (1)
WFG2 (5) 0.029223 (0.064926) 0.407945 (0.205793) 0.000 (1)
WFG3 (5) 0.191112 (0.031531) 0.576101 (0.022876) 0.000 (1)
WFG4 (5) 0.640835 (0.023757) 1.270178 (0.004494) 0.000 (1)
WFG5 (5) 0.238371 (0.013922) 0.655659 (0.002092) 0.000 (1)
WFG6 (5) 0.193513 (0.027379) 0.598269 (0.027623) 0.000 (1)
WFG7 (5) 0.218223 (0.014294) 1.032123 (0.012809) 0.000 (1)
WFG1 (6) 1.167832 (0.030511) 1.691179 (0.014593) 0.000 (1)
WFG2 (6) 0.003634 (0.018966) 0.487496 (0.254908) 0.000 (1)
WFG3 (6) 0.040186 (0.034593) 0.590424 (0.049438) 0.000 (1)
WFG4 (6) 0.591344 (0.028666) 1.492717 (0.007779) 0.000 (1)
WFG5 (6) 0.153001 (0.017135) 0.720380 (0.002684) 0.000 (1)
WFG6 (6) 0.152732 (0.038473) 0.637238 (0.050036) 0.000 (1)
WFG7 (6) 0.189978 (0.014303) 0.907848 (0.066396) 0.000 (1)

Table 5.20: Results obtained in the WFG test problems by MOEA/D and
aviSMS-EMOA, using the hypervolume indicator. We show average values
over 30 independent runs. The values in parentheses correspond to the stan-
dard deviations. The third column shows the results of the statistical analysis
applied to our experiments using Wilcoxon’s rank sum. P is the probability
of observing the given result (the null hypothesis is true). Small values of
P cast doubt on the validity of the null hypothesis. H = 0 indicates that
the null hypothesis (“medians are equal”) cannot be rejected at the 5% level.
H = 1 indicates that the null hypothesis can be rejected at the 5% level.
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~f
pbi

MOEA/D
IIGD

avi
SMS-EMOA

IIGD

P (H)

DTLZ1 (3) 0.0004 (0.000) 0.0004 (0.000) 0.945 (0)
DTLZ2 (3) 0.0009 (0.000) 0.0012 (0.000) 0.000 (1)
DTLZ3 (3) 0.0009 (0.000) 0.0038 (0.002) 0.000 (1)
DTLZ4 (3) 0.0009 (0.000) 0.0012 (0.000) 0.000 (1)
DTLZ5 (3) 0.0002 (0.000) 0.0001 (0.000) 0.000 (1)
DTLZ6 (3) 0.0007 (0.000) 0.0003 (0.000) 0.000 (1)
DTLZ7 (3) 0.0026 (0.003) 0.0024 (0.002) 0.000 (1)
WFG1 (3) 0.0066 (0.000) 0.0051 (0.000) 0.000 (1)
WFG2 (3) 0.0138 (0.000) 0.0124 (0.001) 0.000 (1)
WFG3 (3) 0.0056 (0.000) 0.0055 (0.000) 0.000 (1)
WFG4 (3) 0.0009 (0.000) 0.0007 (0.000) 0.000 (1)
WFG5 (3) 0.0022 (0.000) 0.0021 (0.000) 0.000 (1)
WFG6 (3) 0.0155 (0.000) 0.0151 (0.000) 0.000 (1)
WFG7 (3) 0.0038 (0.000) 0.0035 (0.000) 0.000 (1)

Table 5.21: Results obtained in the DTLZ and WFG test problems with
three objective functions by MOEA/D and aviSMS-EMOA, using the in-
verted generational distance indicator (IIGD). We show average values over
30 independent runs. The values in parentheses correspond to the standard
deviations. The third column shows the results of the statistical analysis
applied to our experiments using Wilcoxon’s rank sum. P is the probability
of observing the given result (the null hypothesis is true). Small values of
P cast doubt on the validity of the null hypothesis. H = 0 indicates that
the null hypothesis (“medians are equal”) cannot be rejected at the 5% level.
H = 1 indicates that the null hypothesis can be rejected at the 5% level.
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~f |P|
pbi

MOEA/D
IH

avi
SMS-EMOA

IH
P (H)

DTLZ2 (3) 300 0.7678(0.000) 0.7935 (0.000) 0.000 (1)
DTLZ2 (4) 350 0.9913(0.001) 1.1046 (0.001) 0.000 (1)
DTLZ2 (5) 400 1.2083(0.002) 1.4338 (0.001) 0.000 (1)

(a)

~f |P| ISC(A,B) ISC(B,A)
DTLZ2 (3) 300 0.000222 0.000667
DTLZ2 (4) 350 0.000000 0.001143
DTLZ2 (5) 400 0.000000 0.001583

(b)

~f |P|
pbi

MOEA/D
time

avi
SMS-EMOA

time

DTLZ2 (3) 300 ≈2.38 ≈2935.09
DTLZ2 (4) 350 ≈2.36 ≈4384.97
DTLZ2 (5) 400 ≈2.74 ≈4551.01

(c)

Table 5.22: Results obtained in the DTLZ2 test problem by MOEA/D and
aviSMS-EMOA. |P| is the population size. In the case of the hypervolume
indicator (IH), we show average values over 30 independent runs. The values
in parentheses correspond to the standard deviations. Also, in the case of IH ,
we present the results of the statistical analysis applied to our experiments
using Wilcoxon’s rank sum. P is the probability of observing the given result
(the null hypothesis is true). Small values of P cast doubt on the validity of
the null hypothesis. H = 1 indicates that the null hypothesis can be rejected
at the 5% level. In the case of the two set coverage indicator, all solutions
found by our MOEA/D were merged in a set called A, considering all the 30
independent runs, and all solutions found by the original aviSMS-EMOA are
merged in a set called B. In the case of running time (time), we present the
time required by both MOEAs in seconds. Both algorithms were compiled
using the GNU C compiler and they were executed on a computer with a
processor running at 2.66GHz and with 4GB in RAM.

CINVESTAV-IPN Computer Science Department



New Selection Mechanism Based on the Hypervolume Indicator 113

~f 100-samples
IH

1000-samples
IH

10000-samples
IH

100000-samples
IH

DTLZ2 (3) 0.7456 (0.002) 0.7549 (0.001) 0.7577 (0.000) 0.7581 (0.000)
DTLZ2 (4) 0.9670 (0.007) 1.0207 (0.003) 1.0405 (0.001) 1.0451 (0.000)
DTLZ2 (5) 1.0448 (0.000) 1.0448 (0.000) 1.0448 (0.000) 1.0448 (0.000)
DTLZ2 (6) 1.1124 (0.041) 1.4090 (0.019) 1.5153 (0.009) 1.5588 (0.002)
DTLZ2 (7) 1.1884 (0.074) 1.6036 (0.024) 1.7477 (0.007) 1.8043 (0.003)
DTLZ2 (8) 1.5072 (0.125) 1.8152 (0.043) 1.9893 (0.010) 2.0498 (0.004)
DTLZ2 (9) .0565 (0.063) 2.0905 (0.046) 2.2676 (0.009) 2.3135 (0.003)
DTLZ2 (10) 2.3874 (0.071) 2.3114 (0.074) 2.5323 (0.008) 2.5683 (0.003)

Table 5.23: Results obtained in the DTLZ2 test problem with 3, 4, 5, 6, 7,
8, 9 and 10 objective functions by aviSMS-EMOA using 102, 103, 104 and
105 samples to approximate the contribution to IH . We show average values
over 30 independent runs using the hypervolume indicator IH . The values in
parentheses correspond to the standard deviations.

~f 100-samples
time

1000-samples
time

10000-samples
time

100000-samples
time

DTLZ2 (3) 82.050 (5.654) 178.459 (3.499) 969.871 (15.051) 8904.640 (104.433)
DTLZ2 (4) 84.605 (3.655) 160.543 (3.103) 792.204 (10.598) 7464.558 (127.088)
DTLZ2 (5) 86.760 (3.023) 135.513 (2.812) 528.903 (8.302) 5135.625 (88.684)
DTLZ2 (6) 88.786 (2.877) 126.949 (2.811) 402.015 (4.699) 3546.932 (83.094)
DTLZ2 (7) 93.726 (3.195) 125.395 (2.989) 367.851 (3.811) 2914.540 (66.569)
DTLZ2 (8) 95.947 (1.954) 110.165 (3.706) 374.036 (4.304) 2812.759 (43.800)
DTLZ2 (9) 98.796 (3.043) 112.677 (2.650) 391.567 (3.303) 3146.004 (42.011)
DTLZ2 (10) 100.950 (3.005) 115.722 (3.212) 414.836 (4.425) 3311.591 (37.305)

Table 5.24: Time required by aviSMS-EMOA for the DTLZ2 test problem
with 3, 4, 5, 6, 7, 8, 9 and 10 objective functions, using 102, 103, 104 and 105

samples to approximate the contribution to IH . s = seconds. aviSMS-EMOA
was compiled using the GNU C compiler and it was executed on a computer
with a processor running at 2.66GHz and with 4GB in RAM.
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5.3.8 A general comparison among MOEAs based on
the hypervolume

In this section, we compare all versions of SMS-EMOA studied in this chap-
ter. For our study we consider only the hypervolume indicator (IH) be-
cause the aim of all these MOEAs is to maximize this indicator. For this
experiment, we used 103 as our number of samples for hypeSMS-EMOA,
avoSMS-EMOA and aviSMS-EMOA. Table 5.25 shows the results for the
DTLZ test problems. In this case, iSMS-EMOA came first in twelve prob-
lems and it came second in nine problems, followed by SMS-EMOA which
was first in nine cases, it came second in ten problems and it came third in
two problems. After SMS-EMOA, we have that aviSMS-EMOA came second
in two problems, third in fourteen cases and fourth in five problems, followed
by avoSMS-EMOA and hypeSMS-EMOA. avoSMS-EMOA was third in one
problem, fourth in twelve problems and fifth in eight cases. hypeSMS-EMOA
came third in four problems, fourth in four cases and fifth in thirteen prob-
lems. In this table, we can also see that aviSMS-EMOA is quite competitive
with respect to SMS-EMOA and iSMS-EMOA regarding IH . For example,
only in the DTLZ1 test problem with five objective functions, aviSMS-EMOA
lost a significant percentage of quality but avoSMS-EMOA cannot properly
find the Pareto optimal front.

With respect to the WFG test problems, Table 5.27 shows the correspond-
ing results. The best algorithms were iSMS-EMOA and SMS-EMOA, fol-
lowed by aviSMS-EMOA and avoSMS-EMOA, while hypeSMS-EMOA came
last again. iSMS-EMOA was first in nine problems, second in eleven prob-
lems and third in one problem. SMS-EMOA came first in twelve problems,
second in five problems, third in one problem and fourth in three problems.
aviSMS-EMOA was second in two problems, third in fourteen problems and
fourth in five problems. avoSMS-EMOA was second in three problems, third
in three problems, fourth in eleven problems and fifth in four problems. Fi-
nally, hypeSMS-EMOA came third in two problems, fourth in two problems
and fifth in seventeen problems.

If we consider the running time required by each MOEA to obtain the
approximate Pareto front, see Tables 5.26 and 5.28, we can see that the fastest
is hypeSMS-EMOA followed by aviSMS-EMOA and an interesting thing is
that iSMS-EMOA is faster than avoSMS-EMOA in most problems. From
these results, we can conclude that iSMS-EMOA is an excellent alternative
to solve MOPs because is competitive (and even better in some cases) with
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respect to SMS-EMOA but at a much lower computational cost. If we have
time constraint, aviSMS-EMOA is an excellent alternative because it does
not lose much quality in its solutions and it requires at most two minutes to
solve MOPs with up to five objective functions.
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hypeSMS-EMOA avoSMS-EMOA SMS-EMOA aviSMS-EMOA iSMS-EMOA

DTLZ Test Problems

Number of times it ranked fist
Number of times it ranked second

Number of times it ranked third
Number of times it ranked fourth

Number of times it ranked fifth

~f
hype

SMS-EMOA
IH

avo
SMS-EMOA

IH
SMS-EMOA

IH

avi
SMS-EMOA

IH
iSMS-EMOA

IH
DTLZ1 (3) 1.0785 (0.016) 1.1194 (0.001) 1.1230 (0.000) 1.1211 (0.001) 1.1230 (0.001)
DTLZ2 (3) 0.7415 (0.002) 0.7520 (0.002) 0.7581 (0.000) 0.7548 (0.001) 0.7580 (0.000)
DTLZ3 (3) 1.3307 (0.000) 1.3306 (0.000) 1.3308 (0.000) 1.3308 (0.000) 1.3308 (0.000)
DTLZ4 (3) 0.7442 (0.002) 0.7524 (0.002) 0.7585 (0.000) 0.7551 (0.001) 0.7584 (0.000)
DTLZ5 (3) 0.2651 (0.000) 0.2661 (0.000) 0.2667 (0.000) 0.2663 (0.000) 0.2667 (0.000)
DTLZ6 (3) 1.0726 (0.026) 1.0935 (0.004) 1.0951 (0.004) 1.0919 (0.004) 1.0951 (0.005)
DTLZ7 (3) 0.5146 (0.050) 0.5286 (0.057) 0.5289 (0.057) 0.5286 (0.057) 0.5592 (0.044)
DTLZ1 (4) 1.1833 (0.071) 1.3045 (0.132) 1.3737 (0.000) 1.3606 (0.002) 1.3737 (0.000)
DTLZ2 (4) 1.0121 (0.004) 1.0032 (0.005) 1.0500 (0.000) 1.0248 (0.003) 1.0496 (0.000)
DTLZ3 (4) 1.4639 (0.000) 1.4536 (0.014) 1.4639 (0.000) 1.4637 (0.000) 1.4639 (0.000)
DTLZ4 (4) 1.0192 (0.003) 1.0049 (0.005) 1.0482 (0.000) 1.0263 (0.002) 1.0479 (0.000)
DTLZ5 (4) 0.5139 (0.006) 0.5385 (0.004) 0.5470 (0.000) 0.5431 (0.001) 0.5472 (0.000)
DTLZ6 (4) 1.0708 (0.023) 1.2090 (0.013) 1.2411 (0.004) 1.2352 (0.005) 1.2409 (0.004)
DTLZ7 (4) 0.4994 (0.026) 0.5655 (0.041) 0.5748 (0.032) 0.5729 (0.031) 0.5932 (0.024)
DTLZ1 (5) 1.1579 (0.307) 0.0873 (0.316) 1.5665 (0.001) 1.2699 (0.376) 1.5678 (0.000)
DTLZ2 (5) 1.3996 (0.007) 1.3262 (0.019) 1.4322 (0.000) 1.3764 (0.007) 1.4333 (0.000)
DTLZ3 (5) 1.6102 (0.000) 1.5890 (0.013) 1.6102 (0.000) 1.6078 (0.007) 1.6103 (0.000)
DTLZ4 (5) 1.2619 (0.006) 1.1615 (0.017) 1.3040 (0.000) 1.2263 (0.007) 1.3050 (0.000)
DTLZ5 (5) 0.8466 (0.015) 0.9156 (0.007) 0.9313 (0.001) 0.9228 (0.002) 0.9355 (0.001)
DTLZ6 (5) 1.3821 (0.020) 1.4657 (0.011) 1.5015 (0.002) 1.5048 (0.003) 1.5190 (0.002)
DTLZ7 (5) 0.4820 (0.039) 0.5799 (0.015) 0.5858 (0.049) 0.5902 (0.012) 0.6170 (0.011)

Table 5.25: Results obtained in the DTLZ test problems with up to five objec-
tive functions. We compare hypeSMS-EMOA, avoSMS-EMOA, SMS-EMOA,
aviSMS-EMOA and iSMS-EMOA using the hypervolume indicator IH . We
show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations.
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DTLZ1 (3) 9.97 (0.11) 1368.84 (56.34) 365.55 (27.89) 42.99 (7.01) 368.47 (40.87)
DTLZ2 (3) 15.53 (0.25) 3186.92 (33.95) 486.66 (31.55) 92.84 (12.31) 382.92 (36.38)
DTLZ3 (3) 11.78 (0.81) 2516.99 (131.55) 499.11 (39.98) 88.00 (16.68) 440.13 (38.47)
DTLZ4 (3) 15.64 (0.25) 3209.57 (28.94) 523.46 (47.80) 87.49 (13.50) 451.08 (36.37)
DTLZ5 (3) 13.03 (0.15) 485.14 (13.94) 381.14 (17.11) 25.27 (1.06) 379.85 (27.68)
DTLZ6 (3) 13.58 (1.57) 1872.86 (494.69) 403.49 (15.12) 56.57 (13.51) 370.11 (24.92)
DTLZ7 (3) 19.38 (0.60) 3047.79 (245.35) 485.55 (29.97) 78.59 (11.63) 382.25 (26.46)
DTLZ1 (4) 12.86 (0.19) 953.90 (72.11) 1578.37 (54.45) 40.20 (5.65) 429.29 (13.49)
DTLZ2 (4) 19.54 (0.31) 2696.84 (28.35) 2754.86 (100.35) 78.40 (10.97) 441.98 (17.65)
DTLZ3 (4) 14.36 (0.84) 1652.69 (191.96) 2390.62 (1153.11) 56.14 (11.07) 470.94 (86.97)
DTLZ4 (4) 19.58 (0.37) 3186.07 (23.88) 2884.52 (88.89) 76.02 (8.52) 468.58 (68.70)
DTLZ5 (4) 22.96 (0.60) 1559.16 (56.48) 1905.98 (107.56) 51.20 (6.44) 418.97 (14.31)
DTLZ6 (4) 21.84 (0.61) 1758.40 (30.01) 2356.92 (50.54) 57.55 (11.47) 436.55 (14.47)
DTLZ7 (4) 27.02 (1.11) 3240.00 (293.24) 1844.23 (96.85) 81.36 (17.77) 399.19 (13.25)
DTLZ1 (5) 15.40 (0.24) 1029.04 (92.77) 14441.83 (16.54) 41.47 (6.50) 1797.67 (66.81)
DTLZ2 (5) 22.66 (0.58) 1879.08 (19.56) 14448.55 (27.68) 67.51 (10.17) 1891.26 (81.42)
DTLZ3 (5) 16.16 (0.71) 1617.62 (75.71) 12229.63 (3327.42) 54.23 (8.04) 2392.47 (1266.07)
DTLZ4 (5) 22.50 (0.42) 2191.77 (21.18) 14449.72 (31.78) 70.63 (12.46) 2052.96 (87.40)
DTLZ5 (5) 30.33 (1.08) 1788.92 (49.23) 14439.46 (21.65) 54.18 (7.43) 1731.52 (109.42)
DTLZ6 (5) 30.76 (0.97) 1957.41 (25.55) 14442.16 (24.36) 63.51 (10.03) 1749.24 (41.55)
DTLZ7 (5) 34.95 (1.85) 2822.85 (171.83) 14182.28 (696.87) 76.70 (11.13) 768.98 (56.55)

