
CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS
AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO

DEPARTAMENTO DE COMPUTACIÓN

Logaritmo discreto en campos finitos de característica pequeña:

atacando la criptografía basada en emparejamientos de Tipo 1

Tesis

Que presenta

Gora Adj

Para obtener el grado de

Doctor en Ciencias en Computatión

Directores de la Tesis:

Dr. Francisco José Rambó Rodríguez Henríquez

Dr. Alfred John Menezes

Ciudad de México Julio, 2016

A ma famille, spécialement à mes deux mamans.

Acknowledgements

I would like to start by thanking my advisors Francisco Rodríguez-Henríquez and Alfred
Menezes for their clear guidance and constant support.

I also would like to thank all my friends and colleagues for having shared with me good
times and hard times.

I am grateful to the Consejo Nacional de Ciencia y Tecnologia – CONACyT for the
scholarship they provided me during all the period I was a PhD candidate at Cinvestav, and
also for their financial support for the year I spent at University of Waterloo in Canada.

I thank the University of Waterloo, through Alfred Menezes, for their financial support
during my visits the whole year of 2013 and in July 2014.

Thanks to ABACUS Supercompter – Cinvestav for opening their doors to us, which was
very helpful to our latest computation project.

Part of Chapter 6 was realized while I was visiting Cinvestav in 2011-2012, from ISFA –
Université Claude Bernard Lyon 1. I would like to thank Direction des Relations Interna-
tionales of Université Claude Bernard Lyon 1 for providing me a “bourse d’execellence” for
my six-month stay at Cinvestav.

I also would like to thank Nareli Cruz-Cortés and the CONACyT (Project 132073) for
their partial support.

iii

iv

Resumen

Los esquemas criptográficos basados en emparejamientos bilineales fueron propuestos en el
área de criptografía asimétrica a principios de siglo, con la finalidad de dar solución a prob-
lemas que estuvieron abiertos por décadas. Uno de estos problemas, por nombrar sólo uno,
consiste en cómo compartir un secreto entre tres entidades mediante el intercambio de infor-
mación pública, en una sola ronda. Estos esquemas criptográficos utilizan un emparejamiento
bilineal entre subgrupos cíclicos definidos en curvas elípticas o hiperelípticas, y un subgrupo
multiplicativo en una cierta extensión del campo finito sobre el que se construyen las curvas.

Los emparejamientos bilineales simétricos conocidos como de Tipo 1 se definen sobre
un campo base de característica 2 o 3, esto nos da la posibilidad de tomar ventaja de las
características de la nueva generación de procesadores durante la fase de implementación
debido a la naturaleza de la aritmética en estos campos, permitiendo así una implementación
rápida y eficiente. Los emparejamientos de Tipo 1 brindan propiedades específicas que son
aprovechadas en la construcción de novedosos protocolos basados en ellos.

Una condición de seguridad indispensable en un esquema criptográfico basado en em-
parejamientos, es que el problema del logaritmo discreto definido en los subgrupos de curvas
y en el subgrupo del campo finito que componen el emparejamiento sea difícil de resolver.
En los últimos años, ha habido avances significativos en el cálculo del logaritmo discreto en
campos finitos de característica pequeña, lo que puso en una situación de incertidumbre e
inestabilidad la seguridad de la criptografía basada en emparejamientos de Tipo 1.

En esta tesis, se demuestra por primera vez que los nuevos algoritmos para el cálculo
del logaritmo discreto impactan drásticamente la seguridad de los esquemas basados en em-
parejamientos de Tipo 1. También, se muestra que los campos de característica pequeña
F36·509 ,F212·367 ,F36·1429 y F24·3041 que se pensaba ofrecían 128 y 192 bits de seguridad en re-
alidad brindad niveles de seguridad significativamente más bajos. El análisis que llevo a
estas conclusiones fue posible gracias al diseño de herramientas y un marco de trabajo que
permiten realizar evaluaciones prácticas de estos nuevos algoritmos. Además, se presenta
la primera implementación de los recientes algoritmos para el cálculo del logaritmo discreto
con el fin de atacar el campo finito F36·137 , el cual es de interés criptográfico. Este cómputo
ilustra la efectividad de los nuevos métodos para el cálculo del logaritmo discreto en campos
finitos de característica pequeña que no sean de Kummer o twisted -Kummer. Debido a los
refinamientos a los nuevos algoritmos, se realizó el primer cálculo de logaritmo discreto en
un campo finito de característica 3, F36·509 , que se pensaba ofrecía 128 bits de seguridad.

Además del trabajo realizado en el problema del logaritmo discreto, en esta tesis se
presentan dos nuevos algoritmos que permiten calcular raíces cuadradas en extensiones de
grado par de campos de característica grande. Uno de estos algoritmos supera a los algoritmos
existentes en el estado del arte en varios escenarios criptográficos, mientras que el otro ofrece
un mejor balance entre eficiencia y seguridad en comparación con los algoritmos existentes.

v

vi

Abstract

Pairing-based protocols appeared in public key cryptography, at the beginning of the century,
as solutions to problems that remained unsolved for decades. One of these problems, to name
but one, is the possibility for three parties to share a secret key by exchanging information
via a public network in only one round. These protocols essentially use bilinear pairing
maps defined from cyclic subgroups of elliptic or hyperelliptic curves, to a subgroup of the
multiplicative group of some extension of the finite field, over which are defined the curves.

In symmetric bilinear pairings, known as Type 1 pairings, the underlying finite field
has characteristic 2 or 3. Besides the significant acceleration new generation processors can
provide when performing operations in finite fields of characteristic 2 or 3, Type 1 pairings
have the benefit of being equipped with specific properties that allow them to be employed
in most pairing-based protocols.

A necessary condition for the security of a pairing-based cryptosystem is that the discrete
logarithm problem (DLP) in the subjacent curve subgroups and the field subgroup must
be hard. In recent years, there have been several dramatic improvements in algorithms for
computing discrete logarithms in small characteristic finite fields, that consequently placed
the security of the Type 1 pairing-based cryptography in a state of uncertainty.

In this thesis, we demonstrate for the first time that the new algorithms drastically impact
the security of cryptosystems based on Type 1 pairings. We show that small characteristic
finite fields of cryptographic interest, such as F36·509 , F212·367 , F36·1429 , and F24·3041 that were
assumed to enjoy 128 and 192 bits of security, in fact, find their security levels considerably
lowered, and, at the same time, that of cryptographic protocols utilizing pairings derived
from elliptic or hyperelliptic curves over these fields. The concrete analyses that led to
these conclusions were made possible by designing a convenient framework and tools able to
perform practical assessments of the new algorithms.

The first implementation of the new DLP algorithms for attacking a cryptographically
interesting finite field, namely F36·137 , is presented in this thesis. This computation illustrates
the effectiveness of the new algorithms in small characteristic finite fields that are not Kummer
or twisted-Kummer extensions.

As a consequence of more recent refinements on the recent methods, we completed the
first discrete logarithm computation in a characteristic-three finite field that was previously
believed to provide 128 bits of security, namely F36·509 .

In addition to the work on the DLP over small characteristic finite fields, we present
two new algorithms for computing square roots in even-degree extension fields of large char-
acteristic. One of these algorithms outperforms previously existing algorithms in several
cryptographic settings, while the other one offers a better trade-off between efficiency and
security than previous methods.

vii

viii

Contents

1 Intoduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Outline . 4

2 Basic Concepts 5
2.1 Mathematical background . 5

2.1.1 Groups, rings and fields . 5
2.1.2 Elliptic and hyperelliptic curves over finite fields 7

2.2 Type 1 pairings . 12
2.2.1 Bilinear pairing types . 12
2.2.2 Type 1 pairing-based protocols . 13

2.3 Coppersmith’s index-calculus algorithm . 15
2.3.1 Computing the logarithms of the base factor elements 16
2.3.2 Descent stage . 17

2.4 Counting smooth polynomials . 19
2.5 Smoothness testing . 21

2.5.1 Basic method for evaluating w(X) . 21
2.5.2 Improved method for evaluating w(X) 22

3 Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography 25
3.1 Introduction . 25
3.2 On the asymptotic nature of the QPA algorithm 27
3.3 New DLP algorithm of Joux and Barbulescu et al. 28

3.3.1 Setup . 29
3.3.2 Finding logarithms of linear polynomials 30
3.3.3 Finding logarithms of irreducible quadratic polynomials 31
3.3.4 Continued-fraction descent . 31
3.3.5 Classical descent . 31
3.3.6 QPA descent . 32
3.3.7 Gröbner bases descent . 33

3.4 Computing discrete logarithms in F36·509 . 35
3.4.1 Setup . 35
3.4.2 Finding logarithms of linear polynomials 37

ix

x Contents

3.4.3 Finding logarithms of irreducible quadratic polynomials 37
3.4.4 Continued-fraction descent . 37
3.4.5 Classical descent . 38
3.4.6 QPA descent . 38
3.4.7 Gröbner bases descent . 38
3.4.8 Overall running time . 39
3.4.9 Comparisons with Joux-Lercier . 40

3.5 Computing discrete logarithms in F212·367 . 41
3.5.1 Setup . 43
3.5.2 Finding logarithms of linear polynomials 43
3.5.3 Finding logarithms of irreducible quadratic polynomials 43
3.5.4 Continued-fraction descent . 43
3.5.5 Classical descent . 44
3.5.6 QPA descent . 44
3.5.7 Gröbner bases descent . 44
3.5.8 Overall running time . 45
3.5.9 Comparisons with Joux-Lercier . 45

3.6 Computing discrete logarithms in F24·3041 . 46
3.6.1 Setup . 48
3.6.2 Finding logarithms of linear polynomials 48
3.6.3 Finding logarithms of irreducible quadratic polynomials 48
3.6.4 Continued-fractions descent . 48
3.6.5 Classical descent . 49
3.6.6 QPA descent . 50
3.6.7 Gröbner bases descent . 50
3.6.8 Overall running time . 50
3.6.9 Comparisons . 51

3.7 Concluding remarks . 51

4 Weakness of F36·1429 and Discrete Logarithm Computations in F36·137 and F36·163 53
4.1 Introduction . 53
4.2 The DLP algorithm of Joux, Barbulescu et al. and Granger-Zumbrägel . . . 55

4.2.1 Setup . 55
4.2.2 Finding logarithms of linear polynomials 56
4.2.3 Finding logarithms of irreducible quadratic polynomials 57
4.2.4 Continued-fractions descent . 57
4.2.5 Classical descent . 58
4.2.6 QPA descent . 59
4.2.7 Gröbner bases descent . 60

4.3 Computing discrete logarithms in F36·1429 . 61
4.3.1 Setup . 63
4.3.2 Finding logarithms of linear polynomials 63
4.3.3 Finding logarithms of irreducible quadratic polynomials 63

Contents xi

4.3.4 Continued-fractions descent . 63
4.3.5 Classical descent . 64
4.3.6 QPA descent . 64
4.3.7 Gröbner bases descent . 64
4.3.8 Overall running time . 64
4.3.9 Comparisons . 65

4.4 Solving the discrete logarithm problem in F36·137 65
4.4.1 Problem instance . 66
4.4.2 2-to-1 descent . 67
4.4.3 A remark on Strategy 4.1 . 69
4.4.4 Estimates . 71
4.4.5 Experimental results . 71

4.5 Solving the discrete logarithm problem in F36·163 73
4.5.1 Problem instance . 73
4.5.2 Experimental results . 75

4.6 Concluding remarks . 75

5 Improved Discrete Logarithm Computations in F36·509 77
5.1 Introduction . 77
5.2 The DLP algorithm of Joux, Granger et al. and Joux-Pierrot 78

5.2.1 Setup . 79
5.2.2 Finding logarithms of quadratic polynomials 79
5.2.3 Finding logarithms of cubic polynomials 80
5.2.4 Finding logarithms of quartic polynomials 81
5.2.5 Powers-of-2 descent . 83

5.3 Solving the discrete logarithm problem in F36·509 84
5.3.1 Problem instance . 84
5.3.2 Estimates . 86
5.3.3 Experimental results . 86
5.3.4 Some implementation details on the computation of logarithms of degree-

4 elements . 89
5.4 Computing discrete logarithms in F36·1429 . 93
5.5 Concluding remarks . 94

6 Another Work: Square Roots in Even-Degree Extensions of Finite Fields 97
6.1 Introduction . 97
6.2 Preliminaries . 99
6.3 Reviewing the quadratic residuosity test . 101
6.4 Square roots in odd-degree extension fields 103

6.4.1 Square roots in Fq when q ≡ 3 (mod 4) 103
6.4.2 Square roots in Fq when q ≡ 1 (mod 4) 104

6.5 Square roots in even-degree extension fields 109
6.5.1 The complex method . 109

xii Contents

6.5.2 A deterministic algorithm when q ≡ 3 (mod 4) 110
6.5.3 A descending algorithm when q ≡ 1 (mod 4) 112

6.6 Experimental comparisons . 114
6.7 Concluding remarks . 115

7 Concluding Remarks 119
7.1 Conclusions . 119
7.2 Future work . 119
7.3 List of publications . 120

Bibliography 123

1 Intoduction

The discrete logarithm problem (DLP) is one of the cryptologic problems that have been
subjected to the most intensive research since the introduction of public key cryptography in
1976 by Diffie and Hellman [43]. A large number of cryptographic protocols devised since then
rely for their security on the assumed intractability of the DLP in certain groups. Recall that
the DLP in a group G = 〈g〉 denoted multiplicatively and of finite order N is the problem,
given h ∈ G, of finding the integer x ∈ [0, N − 1] such that h = gx. In this case, x is called
the discrete logarithm of h to the base g and denoted logg h. The DLP in generic groups is
known to be difficult [116]; the best algorithms known for finding discrete logarithms in such
groups have running time O(

√
N) that is exponential in the bitlength of the group order.

Popular cryptographic choices of groups are subgroups of the multiplicative group of finite
fields and subgroups of the additive group of points on either an elliptic curve or the jacobian
of a hyperelliptic curve. Because of the underlying algebraic structure they provide, the
DLP in these groups are in some instances easier than in generic groups. For example, over
prime order fields Fp, we have algorithms that have the same running time as algorithms for
factoring integers of size that of p. These algorithms, which are of subexponential running
time, are faster than any fully exponential time algorithm. In some families of elliptic and
hyperelliptic curves, we also know algorithms running in subexponential time. However, in
the specific case of elliptic curves, for the majority of suitable cryptographic groups, the best
algorithm for solving the DLP is of fully exponential complexity.

Now regarding non-prime finite fields Fpn , with the characteristic p of medium to small
size, the Waterloo improvement in 1983 by Blake, Fuji-Hara, Mullin and Vanstone [28] on
Adleman’s subexponential time algorithm [8] was the first result to demonstrate that the
DLP in these fields is not in practice as difficult as in prime fields, although the asymptotic
complexity remained unchanged. Shortly thereafter, in 1984 Coppersmith [40] strengthened
this presumption by presenting an algorithm that to date is faster than any algorithm attack-
ing the DLP in prime fields. Coppersmith used his algorithm to compute discrete logarithms
in the field F2127 .

1.1 Motivation

More recently, a whole series of dramatic breakthroughs have been published in 2013. The
new algorithms, discovered by Joux [77], Göloğlu et al. [57, 58] and Barbulescu et al. [16],
dramatically improved the complexity of solving the DLP in finite fields of small characteris-
tic. Joux and Göloğlu et al. used their algorithms to effectively compute discrete logarithms
in F28·3·255 = F26120 in 750 CPU hours [58], and in F28·3·257 = F26168 in 550 CPU hours [78].
In spite of the striking aspects of these calculations, in terms of both the small expended

1

2 Chapter 1. Intoduction

effort and the huge size of the fields, one should notice the special nature of the fields F26120

and F26168 . Indeed, F26120 is a degree-255 extension of F28·3 with 255 = 28 − 1 (a Kummer
extension), and F26168 is a degree-257 extension of F28·3 with 257 = 28+1 (a twisted Kummer
extension).

The new improvements are potentially relevant to the security of Type 1 pairing-based
cryptosystems that use bilinear pairings derived from supersingular elliptic curves or genus-2
hyperelliptic curves defined over finite fields of characteristic 2 or 3. In this setting, one is
concerned with the DLP in finite fields F24·n , F212·n and F36·n , where n is prime; note that
these fields are not Kummer or twisted Kummer extensions and so the special properties of
such extensions cannot be exploited.

The introduction of bilinear pairings to cryptography dates back to 1991. They initially
were employed to attack cryptosystems that used supersingular elliptic curves [100, 49] by
exploiting their ability of mapping a pair of points on an elliptic curve to the multiplica-
tive group of a finite field and thus reducing the DLP on elliptic curves to the much more
easy case of finite fields. In 2000, bilinear pairings started generating renewed interest when
they appeared as the core ingredient in new cryptographic protocols proposed as solutions
to problems that had remained open for decades. This gave rise to the field of pairing-based
cryptography. One of the most interesting protocols among these is the Boneh-Franklin
identity-based encryption scheme [30], where Alice does not need to generate a pair of pri-
vate/public keys before Bob can encrypt a message for her; instead Bob simply uses Alice’s
identity, for example Alice’s email address. By 2004, there were already more than 200 papers
published on pairing-based cryptography.

Type 1 parings, also called symmetric pairings, are one of the three main families of
bilinear pairings. In fact, cryptographic protocols employing pairings are most commonly
described in the Type 1 setting because of its relative simpler mathematical structure. From
the introduction of paring-based cryptography to 2012, the cryptographic parameters, when
designing paring-based cryptosystems using Type 1 pairings arising from supersingular curves
over small characteristic fields, were chosen under the assumption that Coppersmith’s algo-
rithm is the fastest method for finding discrete logarithms in finite fields of small character-
istic.

The purpose of this thesis is to demonstrate that the new DLP algorithms can be used
to render the DLP in finite field subgroups arising from Type 1 pairings much easier than
previously believed and at the same time show that Type 1 pairings are no longer suitable
for pairing-based cryptography. Furthermore, we study the problem of computing square
roots in large prime field extensions, which is of great interest in several pairing-based pro-
tocols devised over elliptic curves, with the specific goal of providing improvements on the
calculation of square roots in even-degree extension fields.

1.2 Contributions

Concrete analysis in cryptographic finite fields [3, 4]. We combine the new algorithms
to show that the finite fields F36·509 , F212·367 and F24·3041 are weak for discrete logarithm cryp-
tography in the sense that discrete logarithms in these fields can be computed significantly

1.2. Contributions 3

faster than with the previous fastest algorithms. Our concrete analyses show that the su-
persingular curves with embedding degree 6, 12 and 4 defined, respectively, over F3509 , F2367

and F23041 that had been considered for implementing Type 1 pairing-based cryptosystems
in fact provide significantly lower levels of security. Moreover, our work provides a conve-
nient framework and tools for performing a concrete analysis of the new discrete logarithm
algorithms and their variants.

Analysis and discrete logarithm computations in cryptographic finite fields [4, 5].
We use the polynomial representation of Granger and Zumbrägel [64] to examine the effec-
tiveness of the new algorithms for computing discrete logarithms in F36·1429 , and to show that
a Magma implementation of Joux’s algorithm can be used to compute discrete logarithms
in the 1303-bit finite field F36·137 and the 1551-bit finite field F36·163 with very modest com-
putational resources. The intractability of the discrete logarithm problem in these fields is
necessary for the security of Type 1 pairings derived from supersingular elliptic curves with
embedding degree 6. The elliptic curve over F31429 was believed to enjoy a security level of
192 bits against attacks by Coppersmith’s algorithm. Our analysis shows that this curve
offers a security level of at most 96 bits. Our F36·137 implementation was the first to illustrate
the effectiveness of Joux’s algorithm for computing discrete logarithms in small characteristic
finite fields that are not Kummer or twisted-Kummer extensions.

Discrete logarithm computations at a (previously assumed) 128-bit security level
[5]. We show that the techniques from [60], [61] and [82] lower our previous estimates for
computing discrete logarithms in the 4841-bit characteristic-three field F36·509 from 81.7 bits
to 58.9 bits. An immediate consequence of this drop in security level is that we completed
the computation of discrete logarithms in the order-r subgroup of F∗

36·509 , where r = (3509 −
3255 + 1)/7 is an 804-bit prime, within 220 CPU years. Recall that the previously believed
intractability of the DLP in F36·509 was a strong security argument for the hardness of the
elliptic curve discrete logarithm problem in E(F3509), where E is the supersingular elliptic
curve y2 = x3 − x + 1 with |E(F3509)| = 7r. In addition, we use techniques from [60] to
reduce the estimates for computing discrete logarithms in the 13590-bit characteristic-three
field F36·1429 from 95.8 bits to 78.8 bits.

Two new algorithms for computing square roots in even-degree extension fields
[6]. The computation of square roots in extension fields of the form Fq2, with q = pn, p a large
odd prime and n ≥ 1, is an operation frequently performed in a series of asymmetric pairing-
based cryptosystems using elliptic curves such as the Barreto-Naehrig curves. We present two
new algorithms for the cases where q ≡ 1 (mod 4) and q ≡ 3 (mod 4). From the complexity
analysis of these algorithms and the corresponding experimental results we provide, one can
see that our new algorithms are competitive against the complex method of Scott [113].
Moreover, we present a procedure that tests squareness of elements in an extension field
Fpn, p a large prime number, at the cost of several applications of the inexpensive p-powering
operation plus the computation of the Legendre symbol in the prime field Fp. This procedure
is faster than the recursive algorithm proposed by Bach and Huber in [13].

4 Chapter 1. Intoduction

1.3 Outline

The remainder of this document is organized as follows. In Chapter 2, we provide some
helpful definitions and fundamental results on the underlying theory and concepts of this
thesis. Chapter 3 presents our concrete analyses on the discrete logarithm computation
in the finite fields F36·509 , F212·367 and F24·3041 . In Chapter 4, we describe the experimental
computations of discrete logarithms in the fields F36·137 and F36·163 , and the analysis of the
DLP in F36·1429 . Our ongoing work on computing discrete logarithms in the 4841-bit field
F36·509 is outlined in Chapter 5, together with our latest estimates for discrete logarithm
computations in the 13590-bit field F36·1429 . Chapter 6 presents the study on square root
computations in extension fields. Finally, Chapter 7 provides concluding remarks on the
work that has been conducted in this thesis before looking forward to some avenues for
future research.

2 Basic Concepts

2.1 Mathematical background

In this section, we recall some definitions and results on algebraic objects that are frequently
used in this document. For more explicit details in the present content, we refer the reader to
classical text-books on commutative algebra [11, 96, 105], algebraic geometry [68, 117] and
public-key cryptography [39, 88, 86, 122].

2.1.1 Groups, rings and fields

Definition 2.1. A group (G, ∗) is a non-empty set G together with a mapping ∗ : G×G→ G,
called composition law, satisfying the three following properties:

• Associativity : for all a, b, c ∈ G, we have (a ∗ b) ∗ c = a ∗ (b ∗ c).
• Identity element : there exists e ∈ G such that for all a ∈ G, a ∗ e = e ∗ a = a.

• Inverse element : for all a ∈ G, there exists a′ ∈ G such that a ∗ a′ = a′ ∗ a = e.

Let (G, ∗) be a group. If for all a, b ∈ G, we have a ∗ b = b ∗ a, then (G, ∗) is said to be
commutative or abelian. (G, ∗) is called cyclic if there exists an element g ∈ G such that all
element b ∈ G can be written as b = a ∗ . . . ∗ a (n times, for some integer n); the element g is
then called a generator of G and we write G = 〈g〉. Let H be a subset of G. If (H, ∗) itself
is a group then it is said to be a subgroup of (G, ∗). Often we use G as a short name for the
group (G, ∗).

A group is said to be finite if it contains finitely many elements. The number of elements
in a finite group is called its order. We shall write |G| for the order of a finite group G.

Definition 2.2. A group homomorphism between two groups (G, ∗) and (G′, •) is a map
ψ : G → G′ such that for all a, b ∈ G: ψ(a ∗ b) = ψ(a) • ψ(b). If the homomorphism is a
one-to-one correspondence between G and G′ then it is called isomorphism and the groups
are said to be isomorphic.

Definition 2.3. Let H be a subgroup of an abelian group (G, ·). Let a ∈ G, the coset of H
in G with respect to a is the set aH = {a · b | b ∈ H}. The set of all cosets of H in G is
defined to be G/H = {aH | a ∈ G}. For a, b ∈ G, we define the composition law ∗ on G/H
as (aH) ∗ (bH) = (ab)H .

It is easy to verify that G/H together with the law defined in the above definition is an
abelian group, we call it quotient group.

5

6 Chapter 2. Basic Concepts

Definition 2.4. A ring (R,+,×) is a non-singleton non-empty set R together with two
composition laws, called addition and multiplication, +,× : R×R→ R such that:

• (R,+) is an abelian group, with identity element denoted 0.

• R∗ = R\{0} with respect to × is associative and has an identity element denoted 1.

• The distributivity laws hold, that is, for all a, b, c ∈ R, we have a×(b+c) = (a×b)+(a×c)
and (b+ c)× a = (b× a) + (c× a).

If (R,+,×) is a ring, we often use R as a short name for it. A ring R is said to be
commutative if the law × is commutative, that is, for all a, b ∈ R, a× b = b× a.

Definition 2.5. Let (R,+,×) and (R′,⊕,⊗) be two rings. A ring homomorphism is a map
ψ : R→ R′ such that for all a, b ∈ R:

• ψ(a + b) = ψ(a)⊕ ψ(b).

• ψ(a× b) = ψ(a)⊗ ψ(b).

• ψ(1) = 1.

Definition 2.6. A subset I of a ring (R,+,×) is called ideal of R if I is a subgroup of (R,+)
and for all f ∈ I and a ∈ R, (f × a) ∈ I and (a× f) ∈ I. In this case, I is said to be prime

if for all f, g ∈ R such that f × g ∈ I, then f ∈ I or g ∈ I.

It can be verified that for any element f in a commutative ring R, the set {a× f, a ∈ R}
is an ideal of R, denoted (f). Also, given a ring R and an ideal I of R, the set of equivalence
classes, with respect to the relation a ∼ b if and only if (a − b) ∈ I, forms a ring called a
quotient ring and denoted (R/I,+,×). The elements of R/I will be viewed as the elements
of R, with the understanding that if (a− b) ∈ I, where a, b ∈ R, then we write a = b in R/I.

Definition 2.7. A commutative ring is called integral domain if the product of any two
nonzero elements is nonzero.

One can easily show that the quotient ring of a commutative ring by a prime ideal of it
is an integral domain.

Definition 2.8. A field is a ring (R,+,×) such that (R∗,×) is an abelian group. A finite

field, also known as Galois field, is a field that contains finitely many elements. The number
of elements in a finite is called its order.

A subset K of a field (F,+,×) is called subfield of F if (K,+,×) itself is a field. In this
case, F is called an extension field of K.

2.1. Mathematical background 7

Definition 2.9. Let F and K be two fields. A homomorphism of fields ψ : F → K is a
ring homomorphism between F and K. We say that the homomorphism of fields ψ is an
isomorphism if it is a one-to-one correspondence between F and K. In this case the two fields
are said to be isomorphic.

One can easily see that a homomorphism of fields is always one-to-one. For a positive
integer q, it is well known that there exists a finite field of order q if and only if q is a power
of a prime number called the characteristic of the field. Furthermore, any two finite fields
with same order are isomorphic. Therefore, for q a power of a prime, there is a unique up to
isomorphism finite field of order q, denoted Fq. We also have that an extension of the field
Fq is necessarily of the form Fqn, with n some nonzero positive integer. Another well known
result on finite fields is that the multiplicative group F∗

q , for q a power of a prime, is always
a cyclic group, where a generator is called primitive element.

Let F be a field. It can be shown that the set of all polynomials in variables X1, X2, . . . , Xk

with coefficients in F is a ring, denoted F[X1, X2, . . . , Xk] and called a polynomial ring over F.
Now let f(X) ∈ Fq[X] be an irreducible polynomial over a finite field Fq (that is, whenever
f(X) is written f(X) = g(X)h(X) then g(X) ∈ Fq or h(X) ∈ Fq) of degree a positive integer
n. Then it turns out that the quotient ring Fq[X]/(f(X)) is a finite field of order qn. Thus,
we have Fqn

∼= Fq[X]/ (f(X)) and the elements of Fqn can be represented by polynomials
over Fq of degree at most n − 1, where the addition of elements is the standard addition of
polynomials and the multiplication is the polynomial multiplication modulo f(X).

Let R be an integral domain. Consider the equivalence relation: for a, b, c, d ∈ R, b 6=
0, d 6= 0, (a, b) ∼ (c, d) if and only if ad = bc. The set of equivalence classes on R with
respect to ∼ forms a field called fraction field and denoted by Frac(R). An element of
Frac(R) represented by (a, b), b 6= 0, is denoted by a/b.

Definition-proposition 2.10. Let F be a field. If F has the property that any polynomial
in F[X] can be written as a product of polynomials in F[X] of degree at most 1, then we say
that F is algebraically closed. Among all the algebraically closed extensions of F there is a
unique up to isomorphism smallest extension, called the algebraic closure of F and denoted
F.

2.1.2 Elliptic and hyperelliptic curves over finite fields

2.1.2.1 Elliptic curves

Definition 2.11. Let F be a field. An elliptic curve E over F is a curve satisfying the
following properties:

• E is given by the Weierstrass equation defined as follows

y2 + a1xy + a3y = x3 + a2y
2 + a4x+ a6, ai ∈ F. (2.1)

8 Chapter 2. Basic Concepts

• The two equations

a1y = x3 + 2a2x+ a4, 2y + a1y + a3 = 0 (2.2)

together with (2.1) cannot be simultaneously satisfied by any pair (u, v) ∈ F
2
.

For any extension field K of F, we denote by E(K) the set of (u, v) ∈ K2 satisfying (2.1),
along with a point at infinity denoted by O.

An important fact about the set of points of an elliptic curve is that they form an abelian
group with the point at infinity as identity element. The group law, denoted additively, is
typically constructed geometrically over the real plane, that is, when the elliptic curve is
defined over R. However, the formulas obtained over the real plane from the Weierstrass
equation (2.1) can be systematically exported to any field.

Theorem 2.12. Let F be a field and E an elliptic curve over F given by equation (2.1). The
additive law “+” described as follows: for all Q = (u1, v1), R = (u2, v2) ∈ E(F),

• −Q = (u1,−v1 − a1u1 − a3).

• Q +R = O, if R = −Q.

• Q +R = (u3, v3) = (λ2 + a1λ− a2 − u1 − u2, λ(u1 − u3)− v1 − a1u3 − a3), where

λ =

{
(v1 − v2) / (u1 − u2) if Q 6= ±R,
(3u21 + 2a2u1 + a4 − a1v1) / (2v1 + a1u1 + a3) if Q = R

(2.3)

defines an abelian group over E(F).

Except for the associativity, one can easily check that this law has all the required proper-
ties to be an abelian group. The associativity can be verified by a lengthy computation using
explicit formulas, or by using more advanced algebraic or analytic methods. A complete
proof can be found in [122].

Definition 2.13. Let E be an elliptic curve over Fq, with Fq of characteristic p. For all k ∈ N
and P ∈ E

(
F
)
, we define [k]P = P + · · ·+ P︸ ︷︷ ︸

k times

if k 6= 0 and [0]P = O. The elliptic curve E is

said to be supersingular if there exists r ∈ N such that the following identity holds:

{P ∈ E
(
F
)
| [pr]P = O} = {O}.

Otherwise, E is said to be ordinary.

2.1. Mathematical background 9

2.1.2.2 Hyperelliptic curves

Definition 2.14. Let F be a field. A hyperelliptic curve C of genus g ∈ N over F is a curve
satisfying the following properties:

• C is given by the following equation

y2 + h(x)y = f(x), (2.4)

where h(x) ∈ F[x] is of degree at most g and f(x) ∈ F[x] is monic of degree 2g + 1.

• The two equations
2y + h(x) = 0, h′(x)y − f ′(x) = 0, (2.5)

together with (2.4) cannot be simultaneously satisfied by any pair (u, v) ∈ F
2
.

For any extension field K of F, we denote by C(K) the set of points (u, v) ∈ K2 satisfying
(2.4) along with a point at infinity denoted by O. We call finite points the points of C
different of the point at infinity. The curve C

(
F
)

is simply denoted by C.

Definition 2.15. Let P = (u, v) be a finite point on a hyperelliptic curve C. The opposite

of P is the point P = (u,−v− h(u)), which is also on C. The opposite of O is O itself. If P
satisfies P = P , then it is said to be special ; otherwise it is said to be ordinary.

Definition 2.16. Let C be a hyperelliptic curve given by equation (2.4) over a field F. The
coordinate ring of C, denoted by F[C], is the quotient ring

F[C] = F[x, y]/
(
y2 + h(x)y − f(x)

)
.

An element of F[C] is called polynomial function on C.

By definition, y2 = f(x)−h(x)y in F[C]. Then, we can repeatedly replace any occurrence
of y2 in all polynomial function G(x, y) ∈ F[C] by f(x)− h(x)y and end up with a represen-
tation as G(x, y) = a(x) − b(x)y, where a(x), b(x) ∈ F[x]. It can be verified that the ideal(
y2 + h(x)y − f(x)

)
is prime in F[x, y]. Thus, F[C] is an integral domain.

Definition 2.17. The function field F(C) of a hyperelliptic curve C over a field F is the field
of fractions of F[C]. The elements of F(C) are called rational functions on C.

Definition 2.18. Let C be a hyperelliptic curve over a field F. Let R ∈ F(C) and P =
(u, v) ∈ C be a finite point. The rational function R is said to be defined at P if there exist
polynomial functions G,H ∈ F[C] such that R = G/H and H(P) = H(u, v) 6= 0 ∈ F. In
this case, the value of R at P is

R(P) = G(P)/H(P) = G(u, v)/H(u, v).

If no such G,H exist, then R is said to be not defined at P .

10 Chapter 2. Basic Concepts

It is easy to see in the above definition that the value R(P) of R at P does not depend
on the choice of G and H .

Definition 2.19. Let G(x, y) = a(x)− b(x)y ∈ F[C] be a polynomial function on a hyperel-
liptic curve C of genus g over a field F. The degree of G is defined to be

deg(G) = max{2 degx(a), 2g + 1 + 2 degx(b)},

where degx(·) denotes the degree with respect to the variable x.

Definition 2.20. Let R = G/H ∈ F(C) be a rational function on a hyperelliptic curve C
over a field F.

• if deg(G) < deg(H) then R is defined at O and the value of R at O is R(O) = 0,

• if deg(G) > deg(H) then R is not defined at O,

• if deg(G) = deg(H) then R is defined at O and the value of R at O is defined to be the
ratio of the leading coefficient of G over the leading coefficient of H .

Here also, one can easily see that the value R(P) of R at O does not depend on the choice
of G and H .

Definition 2.21. Let R ∈ F(C) be a rational function on a hyperelliptic curve C over a field
F, and let P ∈ C. If R(P) = 0 then R is said to have a zero at P . If R is not defined at P
then R is said to have a pole at P .

Definition 2.22. Let G(x, y) = a(x)− b(x)y ∈ F[C] be a nonzero polynomial function on a
hyperelliptic curve C over a field F. The order of G at P , denoted by ordP (G), is defined as
follows:

• If P = (u, v) is a finite point, then

– ordP (G) = r + s, if P is an ordinary point;

– ordP (G) = 2r + s, if P is a special point,

where r is the highest power of (x−u) that divides both a(x) and b(x), written G(x, y) =
(x− u)r(a0(x)− b0(x)y), and s is

– 0, if (a0(u)− b0(u)v) 6= 0;

– the highest power of (x− u) that divides N((a0(x)− b0(x)y), otherwise.

• If P = O, then ordP (G) = − deg(G).

An important result on the finiteness of the number of zeros and poles of a polynomial
function is given in the following theorem.

2.1. Mathematical background 11

Theorem 2.23. LetG(x, y) ∈ F[C] be a nonzero polynomial function on a hyperelliptic curve
C over a field F. Then G has a finite number of zeros and poles. Moreover,

∑
P∈C ordP = 0.

Definition 2.24. Let R = G/H ∈ F(C) be a rational function on a hyperelliptic curve C
over a field F. The order of R at P is defined to be ordP (R) = ordP (G)− ordP (H).

It can be verified in the above definition that ordP (R) does not depend on the choice of
G and H . Theorem 2.23 is also true for nonzero rational functions.

