CENTRO DE INVESTIGACION Y DE ESTUDIOS
AVANZADOS DEL INSTITUTO POLITECNICO NACIONAL

Unidad Zacatenco

Departamento de Computacion

Modelo continuo para el problema de lo"calizacién
de ambulancias

TESIS

Que presenta,

Sergio Antonio del Angel Morales Pacheco
Para obtener el grado de

Maestro en Ciencias

en Computacion

Director de la Tesis

Dr. Oliver Steffen Schiitze ‘

México, D.F. Diciembre, 2015




CENTRO DE INVESTIGACION Y DE ESTUDIOS
- AVANZADOS DEL INSTITUTO POLITECNICO NACIONAL

Zacatenco Campus

Computer Science Department

Solving the Ambulance Location Problem using a
Continuous Location Model

Submitted by

Sergio Antonio del Angel Morales Pacheco
As a fulfillment of the requirement for the degree of
Master in

Computer Science

Advisor

- Dr. Oliver Steffen Schiitze

México,h D.F. - ' December 2015




Contents

Acknowledgement : ‘ vii

List of Figures ' ' viii

List of Tables xii

1 Introduction

1.1
1.2
1.3
1.4
1.5

Motivation . . . . . . . . .

Problem . . . . . . . s
Alm .

L W W N =

2 Background and Related Work

5

2.1 Continuous Optimization . . . . . . .. ... ... ... ... ..... 5
2.2  Multi-Objective Optimization . . . . . . ... ... ... ... .... 7
2.3 Genetic Algorithms . . . . .. ... .. oo 0000 8
2.4 The Weber facility location problem . . . . . ... ... ... ..... 9
2.4.1 The Multi-source Weber Problem . . . . .. .. ... ..... 10
2.4.2 Limited Distance Minisum Problem with Side Constramts .. 10

2.5 State-of-the-Art . . . . . ... ... 11
2.5.1 Static Ambulance Location . . . .. ... ... ... ..... 11
2.5.2 Dynamic Double Standard Model (DDSM) . . . . ... .. .. 13

3 A Continuous Location Model for the Tijuana Red Cross Ambulance

Fleet . 17
3.1 Continuous Location Model . . . . .. ... ... ... .. ...... 17
3.2 Implementations . .. ... ... .. .. ... ... ... . ... 18
321 Domain . . . . ... 19
3.2.2 Demand points and weights . . . . .. ... ... ....... 20
3.2.3 Expected travel time . . . . . . .. .. ... ... 22

3.3 Chosen Algorithm and Setting for the Continuous Location Problem . 25

v




vi

CONTENTS

4 A Multi-Objective Location Model for the Tijuana Red Cross Am-

bulance Fleet 27

4.1 The Multi-Objective Location Model . . . . ... .. ... ... ... 28

4.2 The fiocation Objective And The Multi-criteria Model . . . . . . ... 28

4.3 Continuous Coverage Model . . . . . .. ... ... ... ... .... 30
4.3.1 Chosen Algorithm for the multi-objective location model: NSGA-

15 .31

5 Experiments and Results 33

5.1 Continuous Location Model . . . . . . P 34

5.1.1 Experiments . . . . . .. .. ... ... ... .. L. 34

5.1.2 Interpretation of the Results . . . . . .. ... ...... S 40

5.2 Multi-Objective Location Model . . . . . .. ... ... ... ... ... 43

52.1 Experiments . . . . . . .. ... ... 43

5.2.2 Interpretation of the Results . . . . . . ... ... ... S... 63

5.3 Multi-Criteria Model . . . . . ... ... ... ... ...... ... 68

5.3.1 Experiments . .. .. ... ... ... ... .. ..... ... 68

5.3.2 Interpretation of the Results . . . . . . ... .. ... ..... 75

6 Conclusions and Future Work 77

Appendix Appendices 81

Appendix A Multi-Objective Location Model Location Graphs 83

Al Cdemand =22 . . . . .. . ... ... 83

A2 Cdemand =45 . . . . . . ... ... . 96

Appendix B Multi-Criteria Model Location Graphs 109




Acknowledgment

I dedicate, as a symbol of my gratefulness, this thesis work to the members of my
family: Elena, Felit and Moisés. The importance and help they represent to e, can
not be encrypted into words, so I will keep it simple: Thank you, I love you.

This thesis work summarizes the work and the collaboration over one year with
the Tijuana Red Cross Unit and the Technological Institute of Tijuana (ITT). I would
like to thank to, the head of the Tijuana Red Cross Unit, Dr. Carlos Vega for his
guidance in the development of this work and for providing us the information needed
to model the Ambulance Location Problem; and I thank as well to Dr. Leonardo Tru-
jillo Reyes from the ITT, who has been with us from the beginning of the project:
offering new ideas; commenting, discussing and interpreting all the results of this
work, and who also received me at the ITT to provided me a better understanding
of the problem we were dealing with.

I especially thank to my thesis advisor, Dr. Oliver Schutze, who offered me the
opportunity to participate in this project, for his big help and the time dedicated to

every step and obstacle that this thesis work have brought to us.

Finally, I thank to the Consejo Nacional de Ciencia y Tecnologfa (CONACYT)
for its financial support throughout my Master on Computer Science program.

vii




viii CONTENTS




List of Figures

3.1

3.2
3.3

4.1

5.1

5.2

5.3

5.4
9.9
5.6
5.7
5.8
5.9

5.10

5.11

5.12

5.13

The domain Q for the location of the ambulances. The circles show

the eight actual base stations of the Red Cross Tijuana fleet. . . . . .
Demand points classified by the average number of EMS requests
Demand points classified by the mean priority of EMS requests. . . .

Geographical Division of Tijuana . . . .. ... ... .. I

Domain @) containing n = 50,75 demand points and the location of
the existing base stations. . . . . . .. ... ... ... ...

Domain @ containing 7 = 100, 125 demand points and the location of

‘the existing base stations. . . ... .. e
Domain () containing n = 150 demand points and the location of the -

existing base stations. . . . . .. .. ... L L.
Solution for 50 demand points. . . . . . . .. ... L.
Solution for 75 demand points. . . . . . . ... .. e
Solution for 100 demand points. . . . . . ... ... ... ... ....
Solution for 125 demand points. . . . . . . . EP S
Solution for 150 demand points. . . . . . . . . . .. ... .. .. ...

Convergence- behavior of GA on the three test instances for n = 50,
75, 100, 125 and 150 demand points (from top to bottom). . . . . . .
Pareto front with grid G = 11 x 11, for relaxation values = 15 and
45 (from top to bottom), Continuous Location Objective (x-axis) vs
Continuous Coverage Objective (y-axis). . . . ... .. ... ... ..
Pareto front with grid G = 11 x 11, for relaxation values = 75 and
105 (from top to bottom), Continuous Location Objective (x-axis) vs
Continuous Coverage Objective (y-axis). . . . ... ... ... ....
Pareto front with grid G = 21 x 21, for relaxation values = 0.1 and
0.3 (from top to bottom), Continuous Location Objective (x-axis) vs
Continuous Coverage Objective (y-axis). . . . . . ... . ... ....
Pareto front with grid G = 21 'x 21, for relaxation values = 0.5 and
0.7 (from top to bottom), Continuous Location Objective (x-axis) vs
Continuous Coverage Objective (y-axis). . ... ... ... ... ...

ix

19
23
24

30

34
35
36
37
37
38

38
39

42

46

47

48




0.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

9.22
5.23
5.24
5.25
5.26
-5.27
5.28
9.29

9.30

Al

A2

LIST OF FIGURES

Pareto front with grid G = 31 x 31, for relaxation values = 0.1 and
0.3 (from top to bottom), Continuous Location Objective (x-axis) vs
Continuous Coverage Objective (y-axis). . . . . .. ... ... ....
Pareto front with grid G = 31 x 31, for relaxation values = 0.5 and
0.7 (from top to bottom), Continuous Location Objective (x-axis) vs
Continuous Coverage Objective (y-axis). . . . ... ... ... ....
Pareto front with grid G = 11 x 11, Cpemand=4s5, for relaxation values
= 0.1 and 0.3 (from top to bottom), Continuous Location Objective
(x-axis) vs Continuous Coverage Objective (y-axis). . . ... ... ..
Pareto front with grid G = 11 x 11, Cpemand=as, for relaxation values
= 75 and 105 (from top to bottom) Continuous Location ObJectlve
(x-axis) vs Continuous Coverage Objective (y-axis). . . . . ..., ..
Pareto front with grid G = 21 x 21, Cpemand=4s5, for relaxation values
= 0.1 and 0.3 (from top to bottom) Continuous Location Objective
(x-axis) vs Continuous Coverage Objective (y-axis). . . . ... /...
Pareto front with grid G = 21 x 21, Cpemand—as5, for relaxation values
= 0.5 and 0.7 (from top to bottom), Continuous Location Objective
(x-axis) vs Continuous Coverage Objective (y-axis). . . . . ... ...
Pareto front with grid G = 31 X 31, Cpemand=4s, for relaxation values
= 0.1 and 0.3 (from top to bottom), Continuous Location Objective
(x-axis) vs Continuous Coverage Objective (y-axis). . . . . ... ...
Pareto front with grid G = 31 x 31, Cpemand=as, for relaxation values
= 0.5 and 0.7 (from top to bottom), Continuous Location Objective
(x-axis) vs Continuous Coverage Objective (y-axis). . . . . ... ...
Sum of distance per solution to the 10 most important points.

Sum of distance per solution to the 20 most important points.

Sum of distance per solution to the 30 most important points.

Sum of distance per solution to the 40 most important points.

Sum of distance per solution to the 50 most important points.

Pareto front with grid G = 31 x 31, Cpemand=18, for relaxation values
= 0.1, Multi-criteria model: demand vs priority. . . . ... ... ...
Pareto front with grid G = 31 X 31, Cpemand=37, for relaxation values
= 0.3 and 0.5, Multi-criteria model: demand vs priority. . ... ...
Pareto front with grid G = 31 x 31, Cpemand=ss, for relaxation values
= 0.1, Multi-criteria model: demand vs priority. . . . . . . I
Pareto front with grid G = 31 x 31, Cpemand=75, for relaxation values
= 0.3 and 0.5 (from top to bottom), Multi-criteria model: demand vs
priority. . . . ..

K

/
/

93

o4

39

96

70

72

73

Locations of the best solution for objetive 1 and for objective 2, Cpemand=22,

Discretization 11 x 11 (from top to bottom), Relaxation factor = 0.1
Locations according to the knee point, The merge for all previous solu-
tion locations, Cpemand—az, Discretization 11x 11 (from top to bottom)
Relaxation factor=0.1. . . . . .. . ... ... .... e

84




LIST OF FIGURES xi

A.3 Locations of the best solution for objetive 1 and for objective 2, Cpemand=22,

Discretization 11 x 11 (from top to bottom), Relaxation factor = 0.7 86
A.4 Locations according to the knee point, The merge for all previous sohi—

tion locations, Cpemand=22, Discretization 11 x 11 (from top to bottom),

Relaxation factor = 0.7 . . . . . . . . . .. .. ... .. .. ... 87
A.5 Locations of the best solution for objetive 1 and for objective 2, Cpemand—22,

Discretization 21 x 21, (from top to bottom), Relaxation factor/= 0.1 88
A.6 Locations according to the knee point, The merge for all previous solu-

tion locations, Cpemand=22, Discretization 21 x 21, (from top to bottom),

Relaxation factor = 0.1 . . . . . . . . . ... ... ... ... ... 89
A.7 Locations of the best solution for objetive 1 and for objective 2, Cpemand=22,

Discretization 21 x 21, (from top to bottom), Relaxation factor = 0.7 90
A.8 Locations according to the knee point, The merge for all previous solu-

tion locations, Cpemand=22, Discretization 21 x21, (from top to bottom),

Relaxation factor = 0.7 . . . . . . . ... .. ... .... L ¢ ) |
A.9 Locations of the best solution for objetive 1 and for objective 2, Cpemand=22,

Discretization 31 x 31, (from top to bottom), Relaxation factor = 0.1 92
A.10 Locations according to the knee point, The merge for all previous solu-

tion locations, Cpemand=22, Discretization 31x31, (from top to bottom),

Relaxation factor = 0.1 . . . . . . . . . ... ... .. ... .. ... . 93
A.11 Locations of the best solution for objetive 1 and for objective 2, Cpoemand=22,

Discretization 31 x 31, (from top to bottom), Relaxation factor = 0.7 94
A.12 Locations according to the knee point, The merge for all previous solu-

tion locations, Cpemand=22, Discretization 31x31, (from top to bottom),

Relaxation factor =0.7 . . . . . . . ... .. ... ... L. 95
A.13 Locations of the best solution for objetive 1 and for objective 2, Cpemand=45,

Discretization 11 x 11 (from top to bottom), Relaxation factor = 0.1. 97
A .14 Locations according to the knee point, The merge for all previous solu-

tion locations, Cpemand=45, Discretization 11 x 11 (from top to bottom),

Relaxation factor = 0.1 . . . . . . e 98
A.15 Locations of the best solution for objetive 1 and for objective 2, Cpemand=45,

Discretization 11 x 11 (from top to bottom), Relaxation factor = 0.7 99
A.16 Locations according to the knee point, The merge for all previous solu-

tion locations, Cpemand=45, Discretization 11x 11 (from top to bottom),

Relaxation factor = 0.7 . . . . . .. ... .. .. L 100
A.17 Locations of the best solution for objetive 1 and for objective 2, Cpemand=as.