Table 5.26: Results obtained in the DTLZ test problems with up to five
objective functions. We compare hypeSMS-EMOA, avoSMS-EMOA, SMS-
EMOA, aviSMS-EMOA and iSMS-EMOA with respect to the running time
required by each MOEA to obtain the approximation of the Pareto optimal
set. The results are in seconds. We show average values over 30 independent
runs. The values in parentheses correspond to the standard deviations.
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WFG1 (3) 0.8864 (0.033) 1.2126 (0.024) 1.2097 (0.029) 1.2099 (0.021) 1.2162 (0.011)
WFG2 (3) 0.6629 (0.046) 0.7410 (0.138) 0.8328 (0.052) 0.8106 (0.058) 0.8301 (0.071)
WFG3 (3) 0.6003 (0.006) 0.6340 (0.002) 0.6367 (0.002) 0.6356 (0.003) 0.6378 (0.001)
WFG4 (3) 0.6999 (0.006) 0.7500 (0.002) 0.7543 (0.002) 0.7514 (0.002) 0.7540 (0.002)
WFG5 (3) 0.5372 (0.003) 0.5567 (0.002) 0.5574 (0.002) 0.5565 (0.002) 0.5575 (0.002)
WFG6 (3) 0.5538 (0.004) 0.5639 (0.002) 0.5669 (0.002) 0.5645 (0.001) 0.5668 (0.001)
WFG7 (3) 0.5004 (0.029) 0.7478 (0.004) 0.7506 (0.004) 0.7457 (0.005) 0.7475 (0.004)
WFG1 (4) 0.9985 (0.036) 1.4143 (0.008) 1.4272 (0.005) 1.4155 (0.009) 1.4219 (0.009)
WFG2 (4) 0.4703 (0.206) 0.0121 (0.035) 0.8659 (0.130) 0.1017 (0.142) 0.8642 (0.120)
WFG3 (4) 0.5189 (0.014) 0.5589 (0.013) 0.5993 (0.006) 0.5793 (0.006) 0.5957 (0.006)
WFG4 (4) 0.9048 (0.013) 1.0059 (0.004) 1.0346 (0.003) 1.0144 (0.004) 1.0330 (0.003)
WFG5 (4) 0.5542 (0.006) 0.5898 (0.002) 0.5996 (0.002) 0.5940 (0.002) 0.5995 (0.002)
WFG6 (4) 0.5712 (0.008) 0.5783 (0.009) 0.6128 (0.006) 0.5982 (0.008) 0.6143 (0.007)
WFG7 (4) 0.3559 (0.022) 0.9152 (0.007) 0.9339 (0.007) 0.9132 (0.006) 0.9288 (0.004)
WFG1 (5) 1.0722 (0.041) 1.5099 (0.009) 1.3657 (0.018) 1.5296 (0.012) 1.5656 (0.007)
WFG2 (5) 0.5457 (0.246) 0.0000 (0.000) 0.8966 (0.164) 0.0824 (0.100) 0.9278 (0.140)
WFG3 (5) 0.4618 (0.022) 0.1572 (0.089) 0.6091 (0.021) 0.5584 (0.026) 0.6027 (0.024)
WFG4 (5) 1.0734 (0.021) 1.2087 (0.008) 1.2219 (0.009) 1.2322 (0.006) 1.2777 (0.005)
WFG5 (5) 0.5626 (0.011) 0.6380 (0.004) 0.6566 (0.002) 0.6466 (0.002) 0.6570 (0.002)
WFG6 (5) 0.5370 (0.031) 0.3616 (0.072) 0.6548 (0.020) 0.5645 (0.026) 0.6545 (0.018)
WFG7 (5) 0.2558 (0.018) 0.9963 (0.012) 0.7622 (0.036) 0.9821 (0.026) 1.0197 (0.015)

Table 5.27: Results obtained in the WFG test problems with up to five objec-
tive functions. We compare hypeSMS-EMOA, avoSMS-EMOA, SMS-EMOA,
aviSMS-EMOA and iSMS-EMOA using the hypervolume indicator IH . We
show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations.
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WFG1 (3) 25.57 (0.20) 4308.42 (25.22) 568.27 (54.68) 120.63 (9.37) 419.11 (17.56)
WFG2 (3) 18.64 (0.86) 1513.22 (155.00) 431.66 (25.63) 63.94 (12.95) 420.86 (17.31)
WFG3 (3) 25.24 (0.29) 2084.27 (17.67) 495.41 (30.94) 70.11 (10.96) 420.08 (16.88)
WFG4 (3) 20.71 (0.30) 4153.42 (30.09) 539.65 (46.37) 118.96 (8.80) 415.21 (15.87)
WFG5 (3) 26.86 (0.13) 3551.45 (41.54) 531.91 (44.41) 96.25 (15.39) 414.94 (18.54)
WFG6 (3) 28.46 (0.39) 3064.41 (27.78) 496.94 (32.74) 80.93 (9.89) 419.77 (17.26)
WFG7 (3) 26.22 (0.63) 5333.10 (47.85) 581.82 (58.04) 92.10 (21.52) 417.24 (20.36)
WFG1 (4) 32.09 (0.44) 2830.80 (29.26) 3734.08 (180.64) 85.50 (9.91) 468.21 (44.58)
WFG2 (4) 24.57 (1.17) 1471.52 (222.98) 862.00 (48.57) 71.12 (8.10) 397.20 (22.68)
WFG3 (4) 31.92 (0.36) 1690.03 (18.24) 957.03 (16.88) 63.48 (12.05) 390.21 (17.50)
WFG4 (4) 26.00 (0.58) 3919.72 (52.83) 3053.73 (76.49) 96.94 (6.98) 451.87 (41.15)
WFG5 (4) 36.57 (0.28) 3103.72 (30.16) 1271.67 (11.72) 82.31 (7.64) 391.19 (18.41)
WFG6 (4) 37.61 (0.54) 2524.66 (34.02) 1105.02 (22.98) 71.06 (8.11) 394.10 (23.01)
WFG7 (4) 34.39 (0.51) 3888.73 (56.77) 3165.94 (79.75) 66.59 (11.79) 444.58 (39.05)
WFG1 (5) 37.83 (0.28) 1695.30 (19.92) 14457.73 (34.41) 64.95 (7.90) 2322.82 (157.15)
WFG2 (5) 31.00 (1.32) 1803.49 (258.39) 2567.66 (229.86) 84.83 (15.97) 338.84 (31.95)
WFG3 (5) 38.85 (0.41) 1598.17 (31.16) 1609.66 (40.74) 65.81 (8.28) 264.88 (40.68)
WFG4 (5) 31.72 (0.77) 2923.89 (48.86) 14454.37 (34.99) 87.74 (10.15) 1894.03 (106.29)
WFG5 (5) 44.92 (0.15) 3149.27 (70.53) 3021.60 (159.83) 87.82 (10.37) 305.53 (32.37)
WFG6 (5) 46.20 (0.44) 2355.60 (41.59) 2916.74 (216.33) 74.18 (7.17) 314.76 (30.78)
WFG7 (5) 41.71 (0.40) 2869.61 (55.36) 14459.32 (26.03) 63.24 (12.14) 1597.02 (97.93)

Table 5.28: Results obtained in the WFG test problems with up to five
objective functions. We compare hypeSMS-EMOA, avoSMS-EMOA, SMS-
EMOA, aviSMS-EMOA and iSMS-EMOA with respect to the running time
required by each MOEA to obtain the approximation of the Pareto optimal
set. The results are in seconds. We show average values over 30 independent
runs. The values in parentheses correspond to the standard deviations.
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Chapter 6

New selection mechanisms
based on the Maximin Fitness
Function

In previous chapters, we studied some selection mechanisms used by well-
known MOEAs. However, we could see that all of them have some dis-
advantages. MOEAs based on Pareto dominace have difficulties when we
want to solve MOPs with many objective functions. MOEAs based on the
hypervolume indicator (IH) are computationally expensive, since selecting
individuals with IH is an NP-hard problem with respect to the number of
objective functions. Therefore, the use of a selection mechanism based on the
hypervolume indicator is impractical to solve MOPs with more than five ob-
jective functions. MOEAs based on decomposition need to generate a set of
well-distributed weight vectors and this task becomes harder as we increase
the number of objective functions. Finally, the Maximin Fitness Function
(MFF) appears to be a good option because it has interesting properties
and it also has a linear complexity with respect to the number of objective
functions. However, until now, it had only been used in problems with low
dimensionality (two or three objective functions). Therefore, in this chapter,
we study the properties of MFF in depth and we identify some of its disad-
vantages. Finally, we propose some ways to overcome such disadvantages.
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6.1 Reviewing the Properties of the Maximin

Fitness Function

As we mentioned in Chapter 4, the Maximin Fitness Function (MFF) [4] is
defined as:

fitnessi = maxj 6=i(mink(f
i
k − f j

k)) (6.1)

where the min is taken over all the objective functions, and the max is taken
over all individuals in the population, except for the same individual i. There
is also a modified version [6] which is defined as follows:

fitnessi = maxj 6=i,j∈ND(mink(f i
k − f j

k)) (6.2)

where ND is the set of nondominated individuals. If we use eq. (6.2), we
guarantee that the fitness of a nondominated individual is controlled only by
its non-dominance and then, we only penalize clustering between nondomi-
nated individuals. It is interesting to observe that MFF allows to design, in
an easy way, an interactive method to solve MOPs when the decision maker
can define preferences. For example, at each iteration of the algorithm, we
can present to the decision maker the set of nondominated solutions obtained
so far, and then he/she can choose which solutions will be considered to cal-
culate the fitness of each solution in the population. In our case, we use the
following equation to assign fitness:

fitnessi = maxj 6=i,j∈A(mink(f i
k − f j

k)) (6.3)

where A is the set of nondominated individuals which were chosen by the
decision maker.

6.1.1 Disadvantages of the maximin fitness function

For analyzing the behavior of the MFF, we designed two MOEAs. The first
algorithm adopts the crossover and mutation operators of NSGA-II to create
the offspring population. After that, it combines the population of parents
and offspring and uses MFF to assign fitness to each individual. Finally, the
best individuals according to their fitness values are selected to be part of the
next generation. The second algorithm works in the same way that the first
algorithm but instead of adopting the crossover and mutation operators of
NSGA-II, it adopts the operators of differential evolution (DE ) [67] to create
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new individuals. Figures 6.1(a) and 6.1(b) show the results obtained by each
of these two MOEAs in the ZDT2 test problem which is defined as follows:

f1(~x) = x1

f2(~x) = g(~x)
(

1− (x1/g(~x))2
)

g(~x) = 1 +
9

n− 1

n
∑

i=2

xi (6.4)

In these Figures, we can see that the MOEA based on DE obtains only
weakly Pareto optimal points and the MOEA based on a Genetic Algorithm
cannot obtain all the Pareto front. Why is this? If we adopt MFF to solve
ZDT2, within an evolutionary algorithm (i.e., we assign the fitness of each
individual, using MFF, and then we sort the individuals according to their
fitness values), we can obtain many (even only) weakly Pareto points be-
cause f1 is easier to optimize than f2 and then, we quickly obtain weakly
dominated solutions in this extreme of the Pareto front. Figure 6.1(a) shows
that if we use Differential Evolution and MFF, we only obtain weakly Pareto
optimal points. Figure 6.1(b) shows that if we use a Genetic Algorithm and
MFF, the convergence to the Pareto optimal front is slow because we obtain
many weakly Pareto optimal points during the search. In [58], the authors
proposed a MOEA based on Particle Swarm and MFF, and also reported
problems in ZDT2. Due to the foregoing, the following question arises: Is
it better to prefer weakly dominated individuals than dominated
individuals? The answer is that it is not good to prefer weakly dominated
individuals or individuals which are close to being weakly dominated (even
if they are weakly dominated by any dominated individual). For example, in
Figure 6.2(a), it is better to select E instead of A.

In order to address the above problem, we propose the following con-
straint: Any individual that we want to select must not be similar (in objec-
tive function space) to another (already selected) individual. The process to
verify similarity between two individuals is shown in Algorithm 9.

By adding this constraint, we can find the true Pareto front of ZDT2
when we use a MOEA based on Differential Evolution, see Figure 6.1(c).
Also, we speed up convergence when we use a MOEA based on a Genetic
Algorithm, see Figure 6.1(d). The complete selection mechanism using MFF
and our proposed constraint is shown in Algorithm 10. First, we select
individuals doing a similarity checking (see Lines 4-8). If we have considered
all individuals in the population and we have not selected the number of
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Figure 6.1: In (a), we used a MOEA based on Differential Evolution and
the maximin fitness function. In (b), we used a MOEA based on a Genetic
Algorithm and the maximin fitness function. In cases (c) and (d), we adopted
the same MOEAs used in (a) and (b), respectively, but introducing our
proposed constraint to verify similarity. In all cases, we used a population
size of 100 individuals. In cases (a) and (c), we iterated for 100 generations.
Finally, in cases (b) and (d), we iterated for 150 generations.
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Figure 6.2: In (a), individuals B, C and D are nondominated, individual A
is a weakly dominated point and E is a dominated point. In (b), individuals
A, B, C and D are nondominated; individuals B, C and D are penalized
because they are close from each other. In (c), we can see that the fitness
of individuals D, E and F is controlled by the nondominated individual B,
and their fitness is a metric of the distance to the individual B. The same
occurs with individual G but its fitness is controlled by the nondominated
individual C. Also, we can see that the fitness of individual B is affected by
the dominated individual D because they are close and the fitness value of
individual C is affected by the dominated individual G.

Algorithm 9: Verify similarity

Input : x (individual), P (population) and ǫ (minimum difference
between components).

Output: Returns 1, if the individual x is similar to any individual in
the population P; otherwise, returns 0.

1 foreach y ∈ P do
2 foreach objective function “k” do

3 if |x. ~f [k]− y. ~f [k]| < ǫ then
4 return 1;
5 end

6 end

7 end
8 return 0;
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individuals that we want, we select the remaining individuals considering
only the maximin fitness values (see Lines 9-13). One could think that we
can use MFF by itself without selecting solutions whose maximin fitness
values are equal to zero (because they are weakly dominated). However, it
is important to note that the above constraint avoids that we select both:
(i) solutions which are weakly dominated by nondominated solutions and (ii)
solutions which are weakly dominated by dominated solutions. For example,
let’s assume that we want to select five individuals in Figure 6.2(c). If we
only use MFF, then we select individuals A, C, B, D, F. If we use MFF and
the above constraint, then we sort them according to their fitness values:
A(-1), C(-0.75), B(-0.5), D(0.5), F(0.5), G(0.75) and E(1). Finally, we select
individuals A, C, B, D and we consider the individual F but we do not select
it because is similar to individual D (in objective function f1) which had been
already selected. Consequently, we select individual G.
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Algorithm 10: Maximin Selection

Input : P (population), N (number of individuals that we want to
choose such that N < |P|) and ǫ (minimum difference
between objectives).

Output: S (selected individuals).
/*Sorting with respect to the maximin fitness values */

1 AssignFitness(P);
2 Sort(P);
/*Fill up the new population with the best copies

according to the maximin fitness values, verifying that

no solution is similar to one that had been previously

selected */

3 S ← ∅;
4 foreach y ∈ P do
5 if |S| < N and VerifySimilarity(y, S, ǫ) = 0 then
6 S ← S ∪ y;
7 end

8 end
/*Choose the remaining individuals considering only the

maximin fitness values */

9 if |S| < N then
10 foreach y ∈ P such that y has not been selected do
11 S ← S ∪ y;
12 end

13 end
14 return S;

The second disadvantage that we identified has to do with the clustering
property. In Figure 6.2(b), we can observe that individuals B, C and D have
the same maximin fitness. Then, if we use MFF, we can not know which
of them is the best individual to form part of the next generation. In order
to address this problem, we have proposed some techniques to improve the
diversity in the population at each generation. In the next sections, we will
describe them, one by one.
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6.2 MFF and a Clustering Technique

In this section, we propose a selection mechanism based on MFF and a
clustering technique to select solutions from a set of nondominated solutions.
This mechanism works as follows. If we want to select N individuals from a
population of nondominated individuals called ND, then, we choose the best
N individuals with respect to their maximin fitness values, and we use them
as centers of the clusters. Then, we proceed to place each individual in its
nearest cluster. Finally, for each of the resulting clusters, we recompute the
center, and we choose the individual closest to it. This procedure is shown
in Algorithm 11. With this technique, if we return to Figure 6.2(b) and we
assume that we want to choose two individuals, we can see that, regardless of
the individual (B, C or D) that we choose as an initial center of the cluster,
we always obtain two clusters: one of them contains individual A, and the
other one contains individuals B, C and D. After applying this procedure,
we always choose individuals A and C. See Figure 6.3. It is important to
note that clustering selection does not iterate many times to improve the
distribution of the centers because we choose the initial centers regarding
the maximin fitness values and we only want to do a small correction based
on the idea that MFF penalizes clustering.

It is necessary to consider that if we want to select from a set which
contains dominated solutions, this selection mechanism is not effective. For
example, in Figure 6.2(c), if we want to select three individuals, the cluster-
ing technique selects individuals A, D and C, penalizing individual B. This
is clearly not good because individual B dominates individual D. Therefore,
the complete selection mechanism that we propose is a combination of Algo-
rithms 10 and 11. Let’s assume that we want to select N individuals from a
population P. First, we obtain the set of nondominated solutions which we
call “ND”. Then, if the number of nondominated solutions is greater than
N (i.e., |ND| > N), we use Algorithm 11; otherwise, we use Algorithm 10.

Although with this selection mechanism we are able to address some
difficulties of MFF, it still has some disadvantages. For example, if we see
Figure 6.4, and we assume that we want to select six individuals, if we only
use MFF to select, we would choose individuals: A, B, C, D, E and F. If
we use the selection mechanism based on MFF and the above clustering
technique, we would choose individuals: A, B, C, D, E and K. None of two
results is correct. This is because MFF penalizes all solutions: G, H, ...,
O and prefers to select solutions in other parts of the Pareto front, leaving
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Algorithm 11: Clustering Selection (setting the centers using max-
imin)

Input : ND (population of nondominated individuals) and N
(number of individuals that we want to choose such that
N < |P|).

Output: S (selected individuals).
/*Choose the best N individuals, according to maximin

fitness, as centers of the clusters C */

1 AssignFitness(ND);
2 Sort(ND);
3 for j ← 1 to N do
4 µj = yj such that yj ∈ ND;
5 Cj = {∅};

6 end
/*Do one iteration of clustering */

7 foreach y ∈ ND do
8 if µj is closest to y then
9 Cj ← Cj ∪ y;

10 end

11 end
/*Obtain the new centers of the clusters */

12 for j ← 1 to N do
13 µj ←

1
|Cj |

∑

yi∈Cj

yi;

14 end
/*Select individuals who are closest to the centers of the

clusters */

15 S ← ∅;
16 for j ← 1 to N do
17 if yi | yi ∈ Cj is the nearest to the center µj then
18 S ← S ∪ yi;
19 end

20 end
21 return S;
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Figure 6.3: Let’s assume that we want to select two individuals. If we use
only the maximin fitness function and we assume that A, B, C and D is
the ordering of the solutions after sorting them with respect to their fitness
value, then we select individuals A and B and individuals C and D are not
considered (see (a)). This is clearly not a good selection procedure. If we use
the clustering technique, we take A and B as initial centers of the clusters
and we obtain two clusters: the first one only has A and the second has B, C
and D, see (b). When we recalculate the centers of the clusters and choose
the closest solution to the centers, we select A and C, see (c).

big gaps in the front. Finally, another question arises with respect to the
MFF: what version of the MFF should we use? To answer this question, we
designed three selection operators:

� Operator 1. It always uses the original MFF.

� Operator 2. It adopts the original MFF when it selects individuals
using only the MFF and our proposed constraint and, it adopts the
modified version of MFF when it selects individuals using MFF and
the clustering technique. This idea arises because the original MFF
penalizes clustering between nondominated solutions. In fact, a non-
dominated individual is penalized even if it is near to a dominated solu-
tion. Thus, we believe that it is a good idea to use the original MFF at
the beginning of the search with the aim of improving the diversity in
the population. However, when we have many nondominated solutions
and we use the clustering technique, we believe that it is a good idea to
use the modified MFF because at this moment we are only interested
in a good distribution along the nondominated front and the modified
MFF only penalizes clustering between nondominated solutions.

� Operator 3. It always uses the modified version of MFF.
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Figure 6.4: The maximin fitness function penalizes all solutions G, H, ... O.
This is undesirable, because it leaves gaps when we select individuals.