Definition 2.25. A divisor D on a hyperelliptic curve C is a formal sum of points on C:

D =
∑

P∈C
mPP, mP ∈ Z ∀P ∈ C,

where only a finite number of the mP are nonzero. The degree of D, denoted degD, is the
integer

∑
P∈C mP . The order of D at a point P ∈ C, denoted ordP (D), is the integer mP .

The set of all divisors on a hyperelliptic curve C is denoted by D. It can be easily shown
that D is an abelian group under the additive law:

∑

P∈C
mPP +

∑

P∈C
nPP =

∑

P∈C
(mP + nP)P.

The set of all divisors in D of degree 0, denoted by D0, is a subgroup of D.

Definition 2.26. Let R ∈ F(C) be a rational function on a hyperelliptic curve C over a field
F. The divisor of R is defined to be

div(R) =
∑

P∈C
ordP P.

Theorem 2.23 shows that the divisor of a rational function R on a hyperelliptic curve C
is indeed a divisor on C and we have div(R) ∈ D0. It can be shown that the set of divisors
of the rational functions over C form a subgroup of D0.

Definition 2.27. Let C be a hyperelliptic curve over a field F. A divisor D ∈ D0 is called
principal divisor if D = div(R). Denoting by P the subgroup of D0 of all the principal divisor
on C, we define the jacobian of C to be the quotient group J = D0/P.

For an extension field K of F, we also define J(K) = D0(K)/P(K), with D0(K) and P(K)
the respective subgroups of D0 and P where the points appearing in a divisor are restricted
to those lying on C(K).

Definition 2.28. Let C be a hyperelliptic curve of genus g over a finite field Fq. The jacobian
J of C is said to be supersingular if there exists a positive integer k such that

|J(Fq2k)| =
(
qk ± 1

)2g
.

12 Chapter 2. Basic Concepts

A hyperelliptic curve is said to be supersingular if its jacobian is supersingular; otherwise it
is said to be ordinary.

2.2 Type 1 pairings

2.2.1 Bilinear pairing types

Definition 2.29. Let (G1,+), (G2,+) and (GT , ·) be three cyclic groups of the same prime
order. A pairing e : G1 ×G2 → GT is a non-degenerate bilinear map, that is:

• e(Q,R) = 1 for all R ∈ G2 implies G1 ∋ Q = 0.

• e(Q1 +Q2, R) = e(Q1, R) · e(Q2, R) for all Q1, Q2 ∈ G1 and R ∈ G2.

• e(Q,R1 +R2) = e(Q,R1) · e(Q,R2) for all Q ∈ G1 and R1, R2 ∈ G2.

In cryptographic applications, where they need to be efficiently computable, bilinear
pairings are typically constructed over elliptic or hyperelliptic curves.

Cryptographic bilinear pairings are classified into different types. This classification, due
to Galbraith, Paterson and Smart [53], is based on the structure of the underlying groups:

• Type 1: when G1 = G2, the pairing is said to be symmetric.

• Type 2: when the pairing is asymmetric, that is, G1 6= G2, and we know an efficiently
computable isomorphism ψ : G2 → G1.

• Type 3: when the pairing is asymmetric and no efficiently computable isomorphism
ψ : G2 → G1 is known.

While Type 3 pairings are not equipped with known efficiently computable isomorphism
ψ : G2 → G1, they provide efficient ways to map a message to a point in G2 (called hash
into G2) which do not exist in a Type 2 pairings. Hashing to G2 is also efficient in Type 1
pairings.

Type 1 pairings are derived from supersingular curves (elliptic or hyperelliptic) which
can be divided into two groups: those defined over small characteristic (2 or 3) finite fields
and those defined over large characteristic fields. Types 2 and 3 are in turn derived from
ordinary curves defined over finite fields over large characteristic. In all of these types GT is
a multiplicative subgroup of an extension of the underlying finite field of the curves.

When implementing cryptographic protocols using parings, Types 2 and 3 are considered
to be better choices than Type 1 in terms of efficiency. The main reason for this preference
is a larger bitlength of elements of G1 in Type 1, making therefore operations in G1 more
costly.

However, there are pairing-based protocols in the literature, such as the Boneh-Shacham
group signature scheme [32], where one needs to apply an efficiently computable isomorphism

2.2. Type 1 pairings 13

to a point obtained after a hashing into G2. To implement these protocols neither Type 2
nor Type 3 can be used whereas Type 1 provides simultaneously all the required properties.
Also recall that instructions in new generation processors such as the carry-less multiplication
in Intel machines can significantly accelerate operations in small characteristic finite fields,
hence making small characteristic Type 1 pairings very attractive.

2.2.2 Type 1 pairing-based protocols

In this section, we give a brief description of three fundamental examples of Type 1 pairing-
based protocols. Note that there is a much longer list of interesting and practical crypto-
graphic schemes using Type 1 bilinear pairings, but these three are the most illustrative
protocols demonstrating the importance of bilinear parings. For all three protocols, one can
see that a necessary condition for security is the hardness of the DLP in the group GT . For
pairings derived from elliptic and hyperelliptic curves over a finite field Fq, GT is a prime-order
subgroup of the multiplicative group of an extension field Fqk .

2.2.2.1 Three-party one-round key agreement

The Diffie-Hellman key agreement scheme allows two parties to share in one round a secret
that can be later used to securely exchange messages over a public network. In 2000, Joux
[75] showed that using pairings, one can extend the one-round key agreement scheme to three
parties.

Let e : G1 × G1 → GT be a Type 1 pairing, with r = |G1| = |GT | and G1 = 〈P 〉. In
Joux’s scheme, Alice randomly selects a secret integer a ∈ [1, r − 1] and send the point [a]P
to Bob and Chris via a public network. Simultaneously, Bob sends [b]P to Alice and Chris,
and Chris sends [c]P to Alice and Bob. After all the points are received, Alice computes
K = e([b]P, [c]P)a = e(P, P)abc, and Bob and Chris do the same to get the shared key K. An
eavesdropper who wishes to compute K needs to solve the bilinear Diffie-Hellman problem
(BDHP): given P, [a]P, [b]P, [c]P , compute e(P, P)abc.

2.2.2.2 Identity-based encryption

Traditional public-key encryption schemes rely on a certifying authority for providing certifi-
cates for public keys. In this way, Bob is certain that he uses an authentic copy of Alice’s
public key when sending encrypted messages to Alice, and not the public key of an attacker
who would thereafter be able to decrypt Bob’s messages that were intended only for Alice.
However, in this scenario, Bob does not have the assurance that Alice’s public key is still valid,
because her certificate may have been revoked by the certifying authority on account of Alice
having left her place of employment or her private key somehow having been compromised.
In 1984, Shamir introduced the notion of a public key encryption scheme in which the public
key can be an arbitrary string, with the motivation of simplifying certificate management in
e-mail systems. Shamir’s proposition is that when Bob needs to send a message to Alice, he
simply uses Alice’s email address (or any other identifying information of Alice) as Alice’s
public key and the public key of a trusted third party (TTP). When Alice receives Bob’s
message, she contacts the TTP from which she obtains her private key and decrypts Bob’s
message. Notice that, unlike the case with traditional certificate-based encryption schemes,

14 Chapter 2. Basic Concepts

it is not necessary for Alice to generate a key pair before Bob can encrypt a message for her.
The key revocation problem inherent with traditional certificates can be circumvented by
adding a date to Alice’s email address when encrypting; the TTP would only give to Alice
the corresponding private key if it has not been revoked by that date.

Since Shamir only gave a framework for identity-based encryption, the problem of de-
signing an identity-based encryption scheme remained open for many years. In 2001, Boneh
and Franklin [30] proposed the first practical identity-based encryption scheme using bilinear
pairings.

Let e : G1 × G1 → GT be a Type 1 pairing, with r = |G1| = |GT | and G1 = 〈P 〉. Let
H1 : {0, 1}∗ → G1\{O} be a hash function and H2 : GT → {0, 1}ℓ a hash function where ℓ is
the length of the message to be encrypted. We denote by A Alice’s email address.
To generate private and public keys, the TTP does the following:

1. randomly selects an integer t ∈ [1, r − 1] and sets t as its private key,

2. computes T = [t]P and sets T as its public key,

3. computes DA = [t]H1(A) and securely sends it to Alice, at Alice’s request for its private
key.

To encrypt a message m ∈ {0, 1}ℓ for Alice, Bob does the following:

1. privately selects a random integer s ∈ [1, r − 1],

2. computes S = [s]P and c = m⊕H2 (e(H1(A), T))
s,

3. sends (S, c) to Alice.

To decrypt, Alice does the following:

1. receives its private key from the TTP,

2. computes m = c⊕H2 (DA, S))
s.

The decryption works because

e(DA, S) = e(tH1(A), sP) = e(H1(A), tP)
s = e(H1(A), T)

s.

An eavesdropper who wishes to recover m from (S, c) needs to solve the BDHP.

2.2.2.3 Short signatures

Digital signatures are designed for the purpose of demonstrating the authenticity of a digital
message or a document. In most digital signatures schemes, two pairs of integers modulo
a large integer, say, N , are obtained as the signature. Boneh, Lynn and Shacham (BLS)
[31] proposed the first signature scheme in which signatures are comprised of a single integer
modulo N .

Let e : G1 × G1 → GT be a Type 1 pairing, with r = |G1| = |GT | and G1 = 〈P 〉.
Let H : {0, 1}∗ → G1\{O} be a hash function. In the BLS short signature scheme, Alice

2.3. Coppersmith’s index-calculus algorithm 15

randomly selects a secret integer a ∈ [1, r − 1] as her private key, while A = [a]P is her
public key. Alice’s signature on a message m ∈ {0, 1}∗ is the single G1-element S = [a]M ,
where M = H(m). Then, a verifier will have to compute M = H(m) and check that
e(P, S) = e(A,M). An attacker who wishes to forge Alice’s signature on a message needs to
solve the Diffie-Hellman problem: given P, [a]P, [b]P , compute [ab]P .

2.3 Coppersmith’s index-calculus algorithm

The fastest general-purpose algorithm for solving the DLP in finite fields is the index-calculus

method. The basic ideas of this method appeared in the early work of Kraitchik in 1922 [92],
and have been rediscovered by Western and Miller in 1968 [123] (see also [104] and [102]).
The refined index-calculus algorithm was independently introduced by Adleman [8], Merkle
[101] and Pollard [109]. Adleman analyzed the algorithm for the case of finite fields Fq where
q is a prime number. Hellman and Reyneri [71] extended it to fields Fq, where q is a power
of a prime number. The resulting running time is usually expressed as

Lq[α, c] = exp
(
(c+ o(1))(log q)α(log log q)1−α

)
,

with 0 < α < 1 and c > 0. This is called a subexponential running time.
Considerable improvements on the index-calculus algorithm have been presented by Blake,

Fuji-Hara, Mullin and Vanstone [28], although these improvements do not affect the asymp-
totic running time of Adleman’s algorithm. In 1984, Coppersmith developed a variant of the
index-calculus method in fields of the form F2n . Beside its practical efficiency, illustrated
by the computation of discrete logarithms in F2127 , Coppersmith’s algorithm improved the
asymptotic running time of Adleman’s algorithm by exploiting the concept of systematic

equations, first presented by Blake et al. [28].
Let the field F2n be represented as F2[X]/(Xn + h0(X)), where h0(X) ∈ F2[X] is a

polynomial of ‘small’ degree such that f(X) = Xn + h0(X) is a primitive polynomial, which
means that f(X) is irreducible and the equivalence class of X in F2[X]/(f(X)) is a primitive
element of the multiplicative group F∗

2n . Note that

Xn ≡ h0(X) (mod f(X)).

Then, the elements of F2n can be represented as polynomials in F2[X] of degree at most n−1,
and X is a generator of F∗

2n . Let h(X) ∈ F∗
2n , whose logarithm logX h we wish to compute.

We shall assume that h(X) has degree n− 1.
As in the original index-calculus algorithm, one selects a smoothness bound B and finds

the logarithms of all irreducible polynomials of degree at most B. We define the factor base

to be the set of all monic irreducible polynomials in F2[X] of degree at most B, and notice
that it has size roughly 2B+1/B. To compute the logarithms of the factor base elements, one
generates linear equations relating these logarithms and solves the resulting linear system
(see §2.3.1). Then, the descent stage (see §2.3.2) computes logX h by expressing it as a linear
combination of logarithms of the factor base elements, which are already known.

16 Chapter 2. Basic Concepts

2.3.1 Computing the logarithms of the base factor elements

In Coppersmith’s algorithm, one chooses B ≈ cn1/3 (log n)2/3, with c a small positive con-
stant, and selects a parameter d ≈ B. Let k and h be positive integers such that 2k ≈

√
n/d

and h =
⌈
n/2k

⌉
. To generate a linear equation, one searches for polynomials A(X) and

B(X), with gcd(A(X), B(X)) = 1, such that the polynomials C(X) and D(X) defined by
the systematic equations

C(X) = XhA(X) +B(X) (2.6)

D(X) = C(X)2
k

mod f(X) (2.7)

are both B-smooth, that is, C(X) =
∏

i Fi(X)ei and D(X) =
∏

i Fi(X)fi where the Fi(X)
are of degree at most B. In this case, taking logarithms of both sides of (2.7) gives a linear
equation ∑

i

(fi − kei) logX Fi ≡ 0 (mod 2n − 1)

relating logarithms of elements in the factor base. Note that the number of polynomials
A(X), B(X) of degree d such that gcd(A(X), B(X)) = 1 is about 22d+1. After slightly more
than 2B+1/B linear equations are obtained, one solves the resulting sparse system to retrieve
the logarithms of all the factor base elements.

The selections of k and h are done in such a way that C(X) and D(X) are both of degree
about

√
nd. Indeed, C(X) is clearly of degree at most h + d, and for D(X) we have

D(X) =
(
XhA(X) +B(X)

)2k
mod f(X)

= Xh2kA(X)2
k

+B(X)2
k

mod f(X)

= XnXh2k−nA(X)2
k

+B(X)2
k

mod f(X)

= h0(X)Xh2k−nA(X)2
k

+B(X)2
k

mod f(X).

Since h0(X) has small degree and h2k−n ≤ 2k, we may assume that h0(X)xh2
k−n is of degree

about 2k. Therefore, D(X) has degree about (d + 1)2k. One can easily see that both h + d
and (d+ 1)2k are about

√
nd.

Making the heuristic assumption that C(X) and D(X) behave as random polynomials of
degree

√
nd, the probability for these polynomials to be simultaneously B-smooth is roughly

(√
nd

B

)−2
√

nd
B

(more precise functions computing smoothness probabilities in practical cases are provided in
§2.4). The selected range for B and d yields a probability of 1/L2n [

1
3
, 2
3
√
c
]. Thus, the number

of trials one expects in order to obtain one linear relation is L2n [
1
3
, 2
3
√
c
]. Since the number of

required relations is (slightly more than) 2B+1/B, the total cost of the relation generation is

L2n

[
1

3
, c′ + o(1)

]
, with c′ = c log 2 +

2

3
√
c
.

2.3. Coppersmith’s index-calculus algorithm 17

In order to ensure that the 22d+1 = L2n [
1
3
, 2c+ o(1)] polynomials A(X), B(X) are enough

to provide the 2B+1/B linear equations, one must have

L2n

[
1

3
, 2c log 2 + o(1)

]
≈ L2n

[
1

3
, c log 2 +

2

3
√
c
+ o(1)

]
,

and consequently

c ≈
(

2

3 log 2

)2/3

.

Using sparse linear algebra methods such as Lanczos’s or Wiedemann’s algorithms, the
system of linear equation can be solved at a cost of O(ω(2B+1/B)2) multiplications modulo
a large prime factor of 2n − 1, where ω <

√
nd is the average number of nonzero terms per

equation. Thus, the cost of the linear algebra solving is upper bounded by L2n [
1
3
, c log 2+o(1)].

This clearly shows that the linear algebra phase is not the bottleneck of the computation.

2.3.2 Descent stage

To express logX h as a linear combination of logarithms of elements in the factor base, the
Waterloo descent improvement [28], which we call continued-fraction descent in §3.3.4 and
§4.2.4, is used first. In this descent phase, one repeatedly picks a random integer m ∈
[1, 2n − 1], runs the extended Euclidean algorithm to have h(X)Xm mod f(X) = w1/w2,
with w1 and w2 of degree roughly n/2, and then tests w1 and w2 for B1-smoothness, where
B1 ≈

√
nB. Once B1-smooth polynomials w1 and w2 are found, we obtain an expression

of logX h in terms of logarithms of irreducible polynomials with degree at most B1. The
probability for w1, w2 being simultaneously B1-smooth is roughly

(
n/2√
nB

)−2
n/2√
nB

=
1

L2n

[
1
3
, 2
3
√
c
+ o(1)

] .

Thus, the expected number of smoothness testings in this phase is approximately

L2n

[
1

3
,

2

3
√
c
+ o(1)

]
.

The number of irreducible factors of w1 and w2 of degree between B and B1 is at most
n/B. The logarithms of these polynomials are thereafter expressed as linear combinations of
logarithms of smaller degree polynomials using the following descent method.

Let Q ∈ F2[X] be a polynomial of degree D, with B < D ≤ B1, and select

d ≈ D +
√
n/B log(n/B)

2
.

Let k and h be positive integers such that 2k ≈
√
n/d and h =

⌈
n/2k

⌉
. The present method

closely follows the ideas introduced in §2.3.1. Here, one sets B′ ≈
√
BD and searches for

polynomials A(X) and B(X), with gcd(A(X), B(X)) = 1, such that

18 Chapter 2. Basic Concepts

(i) Q(X) | C(X) = XhA(X) +B(X);

(ii) C(X)/Q(X) and D(X) = C(X)2
k
mod f(X) are B′-smooth.

A family of polynomials A(X), B(X) satisfying (i) can be easily constructed by finding, via
the extended Euclidean algorithm, a basis of the lattice

LQ =
{
(A,B) ∈ F2[X]× F2[X] : Q |

(
A(X)Xh −B(X)

)}
.

When both (i) and (ii) are satisfied for some polynomials A(X) and B(X), then taking
logarithms of both sides of the equation D(X) = C(X)2

k
mod f(X) gives an expression

for logX Q in terms of logarithms of polynomials with degree at most B′. As in the first
stage (§2.3.1), one can easily see that C(X)/Q(X) and D(X) both have degree about

√
nd.

Then, lower bounding B′ by B, one finds that the expected number of trials before obtaining
B′-smooth polynomials C(X)/Q(X) and D(X) is upper bounded by L2n [

1
3
, 1
3
√
6c5/4

+ o(1)].
To see that the number of polynomials A(X), B(X) such that gcd(A(X), B(X)) = 1 is

enough to ensure the expected number of trials, one must consider the minimal case where
D = B + 1, and obtains 22d+1 ≈ L2n [

1
3
, log 2

2
(c + 2

3
√
c
) + o(1)]. This number is in fact larger

than the required the number of trials. Note that the expected number of distinct irreducible
factors of C(X)/Q(X) and D(X) of degree between B and B′ is at most

√
nd/B < n/B.

Now continuing the descent stage, one applies the above descent method to each of
the polynomials of degree between B and B1 coming from the first phase. Each of these
polynomials requires fewer than L2n

[
1
3
, 1
9c5/4

+ o(1)
]

smoothness testings to be expressed as
a linear combination of logarithms of fewer than n/B polynomials with degree at most
B2 =

√
BB1 = B (n/B)1/4. Notice that at this point we have expressed logX h in terms

of at most (n/B)2 polynomials of degree at most B (n/B)1/2
2

at a cost of less than

L2n

[
1

3
,

2

3
√
c
+ o(1)

]
+
n

B
· L2n

[
1

3
,

1

3
√
6c5/4

+ o(1)

]

smoothness testings. Applying the latter descent method recursively to any resulting poly-
nomial of degree greater than B, yields after log n steps a linear relationship between logX h
and logarithms of polynomials in the factor base. This provide us logX h. The total number
of smoothness testing in the descent stage is expected (for c ≥ (1/2

√
6)4/3) to be less than

L2n

[
1

3
,

2

3
√
c
+ o(1)

]
.

Therefore, the total running time of Coppersmith’s algorithm is that of performing

L2n

[
1

3
,

(
32 log 2

9

)1/3

+ o(1)

]

smoothness testings. (§2.5 provides efficient ways to perform smoothness testings.)

2.4. Counting smooth polynomials 19

2.4 Counting smooth polynomials

Let Fq be a finite field. The number of monic polynomials of degree n over Fq is qn. The
number of monic irreducible polynomials of degree n over Fq is given by Gauss’s formula [54]

Iq(n) =
1

n

∑

d|n
µ(n/d)qd =

qn

n
+O

(
qn/2

)
, (2.8)

where µ : N→ N is the Möbius function

µ(n) =

1 if n = 1,

(−1)d if n is product of d distinct prime numbers.

0 otherwise.

(2.9)

Let m be a nonzero positive integer. A polynomial in Fq[X] is said to be m-smooth if all its
irreducible factors in Fq[X] have degree at most m. Define

F (u, z) =

m∏

ℓ=1

(
1 + uzℓ + uz2ℓ + . . .

)Iq(ℓ)
=

m∏

ℓ=1

(
1 +

uzℓ

1− zℓ
)Iq(ℓ)

.

F (u, z) is the generating function for m-smooth monic polynomials in Fq[X], where u marks
the number of distinct irreducible factors, and z marks the degree of the polynomial. Thus,
the number of monic m-smooth degree-n polynomials in Fq[X] that have exactly k distinct
monic irreducible factors is

Nq(m,n, k) = [uk zn]F (u, z) (2.10)

where [·] denotes the coefficient operator, whereas the total number of monic m-smooth
degree-n polynomials in Fq[X] is

Nq(m,n) = [zn]F (1, z). (2.11)

Furthermore, the average number of distinct monic irreducible factors among all monic m-
smooth degree-n polynomials in Fq[X] is

Aq(m,n) =
[zn]

(
∂F
∂u

∣∣
u=1

)

Nq(m,n)
. (2.12)

For any given q, m and n, Nq(m,n) can be obtained by using a symbolic algebra package such
as Maple [99] to compute the first n+ 1 terms of the Taylor series expansion of F (1, z) and
then extracting the coefficient of zn. Similarly, one can compute Nq(m,n, k) and Aq(m,n).
For example, we used Maple 17 on a 3.2 GHz Intel Xeon CPU X5672 machine to compute
N312(30, 254) in 3.2 seconds, A312(30, 254) = 14.963 in 102.9 seconds, and N312(30, 254, 9) in
4305 seconds.

20 Chapter 2. Basic Concepts

t Exactly t distinct irred. factors At most t distinct irred. factors

1 0.000000000000000000000000000000 0.000000000000000000000000000000
2 0.000000000000000000000000000000 0.000000000000000000000000000000
3 0.000000000000000000000000000000 0.000000000000000000000000000000
4 0.000000000000000000000000000000 0.000000000000000000000000000000
5 0.006943962587253657277835842266 0.006943962587253657277835842266
6 0.094508235237374712577063021493 0.101452197824628369854898863759
7 0.252394617047441064890337803216 0.353846814872069434745236666975
8 0.300996732023133627463574655796 0.654843546895203062208811322771
9 0.208505984721518279111258348913 0.863349531616721341320069671684

10 0.095666915122986916225455033585 0.959016446739708257545524705269
11 0.031431153500729712069119759222 0.990447600240437969614644464492
12 0.007781729666933963402298111588 0.998229329907371933016942576080
13 0.001504553977022317970302510303 0.999733883884394250987245086382
14 0.000233175504774219447997449230 0.999967059389168470435242535613
15 0.000029539839348629531062050590 0.999996599228517099966304586203
16 0.000003105026114577322728183235 0.999999704254631677289032769438
17 0.000000273913853891240679141964 0.999999978168485568529711911402
18 0.000000020455745079269350203882 0.999999998624230647799062115284
19 0.000000001301469873795730818942 0.999999999925700521594792934226
20 0.000000000070853335885380661976 0.999999999996553857480173596201
21 0.000000000003308814369077458356 0.999999999999862671849251054557
22 0.000000000000132633223456585201 0.999999999999995305072707639758
23 0.000000000000004557715382559271 0.999999999999999862788090199029
24 0.000000000000000133804578363524 0.999999999999999996592668562553
25 0.000000000000000003336091284541 0.999999999999999999928759847094
26 0.000000000000000000070002399226 0.999999999999999999998762246320
27 0.000000000000000000001220209967 0.999999999999999999999982456287
28 0.000000000000000000000017346134 0.999999999999999999999999802422
29 0.000000000000000000000000195878 0.999999999999999999999999998300
30 0.000000000000000000000000001690 0.999999999999999999999999999990
31 0.000000000000000000000000000010 1.000000000000000000000000000000
32 0.000000000000000000000000000000 1.000000000000000000000000000000
33 0.000000000000000000000000000000 1.000000000000000000000000000000

Table 2.1: Proportion of monic 7-smooth degree-33 polynomials in F312 [X] that have exactly
t (resp. at most t) distinct monic irreducible factors.

2.5. Smoothness testing 21

Example 2.30. (q = 312, n = 33, m = 7) Table 2.1 lists, for each t ∈ [1, 33], the proportion
of monic 7-smooth degree-33 polynomials in F312 [X] that have exactly t distinct monic irre-
ducible factors, and the proportion that have at most t distinct monic irreducible factors (cf.
§3.4.6). We see that most 7-smooth degree-33 polynomials in F312 [X] will have 6, 7, 8, 9 or 10
distinct monic irreducible factors. In fact, the average number of distinct monic irreducible
factors is A312(7, 33) = 8.072.

2.5 Smoothness testing

Theorem 2.31 (Smoothness test [40]). Let Fq be a finite field of characteristic p and f a
monic polynomial in Fq[X] of degree d, d > 0. For an integer m, 1 ≤ m ≤ d, define

w(X) = f ′(X) ·
m∏

i=⌈m/2⌉
(Xqi −X) mod f(X). (2.13)

If f is m-smooth, then w = 0; if f is not m-smooth, then w = 0 if and only if p divides the
multiplicity of all irreducible factors of f with degree greater than m.

Proof. It is known that for any positive integer i, the polynomial Xqi −X is the product of
all the monic irreducible polynomials in Fq[X] whose degree divides i [96, Theorem 3.20].
Thus, the polynomial P =

∏m
i=⌈m/2⌉(X

qi − X) is the product of all the monic irreducible
polynomials of degree at most m. Since P never vanishes, we have w = 0 if and only if f ′ = 0
or f |f ′P . One can see that f ′ = 0 if and only f is a polynomial in Xp; and when f is not a
polynomial in Xp, the multiplicity in f ′ of an irreducible factor of f with multiplicity e ≥ 1
in f is either e if e is a multiple of p or e − 1 otherwise. Therefore, w = 0 corresponds to f
being a polynomial in Xp or f |f ′P . Now suppose f |f ′P . This means that all the irreducible
factors of f with multiplicity not a multiple of p are of degree at most m, because, for these
factors, the multiplicity gap of 1 arising from the derivation of f could only have been filled
during the multiplication by P , whose irreducible factors are all of degree at most m. Hence,
if f is not m-smooth, w = 0 happens if and only if all the irreducible factors of degree greater
than m are of multiplicity a multiple of p, since the latter statement is also realized when f
is a polynomial in Xp. Conversely, it is clear that when f is m-smooth we necessarily have
w = 0.

For a given positive integer m, since a randomly selected polynomial is unlikely to satisfy
the condition of having all its irreducible factors of degree greater than m coming with
multiplicity divisible by the characteristic of the finite field, the vast majority of polynomials
that pass the smoothness test are indeed m-smooth. The polynomials that are declared to
be m-smooth are then factored using a general-purpose polynomial factorization algorithm,
at which time the very few polynomials falsely declared to be m-smooth are identified.

2.5.1 Basic method for evaluating w(X)

Let f(X) be a polynomial over a finite field Fq. Without loss of generality, we can assume
that f is monic. Then the product of two polynomials of degree < d can be multiplied

22 Chapter 2. Basic Concepts

modulo f in time 2d2, where the unit of time is an Fq-multiplication. To compute w(X) =

f ′∏m
i=⌈m/2⌉(X

qi − X) mod f , one first precomputes Xq mod f . This can be accomplished
by repeated square-and-multiplication at a cost of at most 2||q||2 modular multiplications,
where ||q||2 denotes the bitlength of q. Then, Xqi mod f for 2 ≤ i ≤ d− 1 can be computed
by repeated multiplication of Xq mod f with itself at a cost of approximately d modular
multiplications, and Xqi mod f for 2 ≤ i ≤ m can be computed by repeated exponentiation
by q with each exponentiating having cost d2 Fq-multiplications. Finally, the product in (2.13)
can be computed using m/2 modular multiplications at a cost of md2 Fq-multiplications. The
total cost for testing m-smoothness of f is thus

Sq(m, d) = 2d2(d+m+ 2||q||2) Fq-multiplications. (2.14)

This method is used in Chapters 3 and 4. For example, consider the case where q = 312.
Then, Xq mod f can be determined by first precomputing X3, X6, . . . , X3(d−1) mod f by re-
peated multiplication by X. Thereafter, cubing a polynomial modulo f can be accomplished
by cubing the coefficients of the polynomial, and then multiplying the precomputed polyno-
mials by these cubes (and adding the results). In this way, we get a loose upper bound of
3d2+11d2 = 14d2 F312-multiplications of the cost to compute X312 mod f , and the total cost
for testing m-smoothness of f becomes

S312(m, d) = 2d2(d+m+ 7) F312-multiplications. (2.15)

2.5.2 Improved method for evaluating w(X)

In [59], Granger et al. presented some improvements on performing smoothness testings over
polynomials defined over finite fields of order a power of a prime.

Let q = pℓ, where p is a small prime number and ℓ a positive composite integer expressed as
ℓ = r·s. Let f ∈ Fq[X] be a polynomial of degree n that we want to test form-smoothness (1 ≤
m ≤ n) and consider the quotient ring Fq[X]/(f) where the class of a polynomial g(X) over
Fq is written [g(X)]. For the sake of simplicity, without loss of generality, it will be assumed
throughout the following analysis that the cost of elementary field arithmetic operations such
as addition, multiplication and exponentiation have all the same computational cost. In the
case of the ring arithmetic, it will be further assumed that the cost of a polynomial addition
is O(n), whereas the polynomial ring multiplication or division has a cost of O(n2).

The approach of Granger et al. can be described as follows. One first computes [Xprs]
followed by the exponentiations [Xqi], for i = 1, . . . , m, according to the steps described
hereafter.

• Precomputations: For i = 1, . . . , n−1, calculate X ipr mod f . The exponentiations
Xpr , X2pr , . . . , X(n−1)pr can be computed by consecutively multiplying byX. In general,
a multiplication by X can be achieved by a shifting and possibly followed by a reduction
modulo f . Notice that a polynomial having the same degree as f can be reduced modulo
f at a computational cost of m field multiplications and additions in Fq. Hence, the
precomputation phase can be accomplished with (n − 1)(pr − 1) shift operations at a
computational cost less than 2n2pr field operations in Fq.

2.5. Smoothness testing 23

• Performing a ring exponentiation ap
r
. Using the n − 1 precomputed elements of

the first step, one can perform the exponentiation ap
r

for any arbitrary a ∈ Fq[X]/(f)
as

ap
r

=

[
n−1∑

i=0

aiX
i

]pr
=

n−1∑

i=0

ap
r

i

[
X ipr

]
. (2.16)

This computation requires n exponentiations and n scalar multiplications (that is, the
operation of multiplying a field element by a degree-(n − 1) polynomial). Hence, the
total cost of this operation is about 2n2 + n field operations in Fq.

• Computing [Xqi], for i = 1, . . . , m. Recall that q = prs. Hence, applying repeatedly
the second step, one can compute [Xprj] for j ∈ {2, . . . , sm}, and therefore obtains
[Xqi] = [Xprsi] for i ∈ {1, . . . , m}. The cost of this step is of approximately (2n2 +
n)sm = 2n2sm+ nsm operations in Fq.

The cost of multiplying or dividing two degree-(n−1) polynomials is about n2 operations
over Fq. Hence, a quotient ring multiplication, that is, the cost of multiplying two degree-
(n− 1) polynomials modulo f , has a cost of roughly 2n2 field operations. The computation
of w(X) = f ′∏m

i=⌈m/2⌉(X
qi−X) mod f additionally requires performing ⌈m/2⌉ quotient ring

multiplications, with total cost n2m arithmetic operations in Fq.

Summarizing, the cost of computing w(X) can be estimated as

Sq(m, d) = 2n2pr + 2n2sm+ nsm+ n2m Fq-multiplications. (2.17)

24 Chapter 2. Basic Concepts

3 Weakness of F36·509 and F24·3041 for

Discrete Logarithm Cryptography

3.1 Introduction

We shall assume in this chapter that the characteristic of all finite fields is 2 or 3. With
this setting, the fastest general-purpose algorithm known for solving the DLP in a field FQ is
Coppersmith’s 1984 index-calculus algorithm [40] with a running time of LQ[

1
3
, (32/9)1/3] ≈

LQ[
1
3
, 1.526], where as usual LQ[α, c] with 0 < α < 1 and c > 0 denotes the expression

exp
(
(c+ o(1))(logQ)α(log logQ)1−α

)
.

However, when the parameters q and n of the finite field Fqn are balanced in some way, we
may have faster algorithms. Hence, when q and n are balanced in the sense that

q = exp
(
3−2/3 · (logQ)1/3(log logQ)2/3

)
and n = 32/3 ·

(
logQ

log logQ

)2/3

,

the Joux-Lercier (2006) algorithm [81], performs better than Coppersmith’s algorithm, with
a running time of LQ[

1
3
, 31/3] ≈ LQ[

1
3
, 1.442]. In 2012, Joux [76] introduced a ‘pinpointing’

technique that improved the running time of the Joux-Lercier algorithm to LQ[
1
3
, 2/32/3] ≈

LQ[
1
3
, 0.961].

In February 2013, Joux [77] presented a new index-calculus algorithm for solving the DLP
with a running time of LQ[

1
4
+ o(1), c] (for some undetermined c) when q and n are balanced

in the sense that q ≈ m where n = 2m. Also in February 2013, Göloğlu, Granger, McGuire
and Zumbrägel [57] proposed a variant of the Joux-Lercier algorithm that imposes a further
divisibility condition on ℓ where q = 2ℓ. The running time of the Gögloğlu et al. algorithm
is (i) LQ[

1
3
, 2/32/3] ≈ LQ[

1
3
, 0.961] when n ≈ 2md1, d1 ≈ 2m, and m | ℓ; and (ii) between

LQ[
1
3
, (2/3)2/3] ≈ LQ[

1
3
, 0.763] and LQ[

1
3
, 1/21/3] ≈ LQ[

1
3
, 0.794] when n ≈ 2md1, 2m ≫ d1,

and m | ℓ. The new algorithms were used to compute discrete logarithms in F28·3·255 = F26120

in only 750 CPU hours [58], and in F28·3·257 = F26168 in only 550 CPU hours [78]. The
astoundingly small computational effort expended in these experiments depends crucially on
the special nature of the fields F26120 and F26168 – namely that F26120 is a degree-255 extension
of F28·3 with 255 = 28 − 1, and F26168 is a degree-257 extension of F28·3 with 257 = 28 + 1.
Despite these remarkable achievements, the effectiveness of the new algorithms for computing
discrete logarithms in general finite fields of small characteristic remained unclear.

In June 2013, Barbulescu, Gaudry, Joux and Thomé [16] presented a new DLP algorithm
that, for many choices of field sizes, is asymptotically faster than all previous algorithms.

25

26 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

Most impressively, in the case where q ≈ n and n ≤ q +2, the discrete logarithm problem in
Fq2n = FQ can be solved in quasi-polynomial time

(logQ)O(log logQ). (3.1)

Note that (3.1) is asymptotically smaller than LQ[α, c] for any α > 0 and c > 0. However,
the practical relevance of the new algorithm has not yet been determined.