Discretization 21 x 21, (from top to bottom), Relaxation factor = 0.1 101
A.18 Locations according to the knee point, The merge for all previous solu-

tion locations, Cpemand=22, Discretization 21x21, (from top to bottom),

Relaxation factor =0.1. . . . . . . ... . ... ... ... ..... 102
A.19 Locations of the best solution for objetive 1 and for objective 2, Cpemand=45,

Discretization 21 x 21, (from top to bottom), Relaxation factor = 0.7 103




xii

LIST OF FIGURES

A.20 Locations according to the knee point, The merge for all previous solu-
tion locations, Cpemand=45, Discretization 21x21, (from top to bottom), ,
Relaxation factor = 0.7 . . . . . . . . . . . . 104
A .21 Locations of the best solution for objetive 1 and for objective 2, Cpemand=45,
Discretization 31 x 31, (from top to bottom), Relaxation factor = 0.1 105
A.22 Locations according to the knee point, The merge for all previous solu-
tion locations, Cpemand=45, Discretization 31x31, (from top to bottom),
Relaxation factor = 0.1 . . . . . . . . . .. ... ... .. .. ..., . 106
A .23 Locations of the best solution for objetive 1 and for objective 2, Cpemand=45,
Discretization 31 x 31, (from top to bottom), Relaxation factor = 0.7 107
A .24 Locations according to the knee point, The merge for all previous solu-
tion locations, Cpemand=45, Discretization 31 x 31, .(from top to bottom),
Relaxation factor = 0.7 . . . . . . . .. ... .. ... . ... .. ... 108

B.1 Locations of the best solution for objetive 1 (Demand Criteria) and

for objective 2 (Priority Criteria), Cpemand=18, Discretization 31 x 31,
(from top to bottom), Relaxation factor =05 . . . . ... ... ... 110

B.2 Locations according to the knee point, The merge for all previous solu-

tion locations, Cpemand=18, Discretization 31 x31, (from top to bottom),
Relaxation factor =05 . . . . . . ... .. e - 111

B.3 Locations of the best solution for objetive 1 (Demand Criteria) and

for objective 2 (Priority Criteria), Cpemand=37, Discretization 31 x 31,
(from top to bottom), Relaxation factor =0.3 . . . .. ... ... .. 112

B.4 Locations according to the knee point, The merge for all previous solu-

tion locations, Cpemand=37, Discretization 31x 31, (from top to bottom),
Relaxation factor =0.3 . . . . . . ... ... ... ... ... 113

B.5 Locations of the best solution for objetive 1 (Demand Criteria) and

for objective 2 (Priority Criteria), Cpemand—s6, Discretization 31 x 31,
" (from top to bottom), Relaxation factor =0.1 . . ... ... ... .. 114

B.6 Locations according to the knee point, The merge for all previous solu-

tion locations, Cpemand=56, Discretization 31x31, (from top to bottom),
Relaxation factor = 0.1 . . . . . . . . . ... .. ... ... ... 115

B.7 Locations of the best solution for objetive 1 (Demand Criteria) and

for objective 2 (Priority Criteria),Cpemand=75, Discretization 31 x 31,
(from top to bottom), Relaxation factor =0.5 . . .. ... ... ... 116

B.8 Locations according to the knee point, The merge for all previous solu-

tion locations, Cpemand—75, Discretization 31x31, (from top to bottom),
Relaxation factor = 0.5 . . . . . . . .. . ... ... ... ... ..., 117




List of Tables

3.1
4.1
9.1

5.2
5.3

5.4

5.5

0.6

5.7
2.8

Design parameters used by the algorithm GA of MATLAB. . . .. ..
Design parameters used by the algorithm NSGA-II . . ... ... ..

Obtained function values and fractions of the demand covered from
the model solution (MS) and the existing base stations (EB). . . . . .
Performance of the genetic algorithm . . . . ... ... T ,
Results for the continuous coverage vs continuous location multi-objective
model, Cpemand=22, Part T . . . . . . . ... ... ... R
Results for the continuous coverage vs continuous location multi-objective
model, Cpemand=22, Part I . . . . . . ... .. ... ... ... ....
Results for the continuous coverage vs continuous location multi-objective
model, Cpemand=as, Part I . . . . . . .. .. ... o
Results for the continuous coverage vs continuous location multi-objective
model, Cpemand=a5, Part I . . . . . . .. .. .. ... .. ... ... .
Results for the multi-criteria optimization model, Part I. . . . . . . .
Results for the multi-criteria optimization model, Part IT . . . . . . .

xlil




Xiv : LIST OF TABLES




Chapter 1

Introduction

Determining the location of the ambulances along a city is one of the most important

- problems to solve in order to guarantee the proper delivery of Emergency Medical

Services (EMS). The set of ambulances must be located along the ¢ity, such that the
area considered by the problem is covered within a time response tolerance threshold.

The present work is the result of a collaboration with the Tijuana Red Cross Unit!
to find an efficient and applicable solution for the problem of determining the location
of the ambulances available along Tijuana city. In Section 1.1, the main aspects of
the collaboration with the Red Cross are detailed along with the reasons that sustain
this work. An introduction to the ambulance location problem is included in Section
1.2. In Section 1.3, the aims of this work are drawn. Finally, Section 1.4 lists the
contributions of this thesis work.

1.1 Motivation

The fleet of the Red. Cross Unit of Tijuana currently consists of 14 ambulances, 11
of which are in service every day. These 11 ambulances cover approximately 98 %
of the EMS demand in Tijuana. In 2013, the Red Cross provided EMS care to
more than 37,000 persons with their fleet of ambulances. The population of Tijuana
contains about 1.6 million inhabitants. Thus, there is in average one ambulance
available for each 141,000 inhabitants, while the international recommendation is to
have one ambulance unit for at most 20,000 inhabitants. Furthermore, in 2013 the
average response time for an ambulance in Tijuana to arrive to an emergency call was
roughly 14 minutes, with a standard deviation of 4 minutes. In 75% of the cases the
ambulance arrived within 18 minutes and in 90 % of the cases the ambulance arrived
within 23 minutes. The cost for the maintenance and operation of the fleet is about
25 million Mexican Pesos per year (approx. 1.7 million US Dollars) while the service
is free of charge for the users.

Given the size of the city, the limited resources available for the Red Cross, and
the social impact of the problem, it is evident that the EMS systems must strive

'http://www.cruzrojatijuana.org.mx/




2 Chapter 1

towards high efficiency and close to optimal deployment.

In particular, this work deals with the problem of determining the best locations
for ambulance bases across Tijuana city based on historical information of EMS calls.
With the solution to the ambulance location problem it is expected to reduce the
average arrival time of the Red Cross EMS units, the reduction will be achieved
by modeling and solving the problem for this particular case, this is: taking into
consideration the number and the type of EMS calls received in the different districts
of Tijuana city to locate the ambulances where they are more needed.

The reduction of the average time is at the same time an improvement of the
Emergency Medical Services quality, which can be interpreted as a reduction in the
number of deaths caused by the delay of the arrival of ambulances.

1.2 Problem

The problem of locating ambulances may be treated as a problem of locating facilities
and allocating customers (taking into consideration the time response restrictions).
This problem involves the main topics of distribution system design, that is, in cases
when the quality of the service provided by the facility depends on its location and the
location of other facilities. There exists a large variety of approaches in the literature
regarding the solution of this, and other related problems, that include linear, single-
facility, deterministic, static, dynamic, continuous and discrete models, among others
[12], [20], [36]. ;
Proposed solutions must attempt to model the most relevant features of the par-
ticular urban area for which EMS are being planned for, as well as the characteristics
of the service provider for that city. This problem is known as the ambulance location
problem, which has been studied in several previous research works [4, 26]. One ap-
proach is to model it as a graph covering problem, with several proposals.in relevant
literature. In these models, the problem is defined on a graph G, where the vertices
denote either demand points (locations or areas within a city that might require EMS
services) or feasible bases (potential sites to place ambulances within the city); where
V is the set of all demand points and W is the set of all feasible bases. The edges in
G are weighted by a factor ¢;; that denotes the expected travel time (or potentially,
any other measure of cost) between vertex ¢ and vertex j. A demand point 7 € V
is covered by site j € W if and only if ¢;; < r where r represents a minimum.cover-
age requirement or standard. For instance, the location set covering model (LSCM)
[37] aims to minimize the number of ambulances needed to cover all demand points.
Another popular model is the double standard model (DSM) proposed by Gendreau
et al. [16], that uses two coverage standards r; and 7y, with r; < 7. In this model,
all demand points must be covered by an ambulance located within r; time units (or
cost units), and a proportion « of the demand points must be within r; time units of
an ambulance. For example, in the United States Emergency Medical Services Act of

Cinvestav Computer Science Department




Introduction 3

1973 7, is set to 10 minutes? and « to 0.95 while there is no specification for 7.

In [19], Jaramillo et al. applied genetic algorithms (GA) techniques to solve a
wide set of theoretical location problems. The representative location models chosen
werce the fixed charge location problem (uncapacitated and capacitated version) and
the maximum covering problem from non-competitive location theory and the cen-
troid and medianoid models from competitive location theory. This work concluded
that GAs do not outperform specialized heuristics in the facility location problems,
however, the solutions that the GAs produce are no worse than and in fact sometimes
superior to the ones produced by these other methods. In literature, there are a broad
amount of examples of applications for the GA to facility location problem. For in-
stance, in [28] Marié applied successfully a GA to solve the uncapacitated facility
location problem. Other examples can be found in [13, 22, 23].

1.3 Aim

The aim of this thesis is to model the ambulance location problem and to find the
solution to this problem for the particular case discussed (Tijuana Red Cross Unit).
The real impact of the project along with the interest in finding an accurate continuous
multi-objective model, for such situations where the time is a key factor, are the main
goals for this work.

1.4 Contribution

The following are the contributions achieved:
e A continuous location model for the ambulance location problem.
e A multiobjective continu(;us model for the ambulance location problem.
e A software package for free scientific use.

e One conference paper published [31] in the proceedings of the IEEE Congress
on Evolutionary Computation, 2015.

The development and completion of a Master thesis.

1.5 Thesis Organization

The following chapters of the present document are organized as follows:

2The National EMS Information System reports an average arrival time
under ten minutes in the years of 2010 and 2011, data retrieved from
www.nedarc.org/emsDataSystems/nemsisReports/2010-11EMSTimes.html

Cinvestav Computer Science Department
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In Chapter 2, we introduce the concept of continuous optimization and continu-
ous location optimization problem along with the models and solution methods
in the state-of-the-art that address these problems. /

In Chapter 3 the continuous location model that we propose to solve the ém—
bulance location and the details of its implementation are described.

In Chapter 4 are presented the multi-objective extension of the continudus lo-
cation model and the multi-criteria model.

Chapter 5 includes the description of the experiments performed and their re-
spective results for all the models previously mentioned.

Finally, in chapter 7, we give our conclusions after discussing the results ob-
tained and their implications, along with the future work that we consider
pertinent and important, in order to improve or correct the flaws observed in
our computations. /

Cinvestav Computer Science Department




Chapter 2

Background and Related Work

This work proposes a continuous optimization model (the definition for these models
is given in Section 2.1) for the ambulance location problem. Furthermore, this model
is extended to a multi-objective model (Section 2.2); both optimization problems are
solved using genetic algorithms (GAs); in particular, the multi-objective problem is
solved by the NSGA-II method (Section 2.3). '

The optimization problem we use is an adaption of the Multi-source Weber Prob-
lem (Section 2.4.1), which is an extension of the Weber facility location problem
(Section 2.4). In addition, in order to address the time restrictions inherent in the
ambulance location problem, a set of constraints considered in the Limited Distance
Minisum Problem is adapted to the proposed model (Section 2.4.2).

In Section 2.5, the most relevant models that regard either the ambulance location
problem or the ambulance location/relocation problem are described.

2.1 Continuous Optimization

In continuous optimization, the variables in the model are nominally allowed to take
on a continuous range of values, usually real numbers. This feature distinguishes
continuous optimization from discrete or combinatorial optimization, in which the
variables may be binary (restricted to the values 0 and 1), integer (for which only
integer values are allowed), or more abstract objects drawn from sets with finitely
many elements.

An important distinction in continuous optimization is between problems in which
there are no constraints on the variables and problems in which there are constraints
on the variables. Unconstrained optimization problems arise directly in many prac-
tical applications; they also arise in the reformulation of constrained optimization
problems in which the constraints are replaced by a penalty term in the objective
function. Constrained optimization problems arise from applications in which there
are explicit constraints on the variables. There are many subfields of constrained
optimization for which specific algorithms are available.

In this work, a constrained optimization problem is proposed, this family of prob-

5




6 Chapter 2

lems considers the problem of optimizing an objective function subject to constraints
on the variables. In general terms, a single objective optimization problem reads as

1in f(z)
subject to :

h(z) <0

g9(z) =0

fR*—R-
g:R"—R™, 9(z) = (91(2), 92(), .., gm ()T
gi:Rn’_)R) Z: ,...,m
h:R" — RP, h(z) = (h1(z), ha(z), ..., hp(z))T
hi:Rnr—)R, 1=1,..,p

The feasible set S is the set of points z that satisfy the equality and the inequality
constraints.