Table 6.1 shows the results with respect to the hypervolume indicator
(IH) for these three versions using seven DTLZ test problems. We called
MC-V1 to the version that uses operator 1, MC-V2 to the version that uses
operator 2 and MC-V3 to the version that uses operator 3. To calculate IH ,
we normalized the approximations of the Pareto optimal set, generated by
the MOEAs, and we used yref = [y1, · · · , yk] such that yi = 1.1, as our refer-
ence point. The normalization was performed considering all approximations
generated by the different MOEAs (i.e., we place, in one set, all nondomi-
nated solutions found by MC-V1, MC-V2 and MC-V3 and from this set we
calculate the maximum and minimum for each objective function). In this
table, we can observe that MC-V1 was ranked as first only in seven test
problems and it was third in twenty-one problems. Also, we can observe that
MC-V2 and MC-V3 had a very similar behavior and then when we normal-
ized our results, both approaches obtained the same results with respect to
IH . They ranked first in twenty-one problems and ranked second in seven
problems. From these results, we decided to use always the modified MFF
in the following.
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6.3 MFF and Euclidean Distances

Here, we propose to combine MFF with a technique based on Euclidean dis-
tances to improve the distribution of the solutions in objective function space.
We decided to use Euclidean distances because our aim is that the solutions
are uniformly distributed. This selection mechanism works as follows:

Let’s assume that we want to select N individuals from a population called
P. First, we assign fitness to each individual using the modified version of
MFF. Then, we proceed to select individuals according to their fitness value,
verifying similarity between the selected individuals (see Algorithm 9). We
put the selected individuals in the set called S. If we have already selected
N individuals but there are still nondominated individuals which have not
participated in the selection process, then we proceed to do the following.
For each nondominated individual y who has not participated in the selection
process (because its fitness value is low), we obtain its nearest neighbor from
S (snearest) and we choose a random individual from S (srandom, such that
snearest 6= srandom). We assume that the probability of choosing an individual
in a crowded region is higher than the probability of choosing an individual
in an unexplored region. Then, y will compete with srandom and snearest to
survive. We use snearest with the idea of improving the diversity locally: If
we move snearest to y, do we increase the distance with respect to its near-
est neighbor in S? And, we use srandom because we consider the scenario
in which the solution snearest is in an unexplored region and, therefore, it is
not a good idea to delete snearest or y. Therefore, first, y competes with the
randomly chosen solution srandom: If the Euclidean distance from y to its
nearest neighbor in S is greater than the Euclidean distance from srandom to
its nearest neighbor in S, we replace srandom with y. If y loses the competi-
tion, then y competes with its nearest neighbor to survive. If the Euclidean
distance from y to its nearest neighbor in S (without considering snearest) is
greater than the Euclidean distance from snearest to its nearest neighbor in
S, then we replace snearest with y. It is important to mention that if all the
objectives are equally important, we need to calculate the Euclidean distance
on the normalized values of the objective functions. The complete selection
mechanism is shown in Algorithm 12.

Figure 6.5 shows the selection process using MFF and Euclidean dis-
tances. Since individuals C and D are not considered in (a), in (b), C com-
petes with A and B, and C replaces B. In (c), D competes with A and C, and
D replaces C. With this selection mechanism, if we return to Figure 6.4, we
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can avoid that the approximate Pareto front has big gaps. Because of that,
all individuals G, H, · · · , O have the same fitness value.

Algorithm 12: Maximin-Euclidean Selection
Input : P (population), N (number of individuals to choose N < |P|).
Output: S (selected individuals).
/*Sorting with respect to the maximin fitness */

1 AssignFitness(P);
2 Sort(P);
3 ND ← The nondominated solutions in P ;
/*Fill up the new population with the best copies according to the

maximin fitness, verifying that there is not a similar one */
4 S ← ∅;
5 foreach y ∈ P do
6 if |S| < N and VerifySimilarity(y, S, ǫ) = 0 then
7 S ← S ∪ y;
8 end
9 end

10 if |S| ≤ N then
/*Choose the remaining individuals considering only the maximin
fitness */

11 foreach y ∈ P such that y has been not selected do
12 S ← S ∪ y;
13 end
14 else

/*Improve diversity according to the Euclidean distances between
solutions. */

15 foreach y ∈ ND who has not participated in the selection process do
16 if VerifySimilarity(y, S, ǫ) = 0 then
17 snearest ← The nearest neighbor of y in S;
18 dy1← Distance from y to snearest;
19 srandom ← Obtain a random individual from S such that

snearest 6= srandom;
20 dsrandom← Distance from srandom to its nearest neighbor in S;
21 if dy1 > dsrandom then
22 Replace srandom with y;
23 else
24 dsnearest← Distance from snearest to its nearest neighbor in S;
25 dy2← Distance from y to its nearest neighbor in S without

regarding snearest;
26 if dy2 > dsnearest then
27 Replace snearest with y;
28 end
29 end
30 end
31 end
32 end
33 return S;
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Figure 6.5: Let’s assume that we want to select two individuals. If we use
the technique based on MFF and Euclidean distances, first we select A and
B (S = A,B), see (a). After that, we consider individual C; its nearest
neighbor is B and we choose A as a random solution. First, C competes with
A and C loses because the distance from A to B is greater than the distance
from C to B. Then, C competes with B and C wins because the distance
from C to A is greater than the distance from B to A, see (b). Finally, we
consider D, and D loses with A but it wins with C. Then, we select A and
D, see (c).

6.4 MFF and the Hypervolume indicator

As we mentioned in Chapters 3 and 5, there are different indicators to assess
the quality of the approximate Pareto optimal set generated by a MOEA.
However, the hypervolume indicator (IH) is the only unary indicator which
is strictly “Pareto compliant” [97]. Besides, IH rewards convergence towards
the Pareto front as well as the maximum spread of the solutions obtained. For
these reasons, many MOEAs based on it have been proposed [52, 49, 91, 35,
8, 50, 63]. However, this indicator has an important disadvantage: its high
computational cost. In the previous chapter, we proposed a new competition
scheme for MOEAs based on IH and on its locality property. Under this
scheme, we only calculate three contributions to IH per iteration (instead of
the P+1 contributions that the traditional competition scheme used by SMS-
EMOA requires, where P is the size of the population). Also, we showed that
if we approximate the contribution to IH into this new competition scheme
we can obtain better results than if we approximate it using the traditional
competition scheme.

In this section, we propose to combine MFF and IH . Our idea is to
use MFF as the main selection mechanism and IH is used only to correct
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the possible errors produced when selecting with MFF. This is due to two
things: (i) we want to reduce the number of times that the contribution to IH
is calculated and (ii) we want to improve the diversity obtained by MOEAs
based on MFF. One interesting thing of this selection mechanism is that, to
the best of our knowledge, it is the only one based on IH that is known to
work with a population-based scheme. This is because MFF determines the
order in which each individual competes to survive using IH . This scheme
also uses the competition scheme proposed in the previous chapter in which
each individual only competes with two other individuals of the population.
Therefore, the original combinatorial problem no longer exists.

Our selection mechanism based on MFF and IH works as follows: If we
want to select N individuals from a population P, we assign first a fitness
value to each individual using the modified MFF. Then, we proceed to select
the individuals according to their fitness values, verifying similarity between
selected individuals, see Algorithm 9. If we consider all individuals in the
population and we do not select N individuals, we select the remaining indi-
viduals considering only the maximin fitness. If we have already selected N
individuals but there are still nondominated individuals in P who have not
participated in the selection process, then, we proceed to use the contribu-
tion to IH as follows: Let S be the set of current selected individuals. Then,
for each nondominated individual y who has not participated in the selection
process, we obtain its nearest neighbor in S (we call it ynearest) and we choose
a random individual called yrandom such that ynearest 6= yrandom. Finally, we
calculate the contribution to IH of y, ynearest and yrandom. If y has a bet-
ter contribution than ynearest or yrandom, then y replaces the individual with
the worst contribution (ynearest or yrandom). The full selection mechanism is
shown in Algorithm 13.

Figure 6.6 shows the selection process using MFF and IH . Since individ-
uals C and D are not considered, in (a), C competes with A and B, and C
replaces B. In (b), D competes with A and C, and it loses. Also, with this
selection mechanism, if we return to Figure 6.4, we can avoid having big gaps
in the front.

As we mentioned before, calculating IH or its contribution is a #P-hard
problem. Therefore, although with the selection mechanism based on MFF
and IH , we can reduce the number of times that we need to calculate the
contribution to IH , if we want to solve MOPs with many objective functions,
e.g., more than six, this MOEA is not practical. For this reason, we also
propose to use a version of the selection mechanism based on MFF and IH
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Figure 6.6: Let’s assume that we want to select two individuals. If we use
the technique based on MFF and IH , first we select A and B (S = A,B).
After that, we consider individual C; its nearest neighbor is B and we choose
A as a random solution. Individual B is eliminated because it has the worst
contribution, see (b). Finally, we consider D; its nearest neighbor is C and
we choose A as a random solution. Individual D is eliminated because it has
the worst contribution, see (b). Finally, we choose individuals A and C, see
(c).

which approximates the contributions to IH , using the technique proposed
by Bringmann and Friedrich, see Chapter 5.

6.5 Experimental results

Each of the four selection mechanism described in this chapter were in-
corporated into a MOEA that uses the crossover and mutation operators
of NSGA-II to create new individuals, giving rise to the four following
MOEAs: “MC-MOEA: Maximin-Clustering Multi-Objective Evolutionary
Algorithm”, “MD-MOEA: Maximin-Distances Multi-Objective Evolutionary
Algorithm”, “MH-MOEA: Maximin-Hypervolume Multi-Objective Evolu-
tionary Algorithm” and “MAH-MOEA: Maximin-Approximated Hypervol-
ume Multi-Objective Evolutionary Algorithm”. These MOEAs work as fol-
lows: If the size of the population is P , then we create P new individuals.
We use a binary tournament to select the parents. At each tournament,
two individuals are randomly selected and the one with the higher maximin
fitness value is chosen. After that, we combine the population of parents
and offspring to obtain a population of size 2P . Then, we use one of the
four selection mechanisms to choose the P individuals that will take part of
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Algorithm 13: Maximin-Hypervolume Selection
Input : P (population), n (number of individuals to choose N < |P|).
Output: S (selected individuals).

1 AssignFitness(P);
2 Sort(P);
3 ND ← The nondominated solutions in P ;
4 S ← ∅;
/*Fill up the new population with the best copies according to the

maximin fitness, verifying that there is not a similar one */

5 S ← ∅;
6 foreach y ∈ P do

7 if |S| < N and VerifySimilarity(y, S, ǫ) = 0 then

8 S ← S ∪ y;
9 end

10 end

11 if |S| ≤ N then

/*Choose the remaining individuals considering only the maximin

fitness */

12 foreach y ∈ P such that y has been not selected do

13 S ← S ∪ y;
14 end

15 else

/*Improve the diversity according to the contribution to IH */

16 foreach y ∈ ND who had not participated in the selection process do

17 if VerifySimilarity(y, S, ǫ) = 0 then

18 ynearest ← The nearest neighbor of y in S;
19 yrandom ← A randomly selected individual in S such that

ynearest 6= yrandom;
/*Calculate the contributions to the hypervolume */

20 Cnearest ← CH(ynearest,S);
21 Crandom ← CH(yrandom,S);
22 Cy ← CH(y,S);

/*Remove the individual with the worst contribution */

23 worst ← Individual with the worst contribution (y, ynearest or
yrandom);

24 if worst = ynearest or worst = yrandom then

25 Replace worst with y;
26 end

27 end

28 end

29 end

30 return S;
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the following generation. This process is repeated for a certain (pre-defined)
number of generations.

For our experiments, we used the following test problems: DTLZ [30]
and WFG [48]. We used MOPs with up to ten objective functions. We used
k = 5 for DTLZ1, DTLZ3 and DTLZ6 and k = 10 for the remaining DTLZs.
And, we used k factor = 2 and l factor = 10 for the WFG test problems.
In Appendix A, we describe these two sets of test problems. We adopted
the parameters suggested by the authors of NSGA-II : pc = 0.9 (crossover
probability), pm = 1/n (mutation probability), where n is the number of
decision variables. For the crossover and mutation operators, we adopted
ηc = 15 and ηm = 20, respectively. Our maximum number of fitness function
evaluations was set to 50,000 (we used a population size of 100 individuals
and we iterated for 500 generations). In the case of MAH-MOEA, we used
104 as our number of samples.

6.5.1 Performance indicators

To assess performance, we adopted the following indicators:

� Hypervolume indicator (IH). It is defined as the size of the space
covered by the Pareto optimal solutions. IH rewards both convergence
towards the Pareto front as well as the maximum spread of the solu-
tions obtained. A high IH(A) value, indicates that A is close to PF
and has a good spread towards the extreme portions of the PF . See
Chapter 3, Section 3.2.1. To calculate IH , we normalized the approxi-
mations of the Pareto optimal set, generated by the MOEAs, and we
used yref = [y1, · · · , yk] such that yi = 1.1 as our reference point. The
normalization was performed considering all approximations generated
by the different MOEAs (i.e., we place, in one set, all nondominated
solutions found by the MOEAs which are being compared and from
this set we calculate the maximum and minimum for each objective
function).

� Two Set Coverage (ISC). We decided to use this indicator with
the aim of assessing the convergence of the MOEAs. ISC is a binary
Pareto compliant indicator. If all points in A dominate or are equal to
all points in B, then by definition ISC(A,B) = 1. ISC(A,B) = 0 implies
that no element in B is dominated by any element of A. In general,

CINVESTAV-IPN Computer Science Department



New selection mechanisms based on the Maximin Fitness Function 139

both ISC(A,B) and ISC(B,A) have to be considered. See Chapter 3,
Section 3.2.1.

� Spacing (IS). It measures the spread of solutions in the approximate
Pareto optimal front. When IS(A) = 0 all the solutions in A are
uniformly spread. Note that this indicator assumes that a MOEA has
already converged to the true Pareto front. See Chapter 3, Section
3.2.1.

6.5.2 Comparison of MOEAs based on MFF

In this section, we compare the four MOEAs based on MFF: MC-MOEA,
MD-MOEA, MH-MOEA and MAH-MOEA. Table 6.2 shows the results with
respect to IH for the DTLZ test problems with up to six objective functions.
In this table, we can see that MC-MOEA ranked fourth in all twenty-eight
cases; MD-MOEA ranked third in twenty-four cases, second in two cases and
first in two cases; MH-MOEA ranked first in twenty-five cases and only in
three cases ranked second; finally, MAH-MOEA ranked second in twenty-
three cases, third in four cases and first in one case. Tables 6.6 and 6.7 show
the results of the statistical analysis that we made to validate our experi-
ments, for which we used Wilcoxon’s rank sum. In this case, we decided to
compare the fourth place with the third place (MC-MOEA and MD-MOEA,
respectively), the third place with the second place (MD-MOEA and MAH-
MOEA, respectively) and the second place with the first place (MAH-MOEA
and MH-MOEA, respectively). For MC-MOEA and MD-MOEA, we can see
that in twenty-six cases we can reject the null hypothesis (medians are equal)
and only for DTLZ6 with four objective functions and DTLZ1 with five objec-
tive functions we can say that these two algorithms have a similar behavior.
For MD-MOEA and MAH-MOEA, we can see that in twenty-five cases we
can reject the null hypothesis and only for three problems both algorithms
have a similar behavior. Finally, for MAH-MOEA and MH-MOEA, we have
that for sixteen cases we can reject the null hypothesis and for twelve cases
we can say that both algorithms have a similar behavior. This result is in-
teresting because we can say that MAH-MOEA is really competitive with
respect to MH-MOEA.

Since MD-MOEA outperformed MC-MOEA in all cases, we can say that
the technique based on Euclidean distances was able to correct some dis-
advantages of the technique based on clustering, e.g., it can avoid that the
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approximate Pareto front has big gaps. However, both MOEAs (MC-MOEA
and MD-MOEA) have difficulties when the MOP has a degenerate Pareto
front (see problems DTLZ5 and DTLZ6). We think that this problem arises
because these two selection mechanisms have as their aim to distribute the
solutions uniformly and then, it is hard for the MOEA to converge to a front
with a lower dimensionality than the dimensionality of the problem. How-
ever, we can see that MH-MOEA and MAH-MOEA were able to correct this
disadvantage. This is because the aim of these selection mechanisms is to
maximize IH and the maximum IH corresponds to a distribution into the
degenerate Pareto front.

An interesting thing is that MAH-MOEA, the version of MH-MOEA that
approximates the contribution to IH , obtained results very close to MH-
MOEA but at a lower computational cost (see Tables 6.2, 6.3 and 6.6). This
is an important result because, as we know, MOEAs based on the use of the
exact IH values are not practical when we want to solve MOPs with more
than five or six objective functions. In order to address this disadvantage,
some authors have proposed different techniques to approximate IH or its
contribution. However, the quality of the solutions obtained by these MOEAs
considerably degrades in most cases, unlike MAH-MOEA which does not lose
much quality due to two reasons: First, it approximates the contribution to
IH in the competition scheme based on IH and on its locality property as we
suggested in the previous chapter. And second, it produces a ranking using
MFF to perform an initial selection and then, it uses the contribution to IH
only to correct the possible errors in this first selection procedure, i.e., IH is
not used as the primary selection mechanism.

From Tables 6.2 and 6.3, we can say that the best option to solve MOPs
with low and high dimensionality (in objective function space) is MAH-
MOEA. However, if we need to obtain the approximate Pareto optimal set
in the shorest time possible, MD-MOEA is a good option but we should be
careful when dealing with MOPs having degenerate Pareto fronts.

Table 6.4 shows the results with respect to IH for the WFG test problems
with up to six objective functions and we can see that MC-MOEA ranked
fourth in twenty-three cases, third in three cases and first in two cases. MD-
MOEA ranked third in eighteen cases, fourth in four cases, second in one
case and first in five cases. MH-MOEA ranked first in sixteen cases, second
in ten cases and third in two cases. Finally, MAH-MOEA ranked second
in seventeen cases, first in five cases, third in five cases and fourth in one
case. In the same way as with the DTLZ test problems, we conducted a
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statistical analysis using Wilcoxon’s rank sum to validate our experiments,
see Table 6.7. For MC-MOEA and MD-MOEA, we can see that in four
problems both algorithms have a similar behavior and in twenty-four cases
we can reject the null hypothesis. For MD-MOEA and MAH-MOEA, we
can reject the null hypothesis in twenty-one cases and only in seven cases
both algorithms have a similar behavior. Finally, for MAH-MOEA and MH-
MOEA, we can say that for eighteen problems both algorithms have a similar
behavior and only in ten cases we can reject the null hypothesis. With
these results, we can corroborate that MAH-MOEA is really competitive
with MH-MOEA. Then, these two algorithms are the best, followed by MD-
MOEA in the third place and MC-MOEA in the fourth place. However, if
we consider the running time, MH-MOEA is the worst algorithm followed by
MAH-MOEA in the third place, MD-MOEA in the second place and MC-
MOEA is the best algorithm (see Table 6.5).

Finally, we can observe that MC-MOEA and MD-MOEA have difficulties
in problems WFG1, WFG4 and WFG7. However, we cannot identify partic-
ular features of these problems which indicate the possible disadvantages of
these MOEAs in solving them.

It is important to note that if we use IH to compare the different MOEAs,
then it is evident that MOEAs based on this indicator have advantages over
those which don’t adopt it, because the aim of the former type of MOEAs is
to maximize IH . For this reason, we decided to use two other indicators to
compare the approximate Pareto optimal sets obtained by the MOEAs. We
adopted the two set coverage indicator (ISC) to measure convergence to the
Pareto front and the spacing indicator (IS) to measure distribution of the
solutions found. Since we can use these two indicators to evaluate approxi-
mations which involve any number of objective functions, we decided to use
up to ten objective functions. However, in this comparison we only consid-
ered MD-MOEA and MAH-MOEA due to two reasons: First, Tables 6.2 and
6.4 show clearly that MD-MOEA obtained better results than MC-MOEA.
And second, although MH-MOEA is better than MAH-MOEA, it cannot be
used to solve MOPs with more than six objective functions (its running time
is too high, and it would require weeks or even months to complete all the
required experiments).