The aforementioned advances in DLP algorithms are potentially relevant to the security
of Type 1 pairing-based cryptosystems that use bilinear pairings derived from supersingular
elliptic curves or genus-2 hyperelliptic curves defined over finite fields Fq of characteristic
2 or 3. Three such symmetric pairings that have received a great deal of attention in the
literature are:

• The k = 6 pairings derived from supersingular elliptic curves y2 = x3 − x+ 1 and
y2 = x3 − x− 1 over F3ℓ ;

• The k = 4 pairings derived from supersingular elliptic curves y2 + y = x3 + x and
y2 + y = x3 + x+ 1 over F2ℓ ;

• The k = 12 pairing derived from supersingular genus-2 curves y2 + y = x5 + x3 and
y2 + y = x5 + x3 + 1 over F2ℓ ,

where, in all cases, ℓ is chosen to be prime and k is the embedding degree of the pairing. These
symmetric pairings were considered in some early papers [31, 51, 18, 52] on pairing-based
cryptography. Since then, many papers have reported on software and hardware implemen-
tation of these pairings; some examples are [17, 62, 108, 9, 67, 27, 35, 46, 25, 10, 2].

In all the papers cited in the previous paragraph, the pairing parameters were chosen
under the assumption that Coppersmith’s algorithm is the fastest method for finding discrete
logarithms in Fpk·ℓ, p = 2 or 3. For example, to achieve the 128-bit security level, [9] chose ℓ =
1223 for the k = 4 pairing and ℓ = 509 for the k = 6 pairing, [35] chose ℓ = 439 for the k = 12
pairing, and [10] chose ℓ = 367 for the k = 12 pairing. These choices were made because
Coppersmith’s algorithm, as analyzed by Lenstra [94], has running time approximately 2128

for computing logarithms in F24·1223 , F36·509 , F212·439 , and F212·367 , respectively.
In 2012, Hayashi et al. [69] reported on their implementation of the Joux-Lercier algorithm

for computing logarithms in F36·97 . Their work demonstrated that in practice the Joux-Lercier
algorithm is considerably faster than Coppersmith’s algorithm for DLP computations in
F36·97 ; note that the k = 6 pairing with ℓ = 97 was considered in [18, 52]. In contrast,
the largest discrete logarithm computation reported using Coppersmith’s algorithm (and its
generalizations [7, 79]) is the April 2013 computation by Barbulescu et al. [14] of logarithms
in F2809 ; note that 809 is prime and 36·97 ≈ 2922. Shinohara et al. [115] estimated that
F36·509 offers only 111-bits of security against Joux-Lercier attacks, considerably less than the
assumed 128-bits of security against Coppersmith attacks.

The purpose of the analysis presented in this chapter, in joint work with A. Menezes, T.
Oliveira and F. Rodríguez-Henríquez [3, 4], is to demonstrate that the new algorithms by
Joux [77] and Barbulescu et al. [16] can be combined to solve the discrete logarithm problem

3.2. On the asymptotic nature of the QPA algorithm 27

in F36·509 and F212·367 significantly faster than the Joux-Lercier algorithm. More precisely, we
estimate that logarithms in these fields can be computed in 281.7 and 2100 time, respectively,
with the new algorithms, where the unit of time is the (inexpensive) cost of a multiplication
in F312 and F224 , respectively.

In addition, we show that the new algorithms can have a drastic impact on the security
of the supersingular elliptic curves of embedding degree 4 at higher levels of security. More
precisely, we consider the embedding degree-4 elliptic curve E : y2 + y = x3 + x over F23041 ,
where |E(F23041)| = r with r a 3041-bit prime. The finite field F24·3041 offers approximately
192 bits of security against attacks on the DLP by Coppersmith’s algorithm. In contrast,
our concrete analysis shows that the order-r subgroup of the multiplicative group of this field
offers at most 129 bits of security against the new attacks.

Moreover, the computations are effectively parallelizable, whereas the Joux-Lercier algo-
rithm and Coppersmith’s algorithm are not because of the very large size of the linear system
of equations that needs to be solved. While the 281.7 computation is certainly a formidable
challenge, it is already within the realm of feasibility for a very well-funded adversary. Thus,
we conclude that F36·509 does not offer adequate security for discrete logarithm cryptosystems
and, in particular, the supersingular elliptic curve over F3509 with embedding degree 6 is not
suitable for implementing pairing-based cryptosystems. We also conclude that the super-
singular genus-2 curve over F2367 with embedding degree 12 and the supersingular elliptic
curve over F23041 with embedding degree 4 should be considered weak and not employed in
pairing-based cryptography.

The remainder of the chapter is organized as follows. In §3.2, we elaborate on the “asymp-
totic nature” of the Barbulescu et al. algorithm and make a case for a concrete analysis of
the new DLP algorithms. In §3.3 we outline the new discrete logarithm algorithms. Our
estimates for discrete logarithm computations in F36·509 , F212·367 and F24·3041 are presented in
§3.4, §3.5 and §3.6, respectively. We draw the conclusions of this chapter in §3.7.

3.2 On the asymptotic nature of the QPA algorithm

Let E denote the embedding degree-4 supersingular elliptic curve y2+ y = x3+x or y2+ y =
x3 + x + 1 over F2n where n is prime, and suppose that |E(F2n)| = cr where r is prime
and c≪ r. The Weil and Tate pairings reduce the discrete logarithm problem in the order-
r subgroup of E(F2n) to the discrete logarithm problem in the order-r subgroup of the
multiplicative group of F24n . Coppersmith’s subexponential-time algorithm [40] can be used
to solve the latter problem.

In contrast, the QPA algorithm of Barbulescu et al. [16] tackles the problem by embedding
F24n in Fq2n where q = 2ℓ ≈ n. The running time of the QPA algorithm is dominated by the
descent stage. In this stage, one begins with a field element seen as a polynomial of degree
(at most) n − 1 over Fq2 whose logarithm is sought. One then expresses the logarithm of
this polynomial in terms of the logarithms of roughly q2 polynomials of degree at most n/2.
This process is applied recursively to each polynomial encountered in the “descent tree”; the
logarithm of each such polynomial of degree d is expressed in terms of the logarithms of
roughly q2 polynomials of degree at most d/2. To terminate the recursion, the logarithms

28 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

of all degree-one polynomials are obtained using a relatively fast method. The number of
nodes in the descent tree gives a very crude lower bound on the running time of the QPA
algorithm. Since n ≈ q, the descent tree has approximately log2 q levels and at least q2 log2 q

nodes.
Table 3.1 compares the running time C(q) = exp(1.526(log 24q)1/3(log log 24q)2/3) of Cop-

persmith’s algorithm for computing discrete logarithms in F24q , and the lower bound q2 log2 q

on the running time of the QPA algorithm for computing discrete logarithms in Fq2n with
q ≈ n. We see from Table 3.1 that the QPA algorithm is faster than Coppersmith’s algorithm

q q2 log2 q C(q)

29 2162 293

210 2200 2124

211 2242 2165

212 2288 2219

213 2338 2290

214 2392 2382

215 2450 2501

Table 3.1: Comparison of the running time q2 log2 q of the QPA algorithm for computing
logarithms in Fq2n with q ≈ n, and the running time C(q) of Coppersmith’s algorithm for
computing logarithms in F24n .

only when n ≈ q = 215. However, such n is too large to be of interest in cryptography based
on pairings over E(F2n).

As already stated in [16, Section 6.2], to determine the practical efficiency of the QPA
algorithm, and therefore the implications of QPA to the security of pairing-based cryptosys-
tems based on E(F2n), it is imperative that the descent stage of QPA be combined with
descent steps from classical algorithms. The asymptotic running time of the resulting hybrid
algorithm is difficult to determine. Instead, the framework and tools introduced in this chap-
ter are used to perform a concrete analysis which provides a reasonably accurate picture of
the effectiveness of the hybrid algorithm.

3.3 New DLP algorithm of Joux and Barbulescu et al.

The DLP algorithm we describe is due to Joux [77], with a descent step from the quasi-
polynomial time algorithm (QPA) of Barbulescu et al. [16]. For lack of a better name, we
will call this algorithm the “new DLP algorithm”.

Let Fq2n be a finite field where n ≤ q + 2. The elements of Fq2n are represented as
polynomials of degree at most n − 1 over Fq2 . Let N = q2n − 1. Let g be an element of
order N in F∗

q2n , and let h ∈ F∗
q2n . We wish to compute logg h. The algorithm proceeds

by first finding the logarithms of all degree-one (§3.3.2) and degree-two (§3.3.3) elements in
Fq2n. Then, in the descent stage, logg h is expressed as a linear combination of logarithms of
degree-one and degree-two Fq2n elements. The descent stage proceeds in several steps, each

3.3. New DLP algorithm of Joux and Barbulescu et al. 29

expressing the logarithm of a degree-D element as a linear combination of the logarithms of
elements of degree ≤ m for some m < D. Four descent methods are used; these are described
in §3.3.4–§3.3.7. The cost of each step is given in Table 3.2.

Finding logarithms of linear polynomials (§3.3.2)
Relation generation 6q2 · Sq2(1, 3)

Linear algebra q5 · AN

Finding logarithms of irreducible quadratic polynomials (§3.3.3)
Relation generation q16/Nq2(1, 6) · Sq2(1, 6)

Linear algebra q7 · AN

Descent (Degree D to degree m)

Continued-fraction (§3.3.4) {D = n− 1}
(

qn−1

Nq2 (m,(n−1)/2)

)2
· Sq2(m, (n − 1)/2)

Classical (§3.3.5) q2(t1−D+t2)

Nq2 (m,t1−D)Nq2 (m,t2)
·min(Sq2(m, t1 −D), Sq2(m, t2))

QPA (§3.3.6) q6D+2

Nq2 (m,3D) · Sq2(m, 3D) + q5 · AN

Gröbner bases (§3.3.7) Gq2(m,D) + q6m−2D

Nq2 (m,3m−D) · Sq2(m, 3m−D)

Table 3.2: Estimated costs of the main steps of the new DLP algorithm for computing
discrete logarithms in Fq2n. AN and Mq2 denote the costs of an addition modulo N and a
multiplication in Fq2 . The smoothness testing cost Sq2(m,D) is given in (2.17). See §3.3.5
for the definitions of t1 and t2. The Gröbner basis cost Gq2(m,D) is defined in §3.3.7.

Notation. For γ ∈ Fq2, γ denotes the element γq. For P ∈ Fq2 [X], P denotes the polynomial
obtained by raising each coefficient of P to the power q. The cost of an integer addition
modulo N is denoted by AN , and the cost of a multiplication in Fq2 is denoted by Mq2 . The
projective general linear group of order 2 over Fq is denoted PGL2(Fq). Pq is a set of distinct
representatives of the left cosets of PGL2(Fq) in PGL2(Fq2); note that |Pq| = q3 + q.

3.3.1 Setup

Select polynomials h0, h1 ∈ Fq2 [X] of degree at most 2 so that h1Xq − h0 has an irreducible
factor IX of degree n in Fq2[X]; we will henceforth assume that max(deg h0, deg h1) = 2. In
order to avoid the “traps” discussed in [36], we further assume that each irreducible factor
J ∈ Fq2 [X] of (h1Xq − h0)/IX satisfies the following two conditions: (i) gcd(deg J, n) = 1;
and (ii) deg J > m where m is the integer specified in the continued-fraction descent stage
(§3.3.4). Note that

Xq ≡ h0/h1 (mod IX).

The field Fq2n is represented as Fq2n = Fq2[X]/(IX) and the elements of Fq2n can be represented
as polynomials in Fq2 [X] of degree at most n− 1. Let g be a generator of F∗

q2n .

30 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

3.3.2 Finding logarithms of linear polynomials

Let B1 = {X + a | a ∈ Fq2}, and note that |B1| = q2. To compute the logarithms of
B1-elements, we first generate linear relations of these logarithms. Let a, b, c, d ∈ Fq2 with
ad− bc 6= 0. Substituting Y 7→ (aX + b)/(cX + d) into the systematic equation

Y q − Y =
∏

α∈Fq

(Y − α), (3.2)

and then multiplying by h1(cX + d)q+1 yields

(ah0 + bh1)(cX + d)− (aX + b)(ch0 + dh1) (3.3)

≡ h1 · (cX + d) ·
∏

α∈Fq

[(a− αc)X + (b− αd)] (mod IX).

Note that the left side of (3.3) is a polynomial of degree (at most) 3. If this polynomial
is 1-smooth, then taking logarithms of both sides of (3.3) yields a linear relation of the
logarithms of B1-elements1 and the logarithm of h1. As explained in [16], in order to avoid
redundant relations one selects quadruples (a, b, c, d) from Pq; here we are identifying a
quadruple (a, b, c, d) with the matrix (a b

c d).
Now, the probability that the left side of (3.3) is 1-smooth is

Nq2(1, 3)

q6
=

(
q2 + 2

3

)
/q6 ≈ 1

6
.

Thus, after approximately 6q2 trials one expects to obtain (slightly more than) q2 relations.
The cost of the relation generation stage is 6q2·Sq2(1, 3). The logarithms can then be obtained
by using Wiedemann’s algorithm for solving sparse systems of linear equations [124]. The
expected cost of the linear algebra is q5 ·AN since each equation has approximately q nonzero
terms.

Remark 3.1. (running time of Wiedemann’s algorithm) Let B be the matrix obtained after
the relation generation stage. Note that B is a matrix over ZN . However, the entries of B are
coefficients of the discrete logarithms of linear polynomials that occur in the relations. Thus
the vast majority of these entries are expected to be 0, 1, and −1, with the remaining entries
(corresponding to repeated factors) being a number that is small in absolute value (e.g. ±2).
Wiedemann’s algorithm treats B as a black box, and uses it only to perform matrix-vector
multiplication with vectors over ZN . Since the nonzero entries of B are very small in absolute
value, and since B has approximately q nonzero entries per row, the expected cost of each
matrix-by-vector multiplication is q3 · AN . Finally, since the block version of Wiedemann’s
algorithm [41] requires no more than q2 such matrix-by-vector multiplications, the overall
running time is q5 · AN .

1It is understood that all polynomials of the right side of (3.3) and factors of the left side of (3.3) should
be made monic. The same holds for (3.10) and (3.12).

3.3. New DLP algorithm of Joux and Barbulescu et al. 31

3.3.3 Finding logarithms of irreducible quadratic polynomials

Let u ∈ Fq2, and let Q(X) = X2 + uX + v ∈ Fq2[X] be an irreducible quadratic. Define B2,u
to be the set of all irreducible quadratics of the form X2 + uX + w in Fq2[X]; one expects
that |B2,u| ≈ (q2 − 1)/2. The logarithms of all elements in B2,u are found simultaneously
using one application of QPA descent (see §3.3.6). More precisely, one first collects relations
of the form (3.10), where the left side of (3.10) factors as a product of linear polynomials
(whose logarithms are known). The expected number of relations one can obtain is

Nq2(1, 6)

q12
· (q3 + q).

Provided that this number is significantly greater than |B2,u|, the matrix H(Q) is expected
to have full (column) rank. One can then solve the resulting system of linear equations to
obtain the logarithms of all irreducible translates Q+w of Q. This step is repeated for each
u ∈ Fq2. Hence, there are q2 independent linear systems of equations to be solved.

For each u ∈ Fq2 , the cost of relation generation is q14/Nq2(1, 6) ·Sq2(1, 6), while the linear
algebra cost is q5 · AN .

3.3.4 Continued-fraction descent

Recall that we wish to compute logg h, where h ∈ Fq2n = Fq2[X]/(IX). Note that deg h ≤
n−1; we will henceforth assume that deg h = n−1. The descent stage begins by multiplying
h by a random power of g. The extended Euclidean algorithm is used to express the resulting
field element h′ in the form h′ = w1/w2 where degw1, degw2 ≈ n/2 [28]; for simplicity, we
shall assume that n is odd and degw1 = degw2 = (n− 1)/2. This process is repeated until
both w1 and w2 are m-smooth for some chosen m < (n− 1)/2. This gives logg h

′ as a linear
combination of logarithms of polynomials of degree at most m. The expected cost of this
continued-fraction descent step is approximately

(
qn−1

Nq2(m, (n− 1)/2)

)2

· Sq2(m, (n− 1)/2). (3.4)

The expected number of distinct irreducible factors of w1 and w2 is 2Aq2(m, (n − 1)/2). In
the analysis, we shall assume that each of these irreducible factors has degree exactly m. The
logarithm of each of these degree-m polynomials is then expressed as a linear combination
of logarithms of smaller degree polynomials using one of the descent methods described in
§3.3.5, §3.3.6 and §3.3.7.

3.3.5 Classical descent

Let p be the characteristic of Fq, and let q = pℓ. Let s ∈ [1, ℓ], and let R ∈ Fq2 [X, Y]. Then

R(X,Xps)p
ℓ−s

= R′(Xpℓ−s

, Xq) ≡ R′(Xpℓ−s

,
h0
h1

) (mod IX),

where R′ is obtained from R by raising all its coefficients to the power pℓ−s. For the sake of
simplicity, we will assume in this section that h1 = 1 and so

R(X,Xps)p
ℓ−s ≡ R′(Xpℓ−s

, h0) (mod IX). (3.5)

32 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

Let Q ∈ Fq2 [X] with degQ = D, and let m < D. In the Joux-Lercier descent method [81],
as modified by Joux [77], one selects suitable parameters d1, d2 and searches for a polynomial
R ∈ Fq2 [X, Y] such that (i) degX R ≤ d1 and degY R ≤ d2; (ii) Q | R1 where R1 = R(X,Xps);
and (iii) R1/Q and R2 are m-smooth where R2 = R′(Xpℓ−s

, h0). Taking logarithms of both
sides of (3.5) then gives an expression for logg Q in terms of the logarithms of polynomials of
degree at most m.

A family of polynomials R satisfying (i) and (ii) can be constructed by finding the null
space of the D × (D + δ) matrix whose columns are indexed by monomials X iY j for D + δ
pairs (i, j) ∈ [0, d1] × [0, d2], and whose X iY j-th column entries are the coefficients of the
polynomial X i(Xps)j mod Q. The components of the vectors in the null space of this matrix
can be interpreted as the coefficients of polynomials R ∈ Fq2[X, Y] satisfying (i) and (ii).
The dimension of this null space is expected to be δ, and so the null space is expected to
contain (q2)δ−1 monic polynomials. Let degR1 = t1 and degR2 = t2. We have t1 ≤ d1+ psd2
and t2 ≤ pℓ−sd1 + 2d2; the precise values of t1 and t2 depend on the (i, j) pairs chosen (see
§3.4.5 for an example). In order to ensure that the null space includes a monic polynomial
R such that both R1/Q and R2 are m-smooth, the parameters must be selected so that

q2δ−2 ≫ q2(t1−D)

Nq2(m, t1 −D)
· q2t2

Nq2(m, t2)
. (3.6)

Ignoring the time to compute the null space, the expected cost of finding a polynomial R
satisfying (i)–(iii) is

q2(t1−D)

Nq2(m, t1 −D)
· q2t2

Nq2(m, t2)
·min(Sq2(m, t1 −D), Sq2(m, t2)). (3.7)

The expected number of distinct irreducible factors of R1/Q and R2 is Aq2(m, t1 − D) +
Aq2(m, t2). In the analysis, we shall assume that each of these irreducible factors has degree
exactly m.

3.3.6 QPA descent

The QPA descent method is so named because it was a crucial step in the Barbulescu et al.
quasi-polynomial time algorithm for the DLP in finite fields of small characteristic [16].

Let Q ∈ Fq2[X] with degQ = D, and let m ∈ [⌈D/2⌉, D − 1]. Let (a, b, c, d) ∈ Pq, and
recall that |Pq| = q3 + q. Substituting Y 7→ (aQ + b)/(cQ + d) into the systematic equation
(3.2) and multiplying by (cQ+ d)q+1 yields

(aQ + b)q(cQ+ d)− (aQ+ b)(cQ + d)q = (cQ+ d)
∏

α∈Fq

[(a− αc)Q+ (b− αd)]. (3.8)

The left side of (3.8) can be written as

(aQ(Xq) + b)(cQ+ d)− (aQ + b)(cQ(Xq) + d)

≡ (aQ(
h0
h1

) + b)(cQ+ d)− (aQ+ b)(cQ(
h0
h1

) + d) (mod IX).

3.3. New DLP algorithm of Joux and Barbulescu et al. 33

Hence

(aQ(
h0
h1

) + b)(cQ+ d)− (aQ+ b)(cQ(
h0
h1

) + d) (3.9)

≡ (cQ+ d)
∏

α∈Fq

[(a− αc)Q+ (b− αd)] (mod IX).

Multiplying (3.9) by hD1 yields

(aQ̃+ bhD1)(cQ+ d)− (aQ + b)(cQ̃ + dhD1) (3.10)

≡ hD1 · (cQ+ d) ·
∏

α∈Fq

[(a− αc)Q+ (b− αd)] (mod IX),

where Q̃(X) = hD1 ·Q(h0/h1). Note that the polynomial on the left side of (3.10) has degree
at most 3D. If this polynomial is m-smooth, then (3.10) yields a linear relation of the
logarithms of some degree-m polynomials and logarithms of translates of Q. After collecting
slightly more than q2 such relations, one searches for a linear combination of these relations
that eliminates all translates of Q except for Q itself. To achieve this, consider row vectors in
(ZN)

q2 with coordinates indexed by elements λ ∈ Fq2 . For each relation, we define a vector
v whose entry vλ is 1 if Q − λ appears in the right side of (3.10), and 0 otherwise. If the
resulting matrix H(Q) of row vectors has full column rank, then one obtains an expression
for logg Q in terms of the logarithms of polynomials of degree at most m. The number of
distinct polynomials of degree at most m in this expression is expected to be Aq2(m, 3D) · q2;
in the analysis we shall assume that each of these polynomials has degree exactly m.

Since the probability that a degree-3D polynomial is m-smooth is Nq2(m, 3D)/ (q2)3D,
one must have

Nq2(m, 3D)

q6D
· (q3 + q)≫ q2 (3.11)

in order to ensure that H(Q) has much more than q2 rows, whereby H(Q) can be expected
to have full rank.

The expected cost of the relation generation portion of QPA descent is

q6D

Nq2(m, 3D)
q2 · Sq2(m, 3D),

while the cost of the linear algebra is q5 · AN .

3.3.7 Gröbner bases descent

Let Q ∈ Fq2 [X] with degQ = D, and let m = ⌈(D + 1)/2⌉. In Joux’s new descent method
[77, §5.3], one finds degree-m polynomials2 k1, k2 ∈ Fq2[X] such that Q | G, where

G = hm1 (k
q
1k2 − k1kq2) mod IX .

2More generally, the degrees of k1 and k2 can be different.

34 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

We then have
hm1 · k2 ·

∏

α∈Fq

(k1 − αk2) ≡ G(X) (mod IX)

as can be seen by making the substitution Y 7→ k1/k2 into the systematic equation (3.2)
and clearing denominators. Define k̃(X) = hm1 · k(h0/h1) and note that deg k̃ = 2m. We
thus have G ≡ k̃1k2 − k1k̃2 (mod IX), and consequently G = k̃1k2 − k1k̃2 provided that
3m < n. It follows that G(X) = Q(X)R(X) for some R ∈ Fq2 [X] with degR = 3m−D. If
R is m-smooth, we obtain a linear relationship between logg Q and logarithms of degree-m
polynomials by taking logarithms of both sides of the following:

hm1 · k2 ·
∏

α∈Fq

(k1 − αk2) ≡ Q(X)R(X) (mod IX). (3.12)

To determine (k1, k2, R) that satisfy

k̃1k2 − k1k̃2 = Q(X)R(X), (3.13)

one can transform (3.13) into a system of multivariate bilinear equations over Fq. Specifically,
each coefficient of k1, k2 and R is written using two variables over Fq, the two variables
representing the real and imaginary parts of that coefficient (which is in Fq2). The coefficients
of k̃1 and k̃2 can then be written in terms of the coefficients of k1 and k2. Hence, equating
coefficients of X i of both sides of (3.13) yields 3m + 1 quadratic equations. The real and
imaginary parts of each of these equations are equated, yielding 6m+2 bilinear equations in
10m−2D+6 variables over Fq. This system of equations can be solved by finding a Gröbner
basis for the ideal it generates. Finally, solutions (k1, k2, R) are tested until one is found
for which R is m-smooth. This yields an expression for logg Q in terms of the logarithms of
approximately q + 1 + Aq2(m, 3m − D) polynomials of degree (at most) m; in the analysis
we shall assume that each of the polynomials has degree exactly m.

Now, the number of candidate pairs (k1, k2) is ((q2)m+1)2 = q4(m+1). Since (q2)3m−D+1

of the (q2)3m+1 degree-(3m) polynomials in Fq2 [X] are divisible by Q(X), the number of
solutions (k1, k2, R) is expected to be approximately

q2(3m−D+1)

q2(3m+1)
· q4(m+1) = q4(m+1)−2D .

However, the number of distinct R obtained will be much less than q4(m+1)−2D. For example,
any two pairs (k′1, k

′
2) and (k′′1 , k

′′
2) with k′1/k

′
2 = k′′1/k

′′
2 will generate the same R, so the

expected number of distinct R is at most q4(m+1)−2D/(q2− 1). Let us denote by R(m,D) the
expected number of distinct R obtainable. Then the condition

R(m,D)≫ q2(3m−D)

Nq2(m, 3m−D)
, (3.14)

can ensure that there exists a solution (k1, k2, R) for which R is m-smooth.

3.4. Computing discrete logarithms in F36·509 35

The number R(m,D) has not been determined in general. For the case m = 1 and D = 2,
one must select k1 = aX + b and k2 = cX + d with (a, b, c, d) ∈ Pq to avoid collisions; hence
R(1, 2) ≤ q4

q8
(q3 + q) ≈ 1

q
and descending from 2 to 1 can be expected to succeed only for 1

out of every q quadratics; this is indeed what we observed in our experiments. In general,
the success of the Gröbner bases descent step is best determined experimentally (cf. §3.4.7).

It is difficult to determine the exact cost Gq2(m,D) of the Gröbner basis finding step.
After the Gröbner basis is found, the cost to find an m-smooth R is (q2)3m−D/Nq2(m, 3m−
D) · Sq2(m, 3m−D).

3.4 Computing discrete logarithms in F36·509

We present a concrete analysis of the DLP algorithm described in §3.3 for computing discrete
logarithms in F36·509 . In fact, this field is embedded in the quadratic extension field F312·509 , and
it is the latter field where the DLP algorithm of §3.3 is executed. Thus, we have q = 36 = 729,
n = 509, and N = 312·509 − 1. Note that 312·509 ≈ 29681. We wish to find logg h, where g is a
generator of F∗

312·509 and h ∈ F∗
312·509 .

As mentioned in §3.1, our main motivation for finding discrete logarithms in F36·509 is to
attack the elliptic curve discrete logarithm problem in E(F3509), where E is the supersingular
elliptic curve y2 = x3 − x + 1 with |E(F3509)| = 7r, and where r = (3509 − 3255 + 1)/7 is an
804-bit prime. Note that r2 ∤ N . The elliptic curve discrete logarithm problem in the order-r
subgroup of E(F3509) can be efficiently reduced to the discrete logarithm problem in the order-
r subgroup of F∗

312·509 . In the latter problem, we are given two elements α, β of order r in F∗
312·509

and we wish to find logα β. It can readily be seen that logα β = (logg β)/(logg α) mod r. Thus,
we will henceforth assume that h has order r and that we only need to find logg h mod r. An
immediate consequence of this restriction is that all the linear algebra in the new algorithm
has to be performed modulo the 804-bit r instead of modulo the 9681-bit N .

The parameters for each step of the algorithm were carefully chosen in order to balance
the running time of the steps. We also took into account the degree to which each step
could be parallelized on conventional computers. A summary of the parameter choices for
the descent is given in Figure 3.1. The costs of each step are given in Table 3.3.

Recall from §2.5.1 that the total cost for testing m-smoothness of a degree-d polynomial
in Fq[X] is

S312(m, d) = 2d2(d+m+ 7) F312-multiplications. (3.15)

3.4.1 Setup

We chose the representations

F36 = F3[U]/(U
6 + 2U4 + U2 + 2U + 2)

and
F312 = F36 [V]/(V 2 + U365).

We selected

h0 = (U553V + U343)X2 + (U535V + U417)X + (U172V + U89) ∈ F312 [X]

36 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

Continued fraction descent
Time: 279 Mq2

254 (2)

Classical descent

15 (870)
Classical descent
Time: 870 · 271 Mq2

Time: 30 · 274 Mq2

30 (30)

11 (23,490)
QPA descent
Time: 23, 490 · (246 Mq2 + 248 Mr)

7 (237)

4 (247)
Gröbner bases descent
Time: 247 · (0.03135 seconds)

Gröbner bases descent
Time: 255.5 · (0.002532 seconds)

2

3 (255.5)

Time: 237 · (76.9 seconds)
Gröbner bases descent

Figure 3.1: A typical path of the descent tree for computing an individual logarithm in F312·509

(q = 36). The numbers in parentheses next to each node are the expected number of nodes
at that level. ‘Time’ is the expected time to generate all nodes at a level.

3.4. Computing discrete logarithms in F36·509 37

Finding logarithms of linear polynomials
Relation generation 230Mq2 230Mq2

Linear algebra 248Ar 250Mq2

Finding logarithms of irreducible quadratic polynomials
Relation generation 312 · 239Mq2 258Mq2

Linear algebra 312 · 248Ar 269Mq2

Descent
Continued-fraction (254 to 30) 279Mq2 279Mq2

Classical (30 to 15) 30 · 274Mq2 279Mq2

Classical (15 to 11) 870 · 271Mq2 281Mq2

QPA (11 to 7) 23, 490 · (246Mq2 + 248Ar) 265Mq2

Gröbner bases (7 to 4) 237 · (76.9 seconds) 273Mq2

Gröbner bases (4 to 3) 247 · (0.03135 seconds) 272Mq2

Gröbner bases (3 to 2) 255.5 · (0.002532 seconds) 277Mq2

Table 3.3: Estimated costs of the main steps of the new DLP algorithm for computing discrete
logarithms in F312·509 (q = 36). Ar and Mq2 denote the costs of an addition modulo the 804-bit
prime r = (3509− 3255+1)/7 and a multiplication in F312 . We use the cost ratio Ar/Mq2 = 4,
and also assume that 230 multiplications in F312 can be performed in 1 second (cf. §3.4.8).

and h1 = 1, and IX ∈ F312 [X] to be the degree-509 monic irreducible factor of X36 −h0. The
other irreducible factors have degrees 43, 55 and 122.

3.4.2 Finding logarithms of linear polynomials

The factor base B1 has size 312 ≈ 219. The cost of relation generation is approximately
230Mq2 , whereas the cost of the linear algebra is approximately 248Ar.

3.4.3 Finding logarithms of irreducible quadratic polynomials

For each u ∈ F312 , the expected cost of computing logarithms of all quadratics in B2,u is
239Mq2 for the computation of H(Q), and 248Ar for the linear algebra. Note that the number
of columns in H(Q) can be halved since the logarithms of all reducible quadratics are known.
Since the expected number of relations obtainable is

Nq2(1, 6)

q12
· (q3 + q) ≈ 1

719.98
· (q3 + q) ≈ q2 + 6659,

one can expect that the matrix H(Q) will have full rank.

3.4.4 Continued-fraction descent

For the continued-fraction descent, we selected m = 30. The expected cost of this descent is
279Mq2 . The expected number of distinct irreducible factors of degree (at most) 30 obtained
is 2A312(30, 254) ≈ 30.

38 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

3.4.5 Classical descent

Two classical descent stages are employed. In the first stage, we have D = 30 and select
m = 15, s = 3, d1 = 5, d2 = 5, and δ = 4. The set of D + δ pairs (i, j) selected was

([0, 3]× [0, 5]) ∪ {(4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4)},

yielding t1 = 138 and t2 = 143. Note that inequality (3.6) is satisfied. The expected cost of
the descent for each of the 30 degree-30 polynomials is approximately 252 · Sq2(15, 108). The
expected total number of distinct irreducible polynomials of degree (at most) 15 obtained is
approximately 870.

In the second classical descent stage, we have D = 15 and select m = 11, s = 3, d1 = 3,
d2 = 4, and δ = 4. The set of D + δ pairs (i, j) selected was

([0, 2]× [0, 4]) ∪ {(3, 0), (3, 1), (3, 2), (3, 3)},

yielding t1 = 110 and t2 = 87. Note that inequality (3.6) is satisfied. The expected cost of
the descent for each of the 870 degree-15 polynomials is approximately 250 · Sq2(11, 87). The
expected total number of distinct irreducible polynomials of degree (at most) 11 obtained is
approximately 23,490.

3.4.6 QPA descent

The QPA descent method is then applied to each of the 23,490 degree-11 polynomials Q
obtained from the classical descent stage. We have D = 11 and m = 7. For each Q, the
expected number of rows in H(Q) is 570,172, so we can expect this matrix to have full
column rank (namely, q2 = 531, 441). For each Q, the expected cost of relation generation is
229·Sq2(7, 33) and the cost of the linear algebra is 248Ar. Also for eachQ, the expected number
of distinct polynomials of degree at most 7 obtained is expected to be Aq2(7, 33) · q2 ≈ 222.
Thus, the total number of distinct polynomials of degree at most 7 obtained after the QPA
descent stage is approximately 237.

3.4.7 Gröbner bases descent

The Gröbner bases descent method is applied to each of the 237 polynomials of degree (at
most) 7 obtained after QPA descent. Our experiments were run using Magma v2.19-7 [98]
on a 2.9 GHz Intel core i7-3520M.

First, one descends from 7 to 4, i.e., D = 7 and m = 4. For each degree-7 polynomial Q,
we have to solve a system of 26 quadratic polynomial equations in 32 variables over Fq (cf.
(3.13)). Since the ideal generated by these polynomials typically has dimension greater than
0, we randomly fix some of the variables in the hope of obtaining a 0-dimensional ideal. (More
precisely, we added some linear constraints involving pairs of variables, one variable from k1
and the other from k2.) Each degree-5 R obtained from the variety of the resulting ideal is
tested for 4-smoothness. If no 4-smooth R is obtained, we randomly fix some other subset
of variables and repeat. We ran 17,510 Gröbner bases descent experiments with randomly-
selected degree-7 polynomials Q. On average, we had to find 1.831 Gröbner bases for each Q.
The average number of R’s tested for 4-smoothness for each Q was 1.252, which agrees with

3.4. Computing discrete logarithms in F36·509 39

the expected number q10/Nq2(4, 5) ≈ 1.25. The average time to find each Gröbner basis was
42.0 seconds, and the memory consumption was 64 Mbytes. In total, the expected number
of polynomials of degree at most 4 obtained is 237(q + 1 + Aq2(4, 5)) ≈ 247.

Next, one descends from 4 to 3, i.e., D = 4 and m = 3. For each degree-4 polynomial
Q, we have to solve a system of 20 quadratic polynomial equations in 28 variables over Fq.
We proceed as above, by fixing some of the 28 variables. We ran 1,230,000 Gröbner bases
descent experiments with randomly-selected degree-4 polynomials Q. On average, we had to
find 2.361 Gröbner bases for each Q. The average number of R’s tested for 3-smoothness
for each Q was 1.815, which agrees with the expected number q10/Nq2(3, 5) ≈ 1.818. The
average time to find each Gröbner basis was 0.01328 seconds, and the memory consumption
was 32 Mbytes. In total, the expected number of polynomials of degree at most 3 obtained
is 247(q + 1 + Aq2(3, 5)) ≈ 257.

Finally, one descends from 3 to 2, i.e., D = 3 and m = 2. Since the total number of monic
irreducible cubics over Fq2 is approximately 255.5, which is less than 257, we perform the 3 to
2 descent for all monic irreducible cubics. For each such polynomial Q, we have to solve a
system of 14 quadratic polynomial equations in 20 variables over Fq. We proceed as above,
by fixing some of the 20 variables. We ran 8,100,000 Gröbner bases descent experiments with
randomly-selected degree-3 polynomials Q. On average, we had to find 2.026 Gröbner bases
for each Q. The average number of R’s tested for 2-smoothness for each Q was 1.499, which
agrees with the expected number q6/Nq2(2, 3) ≈ 1.5. The average time to find each Gröbner
basis was 0.00125 seconds, and the memory consumption was 32 Mbytes.

3.4.8 Overall running time

The second column of Table 3.3 gives the running time estimates for the main steps of the
new DLP algorithm in three units of time: Ar, Mq2 , and seconds. In order to assess the
overall time, we make some assumptions about the ratios of these units of time.