S={ze R"|Ag(:c) < 0,h(z) =0}

There are several strategies in the literature to approach to the solution of these
problems, some of these strategies implement mathematical programming techniques
like convex programming, integer programming and non-linear programming [14],[35];
however, the are strategies which do not implement mathematical programming tech-
niques to find optimal solutions, examples of such strategies are the bio-inpired meta-
heuristics (particle swarm optimization [41], ant colony optimization [8] and genetic
algorithms [40]).

While others strategies are improved by using more than one method to solve the
problem: examples of these strategies are the hybrid optimization algorithms [5],[33]
and the memetic algorithms [25],[34].

Cinvestav - Computer Science Department




Background and Related Work 7

2.2 Multi-Objective Optimization

The need to face real applications renders the hypothesis of a single-objective function
to be optimized subject to a set of constraints no longer suitable, and the introduction
of a multi-objective optimization framework allows one to manage more information.
If we regard the ambulance location problem from different points of view, i.e., in
terms of social needs for a quick response, or in terms of economic issues or geographic
coverage, it is clear that a model that considers simultaneously two or more such
objectives could produce solutions with a higher level of equity. ’

A multi-objective optimization problem can be described in.mathematical terms
as follows:

Q{Ielllkl;l‘(fl(x)’ fg(ﬂ?), f3($)’ teey fk(-'l?))
subject to

h(z) <0
g9(z) =0,

where £ > 1.

The concept of optimality does not apply directly in the multi-objective setting.
Here, the notion of Pareto optimality has to be introduced. Essentially, a feasible
vector z* € S is said to be Pareto optimal for a multi-objective problem if all other
feasible vectors have a higher value for at least one of the objective functions f;, with
1 =1, ..., k, or have the same value for all the objective functions. Formally speaking,
we have the following definitions:

Definition A point z* € S is said to be a weak Pareto optimum or a weak efficient
solution for the multi-objective problem if and only if there is no feasible z such that
filz) < fi(lz*) Viel, .., k.

Definition A point z* € S is said to be a strict Pareto optimum or a strict efficient
solution for the multi-objective problem if and only if there is no feasible f;(z) < f;(z*)
Vi € 1,..., k, with at least one strict inequality.

The set of all the Pareto points is called the Pareto set Q).

RQ={z"eS | AzeS: filz) < fi(z*) Vi=1,..,k}

The image of the efficient set @, ie., the image of all the efficient solutions, is
called Pareto front. Examples in the literature of these problems can be found in [7],
[32], [39].
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2.3 Genetic Algorithms

Since the 1960s there has been increasing interest in imitating living beings to develép
powerful algorithms for difficult optimization problems, evolutionary computation is
the term in common use to refer such techniques. The best known algorithms in this
class include genetic algorithms, developed by Holland [18]; evolutionary program-
ming, developed by Fogel et al. [15]; and genetic programming, developed by Koza
[21]. . . ’
A genetic algorithm is a method for solving both constrained and unconstrained
optimization problems based on a natural selection process that mimics biological
evolution. The algorithm repeatedly modifies a population of individual solutions.
At each step, the genetic algorithm randomly selects individuals from the current
population and uses them as parents to produce the children for the next generation.
Over successive generations, the population “evolves” toward an optimal solution.

One can apply genetic algorithms to solve problems that are not well suited for
standard optimization algorithms, including problems in which the objective function
is discontinuous, nondifferentiable, stochastic, or highly nonlinear.
In general, a genetic algorithm has five basic components, as sumarized by Michalewicz

[30]:

1. A genetic representation of solutions of the problem.
2. A way to create an initial population of solutions.
3. An evaluation function rating solutions in terms of their fitness.

4. Genetic operators that alter the genetic composition of children during repro-
duction.

5. The values for the parameters that use the genetic algorithm.

The conventional genetic algorithm, considered in detail in [27], maintains a pop-
ulation of individuals, say P(t), for generation ¢. Each individual is evaluated with
the objective function, the function for which an optimal solution is required, to give
some measure of its fitness. Some individuals undergo stochastic transformations by
means of genetic operations to form new individuals. There are two types of trans-
formation: mutation, which creates new individuals by making changes in a single
in a single individual, crossover; which creates new individuals by combining parts
from two individuals. A new population is formed by selecting the fittest individuals
from the parent population and the offspring population, this is, the individuals best
evaluated according to the objective function. By allowing the best individual(s) from
the current generation to carry over to the next unaltered, the algorithm, eventually
converges to a solution, which is not guaranteed to be the same as the global solution.
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2.4 The Weber facility location problem

The problem where the objective is to locate a single facility in the plane R?,'so that
the sum of distances from the facility to a set of demand points is minimized is often
referred to in the literature as the Weber (or Fermat-Weber) problem [2]. It traces
back to Fermat in the 17** century who posed a purely geometrical version of the
problem with only three points. ’, .

Drezner, Mehrez and Wesolowsky investigated in [9] the Weber problem for the
case in which the distance functions are constant after given threshold values, which
they call the facility location problem with limited distances. This problem has
applications in situations where the service provided by the facility is useless after
a given threshold (time or distance units). For example, imagine the problem of
locating a fire station, where every demand point has a distance limit after which the
service offered is neglected.

The authors consider a situation where a certain damage occurs in a property
located in p;, for ¢ = 1,..,n. The service station is located at the point y € R?, and
the time needed to arrive at this point increases up to ); (time tolerance threshold),
so the service is insensitive after this given \; time threshold. By denoting d(p;,y) the
distance between point p; and the service station located at y, and Q) the proportion
of damage at zero distance then the proportion of damage in p; is given by

Q+(1-Q)d(pi, y)/ M

in the case d(p;,y) < \;, and 1 otherwise. The corresponding facility location problem
is then expressed as:

. min{d(p;,y), \i}
Q+(1-0 . 2.1
ma (0 (- 0TS0 21)

By removing the constant terms from this problem and introducing binary vari-
ables v; that select between d(p;, y) and A; to the summation of the objective function
we end up with the following minimization problem:

n

. 1
n 3O - i) + d((s ), ) (22)

i=1

Continuous location models

Continuous location models (models in the plane) are caracterized through two es-
sential attributes: (a) the solution space is continuous, that is, it is feasible to locate
facilities on every point in the plane, (b) distance is measured by a suitable metric.

Continuous location models require to calculate coordinates (z,y) € R™ x R™ for
m facilities. The objective is to minimize the sum of distances between the facilities
and m given demand points.
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The subject of the Weber problem is to determine the coordinates of a single
facility, this is when m = 1 and (z,y) € R x R, such that the sum of the weighted
distances widg(z,y) to given demand points k € K located in (ax, by) is minimized,
where K denotes the set of demand points. :

The corresponding optimization problem is expressed as:

mlnz:wkal;c z,Y). / (2.3)

(z,y)

2.4.1 The Multi-source Weber Problem

To locate more than one facility, an extended version of the Weber Problem is re-
quired, which is known as the Multi-source Weber Problem [20], this problem is NP-
hard [29], heuristic approaches for the solution of this problem can be found in [3],[10]
and [38]. To be more precise, the aim is to locate m facilities, 1 < m < |K|, and
to allocate demand to the chosen facilities. This problem can be modeled as the
following non-linear mixed conditional integer problem:

T DD wed(pr, (25 35) e (24)
ue{0,1ymxI1K| KEK j=1 .
subject to:
> ug=1 Vk € K,
uk; € {0,1} Vke K,j=1,...m
z,y € R™.

where set of constraints > - j=1 Ukj = 1 guarantees that demand is satisfied only once,
this is, point k can only be assigned to one facility j.

2.4.2 Limited Distance Minisum Problem with Side Con-
straints

Consider that there are n demand points with threshold distances A; > 0 and weights
w; 2 0,4=1,...,n. The LDMPSC as proposed in [12] is expressed as follows:

7 1 ) T ) A 2.
,%@}m Zw v) + ||pi = (2, 9)llgv:) (2.5)
v€{0,1 1=1

subject to: '

i = (=, y)|qvs < X
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n
L<Y) wm<U, /
i=n .

where ||p; — (z,y)||q denotes the [,-distance definded as

1
q

zllg = (lz]* + |zal* + |2s]* + .. + [zal%)

between a point p; and the facility located at (z,y) in the plane R2.

The variable v; can be equal to 1 only if the distance between p; and the facility
located at (z,y) is inferior (or equal) to the distance limit );, which is expressed in
the former set of constraints. The latter set of constraints defines bounds L and U
on the number of variables v;, which can be equal to 1. -'

By removing its constant terms, problem (2.5) can be rewritten as:

n ”
(m:;?égxk Z 'LUZ(| |p (‘T’. y) , l Az)'U—L ( 6)
vefo,1} =1

subject to:

llps — (z, y)||vi < A,

n
L<Y u<U
i=n
The LDMPSC has applications in situations where the service provided by the
facility is sensitive after a given amount of time, for instance consider the problem of
minimizing the call center staffing [1] or the problem of locating a fire station [11].

2.5 State-of-the-Art

2.5.1 Static Ambulance Location

The static ambulance location (SAL)! problem can be defined on a graph G, where
the vertices denote either demand points (locations or areas within a city that might
require Emergency Medical Services (EMS)) or feasible bases (potential sites to place
ambulances within the city); where V' denotes the set of demand points and W the
- set of feasible bases.

The edges in G are weighted by a travel time ¢;; that denotes the expected travel
time between vertex ¢ and vertex j. Then, we can define that a demand point 7 € V' is
covered by the site j € W if and only if t;; < r, where r is the minimum or standard

1this model is called static because its solution does not consider the problem of dispatching the
ambulances after they have been located.
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coverage requirement. Also, let W; = {j € W : t;; < r} be the set of location sites
covering the demand point 3. /
The SAL problem has been modeled by the location set covering model LSCI\/f
whose objective is to minimize the number of ambulances needed to cover all demand
points, using a binary variable z;, which is equal to 1 if and only if an ambulance
is located at the vertex j; then the LSCM is defined as the following constrained
optimization problem: /

mianj - (2.7)

JEW

subject to:
Yoz 1(ieV) (2.8)
JEW; ;
z; € {0,1}(j € W) i (2.9)

The disadvantages of this model are:

e An over simplification of the real problem, since it considers the minimization of
the number of ambulances ignoring the information available about the weight
associated to each demand point, this is, the cost for traveling from a feasible
base towards a demand point.

e The model assumes the existance of ]Wl ambulances available, but this number
may decrease when an emergency occurs and an emergency unit is dispatched
to it.

Double Standard Model (DSM)

The DSM was proposed by Gendreau et al. [17], using two coverage standards r; and
79, With 71 < r5. In this model, all demand points must be covered by an ambulance
located within ro time units, and a proportion a of the demand points must be
within r; time units of an ambulance. The objective of DSM is to maximize the
demand covered twice within the time standard r; (maximize the number of demand
sites covered by two ambulances within r; time units) considering that there are p
ambulances available, and p; ambulances at most per site j.

Let W ={j e W :t;; <ri}and W2 ={j € W:ty; <ry} be the sets of service
points covering demand point 7 within r; and ry time standards, respectively, y, the
total number of ambulances located at site j € W, ¢; is a quantification of EMS’s
demand at the point ¢ € V, and the binary variable 27 which is equal to 1 if and only
if the demand at vertex ¢ € V is covered k times (k = 1 or 2) within r; time units.
The DSM optimization problem is defined as:

max Z Gx? (2.10)

i€V
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subject to: /

doyi>1 icV, (2.11)

CTA2
JEW;

Z%’x} 2 OZZ% | (2.12)

% eV
>y >al+a? icV, (2.13)
jew} '
z? < g ieV ALk e {01}, (2.14)
D yi=p y; € Z%, (2.15)
jEW
Yi < pj jEW, (2.16)

In constraint (2.11), the number of ambulances that covers every demand point
¢+ within ry time units must be equal or greater than 1, in constraint (2.12) the
proportion of demand points d; covered within r; time units is required to be greater
or equal than a. Constraint (2.13) states that the sum of ambulances that covers
a demand point ¢ within 7; should be greater than 1 if the point ¢ is covered once
(z} = 1) and greater than 2 if the point i is covered twice (z? = 1). Constraint
(2.14) states that a point may not be covered twice if it is not covered at least
once. Constraint (2.15) establishes the maximum number of ambulance available.
Finally, constraint (2.16) establishes the maximum number of ambulances allowed to
be located at each feasible service point.

The DSM model has proven to be very useful and applicable to real world sce-
narios. However, researchers have also worked on extending the model to include a

variety of more realistic constraints and objectives, which are reviewed next.

2.5.2 Dynamic Double Standard Model (DDSM)

When an ambulance is dispatched, from a service point, to attend an emergency that
occurs at some demand point in the city, one or more of the remaining demand points
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may result uncovered. If this is the case, the location of the ambulances requires to

be updated. When the model considers this kind of situations, then the problem to
be solved is known as the ambulance relocation problem. /

The DDSM, presented in [24], considers the ambulance relocation problem (ARP)
which involves determining the best deployment of p ambulances over a series of dis-
crete time instances, subject to restrictions regarding the movement or re-positioning
of ambulances between consecutive instances. DDSM aggregates a number of practi-
cal considerations which addresses the dynamic nature of the problem: (a) Vehicles
moved in successive redeployment cannot always be the same. (b) Repeated round-
trips between two locations should be avoided. (c) The number of long trips among
initial and final location sites should be small.

In this model, the ARP is solved at every discrete moment ¢ on Wthh an ambu-
lance is deployed to attend a medical emergency.