Table 6.8 shows the results for the DTLZ test problems with respect to ISC
and we can see that in fifty-four cases the solutions found by MAH-MOEA
were able to cover a larger percentage of the solutions found by MD-MOEA
than the percentage of solutions found by MAH-MOEA which are covered
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by at least one solution found by MD-MOEA. However, only in the DTLZ6
test problem we can assure that MAH-MOEA is better than MD-MOEA
because only in this problem the percentage of solutions found by MAH-
MOEA which are covered by at least one solution found by MD-MOEA is
zero or close to zero and the percentage of solutions found by MD-MOEA
which are covered by at least one solution found by MAH-MOEA is close
to one. Table 6.9 shows the results regarding IS and we can observe that
MD-MOEA ranked second in thirty-nine cases and first in seventeen cases.
With these two tables, we can corroborate the results found when we use IH :
MAH-MOEA is better than MD-MOEA in most cases. However, we can say
that the technique based on Euclidean distances to improve the distribution
of the solutions is effective because regarding IS, MD-MOEA outperformed
MAH-MOEA in seventeen cases.

Finally, Tables 6.10 and 6.11 show the results with respect to the WFG
test problems. According to ISC , MD-MOEA was ranked in second place
in twenty-four cases and in first place in twenty cases. However, there are
no cases in which we can assure that one MOEA is better than the others.
Regarding IS, we can see that MD-MOEA was ranked in first place in forty-
nine cases and it was ranked in second place in seven cases. Therefore, for
these test problems MAH-MOEA and MD-MOEA are competitive because
from ISC we cannot assure that MAH-MOEA outperformed MD-MOEA in
terms of convergence and from IS we observe that MD-MOEA is better in
most problems. Also, in these problems we can see in a clearer way that the
technique based on Euclidean distances is effective.

As final conclusions of this section, we can say that MD-MOEA and
MAH-MOEA are the best options to solve MOPs with high and low dimen-
sionality in objective function space. Although MAH-MOEA is better than
MD-MOEA according to IH , regarding ISC and IS they are competitive.
Also, MD-MOEA is much faster than MAH-MOEA. However, it is impor-
tant to be careful when we use MD-MOEA because it has difficulties to solve
certain types of MOPs, e.g., MOPs with a degenerate Pareto front.

6.5.3 MOEAs based on MFF vs MOEAs not based on
MFF

In this section, we compare MD-MOEA and MAH-MOEA with respect to
two well-known MOEAs: The first one is MOEA/D (See Chapter 4, Sec-
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tion 4.3). We chose this MOEA because it has been a viable alternative to
deal with many-objective optimization problems in recent years. Also, its
computational cost is very low. MOEA/D [89] decomposes the MOP into
N scalar optimization subproblems and then it solves these subproblems si-
multaneously using an evolutionary algorithm. For our experiments, we used
the version in which MOEA/D adopts PBI (Penalty Boundary Intersection)
to decompose the MOP. We decided to use PBI because the resulting op-
timal solutions with PBI are normally much better distributed than those
obtained by the Tchebycheff approach [89]. To generate the convex weights
we used the technique proposed in [27] and after that, we applied clustering
(k-means) to obtain a specific number of weights.

The second one is SMS-EMOA [35]. We chose this MOEA because it is
the most popular hypervolume-based MOEA. SMS-EMOA creates an initial
population and then, it generates only one solution by iteration. After that,
it applies Pareto ranking. When the last front has more than one solution,
SMS-EMOA calculates the contribution to IH of each individual in the last
front and it eliminates the individual with the worst contribution. Beume et
al. [8] proposed not to use the contribution to IH when in the Pareto ranking
process we obtain more than one front. In that case, they proposed to use
the number of solutions which dominate to one solution (the solution that is
dominated by more solutions is removed). In this work, we used the version
proposed by Beume et al. but instead of calculating the exact contribution to
IH , we approximate it using the same technique that we adopted for MAH-
MOEA.

Since these four MOEAs use the same operators to create new individuals
(they use the same crossover and mutation operators adopted by NSGA-II ),
the comparison of selection mechanisms is fair. For MOEA/D and SMS-
EMOA, we also adopted the parameters suggested by the authors of NSGA-
II : pc = 0.9, pm = 1/n, where n is the number of decision variables, ηc = 15
and ηm = 20. In the case of MOEA/D, we used a neighborhood with size
equal to 20 and in the case of SMS-EMOA we used 104 as our number of
samples.

Before we perform the comparison, it is important to mention that both
MOEA/D and SMS-EMOA have important disadvantages. SMS-EMOA is
impractical to solve MOPs with many objective function because calculating
IH or its contribution involves a very high computational cost. In this work,
we use a version that approximates the contribution to IH . However, as we
will see later on, the competition scheme used by SMS-EMOA is not efficient
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and therefore, the running time of this version of SMS-EMOA is also high. On
the other hand, MOEA/D needs to generate a set of well-distributed convex
weights and this task becomes more difficult as we increase the number of
objective functions.

Regarding IH and considering the DTLZ test problems, MD-MOEA
ranked second in eleven cases, third in nine cases, fourth in five cases and
first in three cases. MAH-MOEA ranked first in fourteen cases, second in ten
cases, third in three cases and fourth in one case. MOEA/D ranked fourth
in nineteen cases, third in five cases, second in three cases and first in one
case. Finally, SMS-EMOA ranked third in eleven cases, first in ten cases,
second in four cases and fourth in three cases. See Table 6.12. Table 6.16
shows the results of the statistical analysis that we conducted to validate
our experiments, for which we used Wilcoxon’s rank sum and IH . In this
case, we decided to compare the MOEAs based on MFF (MD-MOEA and
MAH-MOEA) with respect to MOEA/D and SMS-EMOA. For MD-MOEA
and MOEA/D, we can say that only in one problem they have a similar
behavior and in the twenty-seven remaining problems the null hypothesis
(“medians are equal”) can be rejected. The same occurs with MAH-MOEA
and MOEA/D, since in only one problem they have a similar behavior. In the
case of MD-MOEA and SMS-EMOA only in two problems both algorithms
have a similar behavior and in the twenty-six remaining problems the null
hypothesis can be rejected. Finally, with respect to MAH-MOEA and SMS-
EMOA only in two cases they have a similar behavior and in the twenty-six
remaining problems the null hypothesis can be rejected. From these results,
we can say that MAH-MOEA is the best algorithm, followed by SMS-EMOA
in the second place, MD-MOEA in the third place and MOEA/D in the
fourth place. Another interesting thing is that MAH-MOEA is much faster
than SMS-EMOA. It is also worth noticing that MD-MOEA is ranked second
with respect to the running time but it is not much slower than MOEA/D
which is in the first place. See Table 6.13.

With respect to the WFG test problems, we can see in Table 6.14 that
MD-MOEA ranked third in seventeen cases, first in 6 cases, second in three
cases and fourth in two cases. MAH-MOEA ranked second in twenty-five
cases and first in three cases. MOEA/D ranked fourth in twenty-three cases
and third in five cases. Finally, SMS-EMOA ranked first in nineteen cases,
third in six cases and fourth in three cases. We applied a statistical analysis
to validate our experiments in the same way as done with the DTLZ test
problems, see Table 6.17. For MD-MOEA and MOEA/D in all twenty-eight
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problems, the null hypothesis can be rejected. And the same occurs for MAH-
MOEA and MOEA/D. For MD-MOEA and SMS-EMOA, in two problems
these two algorithms have a similar behavior and in the twenty-six remaining
problems we can reject the null hypothesis. And, for MAH-MOEA and SMS-
EMOA, we can see that in two cases both algorithms have a similar behavior
and for all twenty-six problems the null hypothesis can be rejected. Then, for
these problems SMS-EMOA is the best algorithm, followed by MAH-MOEA
in the second place, MD-MOEA in the third place and MOEA/D in the
fourth place. However, also in these problems MAH-MOEA is much faster
than SMS-EMOA and MD-MOEA is not much slower than MOEA/D.

As a conclusion of this section, we can say that MOEAs based on MFF are
a good option to solve MOPs with low and high dimensionality because they
can outperform well-known MOEAs such as SMS-EMOA and MOEA/D, e.g.,
both MD-MOEA and MAH-MOEA outperformed MOEA/D in the two sets
of test problems adopted (DTLZ and WFG) and MAH-MOEA outperformed
SMS-EMOA in the DTLZ test problems. In addition, both MD-MOEA,
MAH-MOEA are much faster than SMS-EMOA and MD-MOEA is not much
slower than MOEA/D.
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DTLZ1 (3) 1.2560 (0.089) 1.2714 (0.080) 1.2714 (0.080)
DTLZ2 (3) 0.7209 (0.014) 0.7291 (0.011) 0.7291 (0.011)
DTLZ3 (3) 0.9044 (0.323) 0.8759 (0.366) 0.8759 (0.366)
DTLZ4 (3) 0.7162 (0.014) 0.7319 (0.010) 0.7319 (0.010)
DTLZ5 (3) 0.2860 (0.019) 0.2991 (0.007) 0.2991 (0.007)
DTLZ6 (3) 0.3992 (0.064) 0.4589 (0.035) 0.4589 (0.035)
DTLZ7 (3) 0.7402 (0.007) 0.7430 (0.007) 0.7430 (0.007)
DTLZ1 (4) 1.2676 (0.364) 1.3576 (0.254) 1.3576 (0.254)
DTLZ2 (4) 1.0024 (0.022) 0.9978 (0.019) 0.9978 (0.019)
DTLZ3 (4) 1.4621 (0.002) 1.4623 (0.002) 1.4623 (0.002)
DTLZ4 (4) 1.0556 (0.019) 1.0668 (0.015) 1.0668 (0.015)
DTLZ5 (4) 0.6936 (0.099) 0.7784 (0.107) 0.7784 (0.107)
DTLZ6 (4) 1.0759 (0.058) 1.1089 (0.038) 1.1089 (0.038)
DTLZ7 (4) 0.7034 (0.014) 0.7072 (0.013) 0.7072 (0.013)
DTLZ1 (5) 1.5935 (0.025) 1.5860 (0.036) 1.5860 (0.036)
DTLZ2 (5) 1.2681 (0.030) 1.2750 (0.033) 1.2750 (0.033)
DTLZ3 (5) 1.6085 (0.002) 1.6083 (0.003) 1.6083 (0.003)
DTLZ4 (5) 1.3698 (0.026) 1.3827 (0.024) 1.3827 (0.024)
DTLZ5 (5) 0.8852 (0.094) 0.8847 (0.084) 0.8847 (0.084)
DTLZ6 (5) 0.9683 (0.091) 0.9506 (0.098) 0.9506 (0.098)
DTLZ7 (5) 0.7861 (0.028) 0.7941 (0.026) 0.7941 (0.026)
DTLZ1 (6) 1.7482 (0.025) 1.7574 (0.022) 1.7574 (0.022)
DTLZ2 (6) 1.5556 (0.050) 1.5688 (0.037) 1.5688 (0.037)
DTLZ3 (6) 1.7685 (0.003) 1.7690 (0.003) 1.7690 (0.003)
DTLZ4 (6) 1.6894 (0.042) 1.6943 (0.040) 1.6943 (0.040)
DTLZ5 (6) 0.9326 (0.095) 0.9328 (0.077) 0.9328 (0.077)
DTLZ6 (6) 0.9559 (0.035) 0.9700 (0.050) 0.9700 (0.050)
DTLZ7 (6) 0.7230 (0.053) 0.7116 (0.059) 0.7116 (0.059)

Table 6.1: Results obtained in the DTLZ test problems with up to six ob-
jective functions. We compare MC-V1, MC-V2 and MC-V3 using the hy-
pervolume indicator IH . We show average values over 30 independent runs.
The values in parentheses correspond to the standard deviations.
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IH
DTLZ1 (3) 1.1593 (0.013) 1.1823 (0.003) 1.1897 (0.001) 1.1896 (0.001)
DTLZ2 (3) 0.6964 (0.008) 0.7319 (0.003) 0.7535 (0.002) 0.7525 (0.002)
DTLZ3 (3) 1.3043 (0.021) 1.3281 (0.000) 1.3265 (0.000) 1.3263 (0.000)
DTLZ4 (3) 0.7015 (0.008) 0.7304 (0.006) 0.7491 (0.004) 0.7492 (0.004)
DTLZ5 (3) 0.2552 (0.005) 0.2651 (0.000) 0.2661 (0.001) 0.2661 (0.000)
DTLZ6 (3) 1.0453 (0.067) 1.0989 (0.008) 1.0998 (0.007) 1.0975 (0.009)
DTLZ7 (3) 0.5377 (0.040) 0.5519 (0.041) 0.5645 (0.043) 0.5638 (0.043)
DTLZ1 (4) 1.4241 (0.016) 1.4375 (0.005) 1.4471 (0.002) 1.4444 (0.002)
DTLZ2 (4) 1.0480 (0.019) 1.1249 (0.010) 1.1672 (0.003) 1.1647 (0.005)
DTLZ3 (4) 1.4630 (0.001) 1.4638 (0.000) 1.4638 (0.000) 1.4638 (0.000)
DTLZ4 (4) 1.1455 (0.016) 1.1912 (0.010) 1.2261 (0.006) 1.2252 (0.006)
DTLZ5 (4) 0.3928 (0.017) 0.4668 (0.023) 0.5492 (0.005) 0.5469 (0.004)
DTLZ6 (4) 1.2518 (0.045) 1.2742 (0.024) 1.3617 (0.003) 1.3600 (0.003)
DTLZ7 (4) 0.6659 (0.014) 0.7062 (0.016) 0.7305 (0.019) 0.7262 (0.018)
DTLZ1 (5) 1.5861 (0.069) 1.6011 (0.003) 1.6061 (0.001) 1.6031 (0.001)
DTLZ2 (5) 1.3004 (0.025) 1.4063 (0.015) 1.4680 (0.004) 1.4519 (0.006)
DTLZ3 (5) 1.6089 (0.002) 1.6098 (0.000) 1.6098 (0.000) 1.6098 (0.000)
DTLZ4 (5) 1.4341 (0.018) 1.4801 (0.011) 1.5182 (0.006) 1.5096 (0.007)
DTLZ5 (5) 0.7294 (0.019) 0.8122 (0.033) 0.9249 (0.007) 0.9180 (0.015)
DTLZ6 (5) 0.4890 (0.074) 1.3396 (0.063) 1.5522 (0.002) 1.5450 (0.005)
DTLZ7 (5) 0.7562 (0.026) 0.8534 (0.009) 0.8716 (0.015) 0.8699 (0.010)
DTLZ1 (6) 1.7002 (0.088) 1.7652 (0.004) 1.7688 (0.001) 1.7669 (0.001)
DTLZ2 (6) 1.6061 (0.027) 1.6757 (0.014) 1.7264 (0.004) 1.7114 (0.006)
DTLZ3 (6) 1.7707 (0.001) 1.7710 (0.000) 1.7713 (0.000) 1.7712 (0.000)
DTLZ4 (6) 1.6978 (0.024) 1.7234 (0.008) 1.7495 (0.002) 1.7407 (0.003)
DTLZ5 (6) 0.8283 (0.030) 0.9563 (0.067) 1.1347 (0.019) 1.1170 (0.041)
DTLZ6 (6) 0.5754 (0.050) 1.0454 (0.174) 1.7039 (0.004) 1.6984 (0.004)
DTLZ7 (6) 0.7382 (0.054) 0.9319 (0.022) 0.9438 (0.020) 0.9380 (0.026)

Table 6.2: Results obtained in the DTLZ test problems with up to six ob-
jective functions. We compare MC-MOEA, MD-MOEA, MH-MOEA and
MAH-MOEA using the hypervolume indicator IH . We show average val-
ues over 30 independent runs. The values in parentheses correspond to the
standard deviations.
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time
DTLZ1 (3) 0.6277 (0.010) 0.8317 (0.025) 341.8550 (48.468) 26.5683 (6.888)
DTLZ2 (3) 0.9857 (0.011) 1.7247 (0.016) 362.5860 (46.285) 80.2447 (11.191)
DTLZ3 (3) 0.6150 (0.016) 0.7897 (0.028) 410.8940 (51.899) 26.4793 (5.165)
DTLZ4 (3) 1.0137 (0.009) 1.7187 (0.018) 441.8840 (25.976) 77.7587 (9.585)
DTLZ5 (3) 0.8377 (0.009) 1.2467 (0.019) 362.4503 (36.636) 9.6463 (2.308)
DTLZ6 (3) 0.7157 (0.032) 1.0763 (0.020) 358.8433 (17.170) 26.3760 (12.040)
DTLZ7 (3) 0.9210 (0.018) 1.0917 (0.036) 370.5477 (18.106) 28.6033 (7.032)
DTLZ1 (4) 0.8150 (0.013) 1.0227 (0.015) 350.6833 (13.917) 17.1963 (2.158)
DTLZ2 (4) 1.2033 (0.015) 2.0807 (0.009) 380.9720 (12.960) 56.9457 (9.412)
DTLZ3 (4) 0.8083 (0.013) 1.0830 (0.029) 403.1007 (26.826) 23.3403 (2.858)
DTLZ4 (4) 1.2520 (0.011) 2.0533 (0.020) 424.2623 (37.408) 52.1267 (9.269)
DTLZ5 (4) 1.2420 (0.017) 2.3523 (0.028) 418.8673 (56.864) 50.0157 (6.454)
DTLZ6 (4) 0.9953 (0.011) 1.6473 (0.020) 386.8503 (13.442) 49.7007 (6.381)
DTLZ7 (4) 1.1347 (0.019) 1.1903 (0.026) 354.2237 (11.950) 16.5777 (2.984)
DTLZ1 (5) 0.9823 (0.015) 1.1693 (0.037) 495.2057 (40.617) 12.5180 (1.662)
DTLZ2 (5) 1.3807 (0.017) 2.3043 (0.014) 893.2087 (23.893) 29.8747 (3.466)
DTLZ3 (5) 0.9920 (0.009) 1.2967 (0.028) 558.4480 (23.573) 17.2507 (2.455)
DTLZ4 (5) 1.4673 (0.022) 2.2767 (0.021) 843.5720 (16.920) 28.0337 (3.063)
DTLZ5 (5) 1.4577 (0.011) 2.4603 (0.021) 1516.0527 (91.143) 44.2683 (5.359)
DTLZ6 (5) 1.3483 (0.016) 2.2447 (0.044) 980.2290 (39.726) 46.6733 (5.942)
DTLZ7 (5) 1.3380 (0.016) 1.3070 (0.035) 324.5770 (35.547) 7.3807 (1.137)
DTLZ1 (6) 1.1350 (0.017) 1.3033 (0.070) 3137.1263 (406.976) 10.5600 (1.946)
DTLZ2 (6) 1.5407 (0.046) 2.4600 (0.023) 7760.6740 (199.641) 19.9033 (1.739)
DTLZ3 (6) 1.1487 (0.010) 1.4473 (0.030) 3859.2973 (340.664) 15.7413 (2.575)
DTLZ4 (6) 1.6273 (0.014) 2.4343 (0.026) 6662.2467 (190.364) 18.3560 (2.040)
DTLZ5 (6) 1.6177 (0.025) 2.6093 (0.028) 7964.5500 (1610.847) 37.3323 (5.122)
DTLZ6 (6) 1.5197 (0.018) 2.8480 (0.049) 5459.3457 (126.423) 44.0187 (5.048)
DTLZ7 (6) 1.5173 (0.017) 1.4347 (0.047) 618.1323 (159.834) 3.7347 (0.632)