First, we shall assume that Ar/Mq2 = 4. To justify this, we observe that an 804-bit
integer can be stored in thirteen 64-bit words. The X86-64 instruction set has an ADD
operation that adds two 64-bit unsigned integers in one clock cycle. Hence, integer addition
can be completed in 13 clock cycles. Modular reductions comprises one conditional statement
plus one subtraction (required in roughly half of all modular additions). One can use a lazy
reduction technique that amortizes the cost of a modular reduction among many integer
additions. All in all, the cost of Ar can be estimated to be 13 clock cycles. Unlike for 64-bit
integer multiplication, there is no native support for F312 multiplication on an Intel Core i7
machine. However, we expect that a specially designed multiplier could be built to achieve a
multiplication cost of 4 clock cycles. While building such a native multiplier would certainly
be costly, this expense can be expected to be within the budget of a well-funded adversary
who is contemplating implementing the new DLP algorithm. This gives us an Ar/Mq2 ratio
of approximately 4.

Next, since a multiplication in F312 can be done in 4 clock cycles, we will transform
one second on a 2.9 GHz machine (on which the Gröbner bases descent experiments were
performed) into 230Mq2 .

Using these estimates, we see from the third column of Table 3.3 that the overall running

40 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

time of the new algorithm is approximately 281.7Mq2 . We note that the relation generation,
continued-fraction descent, classical descent, and Gröbner bases descent steps, and also the
relation generation portion of QPA descent, are effectively parallelizable in the sense that
one can essentially achieve a factor-C speedup if C processors are available. Using the
experimental results in [74, 14] as a guide, we can safely estimate that each linear system
of equations can be solved in less than one day of using a small number of GPUs and
CPUs. Thus, we conclude that the linear system of equations for finding logarithms of linear
polynomials, the 312 ≈ 219 linear systems of equations for finding logarithms of irreducible
quadratic polynomials, and the 23, 490 linear systems of equations in QPA can be effectively
parallelized on conventional computers.

Remark 3.2. (caveat emptor) Although our analysis is concrete rather than asymptotic,
it must be emphasized that the analysis makes several heuristic assumptions and approxi-
mations. For example, there are the usual heuristic assumptions that certain polynomials
encountered are uniformly distributed over the set of all polynomials of the same degree.
Furthermore, we have assumed that the matrix H(Q) in QPA descent indeed has full column
rank. Also, our run time analysis ignores operations such as additions in F312 and memory
accesses. Thus, further analysis and experimentation is needed before one can conclude with
certainty that the 281.7Mq2 running time estimate is an accurate measure of the efficiency of
the new DLP algorithm for computing logarithms in the order-r subgroup of F∗

36·509 .

Remark 3.3. (looseness of our upper bound on the running time) Remark 3.2 notwithstand-
ing, our analysis is quite conservative and there are several possible ways in which the upper
bound on the running time could be improved. (i) In our estimates for the number of branches
in a descent step, we assume that each distinct irreducible polynomial obtained has degree
exactly m, whereas in practice many of these polynomials will have degree significantly less
than m. Thus, it would appear that our upper bound on the number of nodes in the descent
tree is quite loose. (ii) The Gröbner bases descent running times reported in §3.4.7 can be
expected to be significantly improved by a native implementation of the F4 [47] or F5 [48]
Gröbner basis finding algorithms optimized for characteristic-three finite fields. (Magma im-
plements the F4 algorithm, but is not optimized for characteristic-three finite fields.) (iii) An
optimized Gröbner basis implementation might be successful in performing the descent from
D = 11 to D = 6, thereby replacing the QPA descent from D = 11 to D = 7 and significantly
reducing the number of nodes in the descent tree. (iv) Bernstein’s smoothness testing method
[24] might be faster in practice than the basic method described in Section 2.5. (v) Sieving
can be expected to significantly speedup the continued-fraction descent stage [15].

3.4.9 Comparisons with Joux-Lercier

Shinohara et al. [115] estimated that the running time of the Joux-Lercier algorithm [81] for
computing discrete logarithms in F36·509 is 2111.35 for the relation generation stage, and 2102.69

for the linear algebra stage; the units of time were not specified. The relation generation
time can be significantly decreased using Joux’s pinpointing technique [76] without having

3.5. Computing discrete logarithms in F212·367 41

a noticeable impact on the linear algebra time. We note also that the linear algebra cost of
2102.69 is an underestimation since it does not account for the number of nonzero coefficients
in each equation. In any case, since the relation generation is effectively parallelizable on
conventional computers whereas the linear algebra is not, the linear algebra stage is the
dominant step of the Joux-Lercier algorithm. Due to its large size, the linear algebra stage
will remain infeasible for the foreseeable future.

In contrast, the new algorithm is effectively parallelizable and has an overall running time
of 281.7Mq2 . If one had access to a massive number of processors (e.g., 230 processors), then
the new algorithm could be executed within one year.

We believe that these comparisons justify the claim made in Section 3.1 about the weak-
ness of the field F36·509 , and thereby also the supersingular elliptic curve over F3509 with
embedding degree 6.

3.5 Computing discrete logarithms in F212·367

We present a concrete analysis of the DLP algorithm described in §3.3 for computing discrete
logarithms in F212·367 . In fact, this field is embedded in the quadratic extension field F224·367 ,
and it is the latter field where the DLP algorithm of §3.3 is executed. Thus, we have q = 212,
n = 367, and N = 224·367 − 1. Note that 224·367 ≈ 28808. We wish to find logg h, where g is a
generator of F∗

224·367 and h ∈ F∗
224·367 .

As mentioned in §3.1, our main motivation for finding discrete logarithms in F212·367 is to
attack the discrete logarithm problem in JacC(F2367), where C is the supersingular genus-2
curve y2 + y = x5 + x3 with |JacC(F2367)| = 13 · 7170258097 · r, and where r = (2734 + 2551 +
2367+2184+1)/(13 ·7170258097) is a 698-bit prime. Note that r2 ∤ N . The discrete logarithm
problem in the order-r subgroup of JacC(F2367) can be efficiently reduced to the discrete
logarithm problem in the order-r subgroup of F∗

212·367 . Thus, we will henceforth assume that
h has order r and that we only need to find logg h mod r. An immediate consequence of this
restriction is that all the linear algebra in the new algorithm has to be performed modulo
the 698-bit r instead of modulo the 8808-bit N .

The parameters for each step of the algorithm were chosen in order to balance the run-
ning time of the steps. We also took into account the degree to which each step could be
parallelized on conventional computers. A summary of the parameter choices for the descent
is given in Figure 3.2. The costs of each step are given in Table 3.4.

If f ∈ Fq[X] has degree d, then Xq mod f can be determined by first precomputing
X4, X8, . . . , X4(d−1) mod f by repeated multiplication by X. Thereafter, computing the
fourth power of a polynomial modulo f can be accomplished by computing fourth pow-
ers of the coefficients of the polynomial, and then multiplying the precomputed polynomials
by these fourth powers (and adding the results). In this way, we get a loose upper bound of
4d2+11d2 = 15d2 F224-multiplications of the cost to compute X224 mod f , and the total cost
for testing m-smoothness of f , with respect to the method in §2.5.1, becomes

S224(m, d) = 2d2(d+m+ 7.5) F224-multiplications. (3.16)

42 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

QPA descent
Time: 233 · (251 Mq2 + 260 Mr)

6 (259)

4 (271)
Gröbner bases descent
Time: 271 · (0.02771 seconds)

Gröbner bases descent
Time: 270.4 · (0.005428 seconds)

2

3 (270.4)

Gröbner bases descent

Continued fraction descent
Time: 2100 Mq2

183 (2)

QPA descent
Time: 35 · (254 Mq2 + 260 Mr)

17 (35)

10 (233)

Time: 259 · (56.2 seconds)

Figure 3.2: A typical path of the descent tree for computing an individual logarithm in F224·367

(q = 212). The numbers in parentheses next to each node are the expected number of nodes
at that level. ‘Time’ is the expected time to generate all nodes at a level.

3.5. Computing discrete logarithms in F212·367 43

Finding logarithms of linear polynomials
Relation generation 235Mq2 235Mq2

Linear algebra 260Ar 260Mq2

Finding logarithms of irreducible quadratic polynomials
Relation generation 224 · 244Mq2 268Mq2

Linear algebra 224 · 260Ar 284Mq2

Descent
Continued-fraction (183 to 17) 2100Mq2 2100Mq2

QPA (17 to 10) 35 · (254Mq2 + 260Ar) 265Mq2

QPA (10 to 6) 233 · (251Mq2 + 260Ar) 293Mq2

Gröbner bases (6 to 4) 259 · (64.9 seconds) 293Mq2

Gröbner bases (4 to 3) 271 · (0.02771 seconds) 294Mq2

Gröbner bases (3 to 2) 270.4 · (0.005428 seconds) 291Mq2

Table 3.4: Estimated costs of the main steps of the new DLP algorithm for computing
discrete logarithms in F224·367 (q = 212). Ar and Mq2 denote the costs of an addition modulo
the 698-bit prime r = (2734 + 2551 + 2367 + 2184 + 1)/(13 · 7170258097) and a multiplication
in F224 . We use the cost ratio Ar/Mq2 = 1, and also assume that 228 multiplications in F224

can be performed in 1 second (cf. §3.5.8).

3.5.1 Setup

We chose the representations

F212 = F2[U]/(U
12 + U7 + U6 + U5 + U3 + U + 1)

and
F224 = F212 [V]/(V 2 + U152V + U3307).

We selected h0 = (U2111V + U2844)X2 + (U428V + U2059)X + (U1973V + U827) ∈ F224 [X] and
h1 = X + U2904V + U401 ∈ F224 [X], and IX ∈ F224 [X] to be the degree-367 monic irreducible
factor of h1X212 −h0. The other irreducible factors of h1X212 −h0 have degrees 23, 103, 162,
298 and 3144.

3.5.2 Finding logarithms of linear polynomials

The factor base B1 has size 224. The cost of relation generation is approximately 235Mq2 ,
whereas the cost of the linear algebra is approximately 260Ar.

3.5.3 Finding logarithms of irreducible quadratic polynomials

For each u ∈ F224 , the expected cost of computing logarithms of all quadratics in B2,u is
244Mq2 for the computation of H(Q), and 260Ar for the linear algebra.

3.5.4 Continued-fraction descent

We selected m = 17. The expected cost of this descent is 2100Mq2 . The expected number of
distinct irreducible factors of degree (at most) 17 obtained is 2A224(17, 183) ≈ 35.

44 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

3.5.5 Classical descent

When applicable, classical descent is preferable to QPA descent since the former produces a
far smaller number of branches when descending from a polynomial Q. However, in the field
under consideration we have q = 212, so at least one of X2s and X212−s

has degree at least 64.
This means that at least one of the polynomials R1 = R(X,X2s) and R2 = R′(X212−s

, h0)
(cf. §3.3.5) has very large degree, rendering classical descent ineffective.

3.5.6 QPA descent

The QPA descent method is applied to each of the 35 degree-17 polynomials Q obtained from
the continued-fraction descent stage. We have D = 17 and m = 10. For each Q, the expected
cost of relation generation is 254Mq2 and the cost of the linear algebra is 260Ar. Also for each
Q, the expected number of distinct polynomials of degree at most 6 obtained is expected to
be Aq2(10, 51) · q2 ≈ 228. Thus, the total number of distinct polynomials of degree at most
10 obtained after the first QPA descent stage is approximately 233.

The QPA descent method is then applied to each of these 233 degree-10 polynomials Q.
We have D = 10 and m = 6. For each Q, the expected cost of relation generation is 251Mq2

and the cost of the linear algebra is 260Ar. Also for each Q, the expected number of distinct
polynomials of degree at most 6 obtained is expected to be Aq2(6, 30) · q2 ≈ 226. Thus, the
total number of distinct polynomials of degree at most 6 obtained after the second QPA
descent stage is approximately 259.

3.5.7 Gröbner bases descent

The Gröbner bases descent method is applied to each of the 259 polynomials of degree (at
most) 6 obtained after QPA descent. Our experiments were run using Magma v2.19-7 [98]
on a 2.9 GHz Intel core i7-3520M.

First, one descends from 6 to 4, i.e., D = 6 and m = 4. For each degree-6 polynomial
Q, we have to solve a system of 26 quadratic polynomial equations in 34 variables over Fq

(cf. (3.13)). After fixing some variables, each degree-6 R obtained from the variety of the
resulting ideal is tested for 4-smoothness. If no 4-smooth R is obtained, we randomly fix
some other subset of variables and repeat. We ran 11,810 Gröbner bases descent experiments
with randomly-selected degree-6 polynomials Q. On average, we had to find 2.112 Gröbner
bases for each Q. The average number of R’s tested for 4-smoothness for each Q was 1.585,
which agrees with the expected number q12/Nq2(4, 6) ≈ 1.579. The average time to find each
Gröbner basis was 30.74 seconds. In total, the expected number of polynomials of degree at
most 4 obtained is 259(q + 1 + Aq2(4, 6)) ≈ 271.

Next, one descends from 4 to 3, i.e., D = 4 and m = 3. For each degree-4 polynomial
Q, we have to solve a system of 20 quadratic polynomial equations in 28 variables over Fq.
We proceed as above, by fixing some of the 28 variables. We ran 3,608,000 Gröbner bases
descent experiments with randomly-selected degree-4 polynomials Q. On average, we had to
find 2.362 Gröbner bases for each Q. The average number of R’s tested for 3-smoothness
for each Q was 1.817, which agrees with the expected number q10/Nq2(3, 5) ≈ 1.818. The
average time to find each Gröbner basis was 0.01173 seconds. In total, the expected number

3.5. Computing discrete logarithms in F212·367 45

of polynomials of degree at most 3 obtained is 271(q + 1 + Aq2(3, 5)) ≈ 283.
Finally, one descends from 3 to 2, i.e., D = 3 and m = 2. Since the total number of monic

irreducible cubics over Fq2 is approximately 270.4, which is less than 283, we perform the 3 to
2 descent for all monic irreducible cubics. For each such polynomial Q, we have to solve a
system of 14 quadratic polynomial equations in 20 variables over Fq. We proceed as above,
by fixing some of the 20 variables. We ran 1,080,000 Gröbner bases descent experiments with
randomly-selected degree-3 polynomials Q. On average, we had to find 2.024 Gröbner bases
for each Q. The average number of R’s tested for 2-smoothness for each Q was 1.5, which
agrees with the expected number q6/Nq2(2, 3) ≈ 1.5. The average time to find each Gröbner
basis was 0.002682 seconds.

3.5.8 Overall running time

In order to assess the overall time, we make some assumptions about the ratios of units of
time used in Table 3.4, namely Ar, Mq2 , and seconds.

First, we shall assume that Ar/Mq2 = 1. To justify this, we use estimates similar to
the ones in §3.4.8. An integer modulo r can be accommodated in eleven 64-bit words,
so we estimate Ar to be 11 clock cycles. Using the carry-less multiplication instruction
PCLMULQDQ, a multiplication in F224 can be performed at a price of approximately 10
clock cycles. This gives us an Ar/Mq2 ratio of approximately 1.

Next, since a multiplication in F224 can be done in approximately 10 clock cycles, we will
transform one second on a 2.9 GHz machine (on which the Gröbner bases descent experiments
were performed) into 228Mq2 .

Using these estimates, we see from the third column of Table 3.3 that the overall run-
ning time of the new algorithm is approximately 2100Mq2 . As with the case of F312·509 , the
relation generation, continued-fraction descent, classical descent, and Gröbner bases descent
steps, and also the relation generation portion of QPA descent, are effectively parallelizable
on conventional computers. Moreover, the linear system of equations for finding logarithms
of linear polynomials, the 224 linear systems of equations for finding logarithms of irreducible
quadratic polynomials, and the 233 linear systems of equations are also effectively paralleliz-
able on conventional computers since each linear system of equations can be expected to be
solvable in less than 12 days using a small number of GPUs and CPUs (cf. [74, 14]).

3.5.9 Comparisons with Joux-Lercier

The Joux-Lercier algorithm [81] with pinpointing [76] is an alternative method for comput-
ing discrete logarithms in the order-r subgroup of F∗

212·367 . The algorithm works with two
polynomial representations of F212·367 .

The factor base can be taken to be the set of all monic irreducible polynomials of degree
at most 4 over F212 in each of the two representations. The action of the 212-power Frobenius
is used to reduce the factor base size by a factor of 12, yielding a factor base of size 243.4.
Taking d1 = 37 and d2 = 10 (see Section 2 of [76] for the definitions of d1 and d2), the
running time of relation generation is approximately 294.0Mq, where Mq denotes the cost of a
multiplication in F212 (cf. Section 4 of [76]). The (sparse) matrix in the linear algebra stage
has 243.4 rows and columns, and approximately 28 nonzero entries per row. Using standard

46 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

techniques for solving sparse systems of linear equations [93], the expected cost of the linear
algebra is approximately 291.6 operations modulo r. Since relation generation is effectively
parallelizable, whereas the linear algebra is not amenable to parallelization due to its large
size, the dominant step in the Joux-Lercier algorithms is the linear algebra.

In contrast, even though the new algorithm has a greater overall running time of 2100Mq2 ,
it is effectively parallelizable. Thus a reasonable conclusion is that the new algorithm is more
effective than Joux-Lercier for computing logarithms in F212·367 .

To lend further weight to this conclusion, we observe that special-purpose hardware for
solving the relatively-small linear systems of equations in the new algorithm can reasonably
be expected to be built at a cost that is well within the budget of a well-funded organization.
In 2005, Geiselmann et al. [55] estimated that the cost of special-purpose hardware for solving
a linear system where the matrix has 233 rows and columns, and approximately 27 nonzero
entries (integers modulo 2) per row would be approximately U.S. $2 million; the linear system
would be solvable in 2.4 months. For F212·367 , each matrix in the new algorithm has 224 rows
and columns, and approximately 212 nonzero entries (integers modulo r) per row. On the
other hand, the cost of special-purpose hardware for solving the linear system encountered
in the Joux-Lercier algorithm would be prohibitive.

Our conclusion about the relative weakness of F212·367 for discrete logarithm cryptogra-
phy also applies to the field F212·439 . Both these conclusions are subject to the caveats in
Remark 3.2.

After the estimates in this section were completed, Granger, Kleinjung and Zumbrägel
[59, 60] developed several enhancements to the DLP algorithm that substantially decreased its
estimated running time. Their improved algorithm was used to compute a discrete logarithm
in F312·367 in approximately 52, 240 CPU hours.

3.6 Computing discrete logarithms in F24·3041

We present a concrete analysis of the DLP algorithm described in §3.3 for computing discrete
logarithms in F24·3041 . In this case, we employ lattices in the classical descent stage [80, 81, 57]
(that we describe in §3.6.5), and use Wiedemann’s algorithm for performing linear algebra.

The field F24·3041 is embedded in its sextic extension F224·3041 , and it is in the latter field
where the DLP algorithm is executed. Thus, we have q = 212 = 2048 and n = 3041.

As mentioned in §3.1, our main motivation for finding discrete logarithms in F24·3041 is to
attack the elliptic curve discrete logarithm problem in E2(F23041), where E2 is the supersin-
gular elliptic curve y2+y = x3+x with |E2(F23041)| = r and r = 23041−21521+1 is a 3041-bit
prime. The elliptic curve discrete logarithm problem in the order-r subgroup of E2(F23041) can
be efficiently reduced to the discrete logarithm problem in the order-r subgroup of F∗

24·3041 .
We wish to compute logg h mod r, where g is a generator of F∗

24·3041 and h ∈ F∗
24·3041 has order

r. Hence, all the linear algebra in the new algorithm is performed modulo the 3041-bit r.

A summary of the parameter choices for the descent is given in Figure 3.3. The cost of
each step is given in Table 3.5.

3.6. Computing discrete logarithms in F24·3041 47

Continued fraction descent
Time: 2128.4 Mq2

1520 (2)

Classical descent

39 (1760)
Classical descent
Time: 2126 Mq2

Time: 2126.8 Mq2

Classical descent

QPA descent

123 (44)

24 (216)

Time: 2127 Mq2

Time: 285.3 Mq2

7 (287.2)
Gröbner bases descent
Time: 287.2 · (35.03 seconds)

2

3 (270.4)
Gröbner bases descent

Time: 272 · (0.005428 seconds)

4 (294)
Gröbner bases descent
Time: 296 · (0.0277 seconds)

20 (221.3)

12 (254.5)
QPA descent
Time: 2118.5 Mq2

Figure 3.3: A typical path of the descent tree for computing an individual logarithm in
F224·3041 (q = 212). The numbers in parentheses next to each node are the expected number
of nodes at that level. ‘Time’ is the expected time to generate all nodes at a level.

48 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

Finding logarithms of linear polynomials
Relation generation 235Mq2 235Mq2

Linear algebra 260Ar 264Mq2

Finding logarithms of irreducible quadratic polynomials
Relation generation 224 · 244Mq2 268Mq2

Linear algebra 224 · 260Ar 288Mq2

Descent
Continued-fractions (1520 to 123) 2128.4Mq2 2128.4Mq2

Classical (123 to 39) 44 · 2121.3Mq2 2126.8Mq2

Classical (39 to 24) 1760 · 2115Mq2 2126Mq2

Classical (24 to 20) 216 · 2111Mq2 2127Mq2

QPA (20 to 12) 221.3 · (254Mq2 + 260Ar) 285.3Mq2

QPA (12 to 7) 254.5 · (252Mq2 + 260Ar) 2118.5Mq2

Gröbner bases (7 to 4) 287.2 · (35.03 seconds) 2120.3Mq2

Gröbner bases (4 to 3) 294 · (0.0277 seconds) 2116.8Mq2

Gröbner bases (3 to 2) 270.4 · (0.005428 seconds) 290.9Mq2

Table 3.5: Estimated costs of the main steps of the new DLP algorithm for computing
discrete logarithms in F224·3041 (q = 212). Ar and Mq2 denote the costs of an addition modulo
the 3041-bit prime r and a multiplication in F224 . We use the cost ratio Ar/Mq2 = 24, and
also assume that 228 multiplications in F224 can be performed in 1 second (cf. §3.6.8).

3.6.1 Setup

We chose the representations F212 = F2[U]/(U
12 + U7 + U6 + U5 + U3 + U + 1) and F224 =

F212 [V]/(V 2 +U152V +U3307). We selected h0 = (U1515V +U3374)X2 + (U3690V +U2704)X +
(U2440V + U142) ∈ F224 [X] and h1 = X + U2339V + U807, and IX ∈ F224 [X] to be the degree-
3041 monic irreducible factor of h1 ·X212 − h0. The other irreducible factors have degrees 5,
7, 69, 110, 293 and 572.

3.6.2 Finding logarithms of linear polynomials

The factor base B1 has size 224. The cost of relation generation is approximately 235Mq2 ,
whereas the cost of the linear algebra is approximately 260Ar.

3.6.3 Finding logarithms of irreducible quadratic polynomials

For each u ∈ F224 , the expected cost of computing logarithms of all quadratics in B2,u is
244Mq2 for the computation of H(Q), and 260Ar for the linear algebra.

3.6.4 Continued-fractions descent

For the continued-fractions descent, we selected m = 123. The expected cost of this descent
is 2128.4Mq2 . The expected number of distinct irreducible factors of degree (at most) 123
obtained is 2A224(123, 1520) ≈ 44.

3.6. Computing discrete logarithms in F24·3041 49

3.6.5 Classical descent

Let p = 2 and ℓ = 12. Let s ∈ [0, ℓ], and let R ∈ Fq2 [X, Y] with degY R = e. Then

he1 ·
[
R(X,Xpℓ−s

)
]ps

= he1 · R′(Xps, Xpℓ) ≡ he1 · R′(Xps, h0/h1) (mod IX), (3.17)

where R′ is obtained from R by raising all its coefficients to the power ps.
Let Q ∈ Fq2 [X] with degQ = D, and let m < D. One selects s ∈ [0, ℓ] and searches

for a polynomial R ∈ Fq2 [X, Y] such that (i) Q | R1 where R1 = R(X,Xpℓ−s
); (ii) degR1/Q

and degR2 are appropriately balanced where R2 = he1 · R′(Xps, h0/h1); and (iii) both R1/Q
and R2 are m-smooth. Taking logarithms of both sides of (3.17) then gives an expression for
loggQ in terms of the logarithms of polynomials of degree at most m.

A family of polynomials R satisfying (i) and (ii) can be constructed by finding a basis
{(u1, u2), (v1, v2)} of the lattice

LQ = {(w1, w2) ∈ Fq2[X]× Fq2[X] : Q | (w1(X)− w2(X)Xpℓ−s

)}

where deg u1, deg u2, deg v1, deg v2 ≈ D/2. The points (w1, w2) in LQ can be sampled to
obtain polynomials R(X, Y) = w1(X)− w2(X)Y satisfying (i) and (ii) by writing

(w1, w2) = a(u1, u2) + b(v1, v2) = (au1 + bv1, au2 + bv2)

with a ∈ Fq2[X] monic of degree δ and b ∈ Fq2 [X] of degree δ − 1. We have degw1, degw2 ≈
D/2 + δ, so degR1 = t1 ≈ (D/2 + δ) + pℓ−s and degR2 = t2 ≈ (D/2 + δ)ps + 2. In order
to ensure that the number of lattice points considered is enough to generate a polynomial R
such that both R1/Q and R2 are m-smooth, the parameters s and δ must be selected so that

q4δ ≫ q2(t1−D)

Nq2(m, t1 −D)
· q2t2

Nq2(m, t2)
. (3.18)

Ignoring the time to compute a balanced basis of LQ, the expected cost of finding a polynomial
R satisfying (i)–(iii) is

q2(t1−D)

Nq2(m, t1 −D)
· q2t2

Nq2(m, t2)
·min(Sq2(m, t1 −D), Sq2(m, t2)). (3.19)

The expected number of distinct irreducible factors of R1/Q and R2 is Aq2(m, t1 − D) +
Aq2(m, t2). In the concrete analysis, we shall assume that each of these irreducible factors
has degree exactly m.

Three classical descent stages are employed. In the first stage, we have D = 123 and select
m = 39, s = 3, δ = 2, which yield t1 = 575 and t2 = 506. The expected cost of the descent
stage for each of the 44 degree-123 polynomials is approximately 293.7 · Sq2(39, 452). The
expected total number of distinct irreducible polynomials of degree (at most) 39 obtained is
approximately 1760.

In the second classical descent stage we have D = 39 and select m = 24, s = 4, δ = 2,
which yield t1 = 277 and t2 = 338. The expected cost of the descent for each of the 1760

50 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

degree-39 polynomials is approximately 290.2 · Sq2(24, 238). The expected total number of
distinct irreducible polynomials of degree (at most) 24 obtained is approximately 216.

In the third classical descent stage we have D = 24 and select m = 20, s = 4, δ = 2,
which yield t1 = 270 and t2 = 226. The expected cost of the descent for each of the 216

degree-24 polynomials is approximately 286.9 · Sq2(24, 226). The expected total number of
distinct irreducible polynomials of degree (at most) 20 obtained is approximately 221.3.

3.6.6 QPA descent

Two QPA descent stages are employed. In the first stage, we have D = 20 and select m = 12.
For each Q, the expected cost of relation generation is 234.8 · Sq2(12, 60) and the cost of the
linear algebra is 260Ar. Also for each Q, the expected number of distinct polynomials of
degree at most 12 obtained is expected to be Aq2(12, 60) · q2 ≈ 233.2. Thus, the total number
of distinct polynomials of degree at most 12 obtained after the first QPA descent stage is
approximately 254.5.

In the second stage, we have D = 12 and select m = 7. For each Q, the expected cost of
relation generation is 235 ·Sq2(7, 36) and the cost of the linear algebra is 260Ar. Also for each
Q, the expected number of distinct polynomials of degree at most 7 obtained is expected to
be Aq2(7, 36) · q2 ≈ 232.7. Thus, the total number of distinct polynomials of degree at most 7
obtained after the second QPA descent stage is approximately 287.2.

3.6.7 Gröbner bases descent

Three Gröbner bases descent stages are employed. The first stage has D = 7 and m = 4,
and is expected to yield approximately 299.2 polynomials of degree (at most) 4. The second
stage has D = 4 and m = 3 and is applied to all the 294 monic irreducible quartics over
F224 . The third stage has D = 3 and m = 2 and is applied to all the 270.4 monic irreducible
cubics over F224 . Our experiments were run on a 2.9 GHz Intel core i7-3520M using Magma’s
implementation of Faugère’s F4 algorithm [47].

In the first stage, for each degree-7 polynomial Q we have to solve a system of 26 quadratic
polynomial equations in 32 variables over Fq (cf. (3.13)). After fixing some variables, each
degree-5 R obtained from the variety of the resulting ideal is tested for 4-smoothness. If no
4-smooth R is obtained, we randomly fix some other subset of variables and repeat. We ran
10,000 Gröbner bases descent experiments with randomly-selected degree-7 polynomials Q.
On average, we had to find 1.806 Gröbner bases for each Q. The average number of R’s
tested for 4-smoothness for each Q was 1.252. The average time spent on each Q was 35.03
seconds.

For the second and third stages, we use the experimental results from §3.5.7.

3.6.8 Overall running time

The second column of Table 4.2 gives the running time estimates for the main steps of the
new DLP algorithm in three units of time: Ar, Mq2 , and seconds. In order to assess the
overall time, we make some assumptions about the ratios of these units of time.

First, we shall assume that Ar/Mq2 = 24. To justify this, we observe that a 3041-bit
integer can be stored in 48 64-bit words. The cost of Ar can be estimated to be 48 clock

3.7. Concluding remarks 51

cycles. Using the carry-less multiplication instruction PCLMULQDQ, a multiplication in
F224 can be performed at a price of 3-4 clock cycles. This gives us an Ar/Mq2 ratio of
approximately 24.

Next, since a multiplication in Mq2 can be done in 15 clock cycles, we will transform
one second on a 2.9 GHz machine (on which the Gröbner bases descent experiments were
performed) into 228Mq2 .

Using these estimates, we see from the third column of Table 3.5 that the overall running
time of the new algorithm is approximately 2129.3Mq2 . The new algorithm is effectively
parallelizable, since each linear system of equations can be expected to be solvable in less
than 12 days using a small number of GPUs and CPUs.

3.6.9 Comparisons

The upper bound of 2129.3Mq2 on the running time of the new algorithm for computing
logarithms in F24·3041 convincingly demonstrates that this field offers drastically less security
than the 2192 resistance to attacks by Coppersmith’s algorithm [40, 94]. This decrease in
security is even more pronounced when one considers that Coppersmith’s algorithm is not
parallelizable whereas the new algorithm is effectively parallelizable.

3.7 Concluding remarks

Our concrete analysis of the new algorithm of Joux and Barbulescu et al. has shown that the
supersingular elliptic curve over F3509 with embedding degree 6 is significantly less resistant
to attacks on the elliptic curve discrete logarithm problem than previously believed. Con-
sequently, this elliptic curve is not suitable for implementing pairing-based cryptosystems.
Our analysis applies equally well to the supersingular elliptic curve over F35·97 with embed-
ding degree 6 that has been proposed for compact hardware implementation of pairing-based
cryptosystems by Estibals [46]. Moreover, the new algorithm appears advantageous over
Joux-Lercier’s and Coppersmith’s algorithms for discrete logarithm computations in F212·367

with embedding degree 12 and F24·3041 with embedding degree 4.
An important open question is whether the new algorithm or its implementation can be

improved to the extent that the discrete logarithm problem in F36·509 can be feasibly solved
using existing computer technology.

52 Chapter 3. Weakness of F36·509 and F24·3041 for Discrete Logarithm Cryptography

4 Weakness of F36·1429 and Discrete Loga-

rithm Computations in F36·137 and F36·163

4.1 Introduction

The setup in the new algorithm of Joux and Barbulescu et al. described in Chapter 3 imposes
some restrictions on the algorithm parameters which limits the range of fields on which the
algorithm is effective. Suppose that one wishes to compute logarithms in Fq2n ,1 where q is
the power of a small prime and n is prime. The new algorithm of Joux and Barbulescu et
al. represents Fq2n as Fq2 [X]/(IX), where IX is a degree-n irreducible factor of h1Xq − h0 in
Fq2[X], and h0, h1 ∈ Fq2 [X] have small degree (say, 2); hence, one must have n ≤ q + 2. For
example, logarithms in F36·509 can be computed by first embedding the field in the quadratic
extension F(36)2·509 ; one can take q = 36 = 729 and n = 509. However, if one wishes to
compute logarithms in F36·1429 , then the smallest extension that meets the setup criteria is
F(39)2·1429 ; this field is too large for the new attacks to be effective.

At the ECC 2013 conference, Granger and Zumbrägel [64] (see also [60]) presented a mod-
ification of the new algorithms that alleviates the aforementioned restrictions. Their idea is
to select IX as a degree-n irreducible factor of h1(Xq) · X − h0(Xq), where h0, h1 ∈ Fq2[X]
have small degree (say, 2); the condition on q and n is then relaxed to n ≤ 2q+1. While this
modification does not affect the asymptotic run time of the new algorithms, it is very suc-
cessful in increasing the effectiveness of the new algorithms in practice. Granger, Kleinjung
and Zumbrägel [60] presented several enhancements to the algorithms and computed loga-
rithms in the 4404-bit field F212·367 in approximately 52,240 CPU hours. Furthermore, they
drastically reduced the estimated time to compute logarithms in the 4892-bit field F24·1223 to
259 modular multiplications. Note that the fields F212·367 and F24·1223 offer approximately 128
bits of security against attacks by Coppersmith’s algorithm.

The purpose of this chapter, in joint work with A. Menezes, T. Oliveira and F. Rodríguez-
Henríquez [4, 5], is to show that the new algorithm of Joux and Barbulescu et al. can have
a more drastic impact on the security of the supersingular elliptic curves y2 = x3 − x ± 1
over F3n when the Granger-Zumbrägel polynomial representation is used. Recall that the
supersingular elliptic curves y2 = x3 − x ± 1 over F3n have embedding degree 6 and were
proposed for Type 1 pairing-based cryptography in several early papers on pairing-based
cryptography [31, 18, 52, 62].

At high security levels, we consider the embedding degree-6 elliptic curve E : y2 =

1In general, one wishes to compute logarithms in Fpcn where p is a small prime, n a prime and c a small
integer. To accomplish this, one embeds Fpcn in F(pℓ)kn where k > 1 and c | ℓk.

53

54 Chapter 4. Weakness of F36·1429 and DL Computations in F36·137 and F36·163

x3 − x− 1 over F31429 . We have |E(F31429)| = cr where r is a 2223-bit prime and c is a 43-bit
cofactor. The finite field F36·1429 offers approximately 192 bits of security against attacks
on the DLP by Coppersmith’s algorithm. In contrast, our concrete analysis shows that the
order-r subgroup of the multiplicative group of this field offers at most 96 bits of security
against the new attack with the Granger-Zumbrägel polynomial representation.

In addition, we demonstrate that, with modest computational resources, the new al-
gorithm can be used to solve instances of the discrete logarithm problem that remain be-
yond the reach of classical algorithms. The first target field is the 1303-bit field F36·137 ;
this field does not enjoy any Kummer-like properties. More precisely, we are interested
in solving the discrete logarithm problem in the order-r subgroup G of F∗

36·137 , where r =
(3137 − 369 + 1)/7011427850892440647 is a 155-bit prime. The discrete logarithm problem
in this group is of cryptographic interest because the values of the bilinear pairing derived
from the supersingular elliptic curve E : y2 = x3 − x+ 1 over F3137 lie in G. Consequently, if
logarithms in G can be computed efficiently then the associated bilinear pairing is rendered
cryptographically insecure. Note that since r is a 155-bit prime, Pollard’s rho algorithm [109]
for computing logarithms in G is infeasible. Moreover, recent work on computing logarithms
in the 809-bit field F2809 [14] suggests that Coppersmith’s algorithm is infeasible for comput-
ing logarithms in G, whereas recent work on computing logarithms in the 923-bit field F36·97

[69] (see also [115]) indicates that computing logarithms in G using the Joux-Lercier algo-
rithm [81] would be a formidable challenge. In contrast, we show that the new algorithm can
be used to compute logarithms in G in just a few days using a small number of CPUs; more
precisely, our computation consumed a total of 888 CPU hours. The computational effort
expended in our experiment is relatively small, despite the fact that our implementation was
done using the computer algebra system Magma V2.20-2 [98] and is far from optimal (see
Remark 3.3).