The dynamic aspect of the redeployment of ambulances is captured by time depen-
dent variables M} ;1» whose value is equal to a quantification of the cost of repos1t10mng
an ambulance [ from its current site to site j € W at time ¢. The idea is that every
variable M. tl captures the historical movements and activity of ambulance [, this is, if
ambulance [ has been frequently repositioned then its M tl associate varlable s value
should be large.

The movements of each ambulance are also subject to the constraints of the prob-
lem, such that unfeasible movements are disallowed. There are also binary variables
y; which are equal to 1, if and only if, ambulance [ is moved to site j. The DDSM
maximization problem is defined as:

Igéa{/qula: - ZZ I , (2.17)

JEW =1

subject to:
p
Yo >t iV, (2.18)
jew? I=1
Y griza) g (2.19)
=% eV
p
> D ya>ul+a eV, (2:20)
jew}l i=1
z? < z} i€V Az e {01}, (2.21)
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Y yp=1 I=1,.pAy; € {0,1}, / (2.22)
JEW .

P
Zyjz < pj JeEW. (2.23)
I=1

The constraints of the DDSM model are similar to the ones of the static DSM
model. The main difference is in the objective function, where the sum of the M}
penalization for redeployment variables is included.
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Chapter 3

A Continuous Location Model for
the Tijuana Red Cross Ambulance
Fleet |

The task of this work is to define a model for the optimal placement of the Tijuana
Red Cross ambulance fleet. For this, we propose in the following a model for this
problem and go then into detail about the implementation of the optimization. The
model will be static, i.e., we measure the response time by the (estimated) travel time
from the base station of an ambulance to a demand point.

3.1 Continuous Location Model

The Multi-source Weber Problem serves as a starting point for our model, since it
considers both multiple facilities (ambulances) and multiple demand points (persons
requesting EMS). Note, however, that problem (2.4) does not involve any time con-
straints, such constraints are of great importance for the problem.at hand since if
the time to reach a certain demand point is greater than a given threshold, then the
service is probably of no use. Even worse, the decision to move the ambulance to this
demand point comes with a potential waste of resources since the ambulance might
not be able to attend another demand that may be requested during that time.

In the following, we will consider the minimization of all response times from the
ambulances to the demand points, such minimization may be interpreted as a maxi-
mization of the number of demands covered.

Taking this into consideration, we have decided to integrate elements from the
LDMPSC problem [12] and the multi-source Weber problem [20] to model the Tijuana
Red Cross ambulance problem as follows:

Assume we are given m ambulances building the fleet A = {ay,...,a,} and n
demand points pi,...,p, located in a certain region. Denote by tx(pk, (z;,v;)) the
(estimated) time that it takes for the ambulance a; to arrive from its base station at

17
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the demand point p located at (z,,,,,), where k goes from 1 to n. 7 is defined as
the tolerance time threshold value for the demand point p, and wy is its assomated
weight value. The definition of the weight values wy € R is discussed in Section 3. 2/2
The corresponding fleet location problem can then be expressed as follows

(a:,y)IEI]llKi"ngm flocatw'n. Z y le fwezqhtedSum(x]; Z/g) ’/ (31)
subject to:
Z U(Tk — b ok, (%}%’))) >1 - VkeK,
j=1
where fyeightedsum (%, y;) is defined as: /‘i
kZwaJk (P (xj,yj))U(Tk — ti (%, (mj,yj))>
€
Fucighteasum (T3, Y5) = § if Sr_, U<Tk — ti (x, (25, ?Jj))) >0 (3.2)

10000 otherwise.
The function U : R — {0, 1}, is given by:

1 ifxz>0
U(w):{ ' (3.3)

0 otherwise.

The set of constraints assures that at least 1 ambulance covers each demand point
pk, this is, when ¢x(px, (z;,9;)) < 7k, the function U retrieves a value equals to 1,
enough to satisfy the k-th inequality, if this does not occur, then this constramt w111
be active.
The function f(z;,y;) is equal to the sum of distances from the ambulance a; located
at (z;,y;) if this ambulance covers at least 1 demand point, else it is set to f(z;,y;) =
10,000 which is a penalization value. Thus, this function pushes the location of all
the ambulances inside the feasible region defined by the set of demand points and its
respective tolerance time thresholds values 7.

Note that problem (3.1) is an optimization problem consisting of 2m continuous
variables.

3.2 Implementations

For the implementation of problem (3.1) for the Tijuana Red Cross ambulance fleet
we have used the following realizations.
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Figure 3.1: The domain @ for the location of the ambulances. The circles show the
eight actual base stations of the Red Cross Tijuana fleet.

3.2.1 Domain

The possible location for every base point of an ambulance is in the city of Tijuana,
Mexico. To be more precise, we restricted the search to z € [—-117.15, —116.8] (lon-
gitude) and y € [32.4, 32.6] (latitude), i.e., we have set the domain as

Q = [~117.15, ~116.8] x [32.4,32.6] C R? (3.4)

which is the box in the plane that tightly covers Tijuana.

The Tijuana Red Cross Unit has currently eight base stations (though three of
them are equipped with two ambulances) distributed all over the city, Figure 3.1
shows the domain @) together with the eight base stations of the Tijuana Red Cross
Unit.
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3.2.2 Demand points and weights

One crucial aspect is the proper choice of the demand points and the weights sin)fe
they determine the optimal location of the fleet. Thus, a random selection of theése
values would yield misleading results. Instead, we have selected the demand points
based on the actual demands that took place and which were recorded from the
Tijuana Red Cross Unit in the period from 01/01/2014 to 08/31/2014. The data
base contains a total of more than 23,000 of EMS requests, the table in which the
requests are store contains the following fields:

e Base station assignment: the name and the number of the base where the
emergency call was received. ‘

e Date (day, month, year).

e Day of the week.

e Time of call .

e Time of departure: time when the ambulance is dispatched.

e Time of arrival: time when the ambulance arrives at the place of the emergency.
e Time of departure to hospital: time when the patient is taken to the hospital.
e Time of arrival to hospital.

e Return time: time when the ambulance returns to its base station.

e Number of ambulance.

o State.

¢ Administrative district.

e Street: name of the street where the emergency occurs.

e Adjoining street_1: adjacent to the street where the emergency occurred.

e Adjoining street_2: adjacent to the street where the emergency occurred.

e Neighborhood.

e Patient address.

e Priority: In time sensitive increasing order: green (minor bone fracture, sex-
ual assault), yellow (fever), red (chest pain, breathing problems), black (heart
attack, choking).

e Longitude and latitude
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Each demand point that we chose for the optimization model stands for a partic-
ular district of Tijuana (to be more precise, its center point), and every Weigl/],t value
was calculated directly proportional to: K
e Density Criteria: the total number of EMS requests from this district within
the given time period, i. e., the weight value for the k-th district is calculated
by :

_ Nr— Ny
- NT(’I'L - 1) ! ’
where Ny is the number of EMS registers inside the area of the k—th district,

Ny is the total number of EMS registers in the database and n is the total
number of districts. ,

Wi

e Priority Criteria: the mean priority of the requests from the district (emergen-
cies which requires immediate attendance such as heart attacks are associated
to the highest priority value 4 (black color), downwards to the emergencies
with a wider time tolerance threshold, therefore, associated to the lowest value
1 (green color)): '

dPiotar — dPTE

WE = y
g dptota,l(n - ]-)

where dpr, is the average priority EMS value of the k-th district and

n
dptotal = Z dp’rz

i=1

To allocate the contribution of every entry in the data base with its respective
demand point weight value we followed two approaches:

e Longitude and latitude coordinates available: by looking for the closest demand
point to the point in the map where the request was registered, to determine
the closest point the estimated travel time was used instead of the geometric
distance.

Note: Even though every ambulance is provided with a GPS device to assert the
position of the emergency at the time the ambulance arrives, on very few cases
the ambulance operators recall to store this information, since their highest
priority is to attend the patient emergency. In less than the 10% of the requests
this information was available, this is why the information from other fields was
used to determine the position of the emergency.
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e Emergency address available: when latitude and longitude coordinates were not
available but the emergency address was (street, neighborhood, adjoining street
1, adjoining street 2), then we used the geocoding service from GOOGLE MABZ1
to determine the coordinates of the request, and finally look for the nearest de-
mand point.

The precision of the service relies on the amount of the address information
available, this is, in the cases where only the street and neighborhood infor-
mation but no the adjoining streets names are included, the approximation for
‘the point where the emergency occurred is worse. All the requests in which no
address information or geographical coordinates were available were d’ismissed.

In Figures 3.2 and 3.3 appear the demand points which represents the districts of
Tijuana. The symbols representing the districts are associated to its Welght value.

Finally, as time threshold we have set 10 minutes for each demand /WhICh is an
acceptable value for most demands.

3.2.3 Expected travel time

To evaluate the objective, it remains to determine the expected travel time ¢ between
two locations. For this, we have used the estimations provided by OpenStreetMap?
which are sufficiently accurate for the purpose of our study (note that the exact travel
time depends on numerous factors which can hardly be known a priori).

In particular we have used the Table Service from the Open Source Routing Ma-
chine Project (OSRM-Project) Server API?, that receives the coordinates of the points
in the domain ¢ and returns an array including the estimated travel time between
such points.

We handle the Problem (3.1) as a discrete problem due to the restrictions of
OpenStreetMap®. We have first constructed a discretization of the area under con-
sideration. That is, we have determined a grid of coordinates within the boundaries
of Tijuana and have stored the expected travel time from one coordinate to each
other one in a lookup table. Every time that a time distance ¢ is required during the
algorithm execution, this table is consulted.

In our computations we have used different grids to discretize @) and solve the
problem, obtaining different results, the largest discretization table is a 31 x 31 grid,
where Q represents an area of 472.5 km?, and every point in the grid stands for 0.49

km?.

'https://developers.google.com/maps/documentation/geocoding/intro

2https://www.openstreetmap.org

Shttps://github.com/Project-0SRM/osrm-backend/wiki/Server-api

4the maximum number of distances between points allowed to retrieve per query is one hundred,
and the time it takes to retrieve such information depends of the quality of the internet connection
and the traffic into the OpenStreeMap server
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Figure 3.2: Demand points classified by the
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Figure 3.3: Demand points classified by the mean priority of EMS requests
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The estimated travel time look up table was build, as mentioned before, looking
for the time distance between all the points in the grid, for example, in the ase of
the 31 x 31 grid discretization the size of the look up table is

/

31 x 31 x 31 x31
2 H

which is the same as saying the the size n x n of the discretization /of @) grows
quadratically, the time it takes to retrieve the time estimations from OpenStreetMap
grows quadratically as well, we calculated that the time it took to fill the largest
discretization table was of almost 96 hours.

3.3 Chosen Algorithm and Setting for the Contin-
uous Location Problem

j

We have chosen to use the genetic algorithm GA from the Global Opt;imization Toolbox
from MATLABS. Since this is an initial study about the feasibility of the approach,

- we have omitted comparisons to other search heuristics, but leave this important
aspect for future research. Comparisons to ’classical’ mathematical programming
techniques do not seem to be adequate since the ambulance location problem is highly
multi-modal. '

The settings used to run GA are shown in Table 4.1, the intermediate crossover
operator creates children by taking a weighted average of the parents, the weights are
specified by a single parameter, Ratio, which can be a scalar or a row vector of length
equals to the number of variables. A default vector of all 1’s is used. The function
creates the child from parentl and parent2 using the following formula

child = parentl + rand x Ratio x (parent2 — parentl).

The adaptive feasible mutation operator randomly generates directions that are
adaptive with respect to the last successful or unsuccessful generation. The mutation
chooses a direction and step length that satisfies the constraints. The stochastic
uniform selection operator lays out a line in which each parent corresponds to a
section of the line of length proportional to its scaled value. ‘The algorithm moves
along the line in steps of equal size. At each step, the algorithm allocates a parent
from the section it lands on. The first step is a uniform random number less than the
step size.

The function tolerance stopping criteria causes the algorithm to terminate if the
average relative change in the best fitness function value over a certain number of
generations (50) is less than or equal to the function tolerance value (le — 6).

Shttp://mathworks.com
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/
Table 3.1: Design parameters used by the algorithm GA of MATLAB.

| Design parameter [ value/kind

Population size
Crossover operator
Crossover rate
Elite count
Mutation operator
Selection operator
Stopping criteria

20

intermediate

08

2

adapt feasible

stochastic uniform

function tolerance:

average relative change over
50 generations < le — 6
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Chapter 4

A Multi-Objective Location Model
for the Tijuana Red Cross
Ambulance Fleet

By solving the optimization problem defined in Equation (3.1) (in page 18) the most
relevant aspects of the ambulance location problem are addressed: the time restric-
tions which state the pertinence of the service within the time thresholds and the
coverage of whole set of demand points. Of course, there are many more aspects to
consider for this problem; their importance is, nevertheless, not as big as it is for
the mentioned aspects. The aim of the multi-objective ambulance location problem
is to address other design aspects and to provide a well pondered solution without
forgetting to comply with the most important restrictions of the original problem
(time and coverage).

An immediate example of these relegated aspects is the geographical coverage:
with the solution of the single objective problem in Section 5.1 (in page 34) it is easy to
see that there are areas in Tijuana city which are not covered by any ambulance, areas
in which the historical amount of EMS services required is not enough to consider
them relevant points for the model. Aware of this fact, the question for the designers
and decision makers could be: Is there a way to deploy the ambulances in the city
covering all the demand points at the set time all, or the most, of the geographical
area is covered? Thinking in terms of fairness, this is the question we pursue to
answer with the extension of the model, the geographical coverage model is presented
in Section 4.3.