Table 6.3: Results obtained in the DTLZ test problems with up to six objective functions.
We compare MC-MOEA, MD-MOEA, MH-MOEA and MAH-MOEA with respect to the
running time required by each MOEA to obtain the approximation of the Pareto optimal
set. The results are in seconds. We show average values over 30 independent runs. The
values in parentheses correspond to the standard deviations.
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WFG1 (3) 1.0315 (0.061) 1.0043 (0.057) 1.1414 (0.046) 1.1274 (0.049)
WFG2 (3) 0.6980 (0.091) 0.7559 (0.091) 0.7559 (0.091) 0.7559 (0.091)
WFG3 (3) 0.5476 (0.011) 0.6156 (0.004) 0.6320 (0.003) 0.6312 (0.002)
WFG4 (3) 0.5549 (0.015) 0.6584 (0.008) 0.7430 (0.002) 0.7414 (0.002)
WFG5 (3) 0.4479 (0.012) 0.5325 (0.005) 0.5531 (0.001) 0.5529 (0.001)
WFG6 (3) 0.5081 (0.008) 0.5483 (0.003) 0.5615 (0.003) 0.5602 (0.004)
WFG7 (3) 0.5324 (0.012) 0.6099 (0.013) 0.7354 (0.004) 0.7342 (0.005)
WFG1 (4) 1.1074 (0.045) 1.0396 (0.027) 1.2004 (0.049) 1.2045 (0.045)
WFG2 (4) 0.6485 (0.132) 0.6338 (0.134) 0.6338 (0.134) 0.6338 (0.134)
WFG3 (4) 0.1807 (0.057) 0.5674 (0.009) 0.5865 (0.009) 0.5801 (0.009)
WFG4 (4) 0.4842 (0.045) 0.8193 (0.017) 1.0055 (0.005) 0.9955 (0.007)
WFG5 (4) 0.3934 (0.019) 0.5501 (0.008) 0.5901 (0.002) 0.5870 (0.003)
WFG6 (4) 0.3125 (0.055) 0.5510 (0.016) 0.5714 (0.012) 0.5712 (0.010)
WFG7 (4) 0.5361 (0.018) 0.6163 (0.018) 0.8721 (0.008) 0.8623 (0.008)
WFG1 (5) 1.1905 (0.036) 1.0896 (0.030) 1.2266 (0.031) 1.2095 (0.031)
WFG2 (5) 0.6027 (0.183) 0.6349 (0.203) 0.6349 (0.203) 0.6349 (0.203)
WFG3 (5) 0.0000 (0.000) 0.5753 (0.018) 0.5724 (0.022) 0.5742 (0.018)
WFG4 (5) 0.5167 (0.044) 0.9373 (0.022) 1.2261 (0.011) 1.2076 (0.009)
WFG5 (5) 0.3200 (0.028) 0.5744 (0.014) 0.6136 (0.012) 0.6142 (0.008)
WFG6 (5) 0.0020 (0.007) 0.5557 (0.023) 0.5697 (0.031) 0.5735 (0.025)
WFG7 (5) 0.5125 (0.018) 0.6113 (0.023) 0.9623 (0.019) 0.9482 (0.019)
WFG1 (6) 1.3749 (0.023) 1.2711 (0.036) 1.3562 (0.029) 1.3288 (0.031)
WFG2 (6) 0.6486 (0.198) 0.7530 (0.164) 0.7530 (0.164) 0.7530 (0.164)
WFG3 (6) 0.0000 (0.000) 0.5635 (0.027) 0.5630 (0.037) 0.5575 (0.032)
WFG4 (6) 0.6202 (0.053) 1.0276 (0.032) 1.4082 (0.012) 1.4025 (0.015)
WFG5 (6) 0.1658 (0.016) 0.5893 (0.023) 0.6005 (0.022) 0.6099 (0.024)
WFG6 (6) 0.0016 (0.006) 0.6030 (0.034) 0.6140 (0.031) 0.6134 (0.032)
WFG7 (6) 0.4872 (0.020) 0.6100 (0.023) 0.8517 (0.092) 0.9036 (0.071)

Table 6.4: Results obtained in the WFG test problems with up to six ob-
jective functions. We compare MC-MOEA, MD-MOEA, MH-MOEA and
MAH-MOEA using the hypervolume indicator IH . We show average val-
ues over 30 independent runs. The values in parentheses correspond to the
standard deviations.
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mc-moea

time
md-moea

time
mh-moea

time
mah-moea

time
WFG1 (3) 2.0607 (0.016) 3.0037 (0.036) 407.7103 (16.770) 97.5580 (11.196)
WFG2 (3) 1.4210 (0.197) 1.3063 (0.081) 384.3690 (16.681) 1.5803 (0.314)
WFG3 (3) 1.7350 (0.025) 2.7167 (0.036) 412.2397 (17.685) 87.2683 (15.644)
WFG4 (3) 1.7633 (0.010) 2.9810 (0.040) 404.2377 (16.539) 78.2380 (14.106)
WFG5 (3) 1.7807 (0.014) 3.1817 (0.119) 402.1483 (16.008) 122.2553 (17.817)
WFG6 (3) 1.6670 (0.013) 2.6367 (0.115) 406.3600 (18.357) 95.7627 (14.819)
WFG7 (3) 2.1950 (0.011) 3.7967 (0.053) 404.4447 (17.979) 138.2930 (26.767)
WFG1 (4) 2.2793 (0.016) 3.1263 (0.028) 446.1657 (25.163) 55.2243 (6.841)
WFG2 (4) 1.5113 (0.188) 1.3700 (0.040) 361.7037 (13.118) 1.7497 (0.150)
WFG3 (4) 1.8777 (0.026) 2.3457 (0.082) 387.6740 (22.302) 37.7127 (6.090)
WFG4 (4) 2.0153 (0.021) 3.5377 (0.070) 452.5403 (25.090) 66.3593 (11.242)
WFG5 (4) 1.9810 (0.010) 3.3533 (0.029) 391.5327 (19.290) 75.2213 (11.970)
WFG6 (4) 1.8187 (0.009) 2.2033 (0.062) 380.4550 (20.296) 39.5240 (5.911)
WFG7 (4) 2.5327 (0.016) 4.1817 (0.043) 455.2317 (27.525) 85.7517 (9.854)
WFG1 (5) 2.4997 (0.018) 3.1180 (0.048) 1514.0497 (79.687) 25.0433 (3.385)
WFG2 (5) 1.7283 (0.237) 1.5483 (0.055) 269.0003 (38.875) 2.0567 (0.346)
WFG3 (5) 2.0820 (0.019) 1.8530 (0.023) 266.8000 (28.414) 2.7177 (0.374)
WFG4 (5) 2.2467 (0.011) 3.8390 (0.030) 1651.3397 (74.059) 52.2173 (8.366)
WFG5 (5) 2.1750 (0.011) 3.1130 (0.119) 336.6403 (25.775) 45.3483 (6.833)
WFG6 (5) 2.0200 (0.012) 1.8200 (0.014) 283.3267 (61.769) 3.6643 (0.604)
WFG7 (5) 2.9070 (0.013) 4.5740 (0.035) 1779.0997 (149.456) 49.3623 (6.280)
WFG1 (6) 2.6130 (0.015) 3.0127 (0.039) 13890.5980 (909.094) 13.4993 (1.680)
WFG2 (6) 1.9440 (0.201) 1.6703 (0.060) 231.7187 (18.578) 1.9280 (0.205)
WFG3 (6) 2.2267 (0.017) 1.9417 (0.018) 233.8433 (16.113) 2.9970 (0.399)
WFG4 (6) 2.4050 (0.019) 4.0547 (0.035) 14471.2413 (18.960) 47.5760 (7.722)
WFG5 (6) 2.2907 (0.029) 2.5957 (0.090) 331.3267 (23.342) 18.0147 (3.537)
WFG6 (6) 2.1507 (0.011) 1.9097 (0.022) 234.4510 (12.421) 2.7093 (0.111)
WFG7 (6) 3.0050 (0.012) 4.7223 (0.048) 14228.5130 (998.589) 44.0367 (6.551)

Table 6.5: Results obtained in the WFG test problems with up to six objective functions.
We compare MC-MOEA, MD-MOEA, MH-MOEA and MAH-MOEA with respect to the
running time required by each MOEA to obtain the approximation of the Pareto optimal
set. The results are in seconds. We show average values over 30 independent runs. The
values in parentheses correspond to the standard deviations.
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~f

mc-moea
&

md-moea
P (H)

md-moea
&

mah-moea
P (H)

mah-moea
&

mh-moea
P (H)

DTLZ1 (3) 0.000000 (1) 0.000000 (1) 0.464273 (0)
DTLZ2 (3) 0.000000 (1) 0.000000 (1) 0.203559 (0)
DTLZ3 (3) 0.000000 (1) 0.000000 (1) 0.100764 (0)
DTLZ4 (3) 0.000000 (1) 0.000000 (1) 0.958731 (0)
DTLZ5 (3) 0.000000 (1) 0.000000 (1) 0.125965 (0)
DTLZ6 (3) 0.000000 (1) 0.784460 (0) 0.180900 (0)
DTLZ7 (3) 0.000002 (1) 0.000001 (1) 0.510598 (0)
DTLZ1 (4) 0.000168 (1) 0.000000 (1) 0.000002 (1)
DTLZ2 (4) 0.000000 (1) 0.000000 (1) 0.048413 (1)
DTLZ3 (4) 0.000000 (1) 0.000586 (1) 0.428630 (0)
DTLZ4 (4) 0.000000 (1) 0.000000 (1) 0.355472 (0)
DTLZ5 (4) 0.000000 (1) 0.000000 (1) 0.005570 (1)
DTLZ6 (4) 0.067869 (0) 0.000000 (1) 0.046756 (1)
DTLZ7 (4) 0.000000 (1) 0.000001 (1) 0.010763 (1)
DTLZ1 (5) 0.055546 (0) 0.002624 (1) 0.000000 (1)
DTLZ2 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (5) 0.000007 (1) 0.111927 (0) 0.183242 (0)
DTLZ4 (5) 0.000000 (1) 0.000000 (1) 0.000015 (1)
DTLZ5 (5) 0.000000 (1) 0.000000 (1) 0.010315 (1)
DTLZ6 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (5) 0.000000 (1) 0.000001 (1) 0.464273 (0)
DTLZ1 (6) 0.000038 (1) 0.006096 (1) 0.000000 (1)
DTLZ2 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (6) 0.039873 (1) 0.003337 (1) 0.000004 (1)
DTLZ4 (6) 0.000001 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (6) 0.000000 (1) 0.000000 (1) 0.005570 (1)
DTLZ6 (6) 0.000000 (1) 0.000000 (1) 0.000001 (1)
DTLZ7 (6) 0.000000 (1) 0.153667 (0) 0.428963 (0)

Table 6.6: Statistical analysis using Wilcoxon’s rank sum for the DTLZ test
problems. For this, we used IH , see Table 6.2. P is the probability of
observing the given result (the null hypothesis is true). Small values of P
cast doubt on the validity of the null hypothesis. H = 0 indicates that the
null hypothesis (“medians are equal”) cannot be rejected at the 5% level.
H = 1 indicates that the null hypothesis can be rejected at the 5% level.
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~f

mc-moea
&

md-moea
P (H)

md-moea
&

mah-moea
P (H)

mah-moea
&

mh-moea
P (H)

WFG1 (3) 0.129670 (0) 0.000000 (1) 0.277189 (0)
WFG2 (3) 0.007959 (1) 1.000000 (0) 1.000000 (0)
WFG3 (3) 0.000000 (1) 0.000000 (1) 0.087710 (0)
WFG4 (3) 0.000000 (1) 0.000000 (1) 0.004033 (1)
WFG5 (3) 0.000000 (1) 0.000000 (1) 0.446413 (0)
WFG6 (3) 0.000000 (1) 0.000000 (1) 0.332841 (0)
WFG7 (3) 0.000000 (1) 0.000000 (1) 0.420386 (0)
WFG1 (4) 0.000000 (1) 0.000000 (1) 0.728265 (0)
WFG2 (4) 0.946956 (0) 1.000000 (0) 1.000000 (0)
WFG3 (4) 0.000000 (1) 0.000003 (1) 0.005322 (1)
WFG4 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (4) 0.000000 (1) 0.000000 (1) 0.000006 (1)
WFG6 (4) 0.000000 (1) 0.000004 (1) 0.813003 (0)
WFG7 (4) 0.000000 (1) 0.000000 (1) 0.000077 (1)
WFG1 (5) 0.000000 (1) 0.000000 (1) 0.033874 (1)
WFG2 (5) 0.403538 (0) 1.000000 (0) 1.000000 (0)
WFG3 (5) 0.000000 (1) 0.841801 (0) 0.888303 (0)
WFG4 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (5) 0.000000 (1) 0.000000 (1) 0.876635 (0)
WFG6 (5) 0.000000 (1) 0.006669 (1) 0.888303 (0)
WFG7 (5) 0.000000 (1) 0.000000 (1) 0.009883 (1)
WFG1 (6) 0.000000 (1) 0.000000 (1) 0.001767 (1)
WFG2 (6) 0.055546 (0) 1.000000 (0) 1.000000 (0)
WFG3 (6) 0.000000 (1) 0.515261 (0) 0.374931 (0)
WFG4 (6) 0.000000 (1) 0.000000 (1) 0.264326 (0)
WFG5 (6) 0.000000 (1) 0.001680 (1) 0.074827 (0)
WFG6 (6) 0.000000 (1) 0.283778 (0) 0.807275 (0)
WFG7 (6) 0.000000 (1) 0.000000 (1) 0.024157 (1)

Table 6.7: Statistical analysis using Wilcoxon’s rank sum for the WFG test
problems. For this, we used IH , see Table 6.4. P is the probability of
observing the given result (the null hypothesis is true). Small values of P
cast doubt on the validity of the null hypothesis. H = 0 indicates that the
null hypothesis (“medians are equal”) cannot be rejected at the 5% level.
H = 1 indicates that the null hypothesis can be rejected at the 5% level.
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Number of times it ranked fist
Number of times it ranked second

~f ISC(A,B) ISC(B,A)
DTLZ1 (3) 0.0040 0.0577
DTLZ2 (3) 0.0457 0.4613
DTLZ3 (3) 0.0320 0.1180
DTLZ4 (3) 0.0453 0.4700
DTLZ5 (3) 0.1610 0.4800
DTLZ6 (3) 0.6693 0.6390
DTLZ7 (3) 0.0903 0.2870
DTLZ1 (4) 0.0077 0.0283
DTLZ2 (4) 0.0227 0.2827
DTLZ3 (4) 0.0153 0.0773
DTLZ4 (4) 0.0213 0.2647
DTLZ5 (4) 0.0317 0.4537
DTLZ6 (4) 0.0137 0.9117
DTLZ7 (4) 0.0640 0.2723
DTLZ1 (5) 0.0110 0.0277
DTLZ2 (5) 0.0153 0.1567
DTLZ3 (5) 0.0063 0.0893
DTLZ4 (5) 0.0160 0.1377
DTLZ5 (5) 0.0193 0.5630
DTLZ6 (5) 0.0040 0.9790
DTLZ7 (5) 0.0433 0.1357
DTLZ1 (6) 0.0103 0.0553
DTLZ2 (6) 0.0067 0.1380
DTLZ3 (6) 0.0090 0.0880
DTLZ4 (6) 0.0067 0.1143
DTLZ5 (6) 0.0270 0.5767
DTLZ6 (6) 0.0000 0.9867
DTLZ7 (6) 0.0280 0.0650

~f ISC(A,B) ISC(B,B)
DTLZ1 (7) 0.0090 0.3713
DTLZ2 (7) 0.0013 0.1653
DTLZ3 (7) 0.0097 0.2893
DTLZ4 (7) 0.0023 0.0840
DTLZ5 (7) 0.0260 0.5730
DTLZ6 (7) 0.0000 0.9887
DTLZ7 (7) 0.0287 0.0373
DTLZ1 (8) 0.0253 0.8963
DTLZ2 (8) 0.0000 0.1813
DTLZ3 (8) 0.0060 0.7860
DTLZ4 (8) 0.0013 0.0617
DTLZ5 (8) 0.0227 0.5470
DTLZ6 (8) 0.0000 0.9867
DTLZ7 (8) 0.0173 0.0140
DTLZ1 (9) 0.1243 0.9667
DTLZ2 (9) 0.0000 0.3167
DTLZ3 (9) 0.0033 0.9230
DTLZ4 (9) 0.0023 0.0337
DTLZ5 (9) 0.0303 0.4677
DTLZ6 (9) 0.0000 0.9887
DTLZ7 (9) 0.0070 0.0073
DTLZ1 (10) 0.0773 0.9837
DTLZ2 (10) 0.0000 0.7277
DTLZ3 (10) 0.0017 0.9673
DTLZ4 (10) 0.0000 0.0370
DTLZ5 (10) 0.0387 0.2883
DTLZ6 (10) 0.0000 0.9817
DTLZ7 (10) 0.0033 0.0037

Table 6.8: Results obtained in the DTLZ test problems with up to ten ob-
jective functions. We compare MD-MOEA and MAH-MOEA with respect
to ISC . In this case, A is the set composed by all solutions found by MD-
MOEA considering all 30 independent runs and B is the set composed by all
solutions found by MAH-MOEA considering all 30 independent runs.
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DTLZ1(3) 0.0383(0.051) 0.0227(0.014)
DTLZ2(3) 0.0494(0.003) 0.0519(0.005)
DTLZ3(3) 39.7739(16.843) 0.0835(0.114)
DTLZ4(3) 0.0485(0.004) 0.0534(0.005)
DTLZ5(3) 0.0107(0.001) 0.0149(0.002)
DTLZ6(3) 0.0477(0.050) 0.0244(0.015)
DTLZ7(3) 0.0515(0.012) 0.0548(0.011)
DTLZ1(4) 0.3313(1.026) 0.0716(0.139)
DTLZ2(4) 0.0821(0.010) 0.0976(0.007)
DTLZ3(4) 30.1241(24.519) 0.1443(0.152)
DTLZ4(4) 0.0852(0.008) 0.0979(0.007)
DTLZ5(4) 0.1303(0.028) 0.0871(0.009)
DTLZ6(4) 0.2187(0.036) 0.1289(0.020)
DTLZ7(4) 0.1223(0.015) 0.1222(0.018)
DTLZ1(5) 0.1476(0.311) 0.1434(0.437)
DTLZ2(5) 0.1128(0.011) 0.1406(0.012)
DTLZ3(5) 5.9726(12.907) 0.2318(0.270)
DTLZ4(5) 0.1160(0.013) 0.1379(0.011)
DTLZ5(5) 0.2209(0.029) 0.1379(0.021)
DTLZ6(5) 0.4020(0.044) 0.2472(0.058)
DTLZ7(5) 0.1837(0.033) 0.1735(0.030)
DTLZ1(6) 0.5147(1.209) 0.1094(0.109)
DTLZ2(6) 0.1471(0.015) 0.1782(0.016)
DTLZ3(6) 8.5028(15.487) 0.6253(2.037)
DTLZ4(6) 0.1416(0.012) 0.1777(0.018)
DTLZ5(6) 0.2670(0.033) 0.1933(0.026)
DTLZ6(6) 0.6232(0.066) 0.3207(0.070)
DTLZ7(6) 0.2478(0.047) 0.2520(0.055)

~f md-moea
IS

mah-moea
IS

DTLZ1(7) 4.7387(8.298) 0.1142(0.170)
DTLZ2(7) 0.1752(0.018) 0.2028(0.027)
DTLZ3(7) 17.6441(27.499) 0.6413(1.399)
DTLZ4(7) 0.1736(0.021) 0.2011(0.018)
DTLZ5(7) 0.3055(0.034) 0.2296(0.046)
DTLZ6(7) 0.7690(0.102) 0.3620(0.061)
DTLZ7(7) 0.2959(0.081) 0.2948(0.077)
DTLZ1(8) 44.9282(15.636) 3.1587(3.930)
DTLZ2(8) 0.2151(0.023) 0.2337(0.021)
DTLZ3(8) 121.0272(70.941) 2.0211(4.517)
DTLZ4(8) 0.1982(0.024) 0.2265(0.020)
DTLZ5(8) 0.3297(0.035) 0.2416(0.040)
DTLZ6(8) 0.8535(0.075) 0.3994(0.049)
DTLZ7(8) 0.3472(0.080) 0.3425(0.078)
DTLZ1(9) 53.2934(10.620) 9.9927(4.748)
DTLZ2(9) 0.2740(0.076) 0.2477(0.026)
DTLZ3(9) 163.9581(73.838) 0.8544(0.974)
DTLZ4(9) 0.2206(0.023) 0.2521(0.024)
DTLZ5(9) 0.3472(0.040) 0.2594(0.045)
DTLZ6(9) 0.9396(0.103) 0.4521(0.052)
DTLZ7(9) 0.5877(0.906) 0.5839(0.907)
DTLZ1(10) 56.1186(11.811) 13.1724(5.369)
DTLZ2(10) 0.4853(0.102) 0.2714(0.028)
DTLZ3(10) 186.9971(41.579) 3.5598(8.554)
DTLZ4(10) 0.2555(0.034) 0.2882(0.033)
DTLZ5(10) 0.3324(0.049) 0.2802(0.052)
DTLZ6(10) 0.9776(0.088) 0.4803(0.053)
DTLZ7(10) 0.9527(1.374) 0.8445(1.303)