The second target field is the 1551-bit field F36·163 ; this field does not enjoy any Kummer-
like properties. More precisely, we are interested in solving the discrete logarithm problem
in the order-r subgroup G of F∗

36·163 , where r = 3163+382+1 is a 259-bit prime. The discrete
logarithm problem in this group is of cryptographic interest because the values of the bilinear
pairing derived from the supersingular elliptic curve E : y2 = x3 − x− 1 over F3163 lie in G.
This bilinear pairing was first considered by Boneh, Lynn and Shacham in their landmark
paper on short signature schemes [31]; see also [63]. Furthermore, the bilinear pairing derived
from the quadratic twist of E was one of the pairings implemented by Galbraith, Harrison
and Soldera [52]. Again, we show that the new algorithm can be used to compute logarithms
in G in just a few days using a small number of CPUs; our computation used 1201 CPU
hours.

The remainder of the chapter is organized as follows. In §4.2 we review the DLP algo-
rithms of Joux and Barbulescu et al. while incorporating the Granger-Zumbrägel polynomial
representation. Our concrete analysis for F36·1429 is then presented in §4.3. Our experimen-
tal results with computing logarithms in F36·137 and F36·163 are reported in §4.4 and §4.5,
respectively. We make some concluding remarks in §4.6.

4.2. The DLP algorithm of Joux, Barbulescu et al. and Granger-Zumbrägel 55

4.2 The DLP algorithm of Joux, Barbulescu et al. and

Granger-Zumbrägel

The DLP algorithm we describe is due to Joux [77], with a descent step from the quasi-
polynomial time algorithm of Barbulescu et al. [16], and a polynomial representation (selec-
tion of h0 and h1) due to Granger and Zumbrägel [64] (see also [60]). The description of the
algorithm closely follows the description in Chapter 3; the most important changes are the
incorporation of the polynomial selection of Granger and Zumbrägel and the use of lattices
in the classical descent stage [80, 81, 57].

Let Fqkn be a finite field where n ≤ 2q + 1. The elements of Fqkn are represented as
polynomials of degree at most n − 1 over Fqk . Let N = qkn − 1. Let g be an element of
order N in F∗

qkn, and let h ∈ F∗
qkn. We wish to compute logg h. The algorithm proceeds

by first finding the logarithms of all degree-one (§4.2.2) and degree-two (§4.2.3) elements in
Fqkn. Then, in the descent stage, logg h is expressed as a linear combination of logarithms of
degree-one and degree-two Fqkn elements. The descent stage proceeds in several steps, each
expressing the logarithm of a degree-D element as a linear combination of the logarithms of
elements of degree ≤ m for some m < D. Four descent methods are used; these are described
in §4.2.4–§4.2.7. The cost of each step is given in Table 4.1.

Notation. For γ ∈ Fqk , γ denotes the element γq
k−1

. For P ∈ Fqk [X], P denotes the
polynomial obtained by raising each coefficient of P to the power qk−1. The cost of an
integer addition modulo N is denoted by AN , and the cost of a multiplication in Fqk is
denoted by Mqk .

The projective general linear group of degree 2 over Fq is denoted PGL2(Fq). Pq,k is a set
of distinct representatives of the left cosets of PGL2(Fq) in PGL2(Fqk); note that

|Pq,k| =
q3k − qk
q3 − q =

⌊ 32k⌋−1∑

i=1

q3k−2i−1.

A matrix (a b
c d) ∈ Pq,k is identified with the quadruple (a, b, c, d).

4.2.1 Setup

Select polynomials h0, h1 ∈ Fqk [X] of small degree so that

X · h1(Xq)− h0(Xq) (4.1)

has a irreducible factor IX of degree n in Fqk [X]; we will henceforth assume that max(deg h0,
deg h1) = 2. Note that

X ≡ h0(X
q)

h1(Xq)
≡
(
h0(X)

h1(X)

)q

(mod IX) (4.2)

The field Fqkn is represented as Fqkn = Fqk [X]/(IX) and the elements of Fqkn are represented
as polynomials in Fqk [X] of degree at most n− 1. Let g be a generator of F∗

qkn.

56 Chapter 4. Weakness of F36·1429 and DL Computations in F36·137 and F36·163

Finding logarithms of linear polynomials (§4.2.2)

Relation generation 6qk · Sqk(1, 3)

Linear algebra q2k+1 · AN

Finding logarithms of irreducible quadratic polynomials (§4.2.3)

Relation generation q8k

N
qk

(1,6) · Sqk(1, 6)

Linear algebra q3k+1 · AN

Descent (Degree D to degree m)

Continued-fractions (§4.2.4) {D = n− 1}

(
qn−1

N
qk

(m,(n−1)/2)

)2

· Sqk(m, (n − 1)/2)

Classical (§4.2.5) q2(t1−D+t2)

N
qk

(m,t1−D)N
qk

(m,t2)
·min(Sqk(m, t1 −D), Sqk(m, t2)) or

q2(t1+t2−D)

N
qk

(m,t1)Nqk
(m,t2−D) ·min(Sqk(m, t1), Sqk(m, t2 −D))

QPA (§4.2.6) q6D+2

N
qk

(m,3D) · Sqk(m, 3D) + q5 ·AN

Gröbner bases (§4.2.7) Gqk(m,D) + q6m−2D

N
qk

(m,3m−D) · Sqk(m, 3m−D)

Table 4.1: Estimated costs of the main steps of the useful DLP algorithm for computing
discrete logarithms in Fqkn . AN and Mqk denote the costs of an addition modulo N and a
multiplication in Fqk . See §3.3.5 for the definitions of t1 and t2. The Gröbner basis cost
Gqk(m,D) is defined in §4.2.7.

4.2.2 Finding logarithms of linear polynomials

Let B1 = {X + a | a ∈ Fqk}, and note that |B1| = qk. To compute the logarithms of
B1-elements, we first generate linear relations of these logarithms. Let (a, b, c, d) ∈ Pq,k.
Substituting Y 7→ (aX + b)/(cX + d) into the systematic equation

Y q − Y =
∏

α∈Fq

(Y − α) (4.3)

and then multiplying by (cX + d)q+1 yields

(aX + b)q(cX + d)− (aX + b)(cX + d)q (4.4)

= (cX + d) ·
∏

α∈Fq

[(a− αc)X + (b− αd)].

4.2. The DLP algorithm of Joux, Barbulescu et al. and Granger-Zumbrägel 57

Replacing X by (h0/h1)
q in the linear terms aX + b and cX + d occurring in the left side of

(4.4) and then clearing denominators yields
(
(aX + b)(ch0 + d h1)− (ah0 + b h1)(cX + d)

)q

(4.5)

≡ h
q

1 · (cX + d) ·
∏

α∈Fq

[(a− αc)X + (b− αd)].

If the polynomial on the left side of (4.5) is 1-smooth, then taking logarithms of both sides
of (4.5) yields a linear relation of the logarithms of B1-elements and the logarithm of h1.
The probability that the left side of (4.5) is 1-smooth is Nqk(1, 3)/q

6 ≈ 1
6
. Thus, after

approximately 6qk trials one expects to obtain (slightly more than) qk relations. The cost
of the relation generation stage is 6qk · Sqk(1, 3). The logarithms can then be obtained by
using Wiedemann’s algorithm for solving sparse systems of linear equations [124, 41]. The
expected cost of the linear algebra is q2k+1 · AN since each equation has approximately q
nonzero terms.

4.2.3 Finding logarithms of irreducible quadratic polynomials

Let u ∈ Fqk , and let Q(X) = X2 + uX + v ∈ Fqk [X] be an irreducible quadratic. Define B2,u
to be the set of all irreducible quadratics of the form X2 + uX + w in Fqk [X]; one expects
that |B2,u| ≈ (qk − 1)/2. The logarithms of all elements in B2,u are found simultaneously
using one application of QPA descent (see §3.3.6). More precisely, one first collects relations
of the form (4.14), where the left side of (4.14) factors as a product of linear polynomials
(whose logarithms are known). The expected number of relations one can obtain is |Pq,k| ·
Nqk(1, 6)/q

6k. Provided that this number is significantly greater than |B2,u|, the matrix H(Q)
is expected to have full (column) rank. One can then solve the resulting system of linear
equations to obtain the logarithms of all irreducible translates Q + w of Q. This step is
repeated for each u ∈ Fqk . Hence, there are qk independent linear systems of equations to be
solved.

For each u ∈ Fqk , the cost of the relation generation is q7k/Nqk(1, 6) · Sqk(1, 6), while the
linear algebra cost is q2k+1 · AN .

4.2.4 Continued-fractions descent

Recall that we wish to compute logg h, where h ∈ Fqkn = Fqk [X]/(IX). We will henceforth
assume that deg h = n − 1. The descent stage begins by multiplying h by a random power
of g. The extended Euclidean algorithm is used to express the resulting field element h′ in
the form h′ = w1/w2 where degw1, degw2 ≈ n/2 [28]; for simplicity, we shall assume that
n is odd and degw1 = degw2 = (n − 1)/2. This process is repeated until both w1 and w2

are m-smooth for some chosen m < (n − 1)/2. This gives logg h
′ as a linear combination of

logarithms of polynomials of degree at most m. The expected cost of this continued-fractions
descent step is approximately

(
(qk)(n−1)/2

Nqk(m, (n− 1)/2)

)2

· Sqk(m, (n− 1)/2). (4.6)

58 Chapter 4. Weakness of F36·1429 and DL Computations in F36·137 and F36·163

The expected number of distinct irreducible factors of w1 and w2 is 2Aqk(m, (n − 1)/2).
In the concrete analysis, we shall assume that each of these irreducible factors has degree
exactly m. The logarithm of each of these degree-m polynomials is then expressed as a linear
combination of logarithms of smaller degree polynomials using one of the descent methods
described in §4.2.5, §4.2.6 and §4.2.7.

4.2.5 Classical descent

Let p be the characteristic of Fq, and let q = pℓ. Let s ∈ [0, ℓ], and let R ∈ Fqk [X, Y]. Then
[
R
(
X, (h0/h1)

pℓ−s
)]ps

= R′
(
Xps, h

pℓ

0

)
= R′

(
Xps, h0

(
Xpℓ

))
≡ R′ (Xps, X

)
(mod IX)

(4.7)
where R′ is obtained from R by raising all its coefficients to the power ps. Let µ = degY R.
Then multiplying both sides of (4.7) by h

qµ

1 gives Hence
[
h
pℓ−s·µ
1 · R

(
X, (h0/h1)

pℓ−s
)]ps

≡ h
qµ

1 ·R′(Xps, X) (mod IX). (4.8)

Let Q ∈ Fqk [X] with degQ = D, and let m < D. In the Joux-Lercier descent method
[81], as modified by Göloğlu et al. [57], one selects s ∈ [0, ℓ] and searches for a polynomial

R ∈ Fqk [X, Y] such that (i) Q | R1 where R1 = h
pℓ−sµ

1 R(X, (h0/h1)
pℓ−s

); (ii) degR1/Q and
degR2 are appropriately balanced where R2 = R′(Xps, X); and (iii) both R1/Q and R2 are
m-smooth. Taking logarithms of both sides of (4.8) then gives an expression for logg Q in
terms of the logarithms of polynomials of degree at most m.

A family of polynomials R satisfying (i) and (ii) can be constructed by finding a basis
{(u1, u2),
(v1, v2)} of the lattice

LQ = {(w1, w2) ∈ Fqk [X]× Fqk [X] : Q | (w1(X)h1(X)p
ℓ−s − w2(X)h0(X)p

ℓ−s

)}
where deg u1, deg u2, deg v1, deg v2 ≈ D/2. The points (w1, w2) in LQ can be sampled to
obtain polynomials R(X, Y) = w1(X)− w2(X)Y satisfying (i) and (ii) by writing

(w1, w2) = a(u1, u2) + b(v1, v2) = (au1 + bv1, au2 + bv2)

with a ∈ Fqk [X] monic of degree δ and b ∈ Fqk [X] of degree δ − 1. The number of lattice
points to consider is therefore (qk)2δ. We have degw1, degw2 ≈ D/2 + δ, so degR1 = t1 ≈
(D/2 + δ) + 2pℓ−s and degR2 = t2 ≈ (D/2 + δ)ps + 1. In order to ensure that there are
sufficiently many such lattice points to generate a polynomial R for which both R1/Q and
R2 are m-smooth, the parameters s and δ must be selected so that

q2kδ ≫ qk(t1−D)

Nqk(m, t1 −D)
· qkt2

Nqk(m, t2)
. (4.9)

Ignoring the time to compute a balanced basis of LQ, the expected cost of finding a polynomial
R satisfying (i)–(iii) is

qk(t1−D)

Nqk(m, t1 −D)
· qkt2

Nqk(m, t2)
·min(Sqk(m, t1 −D), Sqk(m, t2)). (4.10)

4.2. The DLP algorithm of Joux, Barbulescu et al. and Granger-Zumbrägel 59

The expected number of distinct irreducible factors of R1/Q and R2 is Aqk(m, t1 − D) +
Aqk(m, t2). In the concrete analysis, we shall assume that each of these irreducible factors
has degree exactly m.

An alternative to the above method is to select s ∈ [0, ℓ] and search for R ∈ Fqk [X, Y]
such that (i) Q | R2; (ii) degR1 and degR2/Q are appropriately balanced; and (iii) both R1

and R2/Q are m-smooth. A family of polynomials R satisfying (i) and (ii) can be constructed
by finding a basis {(u1, u2), (v1, v2)} of the lattice

LQ = {(w1, w2) ∈ Fqk [X]× Fqk [X] : Q | (w1(X)− w2(X)Xps)}
where deg u1, deg u2, deg v1, deg v2 ≈ D/2. The points (w1, w2) in LQ can be sampled as
before to obtain polynomials R(X, Y) = w′′

1(Y) − w′′
2(Y)X satisfying (i) and (ii) where w′′

is obtained from w by raising all its coefficients to the power p−s. We have degw1, degw2 ≈
D/2 + δ, so degR1 = t1 ≈ 2(D/2 + δ)pℓ−s + 1 and degR2 = t2 ≈ (D/2 + δ) + ps. In order
to ensure that there are sufficiently many such lattice points to generate a polynomial R for
which both R1 and R2/Q are m-smooth, the parameters s and δ must be selected so that

q2kδ ≫ qkt1

Nqk(m, t1)
· qk(t2−D)

Nqk(m, t2 −D)
. (4.11)

Ignoring the time to compute a balanced basis of LQ, the expected cost of finding a polynomial
R satisfying (i)–(iii) is

qkt1

Nqk(m, t1)
· qk(t2−D)

Nqk(m, t2 −D)
·min(Sqk(m, t1), Sqk(m, t2 −D)). (4.12)

The expected number of distinct irreducible factors of R1, R2/Q is Aqk(m, t1)+Aqk(m, t2−D).

4.2.6 QPA descent

Let Q ∈ Fqk [X] with degQ = D, and let m ∈ [⌈D/2⌉, D − 1]. Let (a, b, c, d) ∈ Pq,k.
Substituting Y 7→ (aQ + b)/(cQ + d) into the systematic equation (4.3) and multiplying by
(cQ+ d)q+1 yields

(aQ+ b)q(cQ+ d)− (aQ + b)(cQ + d)q = (cQ+ d)
∏

α∈Fq

[(a− αc)Q+ (b− αd)]. (4.13)

Noticing that

cQ(X) + d ≡ cQ

((
h0

h1

)q
)

+ d ≡
(
cQ

(
h0

h1

)
+ d

)q

≡ h
−Dq

1

(
cQ̃+ d h

D

1

)q
(mod IX)

where Q̃(X) = h
D

1 ·Q(h0/h1), we obtain
(
(aQ+ b)(cQ̃+ d h

D

1)− (aQ̃+ b h
D

1)(cQ+ d)

)q

(4.14)

≡ h
Dq

1 · (cQ + d) ·
∏

α∈Fq

[(a− αc)Q+ (b− αd)] (mod IX).

60 Chapter 4. Weakness of F36·1429 and DL Computations in F36·137 and F36·163

Note that the polynomial within the main parentheses on the left side of (4.14) has degree
≤ 3D. If this polynomial is m-smooth, then (4.14) yields a linear relation of the logarithms
of some degree-m polynomials and logarithms of translates of Q. After collecting slightly
more than qk such relations, one searches for a linear combination of these relations that
eliminates all translates of Q except for Q itself. To achieve this, consider vectors in (ZN)

qk

with coordinates indexed by elements λ ∈ Fqk . For each relation, we define a vector v whose
entry vλ is 1 if Q − λ appears in the right side of (4.14), and 0 otherwise. If the resulting
matrix H(Q) of row vectors has full column rank, then one obtains an expression for logg Q
in terms of the logarithms of polynomials of degree ≤ m. The number of distinct polynomials
of degree ≤ m in this expression is expected to be Aqk(m, 3D) · qk; in the concrete analysis
we shall assume that each of these polynomials has degree exactly m.

Since the probability that a degree-3D polynomial is m-smooth is Nqk(m, 3D)/(qk)3D,
one must have

Nqk(m, 3D)

q2kD
· |Pq,k| ≫ qk (4.15)

in order to ensure that H(Q) has ≫ qk rows, whereby H(Q) can be expected to have full
rank.

The expected cost of the relation generation portion of QPA descent is qk(3D+1)·Sqk(m, 3D)/
Nqk(m, 3D), while the cost of the linear algebra is q2k+1 · AN .

4.2.7 Gröbner bases descent

Let Q ∈ Fqk [X] with degQ = D, and let m < D. In Joux’s new descent method [77, §5.3],
one finds degree-m polynomials k1, k2 ∈ Fqk [X] such that Q | G, where

G = (k1k̃2 − k̃1k2) mod IX

and where k̃1 = h
m

1 k1(h0/h1) and k̃2 = h
m

1 k2(h0/h1). We then have

h
mq

1 · k2 ·
∏

α∈Fq

(k1 − αk2) ≡ G(X)q (mod IX)

as can be seen by making the substitution Y 7→ k1/k2 into the systematic equation (4.3)
and clearing denominators. Note that deg(k̃1) = deg(k̃2) = 2m. Hence, if 3m < n then
G = k1k̃2− k̃1k2 and so G(X) = Q(X)R(X) for some R ∈ Fqk [X] with degR = 3m−D. If R
is m-smooth, we obtain a linear relationship between logg Q and logs of degree-m polynomials
by taking logarithms of both sides of the following:

h
mq

1 · k2 ·
∏

α∈Fq

(k1 − αk2) ≡ (Q(X)R(X))q (mod IX). (4.16)

To determine (k1, k2, R) that satisfy

k1k̃2 − k̃1k2 = Q(X)R(X), (4.17)

4.3. Computing discrete logarithms in F36·1429 61

one can transform (4.17) into a system of multivariate quadratic equations over Fq. Specif-
ically, each coefficient of k1, k2 and R is written using k variables over Fq. The coefficients
of k̃1 and k̃2 can then be written in terms of the coefficients of k1 and k2. Hence, equating
coefficients of X i of both sides of (4.17) yields 3m + 1 quadratic equations. Equating Fq-
components of these equations then yields k(3m + 1) bilinear equations in k(5m − D + 3)
variables over Fq. This system of equations can be solved by finding a Gröbner basis for the
ideal it generates. Finally, solutions (k1, k2, R) are tested until one is found for which R is
m-smooth. This yields an expression for logg Q in terms of the logarithms of approximately
q + 1 + Aqk(m, 3m−D) polynomials of degree (at most) m; in the analysis we shall assume
that each of the polynomials has degree exactly m.

Denote by R(m,D) the expected number of distinct R obtainable. According to Condition
(10) of [60], we have R(m,D) ≈ qk(2m+1−D)−3. Then the condition

R(m,D)≫ qk(3m−D)

Nqk(m, 3m−D)
(4.18)

can ensure that there exists a solution (k1, k2, R) for which R is m-smooth.
It is difficult to determine the exact cost Gqk(m,D) of the Gröbner basis finding step.

After the Gröbner basis is found, the cost to find an m-smooth R is (qk)3m−D/Nqk(m, 3m−
D) · Sqk(m, 3m−D).

4.3 Computing discrete logarithms in F36·1429

We present a concrete analysis of the DLP algorithm described in §4.2 for computing discrete
logarithms in F36·1429 . In fact, this field is embedded in its quadratic extension F312·1429 , and it
is in the latter field where the DLP algorithm of §4.2 is executed. Thus, we have q = 36 = 729
and n = 1429.

As mentioned in §3.1, our main motivation for finding discrete logarithms in F36·1429 is
to attack the elliptic curve discrete logarithm problem in E1(F31429), where E1 is the super-
singular elliptic curve y2 = x3 − x − 1 with |E1(F31429)| = cr; here c = 7622150170693 is a
43-bit cofactor and r = (31429 − 3715 + 1)/c is a 2223-bit prime. The elliptic curve discrete
logarithm problem in the order-r subgroup of E1(F31429) can be efficiently reduced to the
discrete logarithm problem in the order-r subgroup of F∗

312·1429 . In the latter problem, we are
given two elements α, β of order r in F∗

312·1429 and we wish to find logα β. It can be readily
seen that logα β = (logg β)/(logg α) mod r, where g is a generator of F∗

312·1429 . Thus, we will
henceforth assume that h has order r and that we only need to find logg h mod r. An imme-
diate consequence of this restriction is that all the linear algebra in the useful algorithm can
be performed modulo the 2223-bit r instead of modulo the 27179-bit number N = 312·1429−1.

The parameters for each step of the algorithm were carefully chosen in order to balance
the running time of the steps. We also took into account the degree to which each step
could be parallelized on conventional computers. A summary of the parameter choices for
the descent is given in Figure 4.1. The cost of each step is given in Table 4.2.

62 Chapter 4. Weakness of F36·1429 and DL Computations in F36·137 and F36·163

Continued fraction descent
Time: 289 Mq2

714 (2)

Classical descent

25 (1088)
Classical descent
Time: 287 Mq2

Time: 288 Mq2

QPA descent

Gröbner bases descent
Time: 259 · (76.9 seconds)

QPA descent

79 (34)

2

3 (255.5)
Gröbner bases descent
Time: 255.5 · (0.002532 seconds)

4 (269)

Gröbner bases descent

Time: 269 · (0.03135 seconds)

7 (259)

16 (215)

11 (237)

Time: 266 Mq2

Time: 288 Mq2

Figure 4.1: A typical path of the descent tree for computing an individual logarithm in
F312·1429 (q = 36). The numbers in parentheses next to each node are the expected number of
nodes at that level. ‘Time’ is the expected time to generate all nodes at a level.

4.3. Computing discrete logarithms in F36·1429 63

Finding logarithms of linear polynomials
Relation generation 230Mq2 230Mq2

Linear algebra 248Ar 251Mq2

Finding logarithms of irreducible quadratic polynomials
Relation generation 312 · 239Mq2 258Mq2

Linear algebra 312 · 248Ar 270Mq2

Descent
Continued-fractions (714 to 79) 289Mq2 289Mq2

Classical (79 to 25) 34 · 283Mq2 288Mq2

Classical (25 to 16) 1088 · 277Mq2 287Mq2

QPA (16 to 11) 215 · (246Mq2 + 248Ar) 266Mq2

QPA (11 to 7) 237 · (245Mq2 + 248Ar) 288Mq2

Gröbner bases (7 to 4) 259 · (76.9 seconds) 295.3Mq2

Gröbner bases (4 to 3) 269 · (0.03135 seconds) 294Mq2

Gröbner bases (3 to 2) 255.5 · (0.002532 seconds) 277Mq2

Table 4.2: Estimated costs of the main steps of the useful DLP algorithm for computing
discrete logarithms in F312·1429 (q = 36). Ar and Mq2 denote the costs of an addition modulo
the 2223-bit prime r and a multiplication in F312 . We use the cost ratio Ar/Mq2 = 23, and
also assume that 230 multiplications in F312 can be performed in 1 second (see §4.3.8).

4.3.1 Setup

We chose the representations F36 = F3[U]/(U
6+2U4+U2+2U +2) and F312 = F36 [V]/(V

2+
U365). We selected h0 = (U265V + U236)X2 + (U160V + U24)X + (U628V + U293) ∈ F312 [X]
and h1 = 1, and IX ∈ F312 [X] to be the degree-1429 monic irreducible factor of h1(X36) ·X−
h0(X

36). The other irreducible factors have degrees 5, 5 and 19.

4.3.2 Finding logarithms of linear polynomials

The factor base B1 has size 312 ≈ 219. The cost of relation generation is approximately
230Mq2 , whereas the cost of the linear algebra is approximately 248Ar.

4.3.3 Finding logarithms of irreducible quadratic polynomials

For each u ∈ F312 , the expected cost of computing logarithms of all quadratics in B2,u is
239Mq2 for the computation of H(Q), and 248Ar for the linear algebra.

4.3.4 Continued-fractions descent

For the continued-fractions descent, we selected m = 79. The expected cost of this descent is
289Mq2 . The expected number of distinct irreducible factors of degree (at most) 79 obtained
is 2A312(79, 714) ≈ 34.

64 Chapter 4. Weakness of F36·1429 and DL Computations in F36·137 and F36·163

4.3.5 Classical descent

Two classical descent stages are employed. In the first stage, which uses the alternative
method described in §3.3.5, we have D = 79 and select m = 25, s = 5, δ = 2, which
yield t1 = 247 and t2 = 284. The expected cost of the descent for each of the 34 degree-
79 polynomials is approximately 258.7 · Sq2(25, 205). The expected total number of distinct
irreducible polynomials of degree (at most) 25 obtained is approximately 1088.

In the second classical descent stage, which uses the first method described in §3.3.5, we
have D = 25 and select m = 16, s = 2, δ = 2, which yield t1 = 176 and t2 = 127. The
expected cost of the descent for each of the 1088 degree-25 polynomials is approximately
254.4 · Sq2(16, 127). The expected total number of distinct irreducible polynomials of degree
(at most) 16 obtained is approximately 215.

4.3.6 QPA descent

Two QPA descent stages are employed. In the first stage, we have D = 16 and select m = 11.
For each Q, the expected cost of relation generation is 230.9 · Sq2(11, 48) and the cost of the
linear algebra is 248Ar. Also for each Q, the expected number of distinct polynomials of
degree at most 11 obtained is expected to be Aq2(11, 48) · q2 ≈ 222. Thus, the total number
of distinct polynomials of degree at most 11 obtained after the first QPA descent stage is
approximately 237.

In the second stage, we have D = 11 and select m = 7. For each Q, the expected cost of
relation generation is 228.4 ·Sq2(7, 33) and the cost of the linear algebra is 248Ar. Also for each
Q, the expected number of distinct polynomials of degree at most 7 obtained is expected to
be Aq2(7, 33) · q2 ≈ 222. Thus, the total number of distinct polynomials of degree at most 7
obtained after the second QPA descent stage is approximately 259.

4.3.7 Gröbner bases descent

Three Gröbner bases descent stages are employed. The first stage has D = 7 and m = 4, and
is expected to yield approximately 269 polynomials of degree (at most) 4. The second stage
has D = 4 and m = 3, and is expected to yield all the 255.5 monic irreducible polynomials of
degree 3. The third stage has D = 3 and m = 2 and is applied to the 255.5 monic irreducible
cubics.

For all three stages, we use the experimental results from §3.3.7. The experiments were run
on a 2.9 GHz Intel core i7-3520M using Magma’s implementation of Faugère’s F4 algorithm
[47].

4.3.8 Overall running time

The second column of Table 4.2 gives the running time estimates for the main steps of the
useful DLP algorithm in three units of time: Ar, Mq2 , and seconds. In order to assess the
overall time, we make some assumptions about the ratios of these units of time.

First, we shall assume that Ar/Mq2 = 23. To justify this, we observe that a 2223-bit
integer can be stored in 35 64-bit words. The X86-64 instruction set has an ADD operation
that adds two 64-bit unsigned integers in one clock cycle. Hence, integer addition can be
completed in 35 clock cycles. Modular reduction comprises one conditional statement plus

4.4. Solving the discrete logarithm problem in F36·137 65

one subtraction (required in roughly half of all modular additions). One can use a lazy
reduction technique that amortizes the cost of a modular reduction among many integer
additions. All in all, the cost of Ar can be estimated to be 35 clock cycles. Unlike for 64-bit
integer multiplication, there is no native support for F312 multiplication on an Intel Core i7
machine. However, we expect that a specially designed multiplier could be built to achieve
a multiplication cost of 4 clock cycles. This gives us an Ar/Mq2 ratio of approximately 23.

Next, since a multiplication in Mq2 can be done in 4 clock cycles, we will transform
one second on a 2.9 GHz machine (on which the Gröbner bases descent experiments were
performed) into 230Mq2 .

Using these estimates, we see from the third column of Table 4.2 that the overall running
time of the useful algorithm is approximately 295.8Mq2 . We note that the relation generation,
continued-fractions descent, classical descent, and Gröbner bases descent steps, and also the
relation generation portion of QPA descent, are effectively parallelizable in the sense that one
can essentially achieve a factor-C speedup if C processors are available. Moreover, the linear
system of equations for finding logarithms of linear polynomials, the 312 ≈ 219 linear systems
of equations for finding logarithms of irreducible quadratic polynomials, and the 215 + 237

linear systems of equations in QPA descent are also effectively parallelizable since each linear
system can be solved in less than one day using a small number of GPUs and CPUs (see [74]
and [14]).

4.3.9 Comparisons

The upper bound of 295.8Mq2 on the running time of the useful algorithm for computing
logarithms in F26·1429 convincingly demonstrates that this field offers drastically less security
than the 2192 resistance to attacks by Coppersmith’s algorithm [40, 94]. The decrease in
security is even more pronounced when one considers that Coppersmith’s algorithm is not
parallelizable since a dominant step is the solution of an enormous system of linear equations,
whereas the useful algorithm is effectively parallelizable.

In §5.4, we outline how the estimates of 295.8Mq2 for computing logarithms in F36·1429 can
be reduced to 278.8Mq2 . The improved estimates use techniques from [59], [60], that were
developed after the estimates in this section were derived.

4.4 Solving the discrete logarithm problem in F36·137

The supersingular elliptic curve E : y2 = x3 − x+ 1 has order

|E(F3137)| = cr,

where
c = 7 · 4111 · 5729341 · 42526171

and

r = (3137 − 369 + 1)/c = 33098280119090191028775580055082175056428495623

is a 155-bit prime. The Weil and Tate pairing attacks [100, 49] efficiently reduce the discrete
logarithm problem in the order-r subgroup E of E(F3137) to the discrete logarithm problem
in the order-r subgroup G of F∗

36·137 .

66 Chapter 4. Weakness of F36·1429 and DL Computations in F36·137 and F36·163

Our approach to computing discrete logarithms in G is to use Joux’s algorithm which is
the algorithm described in §4.2 but without any QPA descent steps (§4.2.6). We compute
logarithms in the quadratic extension F312·137 of F36·137 (so q = 34, n = 137 and k = 3 in
the notation of §4.2). With this setting, we do not need to compute the logarithms of the
quadratic polynomials as described in §4.2.3, since these can be computed on the fly using
the 2-to-1 descent method outlined in §4.4.2.

Consider we are given two elements α, β of order r in F∗
312·137 and we wish to find logα β. Let

g be a generator of F∗
312·137 . Then logα β = (logg β)/(logg α) mod r. Thus, in the remainder

of the section we will assume that we need to compute logg h mod r, where h is an element
of order r in F∗

312·137 .
The DLP instance we solved is described in §4.4.1. In §4.4.2, the 2-to-1 descent method is

presented. The concrete estimates from §4.2 for solving the DLP instance are given in §4.4.4.
These estimates are only upper bounds on the running time of the algorithm. Nevertheless,
they provide convincing evidence for the feasibility of the discrete logarithm computations.
Our experimental results are presented in §4.4.5.

4.4.1 Problem instance

Let N denote the order of F∗
312·137 . Using the tables from the Cunningham Project [42], we

determined that the factorization of N is N = p41 ·
∏31

i=2 pi, where the pi are the following
primes (and r = p25):

p1 = 2 p2 = 5 p3 = 7 p4 = 13 p5 = 73 p6 = 823 p7 = 4111 p8 = 4933

p9 = 236737 p10 = 344693 p11 = 2115829 p12 = 5729341 p13 = 42526171

p14 = 217629707 p15 = 634432753 p16 = 685934341 p17 = 82093596209179

p18 = 4354414202063707 p19 = 18329390240606021 p20 = 46249052722878623693

p21 = 201820452878622271249 p22 = 113938829134880224954142892526477

p23 = 51854546646328186791017417700430486396513

p24 = 273537065683369412556888964042827802376371

p25 = 33098280119090191028775580055082175056428495623

p26 = 706712258201940254667826642673008768387229115048379

p27 = 108081809773839995188256800499141543684393035450350551

p28 = 91321974595662761339222271626247966116126450162880692588587183952237

p29 = 39487531149773489532096996293368370182957526257988573877031054477249

393549

p30 = 40189860022384850044254854796561182547553072730738823866986300807613

29207749418522920289

p31 = 19064323153825272072803685870803955622834286523139037403580752310822

7896644646984063736942624066227406898132113366226593158464419713.

We chose F34 = F3[U]/(U
4 +U2 + 2) and F312 = F34 [V]/(V 3 + V +U2 +U), and selected

h0(X) = V 326196X2 + V 35305X + V 204091 ∈ F312 [X] and h1 = 1. Then IX ∈ F312 [X] is the

4.4. Solving the discrete logarithm problem in F36·137 67

degree-137 monic irreducible factor of X − h0(X34); the other irreducible factor has degree
25.

We chose the generator g = X + V 113713 of F∗
312·137 . To generate an order-r discrete

logarithm challenge h, we computed

h′ =

136∑

i=0

(
V ⌊π·(312)i+1⌋ mod 312

)
X i

and then set h = (h′)N/r. The discrete logarithm logg h mod r was found to be

x = 27339619076975093920245515973214186963025656559.

This can be verified by checking that h = (gN/r)y, where y = x · (N/r)−1 mod r.

4.4.2 2-to-1 descent

The Gröbner bases descent methodology of §4.2.7 can be employed in the case (D,m) = (2, 1).
However, as also reported by Joux in his F26168 discrete log computation [78], we found the
descent to be successful for only about 50% of all irreducible quadratic polynomials. In
fact, the expected number of distinct obtainable R (defined in §4.2.7) for a given quadratic
polynomial is exactly one. But recall that for each quadratic polynomial one needs to solve
a zero-dimensional quadratic multivariate system. We observed that this system is always
in shape position2 and the univariate polynomial of its Gröbner basis is of degree 2. Then,
whenever the system is consistent, two distinct polynomials R will be found for a single
quadratic polynomial. Thus, only about half of quadratic polynomials take the totality of
the available polynomials R. However, despite this fact, some strategies can be used to
increase the percentage of successful descents.

Let Q(X) ∈ Fq3 [X] be an irreducible quadratic polynomial for which the Gröbner bases
descent method failed.

Strategy 4.1. Introduced by Joux [78] and Göloğlu et al. [58], this strategy is based on the
systematic equation derived from Y q′ − Y where q′ < q and Fq′ is a proper subfield of Fq3

instead of the systematic equation (3.2) derived from Y q − Y . Let p be the characteristic of
Fq, and let q = pℓ, q′ = pℓ

′
, and s = ℓ − ℓ′. Then q = ps · q′. Now, using standard Gröbner

bases techniques, one searches for (a, b, c, d) ∈ Pq′,4 such that

G = (aX + b)(ch0 + d h1)
ps − (ah0 + b h1)

ps(cX + d) = QR

with R ∈ Fq3 [X]. Note that degR ≤ 2ps − 1. For our discrete logarithm computations in
F36·137 and F36·163 (§4.5), we have q = 34 and used q′ = 33, so s = 1 and degR = 5. If R is

2Let S = {f1, . . . , fs} ∈ K[X1, . . . , Xℓ]
s be a zero-dimensional multivariate system over a field K. The

system S is said to be in shape position if its reduced Gröbner basis, with respect to the lexicographic order, is
of the form [X1 − g1(Xℓ), . . . , Xℓ−1− gℓ−1(Xℓ), gℓ(Xℓ)], where g1, . . . , gℓ are univariate polynomials in K[X].
gℓ is called the univariate polynomial of the Gröbner basis.

68 Chapter 4. Weakness of F36·1429 and DL Computations in F36·137 and F36·163

1-smooth, then we obtain a linear relationship between logg Q and logs of linear polynomials
since

Gq ≡ h
psq

1 · (cX + d)p
s ·
∏

α∈Fq′

(
(aX + b)p

s − α(cX + d)p
s)

(mod IX),

as can be seen by making the substitution Y 7→ (aX + b)p
s
/(cX + d)p

s
into the systematic

equation derived from Y q′ − Y .
Unfortunately, in all instances we considered the polynomial R never factors completely

into linear polynomials (see §4.4.3 for a detailed explanation). However, it hopefully factors
into a quadratic polynomial Q′ and 2ps − 3 linear polynomials, thereby yielding a relation
between Q and another quadratic which has a roughly 50% chance of descending using
Gröbner bases descent. Combined with the latter, we observed that this strategy descends
about 95% of all irreducible quadratic polynomials in the fields F36·137 and F36·163 .