As mentioned in the former chapter, two set of weight values have been designed
and used to solve the single objective problem (the demand criteria set and the
priority criteria set presented in Section 3.2.2), by proposing a multi-objective model
the possibility of finding an optimized solution for both sets at the same time arises,
along with the possibility of designing and including future sets of weight values which
stand for criteria that the final user finds eventually relevant, we have named such
model the multi-criteria model (Section 4.2).
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4.1 The Multi-Objective Location Model

The multi-objective model proposed consists on two objectives: the continuous /16—
cation model and the continuous coverage model; the corresponding optimization
problem is expressed as follows

(m,y)glfkigzlx]mm [flocation (‘T: y); fcovera.ge(x, y)] ' s"“ (41)
subject to:
ZU<Tk:"tk(pka(xj,yj))) >1 ‘ Vk € K, !
j=1
Cpemand — Z U(Tk — te ok, (25, yj))) >0 Vj € A/{v

k=1

where the fiocation Objective has been previously defined in Equation (3.1), and the
feoverage Objective is defined in Section 4.3 in Equation (4.6).

The former set of constraints guarantees that every demand point & is covered at
least by one ambulance, as in Equation (3.1).

The latter set of constraints is defined to discard solutions in which the maxi-
mum number Cpemang 0f demand points that an ambulance a; is allowed to cover is
exceeded, the sum

i U(Tk — t (pk, (z;, yj))>,

k=1

retrieves the total number of demand points k& that the ambulance a; is covering, this
number is limited by the constant Cpemand- '

A small value for Cpemang forces the genetic algorithm to find solutions in which
the ambulances are better distributed all over the area, a big value for Cpemang Will
favor solutions in which the ambulances might be concentrated at specific areas of
the city, leaving others completely uncovered.

4.2 The fiocation Objective And The Multi-criteria
Model

The fiocation function is defined as:

flocation(x7 y) = Z fweightedSum (mja yj) ) (42)

Jj=1
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where fueightedsum (%5, y;) is defined as:

' /
; /
I Z Wkl (pk’ (xj’ yJ))U<Tk —tk (pkv (xja yj))) ‘/"/

keK
fweightedSum(mj;yj) = ?,f 22:1 U(Tk — tg (pk, (.’Ej,@/j))) >0 (43)

10000 otherwise. /

The information that describes the particular conditions of the location problem:
the amount of EMS demand, the areas where the demand is higher, the type of
emergencies occurring at different locations, etcetera, is contained and Tepr esented in
the set of weights values wy :

As previously mentioned in Section 3.2, we have designed two sets of weight values
according to different criteria: the density and the priority criteria, thls implies that
the solution to the Problem 3.1 will depend on the criteria selected for the setting of
the problem. /

The multi-criteria model aims to find the compromised solution of both criteria,
i.e., the multi-criteria model is a multi-objective model in which every objective is
mathematically defined the same way, but its corresponding set of weight values will
represent different criteria, and therefore, its optimized solution will be different.

This design feature leads to the possibility for the inclusion of more objectives, in
which the new objectives will be defined the same way fioeation Objective is defined,
but containing a different set of weights standing for different and conflictive aspects
of the problem, the multi-criteria model is expressed as:

fextendedMO [flocatzon(x y) locatwn(w y) Z‘Ziatwn(x y) s ;Zation(x’y)] (44)
Hereby, where every objective f.: ..., stands for a different design criteria, and
there are z different sets of weight values. This problem is subject to the same restric-
‘tions that the Problem 4.1 is subject to, the multi-objective optimization problem is
defined as:

mlﬁ} m feactendedMO [flocatzon(x y) locatwn(x y) ) l";z'ation ('T’ y)] (45)
(z,y)eER™ xR :

subject to:

ZU<Tk_tk(Pka($j:yj))> 21 Vk €K,

J=1

Chemand — EU(T};; — ti (/)k; (.'Ej,yj))> >0 Vi e A.
k=1
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Figure 4.1: Geographical Division of Tijuana

4.3 Continuous Coverage Model

While trying to attend all the demand points considered in the Continuous Location
Model with a given set of ambulances, some of the geographical areas in the city were
not being covered by any ambulance, this occurs due to the fact that the emergency
medical services demand is concentrated at very specific areas of the city; in order to
find a fairer solution which addresses the demand from the first model at the same
time that it covers the most of the geographical area, the Continuous Coverage Model
is proposed.

To model the coverage of the geographical area, a discretization of the region is
used, a grid G of 11 x 11 points p, in which every point stands for an area of 3.9 km?,
by this, the grid G contains all the possible regions in which a EMS service may be
required, this division is shown in Figure 4.1.

The coverage maximization problem of the geographical area is then modeled as
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follows:

h 7 [N /
f ( ) _ Zg 1 fscovered(m y) /
o S g SrerareB:) = ZEEE »

where h is the number of points p, in the grid G,
fcoverage . Rm X Rm }_) [O’ 1]7 ,’(“

retrieving the value 1 when the whole geometrical area is con&dered covered, the

function f; . ereqa(%,y) is defined as follows:

'gscovered(x y Z (1 + Otctg (p97 (xj’ yj))_lU(Tg - tg (pg’ (xjv’ y])))
Jj=1

7,4 is the time tolerance threshold assigned to each point in G (/‘Tg = 10 minutes,
the same value is used for the Continuous Location objective parameters), t, is the
function which retrieves the time that it takes to go from the ambulance (z;, y;) to the
point p, € G, the same time estimation is used for the Continuous Location Model.

Function f{ ..., verifies whether the point (z;,y;) lies within 7, minutes from
the center of the region pg, if so, then the percentage of coverage of this region is
calculate as follows:

-1
(1 + agl, (pg’ (x5, y])) )
where o is a constant adjusted to guarantee that when the point (z;, y;) is exactly
T, minutes from the center of the region p, then the coverage value is equal to 0.5,
and when the location of (z;,y;) = p, the coverage value is equal to 1 (the maximum
value).

If the point (z;,y;) does not lay within the tolerance time region 7, then U (Tg -

tq (pg, (z;, yj))> = 0, therefore, the coverage -value will be equal to 0.

The mean of all the contributions to the coverage of every region g is calculated
and retrieved as fi . ..(%,y). Finally feoverage(%,y) is equal to the sum of coverage
of every region g € GG, divided by the total amount of regions h.

4.3.1 Chosen Algorithm for the multi-objective location model:
NSGA-II

The non-dominated sorting based multi-objective evolutionary algorithm (called the
Non-dominated Sorting GA-II or NSGA-II) developed by Deb et al in [6], which
alleviates criticized features from other multi-objective evolutionary algorithms which
use non-dominated sorting and sharing such as: O(mN?®) computational complexity
(where m is the number of objectives and N is the population size); non-elitism
approach; and the need for specifying a sharing parameter.
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Table 4.1: Design parameters used by the algorithm NSGA-II

| Design parameter ‘ value/kind | /'/

Population size 75
Crossover operator | intermediate
Crossover rate 2/numVar
Mutation operator | Gaussian
Mutation rate 2/numVar

Selection operator | binary tournament

Stopping criteria max generation

- In NSGA-II, the population is initialized as usual. Once the population is initial-
ized the population is sorted based on non-domination into each front. The first front
being completely non-dominant set in the current population and the second front
being dominated by the individuals in the first front only and the front goes so on.
Each individual in the each front are assigned rank (fitness) values or based on front
in which they belong to. Individuals in first front are given a fitness value of 1 and
individuals in second are assigned fitness value as 2 and so on.

In addition to fitness value a new parameter called crowding distance is calculated
for each individual. The crowding distance is a measure of how close an individual
is to its neighbors. Large average crowding distance will result in better diversity in
the population. Parents are selected from the population by using binary tournament
selection based on the rank and crowding distance. An individual is selected in the
rank is lesser than the other or if crowding distance is greater than the other 1.

The selected population generates offsprings from crossover and mutation oper-
ators. The population with the current population and current offsprings is sorted
again based on non-domination and only the best N individuals are selected, where
N is the population size. The selection is based on rank and on the crowding distance
of the last front.
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Experiménts and Results

/

In this chapter we present the experiments we performed first, in Section 5.1, for the
Continuous Location Model presented in Chapter 2, comparing our results against
the current deployment of the ambulance stations in Tijuana City/ in order to show
that our approach represents an improvement on the way the ambulances are located.

In Section 5.2, we discuss the experiments performed for the Multi-objective Con-
tinuous Location Model, presenting the solution to the problem in different scenarios,
which is: by changing the number of points in the discretization of the domain
and by solving the problem for different values of the constant Cgyemang included in
Equation (4.1). A discussion of the units of the Continuous Location Model is also
included in Section 5.2.2, this is, what does it imply to reduce the function evalua-
tion from one solution to another along the Pareto front, and how does it affects the
quality of the EMS services provided by the Tijuana Red Cross Unit.

Finally, in Section 5.3 the results obtained for the Multi-criteria model are pre-

sented, different results were obtained by varying the value of the constant Cpemand
and by adding a relaxation factor into the coverage constraints.
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Figure 5.1: Domain () containing n = 50, 75 demand points and the location of the
existing base stations.

5.1 Continuous Location Model

In our study, we have used m = 8 (where m is the number of ambulances available)
since the Red Cross Tijuana has currently eight base stations (though three of them
are equipped with two ambulances), in order to obtain a fair comparison against
the solution of the Problem 3.1 obtained with our computations. Further, we have
considered five different situations, in which the number of demand points n increases
on every case, i.e., n = 50, 75, 100, 125 and 150 demand points. Thus, the instances
of Problem 3.1 are of dimensions 2 x m = 16, in all cases.

5.1.1 Experiments

Figures 5.1, 5.2 and 5.3 shows the five scenarios for which we have compare our
computations and results against the current location of the ambulance bases.
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Figure 5.2: Domain @ containing n = 100, 125 demand points and the location of the
existing base stations.
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Figure 5.4: Solution for 50 demand points.

©  Bxsling base slations
A Mode Sciution
& Damand poi

Latitude

R, . B ) B SR
RIAL) i1 -117.05 RiY -116.95 1169
N Longitude

Figure 5.5: Solution for 75 demand points.
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Figure 5.6: Solution for 100 demand points.
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Figure 5.7: Solution for 125 demand points.
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Figure 5.8: Solution for 150 demand points.
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5.1.2 Interpretation of the Results

Table 5.1 shows the obtained function values and the fractions of the demand coveréd
from the model solution and the existing base stations. All results are averag/ed
over 20 independent runs. Since a comparison of the function value of the objective
in Problem (3.1) is hardly fair due to the penalization term, we consider for sake
of a better comparison in addition f_val_alternative. This function differs from the
objective in Problem (3.1) on the fact that the penalization term is dismissed. Instead,
all weighted distances among the base stations and the demand points are summed
up, f-val_alternative is expressed as follows: '

fval_alternative = Z Z Witk (pk, (zj, yj)). (5.1)

=1 k=1

In both cases, the objective values are better for the new base stations. The
difference becomes more apparent when considering the fraction of the detnand which
can be covered by the fleet: the new fleet is able to cover around 90% of the demands
while only around 50% of the demands can be attended by the actual fleet.

When the number of demand points increases then the fraction covered decreases
- at the same time that the functions evaluation grows, this is because, obviously, the
number of contributions to the weighted sum grows and it becomes more difficult for
the genetic algorithm to find a solution in which the whole demand set is covered.
Nevertheless, for all the cases, the solution obtained is better evaluated than the
current deployment of the fleet.

Table 5.1: Obtained function values and fractions of the demand covered from the
model solution (MS) and the existing base stations (EB).

\ No. demand points || 50 [ 75 | 100 | 125 | 150 |
f_val MS 61 214 | 216 | 292 261
fval EB (x10%) 2 2 2 2 2
f_val alternative MS 3400 | 4500 | 5400 | 6000 6900
f_val alternative EB 4000 | 4700 | 5500 | 6400 7500
Fraction demand covered MS || 0.92 | 0.90 | 0.90 | 0.85 0.85
Fraction demand covered EB || 0.52 | 0.46 | 0.47 | 0.4400 | 0.45

Table 5.2 shows the performance of genetic algorithm on the five test instances
and Figure 5.9 shows the respective convergence behavior. In all cases the algorithm
stopped when the average change in the penalty fitness value was less than the given
threshold value (1le — 6) but the constraints were not all satisfied, this is, some of the
demand points in the problem remained uncovered. As it appears in Figure 5.9 the
fraction of demand points covered grows on every generation up to, on average, the
90%, after which, the genetic algorithm stopped.
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Table 5.2: Performance of the genetic algorithm

| No. demand points [ 50 | 75 [100 [125 [150 | /
Avg. Time (min) 5.76 8.64 11.51 | 14.49 |16.90 |-
SD Time (min) 0.0960 | 0.1249 | 0.0182 | 0.1810 | 0.2667
No. generations 51 51 51 51 51

No. function eval 5201 | 5201 |5201 | 5201 | 5201,
Avg. Solution 5.3745 | 6.4391 | 5.9346 | 5.9683 | 5.3152
SD Solution 2.2183 | 0.8695 | 1.5494 | 1.7669 | 1.7736

In addition to that, the average time distance from the ambulance fleét to its respec-
tively assigned demand points is of 5.7996 minutes, which is 42% less time than the
10 minutes allowed. :

Figures 5.4, 5.5, 5.6, 5.7 and 5.8 show the representative locati‘ons’/lof the computed
base stations for different numbers of demand points (in fact, no significant deviations
in the locations of the ambulances could be observed). Here, the triangles represent
the computed base stations, the circles the currently existing base stations, and the
stars the demand points.