Table 6.9: Results obtained in the DTLZ test problems with up to ten ob-
jective functions. We compare MD-MOEA and MAH-MOEA with respect
to IS. We show average values over 30 independent runs. The values in
parentheses correspond to the standard deviations.
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~f md-moea
ISC

mah-moea
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WFG1 (3) 0.0000 0.0017
WFG2 (3) 0.6703 0.6703
WFG3 (3) 0.0140 0.5907
WFG4 (3) 0.0003 0.9870
WFG5 (3) 0.0000 0.2183
WFG6 (3) 0.0157 0.6220
WFG7 (3) 0.0153 0.1930
WFG1 (4) 0.0000 0.0000
WFG2 (4) 0.8647 0.8647
WFG3 (4) 0.0217 0.1677
WFG4 (4) 0.0000 0.6527
WFG5 (4) 0.0000 0.1337
WFG6 (4) 0.0300 0.2420
WFG7 (4) 0.0030 0.0010
WFG1 (5) 0.0000 0.0000
WFG2 (5) 0.8357 0.8357
WFG3 (5) 0.1807 0.1787
WFG4 (5) 0.0000 0.3083
WFG5 (5) 0.0000 0.0317
WFG6 (5) 0.3310 0.3520
WFG7 (5) 0.0000 0.0000
WFG1 (6) 0.0000 0.0000
WFG2 (6) 0.8113 0.8113
WFG3 (6) 0.3297 0.3210
WFG4 (6) 0.0000 0.1350
WFG5 (6) 0.0000 0.0020
WFG6 (6) 0.4010 0.3943
WFG7 (6) 0.0000 0.0000

~f md-moea
ISC

mah-moea
ISC

WFG1 (7) 0.0000 0.0000
WFG2 (7) 0.7737 0.7737
WFG3 (7) 0.2647 0.2687
WFG4 (7) 0.0007 0.0543
WFG5 (7) 0.0013 0.0020
WFG6 (7) 0.3477 0.3410
WFG7 (7) 0.0000 0.0000
WFG1 (8) 0.0000 0.0000
WFG2 (8) 0.7787 0.7787
WFG3 (8) 0.1923 0.1923
WFG4 (8) 0.0000 0.0267
WFG5 (8) 0.0013 0.0030
WFG6 (8) 0.2877 0.3213
WFG7 (8) 0.0000 0.0000
WFG1 (9) 0.0000 0.0000
WFG2 (9) 0.7750 0.7750
WFG3 (9) 0.1383 0.1383
WFG4 (9) 0.0000 0.0177
WFG5 (9) 0.0093 0.0103
WFG6 (9) 0.2753 0.2383
WFG7 (9) 0.0000 0.0000
WFG1 (10) 0.0000 0.0000
WFG2 (10) 0.7377 0.7377
WFG3 (10) 0.1050 0.1050
WFG4 (10) 0.0000 0.0057
WFG5 (10) 0.0147 0.0147
WFG6 (10) 0.2247 0.2097
WFG7 (10) 0.0000 0.0000

Table 6.10: Results obtained in the WFG test problems with up to ten
objective functions. We compare MD-MOEA and MAH-MOEA with respect
to ISC. We show average values over 30 independent runs. The values in
parentheses correspond to the standard deviations.
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WFG1(3) 0.0545(0.009) 0.0815(0.022)
WFG2(3) 0.0224(0.009) 0.0224(0.009)
WFG3(3) 0.0181(0.002) 0.0242(0.002)
WFG4(3) 0.1586(0.015) 0.1821(0.016)
WFG5(3) 0.0885(0.010) 0.1049(0.010)
WFG6(3) 0.0380(0.006) 0.0453(0.005)
WFG7(3) 0.1226(0.011) 0.1511(0.013)
WFG1(4) 0.0643(0.008) 0.0979(0.012)
WFG2(4) 0.0349(0.013) 0.0349(0.013)
WFG3(4) 0.0286(0.003) 0.0356(0.003)
WFG4(4) 0.3332(0.028) 0.4306(0.035)
WFG5(4) 0.1580(0.015) 0.1813(0.014)
WFG6(4) 0.0837(0.020) 0.0846(0.016)
WFG7(4) 0.2277(0.023) 0.3390(0.024)
WFG1(5) 0.0703(0.007) 0.0971(0.009)
WFG2(5) 0.0390(0.017) 0.0390(0.017)
WFG3(5) 0.0505(0.004) 0.0500(0.004)
WFG4(5) 0.5066(0.065) 0.7625(0.076)
WFG5(5) 0.2592(0.040) 0.2649(0.035)
WFG6(5) 0.1152(0.020) 0.1307(0.027)
WFG7(5) 0.3302(0.038) 0.5677(0.050)
WFG1(6) 0.0736(0.009) 0.0887(0.012)
WFG2(6) 0.0521(0.025) 0.0521(0.025)
WFG3(6) 0.0744(0.014) 0.0755(0.014)
WFG4(6) 0.7314(0.086) 1.1253(0.095)
WFG5(6) 0.4318(0.062) 0.4621(0.059)
WFG6(6) 0.1510(0.031) 0.1605(0.031)
WFG7(6) 0.4422(0.058) 0.6964(0.129)

~f md-moea
IS

mah-moea
IS

WFG1(7) 0.0807(0.011) 0.0824(0.009)
WFG2(7) 0.0516(0.018) 0.0516(0.018)
WFG3(7) 0.0900(0.024) 0.0906(0.024)
WFG4(7) 0.9768(0.112) 1.6140(0.152)
WFG5(7) 0.5441(0.072) 0.5752(0.083)
WFG6(7) 0.1831(0.039) 0.1833(0.042)
WFG7(7) 0.5718(0.056) 0.6547(0.141)
WFG1(8) 0.0877(0.013) 0.0908(0.016)
WFG2(8) 0.0614(0.017) 0.0614(0.017)
WFG3(8) 0.0950(0.016) 0.0950(0.016)
WFG4(8) 1.2455(0.117) 1.9606(0.270)
WFG5(8) 0.6427(0.061) 0.6614(0.072)
WFG6(8) 0.2072(0.046) 0.2139(0.041)
WFG7(8) 0.6796(0.066) 0.6442(0.171)
WFG1(9) 0.1019(0.014) 0.1016(0.013)
WFG2(9) 0.0754(0.033) 0.0754(0.033)
WFG3(9) 0.1036(0.020) 0.1036(0.020)
WFG4(9) 1.5718(0.213) 2.1582(0.318)
WFG5(9) 0.7540(0.080) 0.7505(0.081)
WFG6(9) 0.2350(0.039) 0.2381(0.045)
WFG7(9) 0.8251(0.106) 0.6846(0.161)
WFG1(10) 0.1149(0.014) 0.1149(0.014)
WFG2(10) 0.0761(0.030) 0.0761(0.030)
WFG3(10) 0.1129(0.026) 0.1129(0.026)
WFG4(10) 1.8951(0.216) 2.3724(0.330)
WFG5(10) 0.8311(0.100) 0.8390(0.115)
WFG6(10) 0.2894(0.052) 0.2653(0.041)
WFG7(10) 0.9441(0.105) 0.7823(0.177)

Table 6.11: Results obtained in the WFG test problems with up to ten
objective functions. We compare MD-MOEA and MAH-MOEA with respect
to IS. We show average values over 30 independent runs. The values in
parentheses correspond to the standard deviations.
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DTLZ1 (3) 1.1823 (0.003) 1.1896 (0.001) 1.2683 (0.001) 1.3128 (0.001)
DTLZ2 (3) 0.7319 (0.003) 0.7525 (0.002) 0.7203 (0.000) 0.7645 (0.002)
DTLZ3 (3) 1.3281 (0.000) 1.3263 (0.000) 1.3307 (0.000) 1.3309 (0.000)
DTLZ4 (3) 0.7304 (0.006) 0.7492 (0.004) 0.7255 (0.000) 0.7699 (0.002)
DTLZ5 (3) 0.2651 (0.000) 0.2661 (0.000) 0.2467 (0.001) 0.2662 (0.000)
DTLZ6 (3) 1.0989 (0.008) 1.0975 (0.009) 0.5129 (0.022) 0.5979 (0.012)
DTLZ7 (3) 0.5519 (0.041) 0.5638 (0.043) 0.4509 (0.027) 0.5366 (0.060)
DTLZ1 (4) 1.4375 (0.005) 1.4444 (0.002) 1.4134 (0.003) 1.4621 (0.001)
DTLZ2 (4) 1.1249 (0.010) 1.1647 (0.005) 0.9237 (0.001) 1.0700 (0.004)
DTLZ3 (4) 1.4638 (0.000) 1.4638 (0.000) 1.4638 (0.000) 1.4630 (0.001)
DTLZ4 (4) 1.1912 (0.010) 1.2252 (0.006) 0.9169 (0.001) 1.0645 (0.005)
DTLZ5 (4) 0.4668 (0.023) 0.5469 (0.004) 0.4921 (0.004) 0.5618 (0.004)
DTLZ6 (4) 1.2742 (0.024) 1.3600 (0.003) 1.2083 (0.006) 1.3085 (0.007)
DTLZ7 (4) 0.7062 (0.016) 0.7262 (0.018) 0.3875 (0.022) 0.6922 (0.043)
DTLZ1 (5) 1.6011 (0.003) 1.6031 (0.001) 1.6095 (0.000) 1.6103 (0.000)
DTLZ2 (5) 1.4063 (0.015) 1.4519 (0.006) 1.0345 (0.004) 1.2717 (0.017)
DTLZ3 (5) 1.6098 (0.000) 1.6098 (0.000) 1.6096 (0.000) 1.5998 (0.007)
DTLZ4 (5) 1.4801 (0.011) 1.5096 (0.007) 1.0317 (0.005) 1.2778 (0.016)
DTLZ5 (5) 0.8122 (0.033) 0.9180 (0.015) 0.7215 (0.022) 0.9540 (0.006)
DTLZ6 (5) 1.3396 (0.063) 1.5450 (0.005) 1.3358 (0.012) 1.4298 (0.009)
DTLZ7 (5) 0.8534 (0.009) 0.8699 (0.010) 0.1285 (0.089) 0.7547 (0.021)
DTLZ1 (6) 1.7652 (0.004) 1.7669 (0.001) 1.7696 (0.000) 1.7675 (0.009)
DTLZ2 (6) 1.6757 (0.014) 1.7114 (0.006) 1.0435 (0.010) 1.4695 (0.020)
DTLZ3 (6) 1.7710 (0.000) 1.7712 (0.000) 1.7702 (0.000) 1.7640 (0.007)
DTLZ4 (6) 1.7234 (0.008) 1.7407 (0.003) 1.0187 (0.007) 1.4427 (0.018)
DTLZ5 (6) 0.9563 (0.067) 1.1170 (0.041) 0.8622 (0.014) 1.2291 (0.006)
DTLZ6 (6) 1.0454 (0.174) 1.6984 (0.004) 1.4940 (0.021) 1.6855 (0.005)
DTLZ7 (6) 0.9319 (0.022) 0.9380 (0.026) 0.0255 (0.005) 0.7375 (0.009)

Table 6.12: Results obtained in the DTLZ test problems with up to six ob-
jective functions. We compare MD-MOEA, MAH-MOEA, MOEA/D and
SMS-EMOA using the hypervolume indicator IH . We show average values
over 30 independent runs. The values in parentheses correspond to the stan-
dard deviations.
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DTLZ1 (3) 0.8317 (0.025) 26.5683 (6.888) 0.5180 (0.009) 1368.8483 (56.345)
DTLZ2 (3) 1.7247 (0.016) 80.2447 (11.191) 0.5732 (0.008) 3186.9297 (33.957)
DTLZ3 (3) 0.7897 (0.028) 26.4793 (5.165) 0.5092 (0.008) 2516.9973 (131.555)
DTLZ4 (3) 1.7187 (0.018) 77.7587 (9.585) 0.5839 (0.003) 3209.5767 (28.945)
DTLZ5 (3) 1.2467 (0.019) 9.6463 (2.308) 0.5773 (0.023) 485.1490 (13.942)
DTLZ6 (3) 1.0763 (0.020) 26.3760 (12.040) 0.5055 (0.025) 1872.8680 (494.697)
DTLZ7 (3) 1.0917 (0.036) 28.6033 (7.032) 0.5600 (0.034) 3047.7933 (245.354)
DTLZ1 (4) 1.0227 (0.015) 17.1963 (2.158) 0.5386 (0.013) 953.9040 (72.115)
DTLZ2 (4) 2.0807 (0.009) 56.9457 (9.412) 0.6048 (0.010) 2696.8443 (28.356)
DTLZ3 (4) 1.0830 (0.029) 23.3403 (2.858) 0.5312 (0.010) 1652.6900 (191.963)
DTLZ4 (4) 2.0533 (0.020) 52.1267 (9.269) 0.6281 (0.007) 3186.0707 (23.889)
DTLZ5 (4) 2.3523 (0.028) 50.0157 (6.454) 0.5903 (0.001) 1559.1663 (56.480)
DTLZ6 (4) 1.6473 (0.020) 49.7007 (6.381) 0.5942 (0.008) 1758.4097 (30.011)
DTLZ7 (4) 1.1903 (0.026) 16.5777 (2.984) 0.6512 (0.008) 3240.0063 (293.247)
DTLZ1 (5) 1.1693 (0.037) 12.5180 (1.662) 0.5706 (0.005) 1029.0453 (92.775)
DTLZ2 (5) 2.3043 (0.014) 29.8747 (3.466) 0.6248 (0.001) 1879.0867 (19.569)
DTLZ3 (5) 1.2967 (0.028) 17.2507 (2.455) 0.5796 (0.016) 1617.6280 (75.710)
DTLZ4 (5) 2.2767 (0.021) 28.0337 (3.063) 0.6812 (0.001) 2191.7757 (21.185)
DTLZ5 (5) 2.4603 (0.021) 44.2683 (5.359) 0.6527 (0.040) 1788.9270 (49.232)
DTLZ6 (5) 2.2447 (0.044) 46.6733 (5.942) 0.6370 (0.006) 1957.4123 (25.557)
DTLZ7 (5) 1.3070 (0.035) 7.3807 (1.137) 0.6935 (0.005) 2822.8597 (171.838)
DTLZ1 (6) 1.3033 (0.070) 10.5600 (1.946) 0.6036 (0.016) 1523.3607 (158.557)
DTLZ2 (6) 2.4600 (0.023) 19.9033 (1.739) 0.6551 (0.005) 1605.2567 (13.806)
DTLZ3 (6) 1.4473 (0.030) 15.7413 (2.575) 0.5999 (0.013) 1751.4160 (130.305)
DTLZ4 (6) 2.4343 (0.026) 18.3560 (2.040) 0.7307 (0.001) 1827.7093 (18.135)
DTLZ5 (6) 2.6093 (0.028) 37.3323 (5.122) 0.7436 (0.001) 1815.6567 (68.869)
DTLZ6 (6) 2.8480 (0.049) 44.0187 (5.048) 0.6892 (0.005) 2128.5127 (27.407)
DTLZ7 (6) 1.4347 (0.047) 3.7347 (0.632) 0.7247 (0.004) 2522.0583 (54.170)

Table 6.13: Results obtained in the DTLZ test problems with up to six objective func-
tions. We compare MD-MOEA, MAH-MOEA, MOEA/D and SMS-EMOA with respect
to the running time required by each MOEA to obtain the approximation of the Pareto
optimal set. The results are in seconds. We show average values over 30 independent runs.
The values in parentheses correspond to the standard deviations.
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WFG1 (3) 1.0043 (0.057) 1.1274 (0.049) 0.9178 (0.017) 1.2126 (0.024)
WFG2 (3) 0.7559 (0.091) 0.7559 (0.091) 0.1593 (0.204) 0.7460 (0.132)
WFG3 (3) 0.6156 (0.004) 0.6312 (0.002) 0.5001 (0.026) 0.6357 (0.002)
WFG4 (3) 0.6584 (0.008) 0.7414 (0.002) 0.5952 (0.013) 0.7515 (0.002)
WFG5 (3) 0.5325 (0.005) 0.5529 (0.001) 0.4715 (0.010) 0.5573 (0.002)
WFG6 (3) 0.5483 (0.003) 0.5602 (0.004) 0.4538 (0.007) 0.5639 (0.002)
WFG7 (3) 0.6099 (0.013) 0.7342 (0.005) 0.4908 (0.056) 0.7495 (0.004)
WFG1 (4) 1.0396 (0.027) 1.2045 (0.045) 1.1014 (0.061) 1.4089 (0.008)
WFG2 (4) 0.6338 (0.134) 0.6338 (0.134) 0.0577 (0.111) 0.1102 (0.139)
WFG3 (4) 0.5674 (0.009) 0.5801 (0.009) 0.2813 (0.035) 0.5665 (0.013)
WFG4 (4) 0.8193 (0.017) 0.9955 (0.007) 0.6576 (0.026) 1.0160 (0.004)
WFG5 (4) 0.5501 (0.008) 0.5870 (0.003) 0.3677 (0.015) 0.5913 (0.002)
WFG6 (4) 0.5510 (0.016) 0.5712 (0.010) 0.2890 (0.016) 0.5817 (0.008)
WFG7 (4) 0.6163 (0.018) 0.8623 (0.008) 0.2920 (0.036) 0.9224 (0.007)
WFG1 (5) 1.0896 (0.030) 1.2095 (0.031) 1.1550 (0.069) 1.4687 (0.010)
WFG2 (5) 0.6349 (0.203) 0.6349 (0.203) 0.1387 (0.148) 0.0001 (0.000)
WFG3 (5) 0.5753 (0.018) 0.5742 (0.018) 0.1566 (0.037) 0.2116 (0.092)
WFG4 (5) 0.9373 (0.022) 1.2076 (0.009) 0.6592 (0.024) 1.2305 (0.008)
WFG5 (5) 0.5744 (0.014) 0.6142 (0.008) 0.2357 (0.014) 0.6457 (0.003)
WFG6 (5) 0.5557 (0.023) 0.5735 (0.025) 0.2536 (0.015) 0.4463 (0.052)
WFG7 (5) 0.6113 (0.023) 0.9482 (0.019) 0.2163 (0.014) 1.0149 (0.012)
WFG1 (6) 1.2711 (0.036) 1.3288 (0.031) 1.0911 (0.030) 1.5042 (0.024)
WFG2 (6) 0.7530 (0.164) 0.7530 (0.164) 0.0839 (0.107) 0.0000 (0.000)
WFG3 (6) 0.5635 (0.027) 0.5575 (0.032) 0.1615 (0.050) 0.1057 (0.056)
WFG4 (6) 1.0276 (0.032) 1.4025 (0.015) 0.5982 (0.029) 1.4082 (0.009)
WFG5 (6) 0.5893 (0.023) 0.6099 (0.024) 0.1555 (0.017) 0.6664 (0.014)
WFG6 (6) 0.6030 (0.034) 0.6134 (0.032) 0.2319 (0.019) 0.4075 (0.057)
WFG7 (6) 0.6100 (0.023) 0.9036 (0.071) 0.1842 (0.014) 1.0398 (0.051)