Strategy 4.2. Let Q(X) be written as Q(X) = X2 + uX + v. Then we have

h
2q

1 Q(X) ≡ h
2q

1 Q((h0/h1)
q) = h

2q

0 + uh
q

0h
q

1 + vh
2q

1

= (h
2

0 + uh0h1 + v h
2

1)
q (mod IX). (4.19)

It can be seen that the degree-4 polynomial fQ(X) = h
2

0 + uh0h1 + v h
2

1 is either a product
of two irreducible quadratics or itself irreducible.3 In the former case, which happens with
probability about one half (see [82, Lemma 2]), we apply the standard Gröbner bases descent
method to the two irreducible quadratics. If both descents are successful, then we have
succeeded in descending the original Q.

The strategies are combined in the following manner. For an irreducible quadratic Q ∈
Fq3[X], we first check if the Gröbner bases descent is successful. If the descent fails, we apply
Strategy 4.2 to Q. In the case where fQ factors into two irreducible quadratics, and at least
one of them fails to descent with Gröbner bases descent, we apply Strategy 4.1 to Q. If
Strategy 4.1 fails on Q, we apply it to the two quadratic factors of fQ. In the case where fQ
is irreducible, we apply Strategy 4.1 to Q.

If none of the attempts succeed, we declare Q to be “bad”, and avoid it in the higher-
degree descent steps by repeating a step until all the quadratics encountered are “good”.
In our experiments with F36·137 and F36·163 , we observed that approximately 97.2% of all
irreducible quadratic polynomials Q were “good”.

To see that this percentage is sufficient to complete the descent phase in these two fields,
consider a 3-to-2 descent step where the number of resulting irreducible quadratic polynomials

3More generally, for polynomials F , g0, g1 and P over a field F, if both F and P are irreducible over
F and P | gdegF

1 F (g0/g1), then we have degF | degP . Indeed, one can easily check that the map φ :

K = F/(F) → L = F/(P) with φ(H + (F)) = gdegH
1 H(g0/g1) + (P) for all polynomials H over F is a

well-defined field homomorphism and thereby one-to-one. Thus, one can assume that F ⊂ K ⊂ L and get
degP = [L : F] = [L : K] · [K : F] = [L : K] · degF .

4.4. Solving the discrete logarithm problem in F36·137 69

is 42 on average (see equation (4.16)). Then the probability of descending a degree-3 poly-
nomial after finding one useful solution (k1, k2, R) in Gröbner bases descent is 0.97242 ≈ 0.3.
Therefore, after at most four trials we expect to successfully descend a degree-3 polynomial.
Since the expected number of distinct solutions of (4.17) is approximately q3 (according to
Condition (10) of [60]), one can afford this many trials.

4.4.3 A remark on Strategy 4.1

In this section, the notations of Strategy 4.1 are used. Let (a, b, c, d) ∈ Pq′,4, and let

G = (aX + b)(ch0 + d h1)
ps − (ah0 + b h1)

ps(cX + d).

The derivative of G is given as

G′ =
(
(ãc− c̃a)h0 + (ãd− c̃b)h1

)ps
, (4.20)

where for γ ∈ Fq3 , γ̃ denotes the element γq
3/ps. Thus, we obtain

G = XG′ +
(
(̃bc− d̃a)h0 + (̃bd− d̃b)h1

)ps
. (4.21)

Now, suppose that G has a repeated root λ in some extension field of Fq3. Then λ is also a
root of G′ and consequently a root of both

(ãc− c̃a)h0 + (ãd− c̃b)h1 and (̃bc− d̃a)h0 + (̃bd− d̃b)h1.

This gives

h0(λ)

h1(λ)
=
ãc− c̃a
ãd− c̃b

=
b̃c− d̃a
b̃d− d̃b

.

Therefore, the equation

(ãc− c̃a)(̃bd− d̃b) = (̃bc− d̃a)(ãd− c̃b)

yields
(ãd̃− b̃c̃)(ad− bc) = 0,

which means that ad− bc = 0. This contradicts the fact that (a, b, c, d) is in Pq′,4. Hence G
has no repeated root.

Let’s assume that the degree of G is 2ps + 1, implying that G′ has degree 2ps. We recall
the following result of Swan [118] and apply it to G.

Theorem 4.3 (Corollary 1, [118]). Let K be an odd-characteristic finite field. Let F ∈ K[X]
be a polynomial with no repeated root. Then the degree of F and the number of irreducible
factors of F have same parity if and only if the discriminant of F is a square in K.

70 Chapter 4. Weakness of F36·1429 and DL Computations in F36·137 and F36·163

Assume that p is odd. To compute the discriminant D(G) of G, we use Swan’s formula

D(G) = (−1)degG(
degG−1

2
+degG′)lc(G−1)lc(G′)degG

degG′∏

i=1

G(xi), (4.22)

where x1, . . . , xdegG′ are the roots of G′ (counted with multiplicity), and lc(G) denotes the
leading coefficient of G. Since degG′ = 2ps, we have from (4.20) that G′ has two roots λ1
and λ2, each with multiplicity ps. Then (4.22) becomes

D(G) = lc(G)2p
s

(G(λ1)G(λ2))
ps.

Thus, D(G) is a square in Fq3 if and only if G(λ1)G(λ2) is a square in Fq3, and at the same
time, by (4.21), if and only if γ is a square in Fq3 , where γ is given as

γ =
(
(̃bc− d̃a)h0(λ1) + (̃bd− d̃b)h1(λ1)

)(
(̃bc− d̃a)h0(λ2) + (̃bd− d̃b)h1(λ2)

)
. (4.23)

In (4.20), notice that ãc− c̃a and ãd− c̃b cannot be simultaneously zero since G′ 6= 0. Let’s
assume that ãc− c̃a 6= 0, and write

β0 = ãc− c̃a, β1 = ãd− c̃b and δ = β1/β0.

Since λ1 and λ2 are the roots of β0h0 + β1h1, we have for i = 1, 2

h0(λi) = δh1(λi).

After replacing h0(λi) by δh1(λi) in (4.23), one sees that γ is a square in Fq3 if and only if
h1(λ1)h1(λ2) is a square in Fq3. This shows that with our choice h1 = 1, G never factors
into an even number of irreducible polynomials, and thereby R never factors into linear
polynomials. In §4.5, the choice h0 = 1 leads to the same conclusion.

Now, let h0, h1 be written as h0 = r2X
2 + r1X + r0, h1 = s2X

2 + s1X + s0. Since λ1 and
λ2 are the roots of

β0h0 + β1h1 = β0
(
(r2 + δs2)X

2 + (r1 + δs1)X + r0 + δs0
)
,

we have

λ1λ2 =
r0 + δs0
r2 + δs2

and λ1 + λ2 = −
r1 + δs1
r2 + δs2

. (4.24)

(Note that our assumption degG′ = 2ps ensures that r2 + δs2 6= 0.) Hence, expanding
h1(λ1)h1(λ2) and substituting λ1λ2, λ1 + λ2 by their values in (4.24), we obtain

h1(λ1)h1(λ2) =
1

(r2 + δs2)2
[
(r0s2 − r2s0)2 − r0r1s1s2 + r21s0s2 − r1r2s0s1 + r0r2s

2
2

]
. (4.25)

Consequently, to expect having R splitting into linear polynomials, h0 = r2X
2+r1X+r0, h1 =

s2X
2+s1X+s0 must be chosen such that (r0s2−r2s0)2−r0r1s1s2+r21s0s2−r1r2s0s1+r0r2s2

is a square in Fq3 .

4.4. Solving the discrete logarithm problem in F36·137 71

4.4.4 Estimates

The factor base B1 has size 312 ≈ 219. The cost of the relation generation is approximately
229.2Mq3 , whereas the cost of the linear algebra is approximately 244.4Ar. Figure 4.2 shows
the estimated running times for the descent stage. Further information about the parameter
choices are provided below.

1. For the continued-fractions descent stage, we selected m = 13. The expected cost of
this descent is 243.2Mq3 , and the expected number of irreducible factors of degree (at
most) 13 obtained is 2A312(68, 13) ≈ 20.

2. Two classical descent stages are employed. In the first stage, we have D = 13 and
select m = 7, s = 3, δ = 1, which yield t1 = 43 and t2 = 34. The expected cost of
the descent for each of the 20 degree-13 polynomials is approximately 233.7Mq3 . The
expected total number of distinct irreducible polynomials of degree (at most) 7 obtained
is approximately 320.

In the second classical descent stage, we have D = 7 and select m = 5, s = 3, δ = 1,
which yield t1 = 25 and t2 = 31. The expected cost of the descent for each of the 320
degree-7 polynomials is approximately 234.8Mq3 . The expected total number of distinct
irreducible polynomials of degree (at most) 5 obtained is approximately 5, 120.

3. Our implementation of the Gröbner bases descent stage used Magma’s implementation
of Faugére’s F4 algorithm [47] and took 26.5 minutes on average for a 5-to-3 descent,
34.7 seconds for a 3-to-2 descent, and 0.216 seconds for a 2-to-1 descent. The total
expected running time for each of these stages is 94, 211 and 168 days, respectively.

Since all the descent stages can be effectively parallelized, our estimates suggest that a
discrete logarithm can be computed in a week or so given a few dozen processors. In fact
(and as confirmed by our experimental results), the actual running time is expected to be
significantly less than the estimated running time since the estimates are quite conservative;
for example, our estimates for the number of branches in a descent step assumes that each
distinct irreducible polynomial has degree exactly m, whereas in practice many of these
polynomials will have degree significantly less than m.

4.4.5 Experimental results

Our experiments were run on an Intel i7-2600K 3.40 GHz machine (Sandy Bridge), and on
an Intel i7-4700MQ 2.40 GHz machine (Haswell).

Relation generation took 1.05 CPU hours (Sandy Bridge, 1 core). The resulting sparse
linear system of linear equation was solved using Magma’s multi-threaded parallel version of
the Lanczos algorithm; the computation took 556.8 CPU hours (Sandy Bridge, 4 cores).

In the continued-fractions descent stage, the first degree-68 polynomial yielded 9 irre-
ducible factors of degrees 12, 12, 11, 10, 8, 6, 6, 2, 1, and the second degree-68 polynomial
yielded 11 irreducible factors of degrees 13, 12, 10, 10, 7, 6, 5, 2, 1, 1, 1. The computation
took 22 CPU hours (Haswell, 4 cores).

72 Chapter 4. Weakness of F36·1429 and DL Computations in F36·137 and F36·163

Continued fraction descent
Time: 243.2 Mq3

68 (2)

Classical descent

7 (320)
Classical descent
Time: 320 · 234.8Mq3

Time: 20 · 233.7 Mq3

13 (20)

5 (5,120)
Gröbner bases descent
Time: 5, 120 · (26.5 minutes)

3 (219)

Time: 219 · (34.7 seconds)
Gröbner bases descent

1

2 (226)
Gröbner bases descent
Time: 226 · (0.216 seconds)

Figure 4.2: A typical path of the descent tree for computing an individual logarithm in F312·137

(q = 34). The numbers in parentheses next to each node are the expected number of nodes
at that level. ‘Time’ is the expected time to generate all nodes at a level.

4.5. Solving the discrete logarithm problem in F36·163 73

Classical descent was used on the 9 polynomials of degree ≥ 8 to obtain polynomials
of degree ≤ 7, and then on the 23 polynomials of degree 7 and 23 polynomials of degree 6
to obtain polynomials of degree ≤ 5. These computations took 80 CPU hours (Haswell, 4
cores).

Finally, we used 5-to-3, 4-to-3, 3-to-2 and 2-to-1 Gröbner bases descent procedures. The
average time for a 4-to-3 descent was 33.8 seconds; the other average times are given in
Figure 4.2. In total, we performed 233 5-to-3 descents, 174 4-to-3 descents, and 11573 3-to-2
descents. These computations took 115.2 CPU hours, 1.5 CPU hours, and 111.2 CPU hours,
respectively (Haswell, 4 cores). We also performed 493537 2-to-1 descents; their running
times are incorporated into the running times for the higher-level descents.

4.5 Solving the discrete logarithm problem in F36·163

The supersingular elliptic curve E : y2 = x3 − x− 1 has order

|E(F3163)| = 3163 + 382 + 1 = r

where r is the following 259-bit prime:

r = 589881151426658740854227725580736348850640632297373414091790995505756623268837.

The Weil and Tate pairing attacks [100, 49] efficiently reduce the discrete logarithm problem
in the order-r group E = E(F3163) to the discrete logarithm problem in the order-r subgroup
G of F∗

36·163 .

As in §4.4, we will compute logarithms in G by using Joux’s algorithm to compute loga-
rithms in the quadratic extension F312·163 of F36·163 (so q = 34 and n = 163 in the notation of
§4.2). We will compute logg h mod r, where g is a generator of F∗

312·163 and h is an element of
order r in F∗

312·163 .

4.5.1 Problem instance

Let N denote the order of F∗
312·163 . Using the tables from the Cunningham Project [42], we

partially factored N as N = C · p41 ·
∏22

i=2 pi, where the pi are the following primes (and

74 Chapter 4. Weakness of F36·1429 and DL Computations in F36·137 and F36·163

r = p20):

p1 = 2 p2 = 5 p3 = 7 p4 = 13 p5 = 73 p6 = 653 p7 = 50857

p8 = 107581 p9 = 489001 p10 = 105451873 p11 = 380998157

p12 = 8483499631 p13 = 5227348213873 p14 = 8882811705390167

p15 = 4956470591980320134353 p16 = 23210817035829275705929

p17 = 3507171060957186767994912136200333814689659449

p18 = 6351885141964057411259499526611848626072045955243

p19 = 84268735918094105836318246511533764121140010481130741067443071103148

817701717

p20 = 58988115142665874085422772558073634885064063229737341409179099550575

6623268837

p21 = 13262905784043723370034025667618121081540438283177268680045186884853

26204127242781054287716913828905695771535319617625904849821802388801

p22 = 24879984727675011205198718183055547601122582974374576908898869641570

09269122423985704395925964922959410448009886539842494955927136450643

31019158574269,

and C is the following 919-bit composite number

C = 2873322036656120507394501949912283436722983546265951551507632957325767

0275216328747773792566523729655097848102113488795698936768394494992621

2312022819011019340957620502000045691081669475648919901346991751981450

8311534570945558522228827298337826215043744094861514754454151493177.

We verified that gcd(C,N/C) = 1 and that C is not divisible by any of the first 107 primes.
Consequently, if an element g is selected uniformly at random from F∗

312·163 , and g satisfies
gN/pi 6= 1 for 1 ≤ i ≤ 22, then g is a generator with very high probability.4

We chose F34 = F3[U]/(U
4 +U2 + 2) and F312 = F34 [V]/(V 3 + V +U2 +U), and selected

h0(X) = 1 and
h1(X) = X2 + V 530855 ∈ F312 [X].

Then IX ∈ F312 [X] is the degree-163 irreducible polynomial X · h1(X34)− 1:

IX = X163 + V 530855X + 2.

We chose g = X + V 2, which we hope is a generator of F∗
312·163 .

To generate an order-r discrete logarithm challenge h, we computed

h′ =

162∑

i=0

(
V ⌊π·(312)i+1⌋ mod 312

)
X i

4More precisely, since C has at most 34 prime factors, each of which is greater than the ten-millionth
prime p = 179424673, the probability that g is a generator is at least (1 − 1

p
)34 > 0.99999981.

4.6. Concluding remarks 75

and then set h = (h′)N/r. The discrete logarithm logg h mod r was found to be

x = 426395951498279193713291391953449000732592554251132525672039784356054526194343.

This can be verified by checking that h = (gN/r)y, where y = x · (N/r)−1 mod r.

4.5.2 Experimental results

Our experiments were run on an Intel i7-2600K 3.40 GHz machine (Sandy Bridge), and on an
Intel Xeon E5-2650 2.00 GHz machine (Sandy Bridge-EP). The descent strategy was similar
to the one used for the F36·137 computation.

Relation generation took 0.84 CPU hours (Sandy Bridge, 1 core). The resulting sparse
system of linear equations was solved using Magma’s multi-threaded parallel version of the
Lanczos algorithm; the computation took 852.5 CPU hours (Sandy Bridge, 4 cores).

In the continued-fractions descent stage with m = 15, the first degree-81 polynomial
yielded 8 irreducible factors of degrees 15, 15, 14, 14, 10, 7, 5, 1, and the second degree-81
polynomial yielded 12 irreducible factors of degrees 12, 10, 9, 9, 9, 8, 6, 6, 6, 4, 1, 1. The
computation took 226.7 CPU hours (Sandy Bridge-EP, 16 cores).

Classical descent was used on the 11 polynomials of degree ≥ 8 to obtain polynomials
of degree ≤ 7, and then the alternative method in §4.2.5 was used on the 15 polynomials
of degree 7 and 30 polynomials of degree 6 to obtain polynomials of degree ≤ 5. These
computations took 51.0 CPU hours (Sandy Bridge-EP, 16 cores).

Finally, we used 5-to-3, 4-to-3 and 3-to-2 Gröbner bases descent procedures. The descent
was sped up by writing the coefficients of R (see equation (4.17)) in terms of the coefficients
of k1 and k2; this reduced the number of variables in the resulting bilinear equations from
15m − 3D + 9 to 9m + 3. In total, we performed 213 5-to-3 descents, 187 4-to-3 descents,
and 11442 3-to-2 descents. These computations took 24.0 CPU hours (Sandy Bridge-EP, 16
cores), 0.8 CPU hours (Sandy Bridge, 4 cores), and 44.8 CPU hours (Sandy Bridge, 4 cores),
respectively. The running times of the 2-to-1 descents were incorporated into the running
times for the higher-level descents.

4.6 Concluding remarks

We have shown that the finite fields F36·1429 offers at most 96 bits of security against the
new attacks on the discrete logarithm problem, which is significantly less that the 192 bits
of security this field was believed to offer, and solved instances of the discrete logarithm
problem in the 1303-bit finite field F36·137 and the 1551-bit finite field F36·163 . These fields are
of particular interest in pairing-based cryptography because they contain pairing values for
popular bilinear pairings derived from supersingular elliptic curves with embedding degree 6
and are ‘general’ in that they do not enjoy any Kummer-like properties. Our computations
took only 888 CPU hours and 1201 CPU hours, respectively, using modest computer resources
despite our implementation being in Magma and far from optimal, unlike the substantial
resources (approximately 800,000 CPU hours) that were consumed in [69] for computing a
logarithm in the 923-bit field F36·97 with the Joux-Lercier algorithm. We emphasize that our
upper bound on solving the DLP in F36·1429 is quite conservative, and we do not claim that it

76 Chapter 4. Weakness of F36·1429 and DL Computations in F36·137 and F36·163

is optimal. Nevertheless, the drastic reduction in these security levels and the computational
results add further weight to the claim that bilinear pairings derived from the supersingular
elliptic curves E : y2 = x3 − x± 1 over F3n are unsuitable for pairing-based cryptography.

5 Improved Discrete Logarithms

Computations in F36·509

5.1 Introduction

In 2014, there were several practical improvements and refinements of algorithms for com-
puting discrete logarithms in finite fields of small characteristic. Most notably, after we had
completed the F36·137 discrete logarithm computation in February 2014, Granger, Kleinjung
and Zumbrägel presented in [60] several practical techniques improving Joux’s L[1

4
+ o(1)]

algorithm [77]. These improvements allowed them to compute logarithms in the 4404-bit
field F212·367 in approximately 52,240 CPU hours, and drastically lowered the estimated time
to compute logarithms in the 4892-bit field F24·1223 to 259 modular multiplications. One of
the techniques described in [60] is the new polynomial representation, originally presented
at ECC 2013 by Granger and Zumbrägel [64], and which we subsequently used in [4] and [5]
to show its impact on the security of the supersingular elliptic curves y2 = x3 − x ± 1 over
F31429 (see §4.3) and to solve instances of the discrete logarithm problem in the 1303-bit field
F36·137 and the 1551-bit field F36·163 (see §4.4 and §4.5).

In April 2014, Granger, Kleinjung and Zumbrägel introduced a new quasi-polynomial time
descent method [61] (we call it powers-of-2 descent), built from the on-the-fly 2-to-1 descent
method presented in [57, 58]. This descent method is more practical than the QPA descent
of Barbulescu et al. [16], because in the powers-of-2 descent one expresses the logarithm of
a polynomial of degree D over Fq2, for instance, in terms of the logarithms of roughly q
polynomials of degree at most D/2 instead of q2 in the QPA descent [16]. Kleinjung [90]
used this new descent method to compute discrete logarithms in F21279 in less than four core
years.

More recently, Joux and Pierrot [82] presented a more efficient algorithm for computing
logarithms of the factor base elements. The new algorithm was used to compute logarithms
in the 3796-bit characteristic-three field F35·479 in less than 8600 CPU hours. In [82], Joux and
Pierrot begin by defining the target field either in Joux’s or Granger-Zumbrägel’s polynomial
representation. Suppose Joux’s representation is chosen and, therefore, we want to compute
discrete logarithms in Fqn with n ≤ q + 2. The field Fqn is then represented as Fq[X]/(IX),
where IX is a degree-n irreducible factor of h1(X)Xq − h0(X) with h0(X) = α1X + α0 and
h1(X) = X2+βX in Fq[X]. Joux and Pierrot [82] exploit the special form of h0(X) and h1(X)
to accelerate the computation of logarithms of polynomials of degree ≤ 4; the dominant step
is the computation of logarithms of degree-3 polynomials, where q linear algebra problems
are solved each taking time approximately q5/27 modular additions. The continued-fractions,
classical and Gröbner bases descents are all performed over the base field Fq. This is another

77

78 Chapter 5. Improved Discrete Logarithm Computations in F36·509

idea from [60]. In fact, it is advantageous to first try to descend a target element and all the
elements appearing in its descent tree in their respective base fields and not in an extension
field, from the outset. This technique was suggested to us by Barbulescu and Gaudry [15] in
August 2013, but at that time we did not have a study, as in [60], on the feasibility of the
Gröbner bases descent over the base field.

The purpose of this chapter, in joint work with I. Canales, N. Cruz, A. Menezes, T.
Oliveira, L. Rivera and F. Rodríguez-Henríquez, is to show that the techniques from [60], [61]
and [82] can be used to lower the estimate from Chapter 3 for computing discrete logarithms
in the 4841-bit characteristic-three field F36·509 from 281.7Mq2 to 258.9Mq (where q = 36 and
MQ denotes the cost of a multiplication in FQ). As a consequence of this affordable, although
challenging, upper bound, we computed discrete logarithms in the order-r subgroup of F∗

36·509 ,
where r = (3509 − 3255 + 1)/7 is an 804-bit prime, within 220 CPU years. Recall that our
main motivation for finding discrete logarithms in F36·509 is to attack the elliptic curve discrete
logarithm problem in E(F3509), where E is the supersingular elliptic curve y2 = x3−x+1 with
|E(F3509)| = 7r, which is relevant to the security of Type 1 pairing-based cryptosystems that
use bilinear pairings derived from this curve. The elliptic curve discrete logarithm problem in
the order-r subgroup of E(F3509) can be efficiently reduced to the discrete logarithm problem
in the order-r subgroup of F∗

36·509 .
In addition, we use techniques from [60] to lower the estimate from §4.3 for computing

discrete logarithms in the 13590-bit characteristic-three field F36·1429 from 295.8Mq2 to 278.8Mq2

(where q = 36).
The remainder of the chapter is organized as follows. In §5.2 we review the new techniques

from [60], [61] and [82] when incorporated into the DLP algorithm of Joux [77]. Our concrete
analysis and experimental results for computing logarithms in F36·509 are then presented in
§5.3 using the algorithm described in §5.2. In §5.4, we present our new estimates for discrete
logarithm computations in F36·1429 . We make some concluding remarks in §5.5.

5.2 The DLP algorithm of Joux, Granger et al. and Joux-

Pierrot

Let Fqn be a finite field where n ≤ q+2. The elements of Fqn are represented as polynomials
of degree at most n− 1 over Fq. Let N = qn − 1, and let r be a prime divisor of N . We are
interested in the discrete logarithm problem in the order-r subgroup of F∗

qn. More precisely,
we are given two elements α, β of order r in F∗

qn and we wish to find logα β. Let g be an
element of order N in F∗

qn. Then logα β = (logg β)/(logg α) mod r. Thus, in the remainder
of this section we will assume that we need to compute logg h mod r, where h is an element
of order r in F∗

qn .
The algorithm we use to solve the DLP in Fqn is due to Joux [77], with the Joux-Pierrot

[82] improvement for computing the logarithms of the factor base elements and methods from
Granger et al. [60, 61] for performing the descent steps over the base field Fq.

The algorithm proceeds by precomputing the logarithms of all elements of degree ≤ 3
(§5.2.2–§5.2.3) in Fqn and some families of degree-4 elements (§5.2.4) [82]. Then, in the
descent stage, logg h is expressed as a linear combination of logarithms of elements of degree

5.2. The DLP algorithm of Joux, Granger et al. and Joux-Pierrot 79

≤ 3 and elements in the precomputed degree-4 families in Fqn . The descent stage proceeds
in several steps, each expressing the logarithm of a degree-D element as a linear combination
of the logarithms of elements of degree ≤ m for some m < D. Five descent methods are
used. The continued-fractions, classical and Gröbner bases descents do not differ from how
they are described in §3.3.4, §3.6.5, and §3.3.7, respectively, except that here one is directly
working over the base field Fq and not over a proper extension of it. We, therefore, will not
recall these descents in this chapter. The degree-4 family-based Groebner bases descent [82]
is described in §5.2.4.2 and the powers-of-2 descent [61] in §5.2.5.

5.2.1 Setup

Select elements α0, α1, β ∈ Fq so that the polynomial h1(X)Xq − h0(X) has an irreducible
factor IX of degree n in Fq[X], where h0(X) = α1X + α0 and h1(X) = X2 + βX. Note that

Xq ≡ h0/h1 (mod IX).

The field Fqn is represented as Fqn = Fq[X]/(IX) and the elements of Fqn can be represented
as polynomials in Fq[X] of degree at most n− 1. Let g be a generator of F∗

qn.

5.2.2 Finding logarithms of quadratic polynomials

Let B2 be the set of all irreducible polynomials over Fq of degree ≤ 2 and note that |B2| ≈
q2/2+q. To compute the logarithms of B2-elements, we first generate linear relations of these
logarithms. Let a, b ∈ Fq. Substituting

Y 7→ X2 + a

X + b

into the systematic equation
Y q − Y =

∏

α∈Fq

(Y − α), (5.1)

and then multiplying by h21(X + b)q+1 yields

(h20 + ah21)(X + b)− (X2 + a)(h0h1 + bh21) (5.2)

≡ h21 · (X + b) ·
∏

α∈Fq

(
X2 − αX + a− αb

)
(mod IX).

Note that the left side of (5.2) is a polynomial of degree (at most) 6. If this polynomial is 2-
smooth, then taking logarithms of both sides of (5.2) yields a linear relation of the logarithms
of B2-elements.

As first noticed in [60], the left side of (5.2) has a systematic factor h1X − h0.1 Then,
the cofactor of h1X − h0 in the left side of (5.2) is of degree 3 and its probability of being

1In fact, for any polynomials k1, k2 ∈ Fq[X]\Fq of degree at most D ≥ 1, substituting Y 7→ k1/k2 into

equation 5.1 and then multiplying by hD
1 kq+1

2 , gives a left side divisible by h1X − h0.

80 Chapter 5. Improved Discrete Logarithm Computations in F36·509

2-smooth is Nq(1,3)
q3
≥ 2/3. We assume that each pair (a, b) ∈ F2

q generates a distinct relation.
Now, since 2/3 · q2 ≫ q2/2+ q, one expects to obtain sufficiently many linear relations of the
logarithms of B2-elements and, therefore, finds these logarithms by solving a sparse system
of linear equations using Wiedemann’s algorithm. Thus, after approximately 3/2 · (q2/2+ q)
trials one expects to obtain q2/2 + q relations. The cost of the relation generation stage is
3/2 · (q2/2+ q) ·Sq(1, 3). The expected cost of the linear algebra is 3/2 · (q5/4+ q4+ q3) ·AN ,
where AN denotes the cost of an integer addition modulo N .

5.2.3 Finding logarithms of cubic polynomials

Let B3 be the set of all irreducible polynomials over Fq of degree 3 and note that |B3| ≈ q3/3.
For γ ∈ F∗

q, we define

B3,γ = {Q = X3 + aX2 + bX + γ | a, b ∈ Fq and Q irreducible in Fq[X]}.

In this way, B3 is partitioned into q − 1 sets each of size roughly q2/3.Thus, to compute the
logarithms of the elements in B3, for every γ ∈ F∗

q we generate linear relations of logarithms
of B3,γ-elements and solve the resulting sparse system of linear equations. Let γ ∈ F∗

q, and
let a, b ∈ Fq. Substituting

Y 7→ X3 + aX2 + γ

X3 + bX + γ

into equation (5.1) and then multiplying by h31(X
3 + bX + γ)q+1 yields

(h30 + ah20h1 + γh31)(X
3 + bX + γ)− (X3 + aX2 + γ)(h30 + bh0h

2
1 + γh31) (5.3)

≡ h31 · (X3 + bX + γ) ·
∏

α∈Fq

(
(1− α)X3 + aX2 − αbX + (1− α)γ

)
(mod IX).

One can easily see that the left side of (5.3) is a polynomial of degree (at most) 8 divisible
by X(h0X − h1) and that all the monic irreducible polynomials of degree 3 appearing in the
right side are B3,γ-elements. If the degree-4 cofactor of X(h1X − h0) in the left side of (5.3)
is 2-smooth, which happens with probability Nq(2,4)

q4
≥ 0.41, then taking logarithms of both

sides of (5.3) yields a linear relation of logarithms of degree-1 and degree-2 elements, already
known from §5.2.2, and logarithms of B3,γ-elements.

Assuming that each pair (a, b) ∈ F2
q generates a distinct relation gives 0.41 · q2 ≫ q2/3.

This implies that sufficiently many linear relations of the logarithms of B3,γ-elements can
be obtained and these logarithms are, thereafter, found by solving a sparse system of linear
equations using Wiedemann’s algorithm. Hence, after approximately 1/0.41 · q2/3 trials one
expects to obtain q2/3 relations. The cost of the relation generation stage is 1/0.41 · q2/3 ·
Sq(2, 4). The expected cost of the linear algebra is (q5/27) · AN since each equation has
approximately q/3 nonzero terms. The total cost to find logarithms of all B3-elements is
dominated by the (q − 1) · (q5/27) · AN cost to solve the q − 1 sparse systems of linear
equations.

5.2. The DLP algorithm of Joux, Granger et al. and Joux-Pierrot 81

5.2.4 Finding logarithms of quartic polynomials

The Gröbner bases descent methodology applies for descending degree-4 polynomials. How-
ever, similarly to the case of quadratic polynomials in §4.4.2, this is successful for only about
50% of the quartic polynomials over Fq. Using an adapted version of Strategy 4.2, which
we call the Frobenius strategy, helps to raise this portion to about 58.6%. Unfortunately,
Strategy 4.1 does not apply here and so one cannot hope to achieve the higher percentage of
§4.4.2. In order to overcome this barrier, Joux and Pierrot [82] extended to quartic elements
their idea (§5.2.3) of partitioning the set of polynomials and exploit the special form of h0
and h1 to find relations of logarithms of elements in smaller sets and solve the resulting linear
algebra problems.

5.2.4.1 Finding logarithms of the factor base quartic polynomials

Let B4 be the set of all irreducible degree-4 polynomials over Fq and note that |B4| ≈ q4/4.
For γ ∈ F∗

q, we define

B4,γ = {Q = X4 + aX3 + bX2 + δX + γ | a, b, δ ∈ Fq and Q irreducible in Fq[X]},

and then for a fixed δ ∈ Fq, we define

B4,γ,δ = {Q = X4 + aX3 + bX2 + δX + γ | a, b ∈ Fq and Q irreducible in Fq[X]}.

In this way, B4 is partitioned into q−1 families each of size roughly q3/4 and each family is
in turn partitioned into q subfamilies each of size roughly q2/4. Let γ ∈ F∗

q. To compute the
logarithms of the elements in B4,γ , for every δ ∈ Fq we generate linear relations of logarithms
of B4,γ,δ-elements and solve the resulting sparse system of linear equations. Let δ ∈ Fq, and
let a, b ∈ Fq. Substituting

Y 7→ X4 + aX2 + δX + γ

X3 + bX2

into equation (5.1) and then multiplying by h41(X
3 + bX2)q+1 yields

(h40 + ah20h
2
1 + δh0h

3
1 + γh41)(X

3 + bX2)− (X4 + aX2 + δX + γ)(h30h1 + bh20h
2
1) (5.4)

≡ h41 · (X3 + bX2) ·
∏

α∈Fq

(
X4 − αX3 + (a− αb)X2 + δX + γ

)
(mod IX).

As in §5.2.3, one can easily see that the left side of (5.4) is a polynomial of degree (at most)
11 divisible by X(h0X − h1) and that all the irreducible polynomials of degree 4 appearing
in the right side are B4,γ,δ-elements. If the degree-7 cofactor of X(h1X − h0) in the left side
of (5.4) is 3-smooth, which happens with probability Nq(3,7)

q7
≥ 0.24, then taking logarithms

of both sides of (5.4) yields a linear relation of logarithms of elements with degree at most
3, already known from §5.2.2 and §5.2.3, and logarithms of B4,γ,δ-elements.

Recall that the logarithms of 58.6% of the quartic polynomials can be found using the
Gröbner bases descent combined with the Frobenius strategy. Assuming that this portion
is uniformly distributed over all the quartic polynomials, only (1 − 0.586) · q2/4 ≤ 0.11 · q2

82 Chapter 5. Improved Discrete Logarithm Computations in F36·509

will be involved in the above linear relation generation. We assume furthermore that each
pair (a, b) ∈ F2

q generates a distinct relation. Now, since 0.24 · q2 ≫ 0.11 · q2, one expects to
obtain sufficiently many linear relations of the logarithms of the quartic elements in question
and, therefore, finds these logarithms by solving a sparse system of linear equations using
Wiedemann’s algorithm. Thus, after approximately 0.11/0.24 ·q2 trials one expects to obtain
0.11 · q2 relations. The cost of the relation generation stage is at most 0.11/0.24 · q2 ·Sq(1, 3).
The expected cost of the linear algebra is at most 0.0013 · q5 · AN .

After the logarithms of all the elements in a first family B4,γ0 , γ0 ∈ F∗
q, are computed, for

a second family B4,γ1 , γ1 ∈ F∗
q, one can combine the Gröbner bases descent, the Frobenius

strategy and the new descent method described next in §5.2.4.2 to improve the proportion
of descending quartics and then reduce the size of the linear equation systems of the B4,γ1-
subfamilies. More precisely, since the probability of success of this new descent method is
about 1/2 and when combined with the Frobenius strategy gives a probability of about 0.586,
the portion of degree-4 polynomials in B4,γ1 that descend is about 1− (1− 0.586)2 ≈ 0.8286.
Therefore, the number of elements involved in the linear equation system of every B4,γ1-
subfamily is about (1 − 0.8286) · q2/4 ≈ 0.043 · q2. Applying this procedure recursively for
the following families will reduce each time the size of the linear equation system by more
than half.

5.2.4.2 Family-based Gröbner bases descent for quartic polynomials

Suppose that some nonzero number (say, s) of families, B4,γ0 , . . . ,B4,γs−1 , have the logarithms
of all their elements computed and we seek to find the logarithm of an irreducible degree-4
polynomial Q ∈ Fq[X] not in those families. Suppose that the Gröbner bases descent and the
Frobenius strategy have failed in descending Q. Now, let’s consider a first family (say, B4,γ0).
Our goal is to find polynomials k1 = X4+a2X

2+a1X+γ0 and k2 = X3+b2X
2+b1X ∈ Fq[X]

such that Q | G, where
G = h41(k

q
1k2 − k1kq2) mod IX .