From Figure 5.4, we can observe that the new locations of the fleet follow the
locations of the demand points, but these locations do not necessarily coincide with
the location of a specific demand point, since each demand point is subject to cover
more than one demand point at time.

Therefore, their resulting location is the weighted geometric center of the demand
attended in time units, which is not necessarily the same as the weighted geometric
center in length units, this difference comes from the fact that the length units do
not consider the urban infrastructure of the city (urban traffic, one-way streets, specd
limits, et cetera), instead, the distances in time units are estimated by considering
these infrastructure features.

The trend to follow the locations of the demand points becomes less clear when the
number of demand points grows in the following Figures, because these points start
to pop up almost everywhere, however, on none of the figures appears an ambulance
at the left inferior corner, neither at the right inferior one, from the feasible area,
where there are no demand points located. And for the current existing base stations
we note that some of them do not cover even one demand point and are practically
isolated.

Cinvestav ' Computer Science Department




42 Chapter 5

oo
1=

=
b3

-
=

o
=

No. of Demend points covered

Genertions

Figure 5.9: Convergence behavior of GA on the three test instances for n = 50, 75,
100, 125 and 150 demand points (from top to bottom).
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5.2 Multi-Objective Location Model

/
'Once we have solved the ambulance location problem, the next question was/ wether
we could enrich the model to attend more features of this problem than fci'xe most
important (time and demand constraints), such as the geographical coverage.

This section includes the results obtained after addressing the geographical cov-
erage objective. In total this section has 24 experiments, where every experiment is
the solution to the multi-objective location model (presented in Section 4.1) given a
different setting for the problem. ‘

In particular, we were interested on the changes observed on the solution for
different discretization grids of the feasible area, the changes observed when relaxing
the coverage constraints and the possible solutions for different values for the constant
Cpemand Which sets an upper limit to the number of demand points each ambulance
is allowed to cover.

5.2.1 Experiments

As mentioned in Section 3.2.3, we have constructed different discretization grids of
the feasible region in order to solve the problem, the discretization grids are described
as follows:

e (G =11x11: in which every point stands for an area of 3.9 km? from the feasible
region Q.

e G = 21 x 21: in which every point stands for an area of 1.07 km? from the
feasible region Q). :

e G = 31 x 31: in which every point stands for an area of 0.49 km? from the
feasible region @.

For every discretization grid we have also built a look up Table, in which all the
travel times from every point to any other in the grid are stored.

The multi-objective optimization Problem (4.1) has been solved at different mo-
ments using these grids, in addition to that, we have included another setting to
the problem: a relaxation factor into the coverage constraints. When the number of
points that the ambulance fleet must cover is reduced, then the possibility to find
better solutions for the continuous coverage model increases, as observed after the
analysis of the results obtained from this model.

We have also divided the experiments of this section into two sets: the first set
are the experiments which were obtained by setting Cpemang'= 0.15 x 150 = 22, and
the second set were obtained by setting Cpemana = 0.30 X 160 = 45, the maximum
number of demand points available is 150, the first set allows every ambulance to
cover up to the 15% of the demand, while the second set no more than the 30%.

'Cpemand is the constant which limits the number of demand points every ambulance is allowed
to cover.

Cinvestav Computer Science Department




44 Chapter 5

We first include the experiments from the first set (Cpemand = 22,) which give us

a total of twelve differed test instances: /

/
/

1. G =11 x 11, Relaxation factor = 0.1.
2. G =11 x 11, Relaxation factor = 0.3..
3. G =11 x 11, Relaxation factor = 0.5.
4. G =11 x 11, Relaxation factor = 0.7.
5. G = 21 x 21, Relaxation factor = 0.1.
6. G = 21 x 21, Relaxation factor = 0.3.
7. G =21 x 21, Relaxation factor = 0.5.
8. G = 21 x 21, Relaxation factor = 0.7.
9. G = 31 x 31, Relaxation factor = 0.1.
10. G = 31 x 31, Relaxation factor = 0.3.
11. G = 31 x 31, Relaxation factor = 0.5.

12. G =31 x 31, Relaxation factor = 0.7.

A relaxation factor = 0.1 means that the solution of the problem must only cover
90% of the set of demand points, this is, 135 instead of 150 demand points. The same
logic applies for the subsequent relaxation factors.

Figure 5.10 shows, from top to bottom, the Pareto fronts obtained for the first
and the second test instances (G = 11 x 11, Relaxation factor = 0.1 and G = 11 x 11,
Relaxation factor = 0.3.), Figure 5.11 shows, also from top to bottom, the Pareto
fronts obtained for the third and the fourth test instances (G = 11 x 11, Relaxation
factor = 0.5 and G = 11 x 11, Relaxation factor = 0.7.).

The Pareto fronts obtained for the test instances from the fifth to the eighth ap-
pear at the Figure 5.12 and the Figure 5.13 (from top to bottom). And the Pareto
fronts obtained for the test instances from the ninth to the twelfth appear at the
Figure 5.14 and the Figure 5.15 (again, from top to bottom).

In every Pareto front, the best solution for objective 1 {Continuous Location Ob-
jective over the x-axis) is marked with a green diamond, the best solution for the
objective 2 (Continuous Coverage Objective over the y-axis) is marked with a blue
star, and the knee point is marked with a purple inverted triangle.
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In addition to the Pareto fronts, for six test instances we have mcluded in Ap-
pendix A.1 the following graphs (in page 83):

/

/
A graph with the locations of the ambulance fleet according to the best solution
of the Continuous Location Objective.
A graph with the locations of the ambulance fleet according to the best solution of
the Continuous Coverage Objective. /
A graph with the locations of the ambulance fleet according to the knee pomt
A graph with the locations of all the previous solutions.
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Figure 5.10: Pareto front with grid G = 11 x 11, for relaxation values = 15 and 45
(from top to bottom), Continuous Location Objective (x-axis) vs Continuous Cover-
age Objective (y-axis).
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Figure 5.11: Pareto front with grid G = 11 x 11, for relaxation values = 75 and
105 (from top to bottom), Continuous Location Objective (x-axis) vs Continuous
Coverage Objective (y-axis).
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Figure 5.12: Pareto front with grid G = 21 x 21, for relaxation values = 0.1 and
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Coverage Objective (y-axis).
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Figure 5.13: Pareto front with grid G = 21 x 21, for relaxation values = 0.5 and
0.7 (from top to bottom), Continuous Location Objective (x-axis) vs Continuous
Coverage Objective (y-axis).
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Figure 5.14: Pareto front with grid G = 31 x 31, for relaxation values = 0.1 and

0.3 (from top to bottom), Continuous Location Objective (x-axis) vs Continuous
Coverage Objective (y-axis).
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Figure 5.15: Pareto front with grid G = 31 x 31, for relaxation values = 0.5 and
0.7 (from top to bottom), Continuous Location Objective (x-axis) vs Continuous

Coverage Objective (y-axis).
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The second set of test instances are the ones that were obtained with a value for

" Chemand = 45, the following images are the Pareto fronts generated for this set of tegt

instances (their corresponding locations graphs are shown in Appendix A.2 in page
96). ,

1. G =11 x 11, Relaxation factor = 0.1.
2. G=11x 11, Relaxation factor = 0.3.

3. G =11 x 11, Relaxation factor = 0.5.

4. G =11 x 11, Relaxation factor = 0.7.
5. G = 21 x 21, Relaxation factor = 0.1.
6. G = 21 x 21, Relaxation factor = 0.3.
7. G =21 x 21, Relaxation factor = 0.5.
8. G = 21 x 21, Relaxation factor = 0.7.
9. G = 31 x 31, Relaxation factor = 0.1.

10. G = 31 x 31, Relaxation factor = 0.3.
11. G = 31 x 31, Relaxation factor = 0.5.

12. G = 31 x 31, Relaxation factor = 0.7.

Figure 5.16 shows, from top to bottom, the Pareto fronts obtained for the first
and the second test instances (G = 11 x 11, Relaxation factor = 0.1 and G = 11 x 11,
Relaxation factor = 0.3.), Figure 5.17 shows, also from top to bottom, the Pareto
fronts obtained for the third and the fourth test instances (G = 11 x 11, Relaxation
factor = 0.5 and G = 11 x 11, Relaxation factor = 0.7.).

The Pareto fronts obtained for the test instances from the fifth to the eighth appear
from the Figure 5.18 to the Figure 5.19. And the Pareto fronts obtained for the test
instances from the ninth to the twelfth appear from the Figure 5.20 to the Figure 5.21.
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Figure 5.16: Pareto front with grid G = 11 x 11, Cpemand=45, for relaxation val-
ues = 0.1 and 0.3 (from top to bottom), Continuous Location Objective (x-axis) vs
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Conitnuous Coverage objective

Conitnuous Location Objective x 10

Conitnuous Coverage objective

Conitnuous Location Objective

Figure 5.17: Pareto front with grid G = 11 x11, Cpemand=45, for relaxation values = 75
and 105 (from top to bottom), Continuous Location Objective (x-axis) vs Continuous
Coverage Objective (y-axis).
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Figure 5.18: Pareto front with grid G = 21 X 21, Cbemand=45, for relaxation val-
ues = 0.1 and 0.3 (from top to bottom), Continuous Location Objective (x-axis) vs
Continuous Coverage Objective (y-axis).
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Conitnuous Coverage objective
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Figure 5.19: Pareto front with grid G = 21 X 21, Cpemand=45, for relaxation val-
ues = 0.5 and 0.7 (from top to bottom), Continuous Location Objective (x-axis) vs
Continuous Coverage Objective (y-axis).
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Figure 5.20: Pareto front with grid G = 31 X 31, Cpemand=4s5, for relaxation val-
ues = 0.1 and 0.3 (from top to bottom), Continuous Location Objective (x-axis) vs
Continuous Coverage Objective (y-axis).
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Conitnuous Coverage objective

Conitnuous Location Objective x 10°

Conitnuous Coverage objective

Conitnuous Location Objective x 107

Figure 5.21: Pareto front with grid G = 31 X 31, Cpemand=4s5,. for relaxation val-
ues = 0.5 and 0.7 (from top to bottom), Continuous Location Objective (x-axis) vs
Continuous Coverage Objective (y-axis).
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Table 5.3 shows the numerical results for the first set of test instances where
Cpemand = 22, every row in the Table stands for one of the twelve test 1nstances and
its respective Pareto front, the explanation of the column labels from this Table is
the following:

T best 1 The average arrival time in minutes to the covered demand points from
the ambulance fleet, according to the best solution of the Continuous Location
Objective.

T knee point The average arrival time in minutes to the covered demand points
from the ambulance fleet, according to the knee point. ‘

T best 2 The average arrival time in minutes to the covered demand points from
the ambulance fleet, according to the best solution of the Continuous Coverage
Objective. /

Dc best 1 The fraction of demand covered, according to the best solution of the
Continuous Location Objective.

Dc knee point The fraction of demand covered, according to the knee point.

Dc best 1 The fraction of demand covered, according to the best solution of the
Continuous Coverage Objective.

Grid The discretization used when the result was obtained.

Rx. The relaxation factor used when the result was obtained.

The explanation of column labels in Table 5.4 is the following:

Best 1 x-coor The x-coordinate of the best Continuous Location Objective solution
(the Continuous Location Objective coordinate).

Best 1 y-coor The y-coordinate of the best Continuous Location Objective solution
(the Continuous Coverage Objective coordinate).

Best 1 x-coor The x-coordinate of the best Continuous Coverage Objective solution
(the Continuous Location Objective coordinate).

Best 1 y-coor The y-coordinate of the best Continuous Coverage Objective solution
(the Continuous Coverage Objective coordinate).

Grid The discretization used when the result was obtained.
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Rx. The relaxation factor used when the result was obtained.
Tables 5.5 and 5.6 stand for the second set of test instances where Cpemand = 45,
the column labels are the same as the former Tables. ’
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Table 5.3: Results for the continuous coverage vs continuous location multi—o’é jective
model, Cpemand=22, Part I !