Table 6.14: Results obtained in the WFG test problems with up to six ob-
jective functions. We compare MD-MOEA, MAH-MOEA, MOEA/D and
SMS-EMOA using the hypervolume indicator IH . We show average values
over 30 independent runs. The values in parentheses correspond to the stan-
dard deviations.
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WFG1 (3) 3.0037 (0.036) 97.5580 (11.196) 1.3196 (0.214) 4308.4217 (25.228)
WFG2 (3) 1.3063 (0.081) 1.5803 (0.314) 1.1146 (0.176) 1513.2233 (155.007)
WFG3 (3) 2.7167 (0.036) 87.2683 (15.644) 0.9307 (0.007) 2084.2703 (17.679)
WFG4 (3) 2.9810 (0.040) 78.2380 (14.106) 1.0456 (0.120) 4153.4260 (30.095)
WFG5 (3) 3.1817 (0.119) 122.2553 (17.817) 0.9530 (0.014) 3551.4573 (41.543)
WFG6 (3) 2.6367 (0.115) 95.7627 (14.819) 0.9624 (0.014) 3064.4163 (27.785)
WFG7 (3) 3.7967 (0.053) 138.2930 (26.767) 1.1576 (0.005) 5333.1087 (47.859)
WFG1 (4) 3.1263 (0.028) 55.2243 (6.841) 1.6046 (0.012) 2830.8050 (29.269)
WFG2 (4) 1.3700 (0.040) 1.7497 (0.150) 1.2374 (0.144) 1471.5220 (222.983)
WFG3 (4) 2.3457 (0.082) 37.7127 (6.090) 1.4797 (0.384) 1690.0347 (18.244)
WFG4 (4) 3.5377 (0.070) 66.3593 (11.242) 1.4224 (0.004) 3919.7280 (52.832)
WFG5 (4) 3.3533 (0.029) 75.2213 (11.970) 0.9704 (0.004) 3103.7243 (30.165)
WFG6 (4) 2.2033 (0.062) 39.5240 (5.911) 1.0423 (0.059) 2524.6620 (34.021)
WFG7 (4) 4.1817 (0.043) 85.7517 (9.854) 1.2276 (0.009) 3888.7363 (56.772)
WFG1 (5) 3.1180 (0.048) 25.0433 (3.385) 1.7252 (0.011) 1695.3017 (19.921)
WFG2 (5) 1.5483 (0.055) 2.0567 (0.346) 1.2578 (0.184) 1803.4930 (258.393)
WFG3 (5) 1.8530 (0.023) 2.7177 (0.374) 1.9463 (0.057) 1598.1797 (31.162)
WFG4 (5) 3.8390 (0.030) 52.2173 (8.366) 1.5348 (0.006) 2923.8940 (48.865)
WFG5 (5) 3.1130 (0.119) 45.3483 (6.833) 1.0555 (0.011) 3149.2743 (70.538)
WFG6 (5) 1.8200 (0.014) 3.6643 (0.604) 1.1502 (0.013) 2355.6050 (41.596)
WFG7 (5) 4.5740 (0.035) 49.3623 (6.280) 1.4021 (0.037) 2869.6150 (55.364)
WFG1 (6) 3.0127 (0.039) 13.4993 (1.680) 1.8216 (0.007) 1263.6903 (21.408)
WFG2 (6) 1.6703 (0.060) 1.9280 (0.205) 1.0977 (0.103) 2278.2863 (262.298)
WFG3 (6) 1.9417 (0.018) 2.9970 (0.399) 1.7925 (0.307) 1892.1680 (25.837)
WFG4 (6) 4.0547 (0.035) 47.5760 (7.722) 1.6597 (0.007) 2553.0097 (49.627)
WFG5 (6) 2.5957 (0.090) 18.0147 (3.537) 1.2348 (0.061) 2927.7660 (222.317)
WFG6 (6) 1.9097 (0.022) 2.7093 (0.111) 1.1737 (0.012) 2463.2440 (27.182)
WFG7 (6) 4.7223 (0.048) 44.0367 (6.551) 1.7574 (0.008) 2381.4430 (59.016)

Table 6.15: Results obtained in the WFG test problems with up to six objective func-
tions. We compare MD-MOEA, MAH-MOEA, MOEA/D and SMS-EMOA in terms of the
running time required by each MOEA to obtain the approximation of the Pareto optimal
set. The results are in seconds. We show average values over 30 independent runs. The
values in parentheses correspond to the standard deviations.
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DTLZ1 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ2 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ4 (3) 0.000068 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.332841 (0)
DTLZ6 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (3) 0.000000 (1) 0.239850 (0) 0.000000 (1) 0.239850 (0)
DTLZ1 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ2 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (4) 0.000252 (1) 0.000000 (1) 0.135171 (0) 0.000001 (1)
DTLZ4 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ6 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (4) 0.000000 (1) 0.491783 (0) 0.000000 (1) 0.000000 (1)
DTLZ1 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ2 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (5) 0.000232 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ4 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ6 (5) 0.264326 (0) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ1 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000030 (1)
DTLZ2 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ3 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ4 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ5 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ6 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
DTLZ7 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)

Table 6.16: Statistical analysis using Wilcoxon’s rank sum for the DTLZ
test problems. For this, we used IH , see Table 6.12. P is the probability of
observing the given result (the null hypothesis is true). Small values of P
cast doubt on the validity of the null hypothesis. H = 0 indicates that the
null hypothesis (“medians are equal”) cannot be rejected at the 5% level.
H = 1 indicates that the null hypothesis can be rejected at the 5% level.
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~f

md-moea
&

moead
P (H)

md-moea
&

sms-emoa
P (H)

mah-moea
&

moead
P (H)

mah-moea
&

sms-emoa
P (H)

WFG1 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG2 (3) 0.000000 (1) 0.599689 (0) 0.000000 (1) 0.599689 (0)
WFG3 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG4 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG6 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000008 (1)
WFG7 (3) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG1 (4) 0.000000 (1) 0.000000 (1) 0.000001 (1) 0.000000 (1)
WFG2 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG3 (4) 0.000000 (1) 0.923442 (0) 0.000000 (1) 0.000077 (1)
WFG4 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG6 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000111 (1)
WFG7 (4) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG1 (5) 0.000081 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG2 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG3 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG4 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG5 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG6 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG7 (5) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG1 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG2 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG3 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG4 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.141278 (0)
WFG5 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG6 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)
WFG7 (6) 0.000000 (1) 0.000000 (1) 0.000000 (1) 0.000000 (1)

Table 6.17: Statistical analysis using Wilcoxon’s rank sum for the WFG test
problems. For this, we used IH , see Table 6.14. P is the probability of
observing the given result (the null hypothesis is true). Small values of P
cast doubt on the validity of the null hypothesis. H = 0 indicates that the
null hypothesis (“medians are equal”) cannot be rejected at the 5% level.
H = 1 indicates that the null hypothesis can be rejected at the 5% level.
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Conclusions and Future Work

In this work, we have studied in depth several selection mechanisms for
MOEAs, see Chapter 4. Some of their disadvantages that we can highlight
are the following:

� MOEAs based on Pareto dominance have difficulties when we want to
solve MOPs with many objective functions, with more than four ob-
jective functions. The quick increase in the number of nondominated
solutions as we increase the number of objective functions, rapidly di-
lutes the effect of the selection mechanism of Pareto-based MOEAs
[38].

� MOEAs based on the hypervolume indicator (IH) are computationally
expensive, because computing IH is an NP-hard problem with respect
to the number of objective functions [12]; therefore, such MOEAs are
impractical to solve MOPs with more than five objective functions.
Although some techniques for approximating the contribution to IH
have been proposed, when we use them to solve MOPs, the quality
of the approximate Pareto front generated by the MOEA significantly
decreases.

� MOEAs based on decomposition need to generate a set of well-
distributed weighted vectors and this task becomes harder as we in-
crease the number of objective functions.

� The Maximin Fitness Function (MFF) appears to be a good option
because it has interesting properties as well as a linear complexity with
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respect to the number of objective functions. However, it had only
been used in problems with low dimensionality (two or three objective
functions).

In spite of these disadvantages, we decided to work with selection mecha-
nisms based on IH because this indicator is the only unary indicator which
is strictly Pareto complaint. And also, we decided to work with selection
mechanisms based on MFF because MFF has interesting properties and it is
also computationally inexpensive to calculate it.

7.1 Conclusions

First, we studied MOEAs based on IH , finding that in most cases, they use
the traditional competition scheme which operates as follows: If we have a
population P, then it generates only one solution per iteration. After that,
it applies Pareto ranking. When the last front has more than one solution,
it calculates the contribution to IH of each individual in the last front and
it eliminates the individual with the worst contribution. Therefore, when all
the individuals are nondominated, we need to calculate |P|+ 1 contributions
to IH . Furthermore, in our study about IH , we found one interesting prop-
erty of it: the locality property. We proposed a new competition scheme
that exploits such property. Our scheme only needs to calculate the contri-
bution of three individuals of the population: the new individual, its nearest
neighbor and a randomly selected individual. In this way, we can signifi-
cantly reduce the running time required by MOEAs based on IH to obtain
the approximate Pareto front. We incorporate this competition scheme into
the original SMS-EMOA giving rise to the improved SMS-EMOA (iSMS-
EMOA). From our experimental results, we could see that iSMS-EMOA was
able to decrease the running time required by SMS-EMOA to generate the
approximate Pareto front without losing quality in its solutions. For all our
experiments, we used seven problems taken from the Deb-Thiele-Laumanns-
Zitzler (DTLZ) test suite and seven problems taken from the Walking Fish
Group (WFG) toolkit. We executed thirty independent runs for each test
problem and we conducted an statistical analysis of results using Wilcoxon’s
rank sum to validate our experiments.

Since iSMS-EMOA needs to calculate contributions to IH and this task is
a NP-hard problem, this MOEA remains impractical to solve MOPs with
more than five objective functions. For this reason, we have studied different
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techniques to approximate the hypervolume, and we found out that the tech-
nique proposed by Bringmann and Friedrich [12] is an excellent choice to be
incorporated into our competition scheme that exploits the locality property
of IH . This assumption was based on the following hypothesis: Since our
competition scheme needs to calculate the contribution of only three indi-
viduals, we can reduce the error of the approximation in two ways: (i) by
increasing the number of samples without excessively increasing the running
time and (ii) by considering that the probability of deleting the individual
with the lowest contribution is greater than if we use the traditional com-
petition scheme, because in this case we only deal with three errors and not
with P errors (where P is the population size). This hypothesis has been
empirically validated in this thesis.

To validate our hypothesis, we proposed the approximate version of
the improved SMS-EMOA (aviSMS-EMOA). We compared our proposed
aviSMS-EMOA with respect to different versions of the original SMS-
EMOA: avoSMS-EMOA (which uses the technique proposed by Bringmann
and Friedrich [12] in a traditional competition scheme), hypeSMS-EMOA
(which assigns fitness to each individual in the population, using the tech-
nique proposed by Bader and Zitzler [3]) and SMS-EMOA. Also, we com-
pared our aviSMS-EMOA with respect to MOEA/D using PBI. We showed
that aviSMS-EMOA outperforms avoSMS-EMOA, hypeSMS-EMOA and
MOEA/D. Moreover, we can say that our aviSMS-EMOA outperforms SMS-
EMOA, if we consider both the quality of the approximation of the Pareto
front and the computational cost required to obtain that approximation. This
is because our proposed aviSMS-EMOA obtains competitive results with re-
spect to SMS-EMOA but at a much lower computational cost. Although
with respect to IH , SMS-EMOA was better than aviSMS-EMOA in most
problems, regarding ISC, in 73% of the total number of test problems used,
we saw that aviSMS-EMOA was able to generate solutions that no solution
found by SMS-EMOA can dominate. Since we cannot say if the nondom-
inated solutions found by SMS-EMOA are better than the nondominated
solutions found by aviSMS-EMOA, we claim that they are both competitive.
Finally, we also conducted a study about the number of samples that our
aviSMS-EMOA should use to increase the quality of the solutions but with-
out exceeding our maximum running time of four hours and we concluded
that 105 is a good choice. However, we should not forget that aviSMS-EMOA
allows us to balance the quality of the solutions and the running time required
to obtain them.
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With respect to MFF, we identified two important disadvantages of it:

1. It cannot work well in MOPs in which one (or some) of the objective
function(s) is (are) easier to solve than the others. This is because MFF
prefers weakly dominated solutions instead of dominated solutions, and
then, we quickly obtain weakly dominated solutions in some extremes
of the Pareto front. This causes a loss of diversity and also makes
difficult to solve MOPs with many objective functions.

2. Although MFF penalizes clustering between nondominated solutions,
there are some cases in which we cannot decide which solution is better
to choose in order to improve the distribution along of the nondomi-
nated front. In those cases, we also lose diversity in the population.

In this thesis, we propose to use the following constraint to address the first
disadvantage: Any individual that we want to select must not be similar (in
objective space) to another (selected) individual. With respect to the second
disadvantage, we proposed some techniques to improve the diversity in the
population, which gave rise to the following MOEAs:

� Maximin-Clustering Multi-Objective Evolutionary Algorithm (MC-
MOEA)

� Maximin-Distances Multi-Objective Evolutionary Algorithm (MD-
MOEA)

� Maximin-Hypervolume Multi-Objective Evolutionary Algorithm (MH-
MOEA)

� Maximin-Approximated Hypervolume Multi-Objective Evolutionary
Algorithm (MAH-MOEA)

According to our experimental results, the best algorithm is MAH-MOEA
because it obtains results with a high quality and it can also be used in
MOPs with many objective functions (in this work we tested it with up to
ten objective functions). MAH-MOEA is followed by MD-MOEA, in terms
of performance. MD-MOEA obtained good results in most problems, but
it has difficulties in MOPs with degenerate Pareto fronts. We think that
this is due to the fact that the aim of the selection mechanism used by
MD-MOEA is to obtain a uniform distribution. Consequently, it is hard for
MD-MOEA to converge to a Pareto front with a dimensionality lower than
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the dimensionality of the MOP. If the time to obtain the approximate Pareto
optimal set is an important factor, MD-MOEA is the best option because
it obtains competitive results with respect to MAH-MOEA but at a much
lower computational cost.

Besides, in this thesis we compared MD-MOEA and MAH-MOEA, with
respect to two well-known MOEAs: MOEA/D and SMS-EMOA (in a ver-
sion that approximates the contribution to IH). Our experimental results
showed that both MD-MOEA and MAH-MOEA outperformed MOEA/D in
the two sets of test problems adopted (DTLZ and WFG) and MAH-MOEA
outperformed SMS-EMOA in the DTLZ test problems. With respect to the
running time, both algorithms (MD-MOEA and MAH-MOEA) are efficient
because MAH-MOEA is much faster than SMS-EMOA and it also obtained
good results (it outperformed SMS-EMOA in the DTLZ test problems) and
MD-MOEA is not much slower than MOEA/D, while obtaining better re-
sults. Therefore, we can say that MD-MOEA and MAH-MOEA are a good
option to solve MOPs with low and high dimensionality because they obtain
approximations of the Pareto optimal set with a high quality and the com-
putational cost of both MOEAs is affordable. Additionally, the running time
of MD-MOEA is quite good. Also, these MOEAs do not need additional
information such as MOEA/D that requires a set of well-distributed convex
weights.

Another interesting feature of MOEAs based on MFF is that they can be
used to solve MOPs in an interactive way when the decision maker defines
his/her preferences. For example, a MOEA based on MFF can present at
each generation a set of non-dominated solutions to the user and then he/she
chooses the solutions which will be considered when calculating the maximin
fitness of each indidividual.

At this point, let us return to the question that was formulated at the
beginning of this work: Is it possible to propose a new selection scheme for
Multi-Objective Evolutionary Algorithms (MOEAs) which has the following
features? It requires little additional information, it is computationally effi-
cient, it has a good performance in terms of the two following aspects: (i)
It allows to find solutions that are, as close as possible, to the true Pareto
front and, (ii) it allows to produce solutions that are spread along the Pareto
front as uniformly as possible. And, it is scalable with respect to the number
of objective functions. We can conclude that the answer to this question is
YES. As part of the work reported in this thesis, we were able to design
six new MOEAs: iSMS-EMOA, aviSMS-EMOA, MC-MOEA, MD-MOEA,
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MH-MOEA and MAH-MOEA. None of them requires additional information.
Although iSMS-EMOA and MH-MOEA reduce the running time required by
the well-known SMS-EMOA, they are impractical to solve MOPs with more
than six objective functions. However, aviSMS-EMOA, MC-MOEA, MD-
MOEA and MAH-MOEA are computationally efficient and they are scalable
with respect to the number of objective functions. Moreover, all of them
are competitive with respect to SMS-EMOA and MOEA/D (two well-known
MOEAs of the state of the art), and, in some cases, they are better than
these two well-known MOEAs.

7.2 Future Work

As part of our future work, we plan to study other techniques to approximate
the contribution of the hypervolume with the aim of reducing even more the
running time of our proposed scheme, as well as its approximation error.
Also, we plan to design a version of aviSMS-EMOA which is able to use large
population sizes. The idea is to start the search using a small population size
and to increase it over time. In this way, we should be able to obtain more
accurate knowledge about the Pareto front in many-objective problems but
saving both evaluations of the objective functions and calculations of the
contributions to IH .

Also, we want to continue studying and designing new selection mecha-
nisms based on performance indicators. For example:

� MOEAs based on the generational distance indicator (IGD). Our idea is
to use IGD as a convergence strategy and to use some of the techniques
proposed in this thesis to improve the diversity in the population.

� MOEAs based on the ∆p-indicator. Our idea is to design a technique
based on ǫ-dominance to generate the reference set that we require to
calculate the ∆p-indicator.

� MOEAs based on the R2-indicator. Since the R2-indicator also has
a locality property, we want to design a new selection scheme that
exploits such property.
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Appendix A

Test Problems

A.1 Deb-Thiele-Laumanns-Zitzler Test Suite

The Deb-Thiele-Laumanns-Zitzler (DTLZ) Test Suite [30] contains nine test
problems, which are scalable to any number of decision variables and objec-
tives. In this thesis, we use the first seven test problems from this test suite.
Table A.1 shows a summary of the features of these test problems which were
studied in [48] and we present their definitions in the following. It is impor-
tant to mention that Huband et al. proved that in the case of DTLZ5 and
DTLZ6 with four or more objectives it is untrue that their Pareto optimal
fronts are meant to be an arc embedded in a M-objective space.
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MOP Separability Modality Geometry

DTLZ1 separable multimodal linear
DTLZ2 separable unimodal concave
DTLZ3 separable multimodal concave
DTLZ4 separable unimodal concave
DTLZ5 N/A unimodal degenerate
DTLZ6 N/A unimodal degenerate
DTLZ7 separable unimodal disconnected

Table A.1: Features of the first seven DTLZ test problems. An objective
function is separable if it can be optimized by considering each parame-
ter in turn, independently of one another, and the resultant set of globally
optimal parameter vectors is the cross-product of the optimal sets for each
individually optimized parameter. In the multi-objective sense, this means
that the ideal points for separable objectives can be determined consider-
ing only one parameter at a time. N/A means that the information is not
available. An objective function is multimodal when it has multiple local
optima and it is unimodal when it has a single optimum. We consider that
a problem is multimodal if it has at least one multimodal objective function.
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DTLZ1

This test problem has a linear Pareto front, it is separable and multimodal.
DTLZ1 consists in minimizing:

f1(~x) =
1

2
x1x2 · · ·xM−1[1 + g(~xM)]

f2(~x) =
1

2
x1x2 · · · (1− xM−1)[1 + g(~xM)]

...

fM−1(~x) =
1

2
x1(1− x2)[1 + g(~xM)]

fM(~x) =
1

2
(1− x1)[1 + g(~xM)]

such as:

g(~xM) = 100

{

|~xM |+
∑

xi∈~xM

(xi − 0.5)2 − cos[20π(xi − 0.5)]

}

where M is the number of objective functions, ~xM represents the last k
variables of the decision vector ~x, n = M + k − 1 is the number of decision
variables. xi ∈ [0, 1] for all i = 1, 2, · · · , n. This problem has 11k − 1 local
Pareto fronts. A value of k = 5 is suggested and the problem can be made
more difficult by using a larger k. The Pareto optimal solutions correspond
to ~xM = ~0.5 and all objective function values lie on the linear hyperplane:
∑M

i=1 fi = 0.5. Figure A.1 shows the Pareto optimal front of this test problem
with three objective functions.
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DTLZ2

This test problem has a concave Pareto front, it is separable and unimodal.
DTLZ2 consists in minimizing:

f1(~x) = [1 + g(~xM)] cos
(π

2
x1

)

cos
(π

2
x2

)

· · · cos
(π

2
xM−2

)

cos
(π

2
xM−1

)

f2(~x) = [1 + g(~xM)] cos
(π

2
x1

)

cos
(π

2
x2

)