In this case, we have

G(X) ≡ h41 · (X3 + b2X
2 + b1X) ·

∏

α∈Fq

(
X4 − αX3 + (a2 − αb2)X

2 + (a1 − αb1)X + γ0
)

(mod IX)

(5.5)

as can be seen by making the substitution Y 7→ k1/k2 into the systematic equation (5.1) and
clearing denominators. It is clear that all the irreducible polynomials of degree 4 appearing
in the right side of (5.5) are B4,γ0-elements. Note that

G = (h40 + a1h
2
0h

2
1 + a2h0h

3
1 + γ0h

4
1)(X

3 + b2X
2 + b1X)

− (X4 + a2X
2 + a1X + γ0)(h

3
0h1 + b2h

2
0h

2
1 + b1h0h

3
1),

which is a degree-11 polynomial divisible by X(h1X−h0) and Q. The cofactor of X · (h1X−
h0) · Q in G is a degree-3 polynomial. Thus, equation (5.5) yields an expression of the
logarithm of Q in terms of logarithms of polynomials of degree at most 3 and polynomials in
the family B4,γ0 . Since these logarithms are all known, we recover the logarithm of Q.

5.2. The DLP algorithm of Joux, Granger et al. and Joux-Pierrot 83

To find polynomials k1, k2 such that Q | G, one proceeds as in the classical Gröbner bases
descent, with the same computational cost, where a system of equations is solved using a
Gröbner basis finding algorithm.

Similar to what is discussed in §5.2.4.1, this descent method, together with the Frobenius
strategy, is successful for only about 58.6% of all irreducible quadratic polynomials not in
B4,γ0 , . . . ,B4,γs−1 . To ensure descending a quartic polynomial not in B4,γ0 , . . . ,B4,γs−1 with
a probability of 1 − 0.414s+1, one applies a combination of the Frobenius strategy with the
Gröbner bases descent and, if this fails, then with the family-based descent, iteratively based
on the s precomputed families.

5.2.5 Powers-of-2 descent

Let Q ∈ Fq[X] be an irreducible polynomial of degree 2m, m > 2. In [61], one starts by lifting
Q to Fqm[X], where it factors intom irreducible polynomials of degree 2, say, Q = Q0 · · ·Qm−1

with Qi ∈ Fqm [X], 0 ≤ i < m. Note that, in this case, the polynomials Qi are conjugate
in the sense that for every 0 ≤ i < m, there exists 0 ≤ j < m such that Qi = Q

[j]
0 where

Q
[j]
0 denotes the polynomial obtained by raising each coefficient of Q0 to the power qj. For

simplicity, we shall assume that Qi = Q
[i]
0 for all 0 ≤ i < m.

Now, suppose that Q0, of degree 2, is descended to linear polynomials over Fqm, that is,
we have an expression

Q0 ·
∏

s

Fs =
∏

t

Gt,

where the Fs and Gt are linear polynomials over Fqm. Then, for every 0 ≤ i < m, we have
Qi ·

∏
s F

[i]
s =

∏
tG

[i]
t . This gives

Q ·
∏

s

(
F [0]
s · · ·F [m−1]

s

)
=
∏

t

(
G

[0]
t · · ·G[m−1]

t

)
.

Since for every pair of indexes (s, t), the products F [0]
s · · ·F [m−1]

s andG[0]
t · · ·G[m−1]

t are nothing
more than the respective polynomial norms of the linear polynomials Fs and Gt over Fq and,
therefore, are polynomials in Fq[X] of degree m, we get an expression of the logarithm of Q
in terms of logarithms of polynomials of degree (at most) m.

To descend Q0 to linear polynomials over Fqm, Granger et al. [61] employ the on-the-fly
degree 2-to-1 descent presented in [57, 58]. Let B be the set of elements B ∈ Fqm such
that the polynomial Xq+1 − BX + B factors into linear polynomials over Fqm. Note from
[29, 70, 61] that |B| ≈ qm−3 and B can be characterized as the image of Fqm\Fq2 under the
map u 7→ (u−uq2)q+1/(u−uq)q2+1. For B ∈ B and a, b, c ∈ Fqm such that c 6= ab, aq 6= b and

B = (aq−b)q+1

(c−ab)q
, one can see by the change of variable X → c−ab

aq−b
· X − a in Xq+1 − BX + B

that the polynomial Xq+1 + aXq + bX + c also factors into linear polynomials over Fqm.
Let a, b, c ∈ Fqm. We have h1 (Xq+1 + aXq + bX + c) mod IX = (X + a)h0 + (bX + c)h1,

which is a polynomial of degree at most 3 over Fqm. Thus, if we find a, b, c ∈ Fqm , with

c 6= ab, aq 6= b, such that Q0 | (X + a)h0 + (bX + c)h1 and (aq−b)q+1

(c−ab)q
∈ B, then we succeed in

descending Q0 to linear polynomials over Fqm .

84 Chapter 5. Improved Discrete Logarithm Computations in F36·509

Elements a, b, c ∈ Fqm such that Q0 | (X + a)h0 + (bX + c)h1 can be obtained by finding
a basis {(u1, X + u2), (X + v1, v2)} of the lattice

LQ = {(w1, w2) ∈ Fqm[X]× Fqm [X] : Q | (w1(X)h0 − w2(X)h1)}

where u1, u2, v1, v2 ∈ Fqm, since by choosing b ∈ Fqm and letting a = bu1+v1 and c = bu2+v2,
one can easily see that (X + a, bX + c) ∈ LQ.

To additionally meet the condition (aq−b)q+1

(c−ab)q
∈ B (c 6= ab, aq 6= b), we just need to choose

b ∈ Fqm such that

µ(b) =

(
bquq1 − b+ vq1

)q+1

(
− b2u1 + (u2 − v1)b+ v2

)q ∈ B,

as can be seen by replacing a and c in (aq−b)q+1

(c−ab)q
by bu1 + v1 and bu2 + v2, respectively. Such

an element b can be found by iteratively picking an element B ∈ B and solving the equation
B = µ(b). One possibility for solving this equation is to write b using m variables over Fq

and obtain a quadratic system of equations that can be solved by finding a Gröbner basis for
the ideal it generates. For the asymptotic character of the quasi-polynomial time algorithm
presented in [61], finding Gröbner basis, which dominates the running time of this descent
method and of exponential complexity in the number of variables, may not be suitable.
However, in our practical case of study, this is efficient enough, since we need Gröbner basis
for small degrees m only. The probability that an equation B = µ(b) has solutions is 1/2.
Thus, when m ≥ 4 (|B| ≥ q), the descent of a quadratic polynomial in Fqm[X] to linear
polynomials over Fqm is always expected to be successful. On the other hand, when m = 3,
we have |B| = 1 and only 50% of the quadratics over Fqm are expected to descend.

5.3 Solving the discrete logarithm problem in F36·509

As in §3.4, we are interested in computing discrete logarithms in the order-r subgroup of
F∗
36·509 , where r = (3509−3255+1)/7 is an 804-bit prime. Our approach to computing discrete

logarithms in this subgroup is to use the algorithm described in §5.2, whence q = 36 and
n = 509.

The DLP instance we solved is described in §5.3.1. The concrete estimates from §5.2
for solving the DLP instance are given in §5.3.2. Our experimental results are presented in
§5.3.3. In §5.3.4, we provide some implementation details on the handling of logarithms of
degree-4 elements.

5.3.1 Problem instance

Let N denote the order of F∗
36·509 . Using the tables from the Cunningham Project [42], we

partially factored N as N = C · p31 ·
∏21

i=2 pi, where the pi are the following primes (and

5.3. Solving the discrete logarithm problem in F36·509 85

r = p21):

p1 = 2 p2 = 7 p3 = 13 p4 = 1019 p5 = 7127 p6 = 21279 p7 = 54973 p8 = 97729

p9 = 14495303 p10 = 39115633 p11 = 324927277 p12 = 1644550169868135799

p13 = 59561824373572167761652488341 p14 = 1408323592065265621229603282020508687

p15 = 19724128725821325379688781664270351435664812399

p16 = 445822414421517590127833782065296611184663760610930675526963377000813

p17 = 7469589208981657559358234454652029713337290698769130712039564064844959830743

p18 = 3163016399054661453216167356713635396334196841905270027907771196291310871346

25858897091297678698363249

p19 = 2321404946852574407463368383953127746140259615234678007610408233057803930650

5889278179026503395282728989110957696917932365850935308873749615837273

p20 = 4481615016192797792064736092967441840962676013893578289418828353437587210956

6942820514222439432850646355157098126051586360410836283973747433357183937067

44237385203

p21 = 1022399462025868524098098874180930214571506124952557066147330033275262790815

6368783078274830574618706026498586928352444181958959275099808618631525078106

7131293823177124077445718802216415539934838376431091001197641295264650596195

201747790167311,

and
C = (T 2 + T + 1)/13, with T = 3509,

is a 1610-bit composite number.
We verified that gcd(C,N/C) = 1 and that C is not divisible by any of the first 107 primes.

Consequently, as mentioned in §4.5.1, if an element g is selected uniformly at random from
F∗
36·509 , and g satisfies gN/pi 6= 1 for 1 ≤ i ≤ 21, then g is a generator with very high

probability.
The field F36 is represented as F3[u]/(u

6 + 2u4 + u2 + 2u+ 2) and u is a generator of F36 .
The field F36·509 is represented as F36 [X]/(IX), where IX is the degree-509 irreducible factor
of h1(X)Xq − h0(X) with h0(X) = u316X + u135 and h1(X) = X2 + u424X.

We chose the generator g = X + u2 of F∗
36·509 . To generate an order-r discrete logarithm

challenge h, we computed

h′ =

508∑

i=0

(
V ⌊π·(36)i+1⌋ mod 36

)
X i

and then set h = (h′)N/r. The discrete logarithm was found to be

x = 149187399860318266360216633693296993377456281891569921325313817877770378643049306

648080952565298353676579007451593201607464390995536601538742899221984651896794008

85502189766284148692964779627944571222053133596965907357777487989092312353851456.

This can be verified by checking that h = (gN/r)y, where y = x · (N/r)−1 mod r.

86 Chapter 5. Improved Discrete Logarithm Computations in F36·509

5.3.2 Estimates

The dominant step in the computation of the logarithms of elements in B2, B3 and B4,γ for
all γ ∈ S, where S is some subset of F∗

q , is the solving of the (q − 1) linear algebra problems
arising from the computation of logarithms of B3-elements, each with cost approximately
q5/27Ar. The continued-fractions, classical, Gröbner bases and powers-of-2 descents are
used to express the discrete logarithm of the challenge element h in terms of logarithms of
elements in the factor base B2, B3, B4,γ , γ ∈ S.

The new cost estimates are presented in Table 5.1. We used the estimates for smoothness
testing from [59], and the ‘bottom-top’ approach from [60] for estimating the cost of Gröbner
bases and powers-of-2 descents from degree 15 to degree 4. We assume that 227 multiplications
in F36 can be performed in 1 second; we achieved this performance using a look-up table
approach. The timings for Gröbner bases descent and F36 multiplications were obtained
on an Intel i7-3930K 3.2 GHz CPU core. In a non-optimized C implementation, we have
observed an Ar cost of 43 clock cycles, where lazy reduction is used to amortize the cost of
a modular reduction among many integer additions. This yields the cost ratio Ar/Mq ≈ 2.

The main effect of the new improvements is the removal of the QPA descent stage from
the estimates in §3.4. The overall running time is 258.9Mq, a significant improvement over the
281.7Mq2 estimate from §3.4. In particular, assuming the availability of processors that can
perform 227 F36-multiplications per second, the estimated running time is approximately 127
CPU years — this is a feasible computation that we performed and the results are presented
in §5.3.3 (and §5.3.4).

Finding logarithms of polynomials of degree ≤ 4
Linear algebra 252.3Ar 253.3Mq

Descent
Continued-fractions (254 to 40) 256.9Mq 256.9Mq

Classical (40 to 21) 12.7 × 254.2Mq 257.9Mq

Classical (21 to 15) 159 × 249.4Mq 256.7Mq

Gröbner bases, powers-of-2 (15 to 4) 1924 × 8249 seconds 250.9Mq

Table 5.1: Estimated costs of the main steps for computing discrete logarithms in F36·509 (q =
36). Ar andMq denote the costs of an addition modulo the 804-bit prime r = (3509−3255+1)/7
and a multiplication in F36 . We use the cost ratio Ar/Mq = 2, and also assume that 227

multiplications in F36 can be performed in 1 second.

5.3.3 Experimental results

The computation described in this section was done using clusters from Cinvestav’s ABACUS
supercomputer [1] (5103 CPU cores used), Cinvestav’s Computer Science Department (290
CPU cores used), and University of Waterloo’s Faculty of Mathematics (120 CPU cores used).
Table 5.2 shows the CPU time consumed at each stage of the computation.

5.3. Solving the discrete logarithm problem in F36·509 87

Computation stage CPU time (years) CPU frequency (GHz)

Finding logarithms of quadratic polynomials

Relation generation 0.01 3.20

Linear algebra 0.50 2.40

Finding logarithms of cubic polynomials

Relation generation 0.15 3.20

Linear algebra 43.88 2.60

Finding logarithms of quartic polynomials

Relation generation 4.07 2.60

Linear algebra 96.02 2.60

Descent

Continued-fractions (254 to 40) 51.71 2.87

Classical (40 to 21) 9.99 2.66

Classical (21 to 15) 10.24 2.66

Gröbner bases, powers-of-2 (15 to 4) 6.27 3.00

Total CPU time (years) 222.81

Table 5.2: CPU times of each stage of the computation of discrete logarithms in F36·509 .

5.3.3.1 Computing of the logarithms of elements in B2, B3 and B4,ui, i ∈ [0, 28]

Finding logarithms of quadratic polynomials. The factor base B2 has size 266, 086 ≈
218. Relation generation took 2.4 CPU hours using Magma on an Intel i7-3930K 3.20GHz
CPU core. The resulting sparse system of linear equations was solved using our C implemen-
tation of Wiedemann’s algorithm; the computation took 4, 320 CPU hours on an Intel Xeon
E5-2658 v2 2.40 GHz CPU core.

Finding logarithms of cubic polynomials. For every γ ∈ F∗
q , B3,γ has size exactly

Iq(3)

q − 1
=
q2 + q

3
= 177, 390 ≈ 217.44.

The total relation generation running time is 1, 232 CPU hours using Magma on an Intel i7-
3930K 3.20GHz CPU core. The resulting 728 sparse systems of linear equations were solved
using our C implementation of Wiedemann’s algorithm in 379, 142 CPU hours on an Intel
Xeon E5-2697 v3 2.60 GHz CPU core.

Finding logarithms of quartic polynomials in B4,ui , i ∈ [0, 28]. In this phase, we could
apply the trick described in §5.2.4.1, namely to iteratively keep reducing in each new quartic
family the size of linear algebra systems by a factor less than 1/2. However, because of our
limited memory resources and the delay this could cause when generating the linear systems
in contrast to the ability of solving a large number of equal size linear algebra problems

88 Chapter 5. Improved Discrete Logarithm Computations in F36·509

in a shorter real time, we preferred to not take advantage of this trick. Therefore, for each
i ∈ [0, 28] and δ ∈ Fq, the subfamily B4,ui,δ has size roughly (1−0.586)·q2/4 ≈ 55, 050 ≈ 215.75.
The total relation generation running time was 35, 118 CPU hours using Magma on an Intel
Xeon E5-2650 v2 2.60GHz CPU core. The resulting 29 × 729 = 21, 141 sparse systems
of linear equations were solved using our C implementation of Wiedemann’s algorithm in
829, 573 CPU hours on an Intel Xeon E5-2697 v3 2.60 GHz CPU core.

5.3.3.2 Continued-fractions and classical descents

In the continued-fractions descent stage, the two degree-254 polynomials yielded 22 irre-
ducible factors with 2 of degree 40, 1 of degree 39, 1 of degree 38, 1 of degree 37, and 7 of
degree in the interval [22, 35]. The computation took 446, 768 CPU hours on CPU cores with
average frequency 2.87 GHz (270 machines of different frequencies were used in this stage).

In the first classical descent phase, 255 polynomials of degree at most 21 are obtained
from the 12 polynomials of degree ≥ 22. These computations took 86, 323 CPU hours on
CPU cores with average frequency 2.66 GHz (390 machines of different frequencies were used
in the two phases of the classical descent).

The second classical descent phase was used on the 84 polynomials of degree ≥ 16 coming
from the first phase, to obtain polynomials of degree ≤ 15. These computations took 88, 452
CPU hours on CPU cores with average frequency 2.66 GHz.

The number of obtained polynomials of each degree in the interval [5, 15] from the
continued-fractions and classical descents is shown in Table 5.3

Complete details on these continued-fractions and classical descent stages can be found
in Canales’s Master’s thesis [33].

Degree 5 6 7 8 9 10 11 12 13 14 15

Number of polynomials 101 107 94 98 92 116 137 123 155 173 213

Table 5.3: Number of polynomials of each degree in the interval [5, 15] obtained after the
continued-fractions and classical descents (with total number 1409).

5.3.3.3 Gröbner bases-like and powers-of-2-like descents

After this stage, the 1409 polynomials of degree in the interval [5, 15] resulting from the
continued-fractions and classical descents should have their logarithm expressed in terms of
logarithms of elements in the factor base, namely, in B2, B3 and B4,ui , i ∈ [0, 28].

For a degree-D element, D ∈ [5, 15], the Gröbner bases descent writes the logarithm of
this element as a linear combination of logarithms of elements of degree at most d where
d = ⌊D/2⌋ + 2. This is the best that can be done because of the condition [60, Condition
(10)]

q2d+1−D ≫ q3d−D/Nq(d, 3d−D).

The Gröbner bases descent is used on polynomials of odd degree; for those of even degree
the powers-of-2 descent is employed (except for degree-14 polynomials, see below) because
of its more aggressive descent character. Indeed, a polynomial of degree 2d, d > 2, is related

5.3. Solving the discrete logarithm problem in F36·509 89

with polynomials of degree d using the powers-of-2 descent instead of polynomials of degree
d+ 2 when using the Gröbner bases descent. The degree-4 polynomials which are not in the
factor base are descended using the classical or family-based Gröbner bases descent combined
with the Frobenius strategy.

As mentioned in §5.2.5, the powers-of-2 descent is successful for only 50% of the degree-6
polynomials. For the remainder, we used a hybrid Gröbner bases-powers-of-2 descent. In
this hybrid descent, a degree-6 polynomial is lifted to the quadratic extension of F36 , where
it splits into two polynomials of degree 3. Over the field F32·6 , we adapted the Gröbner
bases descent in §3.3.7 and used it to perform a 3-to-2 descent on one of the two degree-3
polynomials over F32·6 . Then, using the polynomial norm as in §5.2.5, we got the logarithm of
the degree-6 polynomial expressed in term of logarithms of polynomials of degree (at most)
4. This strategy allowed us to avoid the more costly 6-to-5 and then 5-to-4 Gröbner bases
descent steps.

We also employed the hybrid descent on the degree-14 polynomials to have 14-to-8 de-
scents on these polynomials instead of powers-of-2 14-to-7 descents. In fact, a complete
descent is more costly on a degree-7 polynomial than on a degree-8 polynomial since in
the former two Gröbner bases descent stages, 7-to-5 then 5-to-4, are needed while only one
powers-of-2 8-to-4 descent stage is needed in the latter.

Table 5.4 shows the average times for computing the discrete logarithms of all polynomials
of degrees in the interval [5, 15] that arise from the continued-fractions and classical descents
stages using the fastest method, as described in the present section. These times come from
the analysis and experiments outlined in §5.3.4.

Degree 5 6 7 8 9 10 11 12 13 14 15

Average
210.21 210.29 217.30 212.16 218.14 219.92 224.57 220.00 224.78 220.91 226.48

time (s)

Table 5.4: Average CPU times in seconds to obtain the complete descent and the discrete
logarithms of all the polynomials resulting from the continued-fractions and classical descents,
of degrees in the interval [5, 15], assuming that an Intel Xeon E5-2658 v2 2.40 GHz machine
with 256 gigabytes of RAM is used.

5.3.4 Some implementation details on the computation of logarithms

of degree-4 elements

Theorem 4 of [91] shows that the expected number of degree-d irreducible factors of a ran-
domly selected degree-n polynomial over Fq is approximately 1/d. Using this result, we
computed the average number of degree-4 elements that are obtained after a descent of a
polynomial of degree in the interval [5, 15]. We then used Table 5.3 to estimate the expected
number of degree-4 irreducible polynomials that result from the total descent steps; these
estimates are shown in Table 5.5.

To compute the discrete logarithm of a polynomial in B4,ui , i > 28, we need to express
it, using the methods discussed in §5.2.4.2, in terms of logarithms of polynomials of degree

90 Chapter 5. Improved Discrete Logarithm Computations in F36·509

Degree 5 6 7 8 9 10 11 12 13 14 15

Number of
214.18 214.26 221.27 216.13 222.11 223.88 228.54 223.97 228.74 224.88 230.45degree-4

polynomials

Table 5.5: Expected number of degree-4 polynomials resulting from all the Gröbner bases
and powers-of-2 descent steps for each degree in the interval [5, 15].

at most 3, and possibly of polynomials in B4,ui for some i ∈ [0, 28]. Thus, we first try to
have a descent to polynomials of degree at most 3. If this fails, we try to have a descent
based on the family B4,1. If this fails too, we try to have a descent based on the family B4,u.
We keep trying until we reach the family B4,u28 . Table 5.6 shows for every family from B3,
B4,ui, i ∈ [0, 28], the inverse of the probability for a random irreducible degree-4 polynomial
to descend based on that family.

B3 200.8297 B4,u0 202.1020 B4,u1 203.3742 B4,u2 204.6466 B4,u3 205.9189

B4,u4 207.1912 B4,u5 208.4635 B4,u6 209.7358 B4,u7 211.0081 B4,u8 212.2803

B4,u9 213.5526 B4,u10 214.8250 B4,u11 216.0972 B4,u12 217.3695 B4,u13 218.6418

B4,u14 219.9141 B4,u15 221.1864 B4,u16 222.4587 B4,u17 223.7310 B4,u18 225.0033

B4,u19 226.2756 B4,u20 227.5479 B4,u21 228.8202 B4,u22 230.0925 B4,u23 231.3648

B4,u24 232.6371 B4,u25 233.9094 B4,u26 235.1817 B4,u27 236.4540 B4,u28 237.7263

Table 5.6: For every family from B3, B4,ui , i ∈ [0, 28], the inverse of the probability for a
random irreducible degree-4 polynomial to descend based on that family.

Since we do not have a native implementation of Gröbner bases finding algorithms, we
used Magma’s implementation of Faugère’s F4 algorithm [47]. Our Magma script for the
descent phase frequently needs to read the logarithm of a polynomial in B4,ui , i ∈ [0, 28] with
frequencies shown in Table 5.6.

The files of logarithms for each of the 29 quartic families has size 20.4 gigabytes, and
the files of logarithms for the cubic polynomials has size 26.4 gigabytes; the total size of the
logarithm files is 618 gigabytes. On one hand, our machines have only 256 gigabytes of RAM.
Thus, some families must be stored in the hard disk (HD), which is much slower to access
than the virtual memory (VM). Since many copies of the Magma code will be executed in
parallel, each of which will be accessing the same logarithm files, the memory accesses have
to be carefully scheduled to avoid traffic congestion. In addition, we had to deal with some
restrictions on Magma’s file reading capabilities (for example, whether the files are stored in
hexadecimal encoding or binary encoding) and with limits on the total number of open files
permitted on Linux.

5.3. Solving the discrete logarithm problem in F36·509 91

Parameterizing the degree-4 polynomials. For practical purpose in the logarithm read-
ing process, any degree-4 polynomial (irreducible or not) will be characterized by three pa-
rameters in order to get a natural partitioning.

For a ∈ [0, 728] and f ∈ F36 , we denote by fa the natural field exponentiation if a ∈
[0, 727], and 0 if a = 728. Let a, b, j ∈ [0, 728] and i ∈ [0, 727]. Let Q = X4+ uaX3 + ubX2 +
ujX + ui be a polynomial over F36 . We define the parameters of Q as:

• i, its family parameter.

• j, its subfamily parameter.

• pos = (a + 1 mod 36) · 36 + (b + 2 mod 36), its position in the ordered (with respect
to pos and starting from 1) list of all polynomials (irreducibles and reducibles) having
i as family parameter and j as subfamily parameter.

We denote the parametrized polynomial Q by Qi,j,pos.

The Magma-only logarithm reading process. The logarithms of all the elements in the
families B4,ui, i ∈ [0, 28] are stored in several different files and the repartition is done in
such a way that all and only the logarithms of the polynomials with same family parameter i
and same subfamily j parameter are in one file, with path “4_i/log/j.log”. All the logarithms
occupy the same number of bytes, denoted M , which is the length of the modulus r (202 bytes
in text hexadecimal encoding or 101 in binary encoding). 2 Thus, to retrieve the logarithm
of an irreducible polynomial, say, Qi,j,pos, we only need to go to the file “4_i/log/j.log” at the
position of the first byte of the logarithm and read M bytes. But how to get the position of
the first byte?

For that, we set index files as “4_i/idx/j.idx”, for storing all and only the indexes of the
degree-4 polynomials with same family parameter i and same subfamily parameter j, where
the index of a reducible polynomial is always 0. For the irreducible polynomials, the one
with least third parameter has index 1, the second irreducible in the list has index 2, and so
forth. Here also, all the indices occupy the same number of bytes, denoted I, which is the
length of 7292/4+729 (5 bytes in hexadecimal encoding or 3 in binary encoding). Therefore,
for an irreducible degree-4 polynomial Qi,j,pos the position of the first byte of its logarithm
is obtained by going to the file “4_i/idx/j.idx” at the byte (pos− 1)I, reading I bytes, then
getting the index e, and finally computing (e − 1)M to retrieve the logarithm first byte
position. This being so, it is now easy to describe how Magma proceeds to read logarithms.

At start up, Magma initializes two two-dimensional arrays, Idx4[29][729] and Log4[29][729],
of dimension 29x729 each, where the cell Log4[i+1][j+1], for instance, stores a file structure
pointing to the file “4_i/log/j.log”. The array Idx4 stores file structures for the index files
in the same way. At logarithm request, with parameters i, j, pos, Magma asks for the offset
of the file position indicator of Idx4[i+1][j+1] and moves it to the offset (pos− 1)I, reads I

2In the text hexadecimal encoding, 2 bytes are used to encode integers from 0 to 28− 1, while this is only
one byte in the binary encoding.

92 Chapter 5. Improved Discrete Logarithm Computations in F36·509

bytes and convert them to an integer to get an index e. Then it asks for the offset of the file
position indicator of Log4[i+1][j+1] and moves it to the offset (e− 1)M , reads M bytes and
convert them to an integer to get the sought logarithm.

Regarding the storage of the indexes and logarithms, we have different options that are
functions of how are they stored, in hexadecimal or binary encoding, and where, in the HD
or in the VM. The advantage of a binary encoding is that the sizes of the files are half the
sizes in the hexadecimal encoding, then allowing to place more families B4,ui , i ∈ [0, 28],
into the VM (fast memory but with limited size). Unfortunately, the unique operation that
Magma can perform with a binary file is the reading of the entirety of its contents, in one
call. This means that the strategy we described above will be possible only with text files
(in hexadecimal encoding in our case). This is the reason why we need a hybrid Magma-C
implementation to handle binary files with more flexibility and freedom.

The Magma-C logarithm reading process. Suppose we are running our Magma script
and at one point the logarithm of a polynomial Qi,j,pos in B4,ui , i ∈ [0, 28], is needed. Then
Magma, by its Pipe function, sends a shell command that executes the C program “bin_-
rd_509_magma.c” with arguments the parameters of Q, and waits to receive the requested
logarithm in the same Pipe call. See the following Magma line code.

>log4 := Pipe("./bin_rd_509_magma.out", "i j pos");

However, calling the program “bin_rd_509_magma.c” assumes that another program is
already running. This is the program “bin_rd_509.c”, which is simply the one that retrieves
the sought logarithm. We can see here that the program “bin_rd_509_magma.c” in fact acts
just as an interface between the Magma process and the program “bin_rd_509.c”. When
“bin_rd_509_magma.c” is invoked with arguments “i j pos”, it sends these to the program
“bin_rd_509.c” and waits for the logarithm. After receiving the logarithm, it outputs it to
Magma by a printing to the standard output, in hexadecimal representation.

This process requires an efficient tool for the C programs to communicate. We used
the System V shared memory, which lets multiple unrelated processes attach a segment
of physical memory to their virtual address spaces. In our case, “bin_rd_509.c” creates a
shared memory segment with a specific key and attaches it to its virtual address space. Then,
every time “bin_rd_509_magma.c” is called by Magma, it attaches the created segment to
its virtual address space using the same key. Actually, “bin_rd_509.c” creates four shared
memory segments, two for receiving the parameters from “bin_rd_509_magma.c” and two
others for sending the logarithm to “bin_rd_509_magma.c”. We need two segments for
each action because one of them is employed as a semaphore to prevent inconsistencies and
collisions. To read logarithms, “bin_rd_509.c” proceeds exactly in the same way as in the
Magma-only logarithm reading process.

Note that we can consider the degree-3 polynomials as an extra family in which a poly-
nomial Q = X3+uaX2+ ubX + uj, where a, b ∈ [0, 728] and j ∈ [0, 727], has parameters (-1,
j, pos).

• j, the subfamily parameter.

• pos = (a+ 1 mod 36) · 36 + (b+ 2 mod 36), the position in the ordered (with respect

5.4. Computing discrete logarithms in F36·1429 93

to pos and starting from 1) list of all degree-3 polynomials (irreducibles and reducibles)
having j as subfamily parameter.

Therefore, reading the logarithm of a degree-3 irreducible polynomial is done exactly as for
the logarithm of any element in a given family B4,ui , i ∈ [0, 28].

The hybrid Magma-C implementation works without any problem when the binary files
are located in the HD or in the VM. In contrast, the Magma-only implementation works
correctly only when the files are in the VM (otherwise the data transfer traffic easily gets
congested).

Experimental running times. The following experiments were run on a 20-core Intel
Xeon E5-2658 v2 2.40 GHz machine with 256 gigabytes of RAM.

• Size of a quartic family in hexadecimal: 20.4 gigabytes.

• Size of the cubic family in hexadecimal: 26.4 gigabytes.

We have three cases, each with its overall running times for reading one logarithm.

• Logarithms and indexes are in hexadecimal in the VM (Magma-only):
Cpu time: 0.000018 seconds / Real time: 0.0000185 seconds

• Logarithms and indexes are in binary in the VM (Magma-C):
Cpu time: 0.00186 seconds / Real time: 0.0019 seconds

• Logarithms and indexes are in binary in the HD (Magma-C):
Cpu time: 0.004 seconds / Real time: 0.024 seconds

These times show, and that is what is experimentally observed, that the best option is to put
as many families in hexadecimal encoding as possible in the VM. In the 20-core Intel Xeon
E5-2658 v2 2.40 GHz machine with 256 gigabytes of RAM, this is done for the family of
irreducible degree-3 polynomials and the families B4,1, B4,u, ..., B4,u9 , and the rest left in the
HD in binary. The times for a complete descent of a random irreducible degree-4 polynomial
are:

• Cpu time: 0.0614s / Real time: 0.0640s

5.4 Computing discrete logarithms in F36·1429

As in §4.3, we are interested in computing discrete logarithms in the order-r subgroup of
F∗
36·1429 , where r = (31429 − 3715 + 1)/7622150170693 is a 2223-bit prime. To accomplish

this, we embed F36·1429 in its quadratic extension F312·1429 . Let q = 36 and k = 2. The field
F312·1429 is represented as Fq2 [X]/(IX), where IX is a monic degree-1429 irreducible factor of
h1(X

q) ·X − h0(Xq) with h0, h1 ∈ Fq2[X] and max(deg h0, deg h1) = 2.
The techniques from [60] employed to improve the estimates of [4] are the following:

1. Since logarithms are actually sought in the field F36·1429 , the continued fractions and
classical descent stages are performed over Fq (and not Fq2).

94 Chapter 5. Improved Discrete Logarithm Computations in F36·509

2. In the final classical descent stage to degree 11, one permits irreducible factors over Fq

of even degree up to 22; any factors of degree 2t ≥ 12 that are obtained can be written
as a product of two degree-t irreducible polynomials over Fq2.

3. The number of irreducible factors of an m-smooth degree-t polynomial is estimated as
t/m.

4. The smoothness testing estimates from Appendix B of [59] were used (see §2.5).

The remaining steps of the algorithm, namely finding logarithms of linear polynomial, finding
logarithms of irreducible quadratic polynomials, QPA descent, and Gröbner bases descent,
are as described in §4.3.

The new cost estimates are presented in Table 5.7. The main effect of the techniques
from [60] is the removal of one QPA descent stage. The overall running time is 278.8Mq2 , a
significant improvement over the 295.8Mq2 estimate from §4.3.

Finding logarithms of linear polynomials
Relation generation 228.6Mq2 228.6Mq2

Linear algebra 247.5Ar 249.5Mq2

Finding logarithms of irreducible quadratic polynomials
Relation generation 312 × 237.6Mq2 256.6Mq2

Linear algebra 312 × 247.5Ar 268.5Mq2

Descent
Continued-fractions (714 to 88) 277.6Mq 277.6Mq

Classical (88 to 29) 16.2 × 273.5Mq 277.5Mq

Classical (29 to 11) 267.3 × 270.8Mq 278.9Mq

QPA (11 to 7) 213.9 × (244.4Mq2 + 247.5Ar) 263.4Mq2

Gröbner bases (7 to 4) 235.2 × (76.9 seconds) 267.5Mq2

Gröbner bases (4 to 3) 244.7 × (0.03135 seconds) 265.7Mq2

Gröbner bases (3 to 2) 254.2 × (0.002532 seconds) 271.6Mq2

Table 5.7: Estimated costs of the main steps for computing discrete logarithms in F312·1429

(q = 36). Ar, Mq, and Mq2 denote the costs of an addition modulo the 2223-bit prime r,
a multiplication in F36 , and a multiplication in F312 . We use the cost ratio Ar/Mq2 = 4,
and also assume that 226 (resp. 227) multiplications in F312 (resp. F36) can be performed in
1 second (cf. §5.3.2).

5.5 Concluding remarks

We used the techniques introduced by Granger et al. [60, 61] and Joux and Pierrot [82] to
improve our previous estimates for computing discrete logarithms in the finite fields F36·509

and F36·1429 . With the new estimates, we solved a DLP instance in the order-r subgroup of
F∗
36·509 , with r = (3509−3255+1)/7 an 804-bit prime. The computations took about 220 CPU

years.

5.5. Concluding remarks 95

An important open question is whether the different improvements on the new attacks
can be taken further so that they can actually be utilized to effectively solve instances of
the discrete logarithm problem in the order-r subgroup of F∗

36·1429 , where r = (31429 − 3715 +
1)/7622150170693 is a 2223-bit prime. For this to happen, any attempt at removing the
remaining QPA descent stage may lead to a fruitful outcome.

96 Chapter 5. Improved Discrete Logarithm Computations in F36·509

6 Another Work: Square Roots in Even-

Degree Extensions of Finite Fields

6.1 Introduction

Computing square roots in finite fields is a classical number theory problem that has been
addressed by mathematicians over centuries. These days, it is especially relevant for elliptic
curve cryptography, where hashing an arbitrary message to a random point in a given ellip-
tic curve [31], decompression of an elliptic curve point [103, 72, 20] and counting points on
elliptic curves [112, 12], are some of its most important applications. These cryptographic
operations, performed in a large number of pairing-based protocols defined over popular
choices of pairing-friendly elliptic curves such as the Barreto-Naehrig (BN) [20, 56], the
Kachisa-Schaefer-Scott and the Barreto-Lynn-Scott [19] elliptic curves, often require com-
puting square roots in either quadratic or cubic extensions of finite fields.

Let q = pm, with p an odd prime and m a nonzero positive integer. The task of computing
a square root of an arbitrary element a ∈ Fq consists in finding a second element b ∈ Fq,
if it exists, such that b2 = a. According to Euler’s criterion, also known as the quadratic
residuosity test, a square root of an element a ∈ F∗

q exists in Fq if and only if a
q−1
2 = 1. We

denote by χq(a) the value of a
q−1
2 . If χq(a) = 1, we say that the element a is a quadratic

residue (QR) in Fq. It is known that in F∗
q there exist exactly (q − 1)/2 quadratic residues.

Two non-deterministic classical algorithms for computing square roots in finite fields are
the Tonelli-Shanks [120] and the Cipolla-Lehmer [38] algorithms. 1 However, finding square
roots can be achieved more easily using specialized methods that we briefly discuss next.