T best 1 | T knee point | T best 2 | Dc Best 1 | Dc knee point | Dc best 2 | Grid | Rx.
7.74957 6.55288 7.64830 0.813 0.820 0.820 10 | 0.1
6.48421 7.55637 7.43314 0.700 0.700 0.713 10 | 0.3
7.73932 7.56308 5.43615 0.500 0.553 0.513 10 | 0.5
4.82272 5.77581 5.89357 0.307 0.420 0.327 10 | 0.7
7.09808 7.15454 - | 8.10851 0.807 0.813 0.900 20 | 0.1
7.24374 |  8.36837 8.20000 0.667 0.733 0.700 20 | 0.3
7.19642 7.31662 6.26907 0.500 0.473 0.507 20 | 0.5
5.10892 5.39207 4.98780 0.253 0.327 ;0.333 20 | 0.7
5.05369 5.01961 6.94518 0.713 0.847 0.867 30 | 0.1
6.88752 7.34987 7.64808 0.700 0.700 - 0.727 30 |03
5.89388 6.41950 6.34403 0.500 0.620 0.600 30 |05
4.65795 4.57725 4.59435 0.300 0.307 0.313 30 | 0.7

Table 5.4: Results for the continuous coverage vs continuous location multi-objective
model, Cpemand=22, Part 11

Best 1 x-coor | Best 1 y-coor | Best 2 x-coor | Best 2 y-coor | Grid | Rx.
0.04440 -0.55616 0.04735 -0.55997 10 | 0.1
0.03489 -0.56010 0.04025 -0.56150 10 | 46
0.02234 -0.55833 . 20000.00000 -0.58735 10 | 0.5
0.01422 -0.54485 20000.00000 -0.59682 10 | 0.7
0.04206 -0.55689 0.05489 -0.57018 20 | 01
0.03326 -0.54999 0.04885 -0.57695 20 | 0.3
0.02284 -0.56072 20000.00000 -0.58734 20 | 05
0.01289 -0.54510 30000.00000 -0.59635 20 | 0.7
0.03890 -0.55897 0.05491 -0.57492 30 | 0.1
0.03490 -0.55591 0.05596 -0.58228 30 | 03
0.02388 -0.55860 10000.10000 -0.58743 30 |05
0.01232 -0.55643 30000.00000 -0.60543 30 | 0.7
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Table 5.5: Results for the continuous coverage vs continuous location multi-objective
model, Cpemand—a5, Part I /

T best 1 | T knee point | T best 2 | Dc Best 1 | Dc knee point | Dc best 2 | Grid | Rx.
6.47053 6.66515 6.52403 0.900 0.900 0.900 /10 | 0.1
5.46176 7.20517 5.07713 0.700 0.720 0740 | 10 | 0.3
6.66556 7.48263 4.42840 0.500 0.573 0.587 10 | 0.5
6.86187 7.31178 6.06169 0.300 0.493 0.473 10 | 0.7
5.43351 6.18304 6.46209 0.900 0.900 0900 /| 20 | 0.1
4.42864 3.23795 5.23280 0.633 0.733 0.700 . | 20 | 0.3
4.09417 3.56822 4.92886 0.500 0.500 0.540 20 | 0.5
1.19412 3.95304 2.81575 0.300 0.427 0.400 20 | 0.7
6.45016 6.46511 5.77096 0.900 0.900 0.918 30 | 0.1
4.49069 4.59978 4.83377 0.700 0.727 0.700 30 | 0.3
2.79012 4.61165 3.60430 0.500 0.507 0.520 30 | 0.5
4.94466 3.61945 3.50771 0.300 0.407 0.480 30 | 0.7

Table 5.6: Results for the continuous coverage vs continuous location multi-objective
mOdel: CDemand:élSa Part II

Best 1 x-coor | Best 1 y-coor | Best 2 x-coor | Best 2 y-coor | Grid | Rx.
0.03818 -0.56208 20000.00000 -0.60445 10 | 0.1
0.02689 -0.56264 20000.00000 -0.61479 10 | 0.3
0.02047 -0.55279 30000.00000 -0.61806 10 | 0.5
0.01224 -0.55788 10000.00000 -0.60700 10 | 0.7
0.03599 -0.55956 10000.10000 -0.59796 20 | 0.1
0.02665 -0.55429 10000.10000 -0.61774 20 | 0.3
0.02003 -0.56512 | 20000.10000 -0.61896 20 | 0.5
0.01261 -0.56880 50000.00000 -0.62111 20 | 0.7
0.03667 -0.56039 0.06561 -0.60727 30 | 0.1
0.02682 -0.56253 20000.10000 -0.61610 30 | 0.3
0.01915 -0.57756 30000.00000 -0.62279 30 | 0.5
0.01219 -0.56358 10000.00000 -0.62193 30 | 0.7
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5.2.2 Interpretation of the Results

In Table 5.3, if we pay attention to the first column and compare between the/;esults
obtained for different discretizations, we can observe that better results were found
for the first grid G = 31 x 31, for example, the average time it takes for the fleet
associated to G = 11 x 11 and relaxation factor = 0.1 is 7.74957 minutes, while the
average time for the discretization G = 31 X 31 with the same relaxation factor is
5.05369 minutes, the average arrival time for the discretization G = 21 x 21 and same
relaxation factor is 7.09808 minutes, again, less than the first mentioned. This trend
is also observed on the other relaxation factors.

v This difference does not occur if we consider the fraction of demar/id covered and
compare between the different grids, in fact, the fraction value is almost always the
same, and no more than the allowed by the setting of the problem.

We can also notice that, in most of the cases and for both seté of experiments,
when the relaxation factor value grows the average arrival time decreases, what this
decrement indicates is that when the problem is increasingly relaxed then the am-
bulances start to get closer to their targets, because the strings with which they are
being pulled (the coverage constraints) tend to disappear.

If we compare the fraction covered between Tables, instead of the discretization
grids, we notice that a improvement is achieved when the value of Cpemang grows, for
example when coniparing the first rows of both Tables attending this metric, then for
the Table associated t0 Cpemang = 22 the fraction covered is around the 80%, while
the fraction covered by its counterpart is the 90%, in addition to that, the average
arrival time for the experiments set with Cpemang = 22 is on average greater than for
the experiments set with Cpemang = 45.

The effects of a greater value for Cpemana are observable in:

e Pareto fronts: the number of points in the Pareto fronts associated to the largest
value of Cpemang is greater for most of the cases, also, this setting allows the
NSGA-II algorithm to retrieve solutions in which some of the ambulances in the
fleet doest no cover any demand point (compare Pareto set from Figure 5.10
against Pareto set on Figure 5.16).

e Tables 5.4 and 5.6: the best values of the Continuous Location Objective at
the first column of these Tables are greater on average at the Table 5.4, while
better coverage values are observed in Table 5.6 for the fourth column, this is,
the best values of the Continuous Coverage Objective. Again, the number of
penalized solutions is great at Table 5.6 (third column).
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]

e Location Graphs: Greater values for Cpemang favors solutions in which some
ambulances share almost the same locations, this is, they tend to form clusters
(compare Figure A.8 against Figure A.20 ) /

/

Greater values of Cpemang @llow an improvement in the fraction of coverage of
both demand and geographical area, and also a decrement in the average arrival time
of the fleet, but there are costs for these improvements: some of the ambulances
are allowed to share locations and the same time that some of the do not cover any
demand point.

From Tables 5.4 and 5.6, the observer can notice that when the relaxation factor
increases then the factor of demand covered grows (third column), for example in
Table 5.6, the ninth column has a value of -0.60625, while the twelfth column value
is -0.62345.

In order to explain the meaning of an increment or decrement on thé units for
the objective 1, the Continuous Location Problem modeled as a weigﬁted sum of
distances, we used one of the previous results (the Pareto set obtained from the first
experiment in Section 5.2), in which the solution to the problem was restricted al-
lowing each ambulance to cover, at most, 22 demand points, and considering that
150 is total number of demand points expecting attendance by all the fleet. On this
experiment a set of 10 Pareto points was obtained.

When calculated the sum of distances from each ambulance fleet (each solution
from the Pareto set) to the most important points, ordered by their weight value, from
least to greatest, we observed that: that sum of distances grows as we move along
the Pareto front, starting from the objective 1 best solution towards the objective 2
best solution, i.e., when the objective 1 evaluation decreases, the time response to the
most important points in the model decreases as well.

The sum of distances was calculated from every ambulance fleet to the first: 10
(Figure 5.22), 20 (Figure 5.23), 30 (Figure 5.24), 40 (Figure 5.25) and 50 (Figure 5.26)
most important points. Green diamond stands for the best solution for objective 1,
magenta triangle stands for the knee point and the blue star the best solution for
objective 2 (coverage).
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Figure 5.22: Sum of distance per solution to the 10 most important points.
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Figure 5.23: Sum of distance per solution to the 20 most important points.
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Figure 5.24: Sum of distance per solution to the 30 most important points.
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Figure 5.25: Sum of distance per solution to the 40 most important points.
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Figure 5.26: Sum of distance per solution to the 50 most important points.
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5.3 Multi-Criteria Model

In this section, the experiments performed for the multi-criteria model described in
Section 4.2 are presented. As in the former section, we have designed different test
instances where every test instance has a different setting of the same problem, in
order to understand which of these settings deliver the best results to locate the
ambulances fleet. We have solved the problem using the two previously mentioned
criteria into the model: the demand and the priority criteria. '

5.3.1 Experiments

In the case of the multi-criteria model, we noticed that when we used a vs‘mall dis-
cretization of the feasible area to solve the problem, then we obtained a Pareto set
with only one element, instead, when using a larger discretization the genetic algo-
rithm is able to find Pareto sets consisting of 3 or more elements, therefore, in this
section we only include the results of the experiments performed using the largest
discretization available, this is, the grid G = 31 x 31.

The different settings we have considered for the test instances in this section
are variations in the value of the constant Cpepmang and changes in the value of the
relaxation factor, there are twelve test instances and their corresponding settings are
the following:

1. Cpemand = 18, Relaxation factor = 0.1.
2. Cpemand = 18, Relaxation factor = 0.3.
3. Cpemand = 18, , Relaxation factor = 0.5.
4. Cpemana = 37, Relaxation factor = 0.1.
5. Cpemand = 37, Relaxation factor = 0.3.
6. Cpemand = 37, , Relaxation factor = 0.5.
7. Cpemana = 96, Relaxation factor = 0.1.
8. Cpemand = 96, Relaxation factor = 0.3.
9. Cpemana = 956, , Relaxation factor = 0.5.
10. Cpemana = 75, Relaxation factor = 0.1.
11. Cpemana = 75, Relaxation factor = 0.3.

12. Cpemand = 75, , Relaxation factor = 0.5.
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However, not all of the experiments had retrieved a Pareto set with more than
3 elements the Figures with the Pareto front for such experiments are no included,
The experiments for which we have included its respective Pareto front are hsted as
follows:

Cpemand = 18, , Relaxation factor = 0.5 Pareto front in Figure 5.27, Location Graphs
included from Figure B.1 to Figure B.2.

Cpemand = 37, Relaxation factor = 0.3. Pareto front in Figure 5. 28 (top) Loca-
tion Graphs included from Figure B.3 to Flgure B.2.

Cpemand = 37, , Relaxation factor = 0.5. Pareto front in Figure 5.28 (bottom).

Cpbemand = 56, Relaxation factor = 0.1. Pareto front in Figure 5.29, Location Graphs
included from Figure B.5 to Figure B.6.

Cpemand = 75, Relaxation factor = 0.3. Pareto front in Figure 5.30 (top).

Cpemana = 75, , Relaxation factor = 0.5. Pareto front in Figure 5.30 (bottom),
Location Graphs included from Figure B.7 to Figure B.8.

For some of the experiments we have also included the location graphs of the
solutions in Appendix B (page 109).

Tables 5.7 and 5.8 include the numerical results of all the test instances, even
those for which we did not obtained a Pareto set with 3 or more elements. The
only difference among these Tables and the Tables included for the multi-objective
location model lies in the column labeled «C Demand>, since on these experiments
the discretization of the area was always same, varying instead the Cpemang cOnstant
setting.
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Figure 5.27: Pareto front with grid G = 31 x 31, Cpemand=18, for relaxation values =
0.1, Multi-criteria model: demand vs priority.
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Figure 5.28: Pareto front with grid G = 31 X 31, Cpemand=37, for relaxation values =
0.3 and 0.5, Multi-criteria model: demand vs priority.

Cinvestav. Computer Science Department




r

72 Chapter 5

380.5

380

379.5

379

378.5

378

Objective; Priority Criteria

377.5

377

2765 ; z ; a a ; |
368 368.5 369 369.5 370 370.5 371 371.5

Objective: Demand Criteria

Figure 5.29: Pareto front with grid G = 31 X 31, Cpemand=s6, for relaxation values =
0.1, Multi-criteria model: demand vs priority.
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Figure 5.30: Pareto front with grid G = 31 X 31, Cpemand=75, for relaxation values =
0.3 and 0.5 (from top to bottom), Multi-criteria model: demand vs priority.
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Table 5.7: Results for the multi-criteria optimization model, Part I :

T best 1 | T knee point | T best 2 | Dc Best 1 | Dc knee point | Dec best 2 | C Demand | Rx.
7.790 7.790 7.719 0.840 0.840 0.840 - 18 0.1
6.789 6.789 6.760 0.700 0.700 0.700 ¢ 18 0.3
5.149 6.358 6.277 0.507 0.500 0.500 | 18 0.5
5.563 5.563 5.563 0.900 0.900 0.900 37 0.1
6.130 6.098 5.943 0.700 0.700 0.700 37 0.3
6.266 5.824 5.619 0.500 0.500 0.500 37 0.5
5.754 5.579 5.511 0.900 0.900 0.900 56 0.1
5.621 5.621 5.817 0.700 0.700 0.700 56 0.3
3.763 3.763 3.763 0.500 0.500 0.500 56 0.5
4.336 4.336 3.147 0.900 0.900 0.900 75 0.1
5.682 5.682 4.575 0.720 0.700 0.700 75 0.3
2.352 3.940 2.894 0.500 0.520 0.507 75 0.5

Table 5.8: Results for the multi-criteria optimization model, Part II
Best 1 x-coor | Best 1 y-coor | Best 2 x-coor | Best 2 y-coor | C Demand | Rx.
399.82600 | 411.13600 400.94200 408.82000 18 0.1
315.24800 315.66700 317.33500 314.91400 18 0.3
227.17500 223.77400 230.93100 222.84700 18 0.5
437.91600 437.63300 437.91600 437.63300 37 0.1
314.04500 323.07100 323.98100 317.34000 37 0.3
205.28100 213.62700 211.03200 202.99800 37 0.5
368.23300 380.27600 371.11500 376.99900 56 0.1
280.88100 289.53600 281.80900 287.88500 56 0.3
198.23400 200.97500 198.23400 200.97500 56 0.5
355.11200 348.10500 357.50200 | 348.01700 75 0.1
267.97700 274.44900 270.13200 252.72300 75 0.3
200.22100 190.23800 203.63500 188.07100 75 0.5
Cinvestav Computer Science Department




Ezxperiments and Results 75

5.3.2 Interpretation of the Results

A confirmation of the effects that the variation on the value of the Cpemand constant /

brings to the results arose with these experiments, here again, we observe bette;/
results when its value grows, this is, the average arrival time in Table 5.7 decreasés
with greater values of such setting; a clear example can be found by comparing the
values at the first column (<T best 1») for the first, the fourth, the seventh, and
the tenth rows, the best average arrival time for the density criteria goes from 7.339
minutes to 6.078 minutes.