· · · cos
(π

2
xM−2

)

sin
(π

2
xM−1

)

f3(~x) = [1 + g(~xM)] cos
(π

2
x1

)

cos
(π

2
x2

)

· · · sin
(π

2
xM−2

)

...

fM−1(~x) = [1 + g(~xM)] cos
(π

2
x1

)

sin
(π

2
x2

)

fM(~x) = [1 + g(~xM)] sin
(π

2
x1

)

such as:
g(~x) =

∑

xi∈~xM

(xi − 0.5)2

where M is the number of objective functions, ~xM represents the last k
variables of the decision vector ~x, n = M + k − 1 is the number of decision
variables. xi ∈ [0, 1] for all i = 1, 2, · · · , n. It is recommended to use k =
10. The Pareto optimal solutions correspond to ~xM = ~0.5 and all objective
function values must satisfy the equation

∑M
i=1(fi)

2 = 1. Figure A.2 shows
the Pareto optimal front of this test problem with three objective functions.
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DTLZ3

This test problem is defined in the same way as DTLZ1 except for a new g
function that makes it multimodal. DTLZ3 consists in minimizing:

f1(~x) = [1 + g(~xM)] cos
(π

2
x1

)

cos
(π

2
x2

)

· · · cos
(π

2
xM−2

)

cos
(π

2
xM−1

)

f2(~x) = [1 + g(~xM)] cos
(π

2
x1

)

cos
(π

2
x2

)

· · · cos
(π

2
xM−2

)

sin
(π

2
xM−1

)

f3(~x) = [1 + g(~xM)] cos
(π

2
x1

)

cos
(π

2
x2

)

· · · sin
(π

2
xM−2

)

...

fM−1(~x) = [1 + g(~xM)] cos
(π

2
x1

)

sin
(π

2
x2

)

fM(~x) = [1 + g(~xM)] sin
(π

2
x1

)

such as:

g(~x) = 100

{

k +
∑

xi∈~xM

(xi − 0.5)2 − cos (20π(xi − 0.5))

}

where M is the number of objective functions, ~xM represents the last k
variables of the decision vector ~x, n = M + k − 1 is the number of decision
variables. xi ∈ [0, 1] for all i = 1, 2, · · · , n. It is recommended to use k = 10.
DTLZ3 has 3k − 1 local Pareto fronts. All local Pareto fronts are parallel to
the global Pareto optimal front and a MOEA can get stuck at any of these
local Pareto optimal fronts, before converging to the global Pareto optimal
front at g∗ = 0. The global Pareto optimal front corresponds to ~xM = ~0.5 .
The next local Pareto optimal front is at g = 1. Figure A.3 shows the Pareto
optimal front of this test problem with three objective functions.
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DTLZ4

This test problem has a concave Pareto front, it is separable and unimodal.
It is a variation of DTLZ2 with a modified meta-variable mapping ~x 7→ ~xα

(α > 0). This tests a MOEA’s ability to maintain a good distribution of
solutions. DTLZ4 consists in minimizing:

f1(~x) = [1 + g(~xM)] cos
(π

2
xα
1

)

cos
(π

2
xα
2

)

· · · cos
(π

2
xα
M−2

)

cos
(π

2
xα
M−1

)

f2(~x) = [1 + g(~xM)] cos
(π
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1
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cos
(π

2
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2
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· · · cos
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f3(~x) = [1 + g(~xM)] cos
(π

2
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1

)

cos
(π

2
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· · · sin
(π

2
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M−2

)

...

fM−1(~x) = [1 + g(~xM)] cos
(π

2
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1

)

sin
(π

2
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2

)

fM(~x) = [1 + g(~xM)] sin
(π

2
xα
1
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such as:
g(~x) =

∑

xi∈~xM

(xi − 0.5)2

where M is the number of objective functions, ~xM represents the last k
variables of the decision vector ~x, n = M + k − 1 is the number of decision
variables. xi ∈ [0, 1] for all i = 1, 2, · · · , n. It is recommended to use k = 10
and α = 100. Figure A.4 shows the Pareto optimal front of this test problem
with three objective functions.
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DTLZ5

This test problem is unimodal and it has a degenerate Pareto front. DTLZ5
consists in minimizing:

f1(~x) = [1 + g(~xM)] cos (θ1) cos (θ2) · · · cos (θM−2) cos (θM−1)

f2(~x) = [1 + g(~xM)] cos (θ1) cos (θ2) · · · cos (θM−2) sin (θM−1)

f3(~x) = [1 + g(~xM)] cos (θ1) cos (θ2) · · · sin (θM−2)
...

fM−1(~x) = [1 + g(~xM)] cos (θ1) sin (θ2)

fM(~x) = [1 + g(~xM)] sin (θ1)

such as:

θ1 =
π

2
x1

θi =
π

4(1 + g(~xM))
(1 + 2g(~xM))xi, ∀i ∈ {2, 3, . . . ,M − 1}

g(~x) =
∑

xi∈~xM

(xi − 0.5)2

where M is the number of objective functions, ~xM represents the last k
variables of the decision vector ~x, n = M + k − 1 is the number of decision
variables. xi ∈ [0, 1] for all i = 1, 2, · · · , n. k = 10 is suggested. The Pareto
optimal solutions correspond to ~xM = ~0.5 and all objective function values
must satisfy

∑M
i=1(fi)

2 = 1. Figure A.5 shows the Pareto optimal front of
this test problem with three objective functions.
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DTLZ6

The previous test problem can be made harder by making a similar modifi-
cation to the g function in DTLZ5, as done in DTLZ3. DTLZ6 consists in
minimizing:

f1(~x) = [1 + g(~xM)] cos (θ1) cos (θ2) · · · cos (θM−2) cos (θM−1)

f2(~x) = [1 + g(~xM)] cos (θ1) cos (θ2) · · · cos (θM−2) sin (θM−1)

f3(~x) = [1 + g(~xM)] cos (θ1) cos (θ2) · · · sin (θM−2)
...

fM−1(~x) = [1 + g(~xM)] cos (θ1) sin (θ2)

fM(~x) = [1 + g(~xM)] sin (θ1)

such as:

θ1 =
π

2
x1

θi =
π

4(1 + g(~xM))
(1 + 2g(~xM))xi, ∀i ∈ {2, 3, . . . ,M − 1}

g(~x) =
∑

xi∈~xM

x0.1
i

where M is the number of objective functions, ~xM represents the last k
variables of the decision vector ~x, n = M + k − 1 is the number of decision
variables. xi ∈ [0, 1] for all i = 1, 2, · · · , n. k = 10 is suggested. The Pareto
optimal solutions correspond to ~xM = ~0.5 and all objective function values
must satisfy

∑M
i=1(fi)

2 = 1. Figure A.6 shows the Pareto optimal front of
this test problem with three objective functions.

CINVESTAV-IPN Computer Science Department



Test Problems 177

DTLZ7

This test problem has a disconnected set of 2M−1 Pareto optimal regions in
the search space. DTLZ7 consists in minimizing:

f1(~x) = x1

f2(~x) = x2

...

fM−1(~x) = xM−1

fM(~x) =
(

1 + g( ~~Mx)
)

h(f1, f2, · · · , fM−1, g)

such as:

g(~xM) = 1 +
9

k

∑

xi∈~xM

xi

h(f1, f2, · · · , fM−1, g) =

(

M −
M−1
∑

i=1

[

fi
1 + g(~xM)

(1 + sin(3πfi))

]

)

where M is the number of objective functions, ~xM represents the last k
variables of the decision vector ~x, n = M + k − 1 is the number of decision
variables. xi ∈ [0, 1] for all i = 1, 2, · · · , n. A value of k = 20 is suggested.
The Pareto optimal solutions correspond to ~xM = ~0. Figure A.7 shows the
Pareto optimal front of this test problem with three objective functions.
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Figure A.1: Pareto optimal front for the DTLZ1 test problem with three
objective functions.
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Figure A.2: Pareto optimal front for the DTLZ2 test problem with three
objective functions.
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Figure A.3: Pareto optimal front for the DTLZ3 test problem with three
objective functions.
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Figure A.4: Pareto optimal front for the DTLZ4 test problem with three
objective functions.

CINVESTAV-IPN Computer Science Department



180 Chapter A

 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f3

f1

f2

f3

Figure A.5: Pareto optimal front for the DTLZ5 test problem with three
objective functions.
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Figure A.6: Pareto optimal front for the DTLZ6 test problem with three
objective functions.
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Figure A.7: Pareto optimal front for the DTLZ7 test problem with three
objective functions.
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A.2 Walking-Fish-Group Test Suite

The Walking-Fish-Group test suite [48] suggests nine multi-objective test
problems which are scalable with respect to both objective functions and
decision variables. In this thesis, we used the first seven test problems. Table
A.2 shows a summary of the features of these seven test problems which were
studied in [48].

MOP Separability Modality Geometry

WFG1 separable unimodal convex, mixed
WFG2 nonseparable multimodal convex, disconnected
WFG3 nonseparable unimodal linear, degenerate
WFG4 separable multimodal concave
WFG5 separable deceptive concave
WFG6 nonseparable unimodal concave
WFG7 separable unimodal concave

Table A.2: Features of the first seven WFG test problems. An objective
function is separable if it can be optimized by considering each parame-
ter in turn, independently of one another, and the resultant set of globally
optimal parameter vectors is the cross-product of the optimal sets for each
individually optimized parameter. In the multi-objective sense, this means
that the ideal points for separable objectives can be determined considering
only one parameter at a time. An objective function is multimodal when it
has multiple local optima and it is unimodal when it has a single optimum.
We consider that a problem is multimodal if it has at least one multimodal
objective function. A deceptive objective function has a special kind of
multimodality (it must have at least two optima: a true optimum and a de-
ceptive optimum). We consider that a problem is deceptive if it has at least
one deceptive objective function.
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The WFG test problems apply a set of sequential transformations to the
vector of decision variables. Each transformation adds a feature to the MOP.
The transformations used in the WFG test problems to define the shape of
the Pareto front are the following:

linear1(x1, · · · , xM−1) =
M−1
∏

i=1

xi

linearm=2:M−1(x1, · · · , xM−1) =

(

M−m
∏

i=1

xi

)

(1− xM−m−1)

linearM (x1, · · · , xM−1) = 1− x1

convex1(x1, · · · , xM−1) =

M−1
∏

i=1

(

1− cos
(π

2
xi

))

convexm=2:M−1(x1, · · · , xM−1) =

(

M−m
∏

i=1

(

1− cos
(π

2
xi

))

)

(

1− sin
(π

2
xM−m+1

))

convexM (x1, · · · , xM−1) = 1− sin
(π

2
x1

)

concave1(x1, · · · , xM−1) =

M−1
∏

i=1

sin
(π

2
xi

)

concavem=2:M−1(x1, · · · , xM−1) =

(

M−m
∏

i=1

sin
(π

2
xi

)

)

cos
(π

2
xM−m+1

)

concaveM(x1, · · · , xM−1) = cos
(π

2
x1

)

mixedM (x1, · · · , xM−1) =

(

1− x1 −
cos(2Aπx1 + π/2)

2Aπ

)α

discM(x1, · · · , xM−1) = 1− xα
1 cos2(Axβ

1π)

CINVESTAV-IPN Computer Science Department



184 Chapter A

It is possible to add more features to increase the difficulty to of a problem.
These features are the following:

b poly(y, α) = yα

b flat(y, A,B, C) = A + min(0, ⌊y − B⌋)
A(B − y)

B

−min(0, ⌊C − y⌋)
(1−A)(y − C)

1− C

b param(y, u(y′), A, B, C) = yB+(C−B)(A−(1−2u(y′))|⌊0.5−u(y′)+A|)

s linear(y, A) =
|y −A|

|⌊A− y⌋+ A|

s decept(y, A,B, C) = 1 + (|y −A| − B)
(

⌊y −A + B⌋(1− C + A−B
B

)

A− B

+
⌊A + B − y⌋(1− C + 1−A−B

B
)

1−A−B
+

1

B

)

s multi(y, A,B, C) =

(

1 + cos

(

(4A + 2)π

(

0.5−
|y − C|

2(⌊C − y⌋+ C)

))

+4B

(

|y − C|

2(⌊C − y⌋+ C)

)2
)

/(b + 2)

r sum(~y, ~w) =

|y|
∑

i=1

w1yi

|y|
∑

i=1

wi

r nonsep(~y, A) =

|y|
∑

j=1

(

yj +
A−2
∑

k=0

|yj − y1+(j+k)mod|y||

)

|y|
A
⌈A
2
⌉
(

1 + 2A− 2⌈A
2
⌉
)

Considering the above transformations, the first seven problems are described
as follows.
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WFG1

This problem is separable and unimodal, but it has a polynomial and flat
region. It is strongly biased toward small values of the variables, which makes
it very difficult for some MOEAs. WFG1 consists in minimizing:

fm=1:M−1(~x) = xM + SmconvexM (x1, · · · , xM−1)

fM(~x) = xM + SmmixedM (x1, · · · , xM−1) with α = 1 and A = 5

given
~z = [z1, · · · , zk, zk+1, · · · , zn]

where

zi ∈ [0, 2i], D = 1, A1 = 1, A2:M−1 = 1, Sm=1:M = 2m

xi=1:M−1 = r sum
(

[y′(i−1)k/(M−1)+1, · · · , y
′
ik/(M−1)],

[2((i− 1)k/(M − 1) + 1), · · · , 2ik/(M − 1)])

xM = r sum
(

[y′k+1, · · · , y
′
n], [2(k + 1), · · · , 2n]

)

y′i=1:n = b poly (y′′i , 0.02)

y′′i=1:k = y′′′i
y′′i=k+1:n = b flat (y′′′i , 0.8, 0.75, 0.85)

y′′′i=1:k = zi/(2i)

y′′′i=k+1:n = s linear (zi/(2i), 0.35)

Figure A.8 shows the Pareto optimal front of this test problem with three
objective functions.
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WFG2

This problem is nonseparable and multimodal. It has a disconnected Pareto
front. WFG2 consists in minimizing:

fm=1:M−1(~x) = xM + SmconvexM (x1, · · · , xM−1)

fM(~x) = xM + SmdiscM (x1, · · · , xM−1) with α = β = 1 and A = 5

given
~z = [z1, · · · , zk, zk+1, · · · , zn]

where

zi ∈ [0, 2i], D = 1, A1 = 1, A2:M−1 = 1, Sm=1:M = 2m

xi=1:M−1 = r sum
(

[y′(i−1)k/(M−1)+1, · · · , y
′
ik/(M−1)], [1, · · · , 1]

)

xM = r sum
(

[y′k+1, · · · , y
′
k+l/2], [1, · · · , 1]

)

y′i=1:k = y′′i

y′i=k+1:k+l/2 = r nonsep
(

[y′′k+2(i−k)−1, y
′′
k+2(i−k)], 2

)

y′′i=1:k = zi/(2i)

y′′i=k+1:n = s linear (zi/(2i), 0.35)

Figure A.9 shows the Pareto optimal front of this test problem with three
objective functions.
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WFG3

This problem is nonseparable and unimodal. It has a linear and degenerated
Pareto front. WFG3 consists in minimizing:

fm=1:M(~x) = xM + SmlinearM (x1, · · · , xM−1)

given
~z = [z1, · · · , zk, zk+1, · · · , zn]

where

zi ∈ [0, 2i], D = 1, A1 = 1, A2:M−1 = 0, Sm=1:M = 2m

xi=1:M−1 = r sum
(

[y′(i−1)k/(M−1)+1, · · · , y
′
ik/(M−1)], [1, · · · , 1]

)

xM = r sum
(

[y′k+1, · · · , y
′
k+l/2], [1, · · · , 1]

)

y′i=1:k = y′′i

y′i=k+1:k+l/2 = r nonsep
(

[y′′k+2(i−k)−1, y
′′
k+2(i−k)], 2

)

y′′i=1:k = zi/(2i)

y′′i=k+1:n = s linear (zi/(2i), 0.35)

Figure A.10 shows the Pareto optimal front of this test problem with three
objective functions.
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WFG4

This problem is separable, but highly multimodal. It has a concave Pareto
front. WFG4 consists in minimizing:

fm=1:M(~x) = xM + Smconcavem (x1, · · · , xM−1)

given
~z = [z1, · · · , zk, zk+1, · · · , zn]

where

zi ∈ [0, 2i], D = 1, A1 = 1, A2:M−1 = 1, Sm=1:M = 2m

xi=1:M−1 = r sum
(

[y′(i−1)k/(M−1)+1, · · · , y
′
ik/(M−1)], [1, · · · , 1]

)

xM = r sum
(

[y′k+1, · · · , y
′
n], [1, · · · , 1]

)

y′′i=1:n = s multi (zi/(2i), 30, 10, 0.35)

Figure A.11 shows the Pareto optimal front of this test problem with three
objective functions.
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WFG5

This problem is deceptive and separable. It has a concave Pareto front.
WFG5 consists in minimizing:

fm=1:M (~x) = xM + Smconcavem (x1, · · · , xM−1)

given
~z = [z1, · · · , zk, zk+1, · · · , zn]

where

zi ∈ [0, 2i], D = 1, A1 = 1, A2:M−1 = 1, Sm=1:M = 2m

xi=1:M−1 = r sum
(

[y′(i−1)k/(M−1)+1, · · · , y
′
ik/(M−1)], [1, · · · , 1]

)

xM = r sum
(

[y′k+1, · · · , y
′
n], [1, · · · , 1]

)

y′′i=1:n = s decept (zi/(2i), 0.35, 0.001, 0.05)

Figure A.12 shows the Pareto optimal front of this test problem with three
objective functions.
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WFG6

This problem is nonseparable and unimodal. It has a concave Pareto front.
WFG6 consists in minimizing:

fm=1:M(~x) = xM + Smconcavem (x1, · · · , xM−1)

given
~z = [z1, · · · , zk, zk+1, · · · , zn]

where

zi ∈ [0, 2i], D = 1, A1 = 1, A2:M−1 = 1, Sm=1:M = 2m

xi=1:M−1 = r nonsep([y′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], k/(M − 1))

xM = r nonsep([y′k+1, . . . , y
′
n], l)

y′i=1:k = zi/(2i)

y′i=k+1:n = s linear (zi/(2i), 0.35)

Figure A.13 shows the Pareto optimal front of this test problem with three
objective functions.
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WFG7

This problem is nonseparable and unimodal. It has a concave Pareto front.
WFG7 consists in minimizing:

fm=1:M (~x) = xM + Smconcavem (x1, · · · , xM−1)

given
~z = [z1, · · · , zk, zk+1, · · · , zn]

where

zi ∈ [0, 2i], D = 1, A1 = 1, A2:M−1 = 1, Sm=1:M = 2m

xi=1:M−1 = r sum
(

[y′(i−1)k/(M−1)+1, · · · , y
′
ik/(M−1)], [1, · · · , 1]

)

xM = r sum
(

[y′k+1, · · · , y
′
n], [1, · · · , 1]

)

y′i=1:k = y′′i
y′i=k+1:n = s linear (y′′i , 0.35)

y′′i=1:k = b param(zi/(2i), r sum([zi+1/(2(i + 1)), . . . , zn/(2n)],

[1, . . . , 1]),
0.98

49.98
, 0.02, 50)

y′′i=k+1:n = zi/(2i)

Figure A.14 shows the Pareto optimal front of this test problem with three
objective functions.
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Figure A.8: Pareto optimal front for the WFG1 test problem with three
objective functions.
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Figure A.9: Pareto optimal front for the WFG2 test problem with three
objective functions.
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Figure A.10: Pareto optimal front for the WFG3 test problem with three
objective functions.

 0
 0.5

 1
 1.5

 2  0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0

 1

 2

 3

 4

 5

 6

f3

f1

f2

f3

Figure A.11: Pareto optimal front for the WFG4 test problem with three
objective functions.
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Figure A.12: Pareto optimal front for the WFG5 test problem with three
objective functions.
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Figure A.13: Pareto optimal front for the WFG6 test problem with three
objective functions.
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Figure A.14: Pareto optimal front for the WFG7 test problem with three
objective functions.
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