The same decrement occurs at the third column («T best 2») for the same rows,
where the average arrival time goes from 7.301 minutes to 6.075 minutes. However,
no penalized solutions were obtained for this model, because here penalized solutions
do not deliver any advantage, as it did in the former model, where penalized solutions
had the best performance in terms of geographical area coverage, instead, the notion
of coverage is the same for both objectives, and a penalized solution would only lead
to a waste of resources. ;

Moreover, the increment on the value of the relaxation factor, in most of the cases,
leads to decrements on the value of the average arrival time when maintaining the
constant Cpemana fxed. In general, many of the observations made for the results of
the former model can be applied for this one.

Nonetheless, such observations have different implications; for example: in the
case of the relaxation factor for the multi-objective location model, an increment
on it allows the ambulances to be located at distant regions improving the metrics
of the second objective, but for the multi-criteria model such relaxation means an
improvement in quality of the EMS services provided to the most important points
according to the sets of weights and a deterioration of the quality for those points
considered less relevant. But we have seen that there exist different ways to attend
most of the demand points with the ambulance fleet, therefore, such relaxation might
not be recomended.
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Chapter 6

Conclusiolns and Future Work

Conclusions

Continuous Location Model

With this work we offer a method to look for the best locations to deploy an ambulance
fleet, to solve this problem the method requieres the following:

e A set of demand points distributed over the feasible area (Tijuana city) in which
the demand is concentrated.

e Every demand point has a weight value associated, such value is proportional
to the relevance of the point in terms of EMS services, economic affairs, geo-
political fairness, et cetera.

e Llvery demand point has associated a time threshold within the ambulance must
be located in order to deliver the EMS service.

e The estimated travel time to go from and to any point in the feasible area.

With the former requirements fulfilled, this method is able to deliver:

The locations of the ambulance fleet in which all or most, of the demand points are
covered within their defined time thresholds and considering their associated weight
values, this is, the ambulances will be located closer to some points than others ac-
cording to the priority defined in the set of weight values.

In Section 5.1, the results obtained for the solution of the ambulance location
problem using our proposed optimization model are presented, however, this work lies
under some assumptions that is worthy to mention in order to explain its relevance:

e The calculations on how the demand is distributed over the set of demand points
was performed based on the information provided by the Tijuana Red Cross
Unit over a specific period of time, assuming such period effectively reflects the
demand of EMS services.

7
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e The problem is solved considering that the demand remains quiet over the time.

e The number of demand points is fixed.

Nevertheless, such assumptions do not impact the value of this work, because
they are not part of the definition of the optimization model (neither its extensions),
they are implied in the setting of the problem, however, such assumptions affect the
- precision of the solution, since the problem only consider a static distribution of the
demand in the time. a

Multi-Objective Location Model

A very satisfying result from the solution of the multi-objective location problem was
to find the possibility to locate the ambulance fleet attending the main restrictions of
the ambulance location problem (demand coverage and time thresholds) at the same
time that the restrictions of the geographical coverage were addressed.

This possibility means that there are ways to satisfy the EMS demand from the
urban areas, where the population is most concentrated, and to offer EMS services
to distant or isolated areas of the city which accomplish the time restrictions. This
multi-objective optimization problem is solved by following a logic of political fair-
ness, where the people living in distant regions do not remain uncovered (vulnerable).

In Section 5.2, the results obtained for 24 test instances were presented, where
every test instance stands for a different setting of the multi-objective location model,
from these experiments the settings which lead to better result were noticed, our
conclusions are listed as follows:

e Discretization Grid: better results in terms of average arrival time and geograph-
ical coverage were observed for greater discretizations, and no improvements in
terms of demand coverage, moreover, the number of points in the Pareto front
tend to increase as the discretization grows, which might be a good feature to
offer to the decision maker.

o Cpomana value: greater values of the constant Cpemaq leads to better results
in terms demand and geographical area coverage, it also reduces the average
arrival time from the ambulance fleet to the demand points. However, greater
values also estimate configurations of the ambulance fleet in which some of
the ambulances relatively too close to each other and configurations in which
some ambulances do not cover any demand point, this configurations have the
best performance in terms os geographical coverage, as expected. Finally, the
number of points in the Pareto points tend to be larger for greater values of

C’D emand-
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e Relaxation factor: the relaxation of the coverage constraints leads to slights
improvements in the average arrival time of the ambulance fleet and in the
geographical area coverage, nonetheless, the amount required for observable
improvements of the demand coverage sacrifice is too high. )

e Differences between the solutions:” when the value of the Cpemand constant
grows, the differences between opposite the corners of the Pareto front grows,
this, is by allowing the ambulances to gather around the solver is able to find
solutions in which more significant changes arise between the elements in the
Pareto set, however, all of them accomplish the time restrictions, the difference
in time for some solutions in of almost one minute in the average arrival time
(ninth row of the table 5.4-in page 61).

Multi-criteria Model

With the incursion of this model and its corresponding solution we deliver a model to
which finds compromised solitions for different criteria without forgetting the time
and coverage restrictions of the ambulance location problem. We think that this
model can be really helpful for a decision maker, since it helps to show wether there
are ways to deploy the ambulance fleet by pondering the problem over many factors.
In the future, this model can be extended with many more objectives, every objec-
tive standing for a conflictive feature of the original problem. With the solution of
the multi-criteria ambulance location problem we found that there are many ways to
deploy the fleet, and that those different locations have different implications for the
quality of the EMS services delivered.

In Section 5.3, the results obtained for 12 test instances were presented, where
every test instance stands for a different setting of the multi-criteria location model,
from these experiments the settings which lead to better result were noticed, our
conclusions are listed as follows:

e Discretization Grid: we could only obtain Pareto set with 3 or more elements
with the largest discretization available, however, as a future work the problem
should be solve with larger discretization and other solver methods which might
be able to find more feasible configurations of the ambulance fleet.

o Cpemana value: greater values of the constant Cpemad leads to better results in
terms of demand coverage and average arrival time.

e Relaxation factor: the relaxation of the coverage reduces the average arrival
time, nevertheless such relaxation is not recommended, since it leads to a de-
terioration in the quality of the EMS services without any advantage, like the
advantage it represented for the multi-location model, where the fraction of area

. covered grows when the demand restrictions are relaxed.
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Future Work

In order to find solutions nearer to the real features of the problem some future work
needs to be done:

o Estimate the demand distribution of EMS for different periods of time: consid-
ering the hour, the day of the week, and the season of the year in which the
problem is requested to be solved. This might be done by implementing" more
sophisticated tool such as with a statistical and probabilistic analysis of the
emergence of the demand in this city.

e Updated and performe the inclusion and/or the exclusion of elements from the
set of demand points: when we compared against the current deployment of
the ambulance fleet, we observed a large improvement, because our solution
attends to the actual deployment of the demand based on recent historical
data, the current ambulance fleet was deployed attending to a distribution of
the demand which is not longer the same. The deployment of the ambulances
must evolve at the same rate that the city evolves, a clear counterexample of
this is the base station located at the beach of Tijuana city, which was placed
to attend a demand that no longer is there.

e Build larger discretizations of the feasible area: we have observed that better
results can be achieved in terms of average arrival time when the discretization
of the domain @ grows.

With the chosen genetic algorithm we have proved that this problem can be solved,
and this was our main objective, this is to solve the problem and find good solutions.
However, a solver method which solves the problem in less time still needs to be
found.
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1

Multi-Objective Location Model
Location Graphs

A.1 C demand = 22

Here we present the location graphs of the ambulance fleet according to the solution
of six different test instances of the Multi-Objective Location Model, these test in-
stances were obtained by setting Cpemand = 22.

For every test instance we have included:

A graph with the locations of the ambulance fleet according to the best solution
of the Continuous Location Objective.

A graph with the locations of the ambulance fleet according to the best solution
- of the Continuous Coverage Objective.

A graph with the locations of the ambulance fleet according to the knee point.

e A graph with the locations of all the previous solutions.

The test instances for which the locations graphs have been included are:
) G = 11 x 11, Relaxation factor = 0.1: Figure A.1 and Figure A.2.
) G = 11 x 11, Relaxation factor = 0.7: Figure A.3 and Figure A.4.
) G = 21 x 21, Relaxation factor = 0.1: Figure A.5 and Figure A.6.
) G = 21 x 21, Relaxation factor = 0.7: Figure A.7 and Figure A.8.
) G = 31 x 31, Relaxation factor = 0.1: Figure A.9 and Figure A.10.
2) G = 31 x 31, Relaxation factor = 0.7: Figure A.11 and Figure A.12.
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Figure A.1: Locations of the best solution for objetive 1 and for objective 2,
Cpemand=22, Discretization 11 x 11 (from top to bottom), Relaxation factor = 0.1
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locations, Cpemand=22, Discretization 11 x 11 (from top to bottom), Relaxation factor
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C pemand=22, Discretization 11 x 11 (from top to bottom), Relaxation factor = 0.7
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Figure A.5: Locations of the best solution for objetive 1 and for objective 2,
C pemand—a2, Discretization 21 x 21, (from top to bottom), Relaxation factor = 0.1
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A.2 C demand = 45

As in previous section, here we present the location graphs of the ambulance fleet ac-
cording to the solution of six different test instances of the Multi-Objective Location
Model, these test instances were obtained by setting Cpemand = 45.

The test instances for which the locations graphs have been included are:

G = 31 x 31, Relaxation factor = 0.1: Figure A.21 and Figure A.22.
) G = 31 x 31, Relaxation factor = 0.7: Figure A.23 and Figure A.24.
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Figure A.22: Locations according to the knee point, The merge for all previous solu-
tion locations, Cpemand—as, Discretization 31 x 31, (from top to bottom), Relaxation

factor = 0.1
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Figure A.23: Locations of the best solution for objetive 1 and for objective 2,
CDemand=a5, Discretization 31 x 31, (from top to bottom), Relaxation factor = 0.7
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Figure A.24: Locations according to the knee point, The merge for all previous solu-

tion locations, Cpemand=45, Discretization 31 x 31, (from top to bottom), Relaxation
factor = 0.7
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Appendix B

Multi-Criteria Model Location
Graphs | |

In this section the location graphs of the ambulance fleet according to the solution of
six different test instances of the Multi-Criteria Model Location Graphs are included.

The test instances for which the locations graphs have been included are:

Cpemand = 18, Relaxation factor = 0.5 , Location Graphs from Figure B.1 to Fig-
ure B.2.

| Cpemand = 37, Relaxation factor = 0.3 , Location Graphs from Figure B.3 to Fig-
ure B.2.

Cpemand = 56, Relaxation factor = 0.1 | Location Graphs from Figure B.5 to Fig-
| ure B.6.

Cpemand = 75, , Relaxation factor = 0.5 , Location Graphs from Figure B.7 to
Figure B.8.
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Figure B.1: Locations of the best solution for objetive 1 (Demand Criteria) and
for objective 2 (Priority Criteria), Cpemand=1s, Discretization 31 x 31, (from top to -
bottom), Relaxation factor = 0.5 ‘
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Figure B.2: Locations according to the knee point, The merge for all previous solution
locations, Cpemand=1s, Discretization 31 x 31, (from top to bottom), Relaxation factor
=05
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Figure B.3: Locations of the best solution for objetive 1 (Demand Criteria) and
for objective 2 (Priority Criteria), Cpemand=37, Discretization 31 x 31, (from top to
bottom), Relaxation factor = 0.3
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Figure B.4: Locations according to the knee point, The merge for all previous solution
locations, Cpemand=37, Discretization 31 x 31, (from top to bottom), Relaxation factor
=03
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Figure B.5: Locations of the best solution for objetive 1 (Demand Criteria) and
for objective 2 (Priority Criteria), Cpemand=s6, Discretization 31 x 31, (from top to
bottom), Relaxation factor = 0.1
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Figure B.6: Locations according to the knee point, The merge for all previous solution
locations, Cpemand—ss, Discretization 31 x 31, (from top to bottom), Relaxation factor
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Figure B.7: Locations of the best solution for objetive 1 (Demand Criteria) and
for objective 2 (Priority Criteria),Cpemand=75, Discretization 31 x 31, (from top to
bottom), Relaxation factor = 0.5
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Figure B.8: Locations according to the knee point, The merge for all previous solution
locations, Cpemand=7s, Discretization 31 x 31, (from top to bottom), Relaxation factor

= 0.
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