In the case where q ≡ 3 (mod 4), one can simply use a specialized version of the Tonelli-
Shanks procedure, namely, the Shanks algorithm, where a square root of a QR a ∈ Fq is
computed via one single exponentiation b = a

q+1
4 . On the other hand, no simple and general

formula for the class q ≡ 1 (mod 4) is known. However, fast algorithms for computing square
roots in Fq when q ≡ 5 (mod 8) or q ≡ 9 (mod 16) have been reported.

For the case q ≡ 5 (mod 8), Atkin [12] developed in 1992 an efficient and deterministic
square root algorithm which finds a square root of a QR using only one field exponentiation
plus a few multiplications in Fq. A modification of Atkin’s algorithm, presented by Müller in
[106], computes a square root in Fq when q ≡ 9 (mod 16) at the price of two exponentiations.
By exploiting a regular structure of the exponents in Müller’s algorithm when written in base

1In this chapter, an algorithm is said to be non-deterministic if for a given input, the number of steps to
compute the output varies among different runs.

97

98 Chapter 6. Another Work: Square Roots in Even-Degree Extensions of Finite Fields

p, Kong et al. [89] reduced the overall cost of this procedure to only one exponentiation for
half of the QRs in Fq, and two exponentiations for the other half.

It is worth mentioning that in the case where q ≡ 1 (mod 16), no specialized algorithm
is known. Hence, for this class of finite fields one is forced to resort to the aforementioned
expensive classical methods, namely, the Tonelli-Shanks algorithm or the improved version
of the Cipolla-Lehmer algorithm presented by Müller in [106].

Square root computation in extension fields Fpm, with m odd. Several authors have
analyzed the square root problem in odd-degree extension fields. In [18], Barreto et al.
presented an efficient algorithm that computes square roots in fields of this form whenever
p ≡ 3 (mod 4) or p ≡ 5 (mod 8). The latter case can be seen as a variant of the Atkin
method mentioned above. The main idea of the Barreto et al. method is to rewrite the
resulting exponents in base p. Thus, the exponentiations can be performed efficiently by
exploiting a recursive procedure that is essentially the same as the one used in the Itoh-Tsujii
inversion method [73]. This recursive procedure takes advantage of the fact that the prime
Frobenius map in characteristic p, that is, the p-th powering, is a simple operation that can
be computed at an inexpensive cost or even at no cost if the field elements are represented
in normal basis [21].

The technique in [18] was systematically applied by Han et al. in [66] for all the specialized
methods where p ≡ 3 (mod 4), p ≡ 5 (mod 8) or p ≡ 9 (mod 16). Han et al. also improved
the Tonelli-Shanks method that is one of the best choices for tackling the case where p ≡
1 (mod 16). Let’s write pm − 1 = 2s · t with s is a positive integer and t an odd number.
Then, in order to compute a square root of an arbitrary QR a ∈ Fq, the most expensive
operation in the Tonelli-Shanks algorithm is the exponentiation a

t−1
2 . As shown in [66], this

operation can be considerably sped up by once again exploiting the idea of rewriting the
exponent (t− 1)/2 in base p.

Square root computation in extension fields Fpm, with m even. Relatively less work
has been reported for even-degree extension fields. Finding square roots in these fields can
sometimes be achieved by descending some of the required computations in Fpm to its proper
subfields. In this context, the authors in [84, 85, 121] used a Tonelli-Shanks based approach
in order to have most of the computations in subfields of Fpm. More recently, Doliskani and
Schost [44] presented an algorithm that takes roots over Fpm by descending the computation
down to the base field Fp by using the trace function.

Scott adapted in [113] the complex square root formula presented in [50] to the computa-
tion of square roots in quadratic extension fields Fq2 . The computational cost of his algorithm
is that of two square roots, one quadratic residuosity test and one field inversion, all these
operations performed over Fq. As will be seen in §6.5, the complex method ranks among the
most efficient algorithms for computing square roots in even-degree extension fields.

Contributions. The main purpose of this chapter, in joint work with F. Rodríguez-
Henríquez [6], is the introduction of two new algorithms for computing square roots in Fq2

with q a power of an odd prime. The two algorithms are complementary in the sense that they
cover separately the two congruence classes of odd prime numbers, namely, q ≡ 1 (mod 4)

6.2. Preliminaries 99

and q ≡ 3 (mod 4).
For the class q ≡ 3 (mod 4), we present a deterministic procedure that in some sense can

be seen as a generalized Shanks algorithm for finite fields with even-degree extension. In this
case the proposed algorithm computes a square root in Fq2 by performing two exponentiations,
each of them with associated exponent of bitlength log2(q).

For the class q ≡ 1 (mod 4), our second algorithm computes a square root in Fq2 by first
performing one exponentiation in Fq2 with an exponent of bitlength roughly log2(q), followed
by the computation of one square root in the subfield Fq.

Our experiments show that the two proposed algorithms are competitive when compared
against the complex method, the Tonelli-Shanks and the Müller’s procedures. Figure 6.1
presents an overview of the most efficient algorithms for computing square roots in Fpm,
when p is an odd prime.

In addition, we present a procedure that computes χq(a), with q = pm at the cost of
several Frobenius exponentiations over Fq plus the computation of the Legendre symbol in
the base field Fp. This procedure is faster than the recursive algorithm proposed by Bach
and Huber in [13].

Furthermore, a review of the classical square root algorithms over finite extension fields Fq

is provided. In the case of extension fields Fpm with m odd, we revisit efficient formulations of
several square root algorithms where the quadratic residuosity test of the input is interleaved
in such a manner that only some constant number of multiplications is added to the overall
computational cost.2 A detailed complexity analysis of all the reviewed algorithms is also
given. In particular and to the best of our knowledge, the complexity analysis of Algorithm 8
that corresponds to the Müller procedure for the subclass q ≡ 1 (mod 16), has not been
reported before in the open literature.

The reminder of the chapter is organized as follows. In Section 6.2 we give some notation
and practical settings needed for complexity estimations. In Section 6.3 we present an efficient
strategy for performing the quadratic residuosity tests in extension fields. Section 6.4 provides
a comprehensive review of known algorithms over extension fields Fpm with m odd. In
Section 6.5, we study the computation of square roots in extension fields Fpm with m even
and outline the new algorithms. In Section 6.6, we compare the new algorithms against
previously known methods by choosing base fields of BN curves [20] and NIST curves [72].
Our concluding remarks are drawn in Section 6.7.

6.2 Preliminaries

In this chapter, most of the described algorithms have both precomputation and computation

phases. However, as it is customary when evaluating the complexity of a given algorithm,
we will not consider the precomputation effort and give only the costs associated to the
computation phase.

In a finite field Fq, the binary exponentiation method is a standard strategy for computing

2With the only exception of Algorithm 8 that reproduces one of the procedures that Müller introduced
in [106].

100 Chapter 6. Another Work: Square Roots in Even-Degree Extensions of Finite Fields

Square root in Fpm,
p an odd prime

m even

p
m

2 ≡ 1 (mod4)

New Alg. 11

Complex
Alg. 9

p
m

2 ≡ 3 (mod4)

New Alg. 10

m odd

p ≡ 1 (mod4)

p ≡ 1 (mod8)

p ≡ 1 (mod16)

Müller’s Alg. 8 or
Tonelli-Shanks Alg. 6

p ≡ 9 (mod16)

Kong et al. Alg. 5

p ≡ 5 (mod8)

Atkin’s Alg. 4

p ≡ 3 (mod4)

Shanks’ Alg. 3

Figure 6.1: A taxonomy of most efficient algorithms for computing square roots in Fpm, where
p is an odd prime and m ≥ 1 an integer.

6.3. Reviewing the quadratic residuosity test 101

field exponentiations of the form as, with a ∈ Fq and s ≤ q−1 a positive integer. On average,
the binary exponentiation requires a total of ⌊log2(s)⌋ squarings and Hw(s)−1 multiplications
in Fq, where Hw(s) denotes the Hamming weight of s. Throughout this chapter, it will be
assumed that the average Hamming weight of a random odd integer s, as given in [97], is
1
2
⌊log2(s)⌋ + 3

2
.

For a quadratic non-residue (QNR) element β ∈ Fq, the binomial polynomial f(Y) =
Y 2 − β is irreducible in Fq[Y], which means that the quadratic extension Fq2 of Fq can be
ssen as Fq[Y]/ (f(Y)). Let y be a root of f(Y), then an element a ∈ Fq2 can be represented
as a = a0 + a1y, for a unique pair (a0, a1) ∈ F2

q. Therefore, a multiplication in Fq2 can be
computed at a cost of three multiplications in Fq and one multiplication by a constant in
Fq, whereas a squaring costs two multiplications in Fq and two multiplications by a constant
in Fq.3 A multiplication of an element of Fq2 by an element of Fq costs two multiplications
in Fq. We will consider that the addition operation in Fq2 has a negligible cost, and thus
will be ignored in our estimations. Let a = a0 + a1y ∈ Fq2 . Since a−1 = (a0 + a1y)

−1 =
(a0−a1y)/(a20+β · a21), computing the inverse of a requires one inversion in Fq and at most 5
multiplications in Fq (in fact, if β = −1 only 4 multiplications in Fq are required). Applying
the q-th Frobenius map to a is essentially free of cost since aq = (a0 + a1y)

q = (a0 − a1y); aq
is called the conjugate of a and denoted by ā. Notice that this also implies that the element
aq+1 = a · ā = a20−β · a21 lives in Fq. Moreover, if the element a is a QR in Fq2 , then a

q+1
2 also

lives in Fq. The application of the Frobenius map over a field element a ∈ Fqk , with k > 2,
can be computed efficiently for reasonable choices of irreducible polynomials involved in the
construction of the associated field towering [23, 87]. In this scenario, the computation of aq

can be achieved at the price of at most k − 1 field multiplications in Fq [26].4

In the remainder of this chapter, Mq, Sq and Mcq will denote the cost of a multiplication,
a squaring and a multiplication by a constant in Fq, respectively. The cost of an inversion
in Fq is denoted by Iq. We write Fq for the cost of a Frobenius operation ap

i
, with a ∈ Fq,

q = pm and 1 ≤ i < m. Lucas(k) will denote the complexity of computing the k-th term of
a Lucas sequence. Finally, we denote by SQRTq the complexity of computing a square root
in Fq by using the most suitable method for that extension field.

6.3 Reviewing the quadratic residuosity test

Let a ∈ F∗
q, with q = pm, p an odd prime and m > 1. In [13], Bach and Huber showed that

the Legendre symbol can be used to compute the quadratic character χq(a). By recursively
invoking the law of quadratic reciprocity, Bach proved that the asymptotic cost of its method
is O(log q)2 bit operations. Here, we present an alternative formulation that computes the
quadratic character χq(a) by descending its computation to the prime field Fp, that is, χp(a),
in addition to several Frobenius map applications. This procedure is considerably more
efficient than Bach’s algorithm provided that the Frobenius map can be applied inexpensively.

3using a multiplication à la Karatsuba and the so-called complex method, respectively [66, 34].
4Note that if the normal basis representation is used then the computation of the Frobenius operator is

free.

102 Chapter 6. Another Work: Square Roots in Even-Degree Extensions of Finite Fields

As already mentioned, the quadratic residuosity test on a can be performed via the
exponentiation a

q−1
2 . The following expression of the exponent

q − 1

2
=
p− 1

2

m−1∑

i=0

pi, (6.1)

can be used to reduce the exponentiation a
q−1
2 to one quadratic residuosity test in the base

field Fp after applying the addition chain exponentiation method described in [21]. Indeed,
the value b = a

∑m−1
i=0 pi is nothing more than the norm of a in Fp, which implies that b ∈ Fp.

For efficiency, notice that after computing b, instead of performing the exponentiation b
p−1
2 ,

the Legendre symbol computation on b ∈ Fp can be carried out. Algorithm 1 implements the
above ideas for performing the quadratic residuosity test, where the function Cq,k : Fq → Fs

is defined as Cq,k(α) = α1+s+s2+···+sk−1
, for integers k and s such that sk = q .

Algorithm 1 Quadratic residuosity test for a ∈ Fq, q = pm, m > 1

Require: a ∈ Fq, q = pm, m > 1.
Ensure: χq(a).
1: b← Cq,m(a).

2: c← χp(b).
3: return c.

Let k|m and consider s such that sk = q. For α ∈ Fq, it can be deduced from [21] that

Cq,k(α) =

Cq,n(α)

(
Cq,n(α)

)sn
if k = 2n,(

Cq,n(α) (Cq,n(α))
sn
)s
α if k = 2n+ 1.

(6.2)

Algorithm 2 computes Cq,k(α) by applying equation (6.2) recursively. It is easy to see that
the computational cost of Algorithm 2, out of the recursive call, is either one multiplication
and one Frobenius application over Fq, if k is even; or two multiplications and two Frobenius
applications over Fq, if k is odd. For the recursivity, Algorithm 2 calls itself exactly ⌊log2 k⌋
times. Assuming that half of these calls correspond to n even and the other half to n odd,
then the overall average complexity for computing Cq,k(α) can be estimated as

3

2

(
⌊log2 k⌋+ 1

)
(Mq + Fq).

6.4. Square roots in odd-degree extension fields 103

Algorithm 2 Computing Cq,k(α) = α1+s+s2+···+sk−1
, with sk = q

Require: α ∈ Fq, q = pm, k|m and sk = q.

Ensure: Ck,s(α) = α1+s+s2+···+sk−1

1: if k = 0 then
2: return a.
3: end if
4: if k ≡ 1 (mod 2) then
5: n← (k − 1)/2.
6: C ← Cq,n(α)

7: C ← C · Csn+1

8: else
9: n← k/2.

10: C ← Cq,n−1(α)
11: C ←

(
C · Csn

)s
α

12: end if
13: return C.

Hence, the cost of computing b = a
∑m−1

i=0 pi = Cq,m(a) is

3

2

(
⌊log2m⌋ + 1

)
(Mq + Fq).

The computation of the Legendre symbol of b has a complexity similar to that of computing
the greatest common divisor of b and p [13].

6.4 Square roots in odd-degree extension fields

The algorithms for computing square roots in finite fields Fq, where q = pm with p an odd
prime and m an odd integer, can be classified into two classes. On the one hand, we have
the class q ≡ 1 (mod 4), and on the other hand the class q ≡ 3 (mod 4). We first describe
the case q ≡ 3 (mod 4) before handling the case q ≡ 1 (mod 4) which can be more expensive
as discussed in this section.

6.4.1 Square roots in Fq when q ≡ 3 (mod 4)

Computing a square root of an arbitrary QR a ∈ Fq when q ≡ 3 (mod 4) can be done by
computing a

q+1
4 . This can be seen as the simplest instance of Shanks’s method [114]. The

quadratic residuosity test of an input element has been integrated into Algorithm 3. If the
element is a QR Algorithm 3 returns a square root of the element and ‘false’ otherwise.

Algorithm 3 Shanks’s algorithm for q ≡ 3 (mod 4)

Require: a ∈ F∗

q .
Ensure: If it exists, x satisfying x2 = a, false other-

wise.
1: a1 ← a

q−3

4 .
2: a0 ← a1(a1a).

3: if a0 = −1 then

4: return false.
5: end if

6: x← a1a.
7: return x.

The computational cost of Algorithm 3 is that of one exponentiation and two multipli-
cations. In 2007, Scott [113] showed that the complexity of the exponentiation in step 1
of Algorithm 3 could be further reduced by rewriting the exponent in base p. This was
rediscovered by Han et al. [66], who expressed the exponent (q − 3)/4 as

104 Chapter 6. Another Work: Square Roots in Even-Degree Extensions of Finite Fields

q − 3

4
= α+ p [pα + (3α+ 2)]

(m−3)/2∑

i=0

p2i, (6.3)

where α = p−3
4

. Using the expression in equation (6.3), it can be shown that the average
complexity of Algorithm 3 when the input is a QR, is given as

(
1

2
⌊log2(p)⌋+

3

2
⌊log2(m)⌋+ 5

2

)
Mq +

(
⌊log2(p)⌋ − 2

)
Sq +

(
3

2
⌊log2(m)⌋+ 2

)
Fq.

6.4.2 Square roots in Fq when q ≡ 1 (mod 4)

For this class, it is customary to consider the sub-congruence classes modulo 8 or modulo
16. Indeed, despite the fact that there is no simple and general algorithm for q ≡ 1 (mod 4),
fast algorithms for computing square roots in Fq when q ≡ 5 (mod 8) or q ≡ 9 (mod 16) are
known.

6.4.2.1 Atkin’s algorithm

When q ≡ 5 (mod 8), Atkin [12] developed an efficient method for computing square roots
in Fq with one exponentiation and a constant number of multiplications.

The computational cost of Algorithm 4 is that of one exponentiation, four multiplications
and two squarings in Fq. Han et al. [66] show that the exponent (q − 5)/8 can be written in
base p as

q − 5

8
= α+ p [pα + (5α+ 3)]

(m−3)/2∑

i=0

p2i, (6.4)

where α = p−5
8

. Using the expression in equation (6.4), it can be shown that the average
complexity of Algorithm 4 when the input is a QR, is given as

(
1

2
⌊log2(p)⌋+

3

2
⌊log2(m)⌋+ 3

)
Mq + ⌊log2(p)⌋Sq +

(
3

2
⌊log2(m)⌋+ 2

)
Fq.

Algorithm 4 Atkin’s algorithm for q ≡ 5 (mod 8)

Require: a ∈ F∗

q .
Ensure: If it exists, x satisfying x2 = a, false other-

wise.

PRECOMPUTATION

1: t← 2
q−5

8 .

COMPUTATION

1: a1 ← a
q−5

8 .
2: a0 ← (a21a)

2.

3: if a0 = −1 then

4: return false.
5: end if

6: b← ta1.
7: i← 2(ab)b.
8: x← (ab)(i − 1).
9: return x.

6.4. Square roots in odd-degree extension fields 105

6.4.2.2 Generalized Atkin’s algorithm

Atkin’s method was generalized first by Müller [106] for the case q ≡ 9 (mod 16). Müller
showed that in this setting, the square root computation for a QR can be achieved at a cost
of two exponentiations in Fq. Later, Kong et al. [89] improved this by presenting a procedure
that required only one exponentiation for half of the QRs in Fq, and two exponentiations
for the remainder. Nonetheless, by precomputing some values, we observed that one can
compute a square root at the cost of only one exponentiation as shown in Algorithm 5.

Algorithm 5 Kong et al.’s algorithm for q ≡ 9 (mod 16)

Require: a ∈ F∗

q .
Ensure: If it exists, x satisfying x2 = a, false other-

wise.

PRECOMPUTATION

1: c0 ← 1
2: while c0 = 1 do

3: Select randomly c ∈ F∗

q .
4: c0 ← χq(c).
5: end while

6: d← c
q−9

8 ,

7: e← c2, t← 2
q−9

16 .

COMPUTATION

1: a1 ← a
q−9

16 .
2: a0 ← (a21a)

4.

3: if a0 = −1 then

4: return false.
5: end if

6: b← ta1.
7: i← 2(ab)b.
8: r← i2.
9: if r = −1 then

10: x← (ab)(i− 1).
11: else

12: u← bd.
13: i← 2u2ea.
14: x← uca(i− 1).
15: end if

16: return x.

The computational complexity of Algorithm 5 is that of one exponentiation, six and a
half multiplications, and four and a half squarings in Fq.

For this case, the exponent (q − 9)/16 can be rewritten in base p as

q − 9

16
= α+ p [pα + (9α+ 5)]

(m−3)/2∑

i=0

p2i, (6.5)

where α = p−9
16

. Using the expression equation (6.5), it can be shown that the average
complexity of Algorithm 5 when a is a QR, is given as

(
1

2
⌊log2(p)⌋+

3

2
⌊log2(m)⌋+ 10

)
Mq +

(
⌊log2(p)⌋+

5

2

)
Sq +

(
3

2
⌊log2(m)⌋+ 2

)
Fq.

6.4.2.3 General square root algorithms in Fq for q ≡ 1 (mod 16)

This sub-case is certainly the most costly since there is no specialized algorithm to tackle it.
The Tonelli-Shanks [114, 120] and the Cipolla-Lehmer [38] algorithms are the two general
non-deterministic algorithms from which most of the methods for square root extraction are
derived. In this subsection the Tonelli-Shank’s algorithm and an improved Cipolla-Lehmer

106 Chapter 6. Another Work: Square Roots in Even-Degree Extensions of Finite Fields

algorithm by Müller [106] are described. For the latter, we include a detailed analysis of its
computational complexity that to the best of our knowledge has not been reported before in
the open literature.

Algorithm 6 Tonelli-Shanks Algorithm

Require: a ∈ F∗

q

Ensure: If it exists, x satisfying x2 = a, false other-
wise.

PRECOMPUTATION

1: Write q − 1 = 2st, where t is odd.
2: c0 ← 1.
3: while c0 = 1 do

4: Select randomly c ∈ F∗

q .
5: z ← ct.
6: c0 ← c2

s−1

.
7: end while

COMPUTATION

1: ω ← a
t−1

2 .
2: a0 ← (ω2a)2

s−1

.
3: if a0 = −1 then

4: return false.
5: end if

6: v ← s, x← aω, b← xω.
7: while b 6= 1 do

8: Find least integer k ≥ 0 such that b2
k

= 1.

9: ω ← z2
v−k−1

, z ← ω2, b← bz, x← xω, v ← k.
10: end while

11: return x.

Algorithm 6 presents a variant of the Tonelli-Shanks procedure where the quadratic resid-
uosity test on the input has been incorporated. Note that the computational complexity of
Algorithm 6 varies depending on whether the input is or is not a QR in Fq. By taking into
account the average contribution of QR and QNR inputs, and using the complexity analy-
sis given in [97] for the classical Tonelli-Shanks algorithm, it is not difficult to see that the
average computational cost of Algorithm 6 is given as

1

2

(
⌊log2(q)⌋+ 4

)
Mq +

(
⌊log2(q)⌋+

1

8

(
s2 + 3s− 16

)
+

1

2s

)
Sq. (6.6)

However, rewriting the exponent (t− 1)/2 in base p as

t− 1

2
= α + p

[
α(p+ 1) + 1 + 2s−1t

] (m−3)/2∑

i=0

p2i,

where q − 1 = 2st, p − 1 = 2su, and α = u−1
2

, it can be shown that the average complexity
of Algorithm 6 for arbitrary field element inputs is given as

(
1

2
⌊log2(p)⌋+

3

2
⌊log2(m)⌋+ s

2
+ 5

)
Mq +

(
⌊log2(p)⌋+

1

8
(s2 + 11s− 16) +

1

2s

)
Sq +

(
3

2
⌊log2(m)⌋+ 2

)
Fq.

6.4. Square roots in odd-degree extension fields 107

Algorithm 7 Lucas sequence evaluation

Require: α ∈ Fq and k ≥ 2.
Ensure: Vk(α, 1).

1: Write k =
∑l−1

j=0 bj2
j in binary form.

2: d0 ← α.
3: d1 ← α2 − 2.
4: for j from l − 2 to 1 do

5: d1−bj ← d0d1 − α, dbj ← d21−bj
− 2.

6: end for
7: if b0 = 1 then v ← d0d1−α else v ← d20−2.

8: return v.

As a second option for this sub-case, the improved Cipolla-Lehmer algorithm [106] uses
Lucas sequences to compute square roots in Fq. We briefly recall the definition of Lucas se-
quences and subsequently give a fast algorithm that evaluates the k-th term of some instances

of these sequences. For α, β ∈ Fq, the Lucas sequence
(
Vk(α, β)

)
k≥0

is defined as

V0 = 2, V1 = α and Vk = αVk−1 − βVk−2, for k > 1.

Algorithm 7 computes Vk(α, 1) for given α ∈ Fq and k > 1. It can be easily verified that
to compute Vk(α, 1), this procedure requires roughly (⌊log2(k)⌋+ 3

2
)Sq + (⌊log2(k)⌋ + 1

2
)Mq.

Algorithm 8 Müller’s algorithm [106]

Require: a ∈ F∗

q .
Ensure: If it exists, x satisfying x2 = a, false other-

wise.
1: if a = 4 then

2: return 2.
3: end if

4: t← 1.
5: a1 ← χq(at

2 − 4).
6: while a1 = 1 do

7: Select randomly u ∈ F∗

q\{1}.
8: t← u.
9: if at2 − 4 = 0 then

10: return 2t−1.
11: end if

12: a1 ← χq(at
2 − 4).

13: end while

14: α← at2 − 2.
15: x← V q−1

4

(α, 1)/t.

16: a0 ← x2 − a.
17: if a0 6= 0 then

18: return false.
19: end if

20: return x.

Algorithm 8 essentially describes the same square root algorithm as presented in [106].
In order to assess the computational complexity of this procedure, we present the following
two lemmas.

Lemma 6.1. In the field Fq, the number of QR a ∈ F∗
q such that a− 4 is a QNR is q−1

4
.

Proof. To prove this, one can first compute the number of QR a ∈ F∗
q such that a−4 is a QR,

which is clearly half of the number of b ∈ F∗
q such that b2 − 4 is a QR. It is shown in [119,

Lemma 3.1] that #{b ∈ Fq | b2 − 4 is a QR in Fq} = q+1
2

. Now, when b = 0, −4 is a QR in
Fq, since q ≡ 1 (mod 4). Thus, we have #{b ∈ F∗

q | b2 − 4 is a QR in Fq} = q−1
2
, and then

108 Chapter 6. Another Work: Square Roots in Even-Degree Extensions of Finite Fields

#{a ∈ F∗
q | a and a − 4 are QRs in Fq} = q−1

4
. Hence, the number of QR a ∈ F∗

q such that
a− 4 is a QNR is q−1

2
− q−1

4
= q−1

4
.

Lemma 6.2. Let a ∈ F∗
q be a QR. Then the number of t ∈ F∗

q such that at2 − 4 is a QNR is
q−1
2

.

Proof. As in the proof of Lemma 6.1, let’s start by computing the number of t ∈ F∗
q such that

at2− 4 is a QR, that is, the number of t ∈ F∗
q such that there exists s ∈ Fq with at2− 4 = s2.

For such a t, at2 − 4 = s2 is equivalent to a − 4r2 = s2r2, where r = t−1, and then to
a = (s2 + 4)r2. Thus the number of these t is equal to the number of r ∈ Fq such that there
exist s ∈ Fq and a = (s2 + 4)r2.
Claim: The number of the above r’s is double the number of QRs c ∈ F∗

q such that c− 4 is
also a QR in Fq.
Indeed, suppose that we have such a c. Let s = ±

√
c− 4, then s2 + 4 = c. Hence, it can be

seen that for each such c, one obtains two solutions to the equation a = (s2 + 4)r2, namely,
r1,2 = ±

√
a/(s2 + 4). Moreover, since for a different c′ with properties as for c this procedure

gives two elements (r′1, r
′
2) with (r′1, r

′
2) 6= (r1, r2) and (r′1, r

′
2) 6= (r2, r1), in addition to the

fact that the above procedure is reversible, one can see that

#{r ∈ Fq | ∃ s ∈ Fq and a = (s2 + 4)r2} = 2#{c ∈ F∗
q | c and c− 4 are QRs in Fq}.

Recalling from the proof of Lemma 6.1, we have #{c ∈ F∗
q | c− 4 is a QR in Fq} = q−1

4
, and

therefore #{t ∈ F∗
q | at2 − 4 is a QR in Fq} = q−1

2
. Hence, the number of t ∈ F∗

q such that
at2 − 4 is a QNR is q − 1− q−1

2
= q−1

2
.

Summarizing, Lemma 6.1 shows that for half of the QRs in F∗
q, there is no need to search

for a t in the main loop of Algorithm 8, and Lemma 6.2 ensures that for the remainder
case only 2 iterations in the while-loop suffice on average. Thus, the expected number of
multiplications and squarings, in the cases where (a − 4)

q−1
2 = −1 and (a − 4)

q−1
2 = 1, can

be computed. Recall that Iq denotes the complexity of computing an inverse in Fq. We have

• If (a− 4)
q−1
2 = −1, on average, one has to compute one exponentiation and one Lucas

sequence evaluation.

• If (a − 4)
q−1
2 = 1, on average, one has to compute three exponentiations, one Lucas

sequence evaluation, one inversion, two multiplications and two squarings.

Once again, notice that the exponentiation of step 5 can be optimized by rewriting the
exponent (q − 1)/2 as

q − 1

2
=
p− 1

2

(m−1)∑

i=0

pi,

which gives an expected computational cost of Algorithm 8 in all QRs in Fq as

6.5. Square roots in even-degree extension fields 109

(
⌊log2(q)⌋+

15

4
⌊log2(m)⌋+ 13

4

)
Mq +

(
⌊log2(q)⌋ −

1

2

)
Sq +

(
15

4
⌊log2(m)⌋+ 17

4

)
Fq

+
(
⌊log2(p)⌋ − 3

)
Mp +

(
2⌊log2(p)⌋ − 2

)
Sp +

1

2
Ip.

6.5 Square roots in even-degree extension fields

In this setting, none of the methods studied in the previous section leads to efficient com-
putation of square roots as it is briefly discussed in the following. Let q be a power of an
odd prime. Then, the congruence q2 ≡ 1 (mod 4) always holds. Moreover, it is easy to see
that the case q2 ≡ 5 (mod 8) never occurs. This automatically implies that the Shanks’s
and the Atkin’s methods are both ruled out. In the case where q2 ≡ 9 (mod 16), one can
use the generalized Atkin’s algorithm by Kong et al.. If however q2 ≡ 1 (mod 16), the only
remaining option is classically to select between the Tonelli-Shanks algorithm and the Müller
algorithm.

In this section, three efficient methods for computing square roots in even-degree extension
fields are discussed. First, a detailed analysis of the complex method described in [113] is
given. Subsequently, we present two novel algorithms for computing square roots in Fq2.
The two new algorithms are complementary in the sense that they cover separately the two
congruence classes of odd primes, namely, q ≡ 1 (mod 4) and q ≡ 3 (mod 4). The easiest case
q ≡ 3 (mod 4) is first outlined, followed by the slightly more involved case q ≡ 1 (mod 4).

Algorithm 9 Complex method for square root computation in Fq2

Require: Irreducible binomial f(y) = y2 − β such
that
Fq2
∼= Fq[y]/

(
y2 − β

)
, β ∈ Fq,

with q = pn, a = a0 + a1y ∈ F∗

q2 .
Ensure: If it exists, x = x0 + x1y ∈ Fq2 satisfying

x2 = a, false otherwise.
1: if a1 = 0 then

2: return SQRTq(a0).
3: end if

4: α← a20 − β · a21.
5: γ ← χq(α).
6: if γ = −1 then

7: return false.
8: end if

9: α← SQRTq(α).

10: δ ← a0+α
2 .

11: γ ← χq(δ).
12: if γ = −1 then

13: δ ← a0−α
2 .

14: end if

15: x0 ← SQRTq(δ).
16: x1 ← a1

2x0
.

17: x← x0 + x1y.
18: return x.

6.5.1 The complex method

Let q = pn, with p an odd prime and n ≥ 1. Define the quadratic extension field Fq2 as
Fq2
∼= Fq[y]/ (y

2 − β), where β is a QNR in Fq. Let a = a0 + a1y be an arbitrary QR in F∗
q2.

For a square root x = x0 + x1y ∈ Fq2 of a, since x2 = x0
2 + 2x0x1y + βx1

2, x0 and x1 must
satisfy the following two equations

{
x0

2 + βx1
2 = a0,

2x0x1 = a1.

110 Chapter 6. Another Work: Square Roots in Even-Degree Extensions of Finite Fields

Solving this system in x0 and x1 yields

x0 =

(
a0 ± (a0

2 − βa12)
1
2

2

) 1
2

(6.7)

x1 =
a1
2x0

.

Note that a02 − βa12 is a QR in Fq if and only if a is a QR in Fq2, as can be easily checked:

(a0 + a1y)
q2−1

2 =
(
(a0 + a1y)

q+1
) q−1

2

= ((a0 − a1y) · (a0 + a1y))
q−1
2

=
(
a0

2 − βa12
) q−1

2 .

Algorithm 9 implements the complex method for computing square roots in the quadratic
extension Fq2 by performing two quadratic residuosity tests (in steps 5 and 11), which can
be computed efficiently by using the method described in §6.3. Besides these two tests, the
cost of Algorithm 9 also includes that of computing two square roots in Fq in addition to one
field inversion in Fq.

6.5.2 A deterministic algorithm when q ≡ 3 (mod 4)

A technique for computing a square root of a QR a ∈ Fq2 is to find an element b ∈ Fq2 for
which there exists an odd integer s such that b2as = 1. In this case, a square root of a is
given by ba

s+1
2 . In order to take advantage of the above property, we proceed as follows.

Let b and s be defined as b = (1 + a
q−1
2)

q−1
2 and s = q−1

2
. Let’s first consider the case

where b 6= 0. Then, the identity b2as = 1 holds since:

b2as = (1 + a
q−1
2)(q−1)a

q−1
2

= (1 + a
q−1
2)q (1 + a

q−1
2)(−1) a

q−1
2

= (1 + a
q−1
2

q) (1 + a
q−1
2)(−1) a

q−1
2

= (a
q−1
2 + a

q−1
2

(q+1))(1 + a
q−1
2)(−1)

= (a
q−1
2 + 1)(1 + a

q−1
2)(−1)

= 1.

Conversely, if b = 0, from the definition of b we have 1 + a
q−1
2 = 0, whence a

q−1
2 = −1.

Therefore, x = ia
q+1
4 is a square root of a, where i =

√
−1, since x2 = i2a

q+1
2 = i2a

q−1
2 a =

(−1)(−1)a = a.
In practice, the value of i can be readily found whenever the quadratic extension field

Fq2 is constructed using a binomial f(Y) = Y 2 − β, with β a QNR in Fq. In this case, if y
is a root of f(Y), then i = β

q−3
4 y yields i2 = β

q−3
2 y2 = β

q−3
2 β = β

q−1
2 = −1 as required.

However, since q ≡ 3 (mod 4), one can typically choose β = −1 and therefore set i = y.

6.5. Square roots in even-degree extension fields 111

Summarizing, a square root x of a QR a ∈ Fq2 , with q ≡ 3 (mod 4) can be found with

x =

ia

q+1
4 if a

q−1
2 = −1,

(
1 + a

q−1
2

) q−1
2
a

q+1
4 otherwise.

(6.8)

Notice the striking similarity between the classic Shanks’s algorithm in §6.4 and this method.
Thus one can view equation (6.8) as a generalization of Shanks’s method for the considered
even-degree extension fields.

Algorithm 10 Square root computation in Fq2 when q ≡ 3 (mod 4)

Require: a ∈ F∗

q2
, i ∈ Fq2 , such that i =

√
−1, with

q = pn.
Ensure: If it exists, x satisfying x2 = a, false other-

wise.
1: a1 ← a

q−3

4 .
2: α← a1(a1a).
3: a0 ← αqα.
4: if a0 = −1 then

5: return false.

6: end if

7: x0 ← a1a.
8: if α = −1 then

9: x← ix0.
10: else

11: b← (1 + α)
q−1

2 .
12: x← bx0.
13: end if

14: return x.

Algorithm 10 implements a procedure for computing square roots using equation (6.8).
After executing steps 1-3, the variables α and a0 are assigned as α = a(q−1)/2 and a0 =
a(q

2−1)/2. Therefore, in steps 4-6 the quadratic residuosity test on a is performed in Fq2 . In
the case where a is not a QR, the algorithm returns ‘false’. Otherwise, after executing step
7 the variable x0 is assigned as x0 = a(q+1)/4. Then, according to equation (6.8), if in step 8
it is determined that α = −1, a square root of a is returned as x = ix0. Otherwise, in step

11, b is computed as b =
(
1 + a

q−1
2

) q−1
2

and the value of a square root of a is computed in

step 12 as x = bx0.
Algorithm 10 performs at most two exponentiations in Fq2 , in steps 1 and 11. Additionally,

in steps 2, 3, 7 and 12 a total of five multiplications in Fq2 are required. As already seen in
§6.4, the exponent (q − 3)/4 in step 1 can be written in terms of p as

q − 3

4
= α + p [pα + (3α+ 2)]

(n−3)/2∑

i=0

p2i,

where α = p−3
4

. Similarly, the exponent of (q − 1)/2 in step 11 can be written in base p as

q − 1

2
=
p− 1

2
+

n−1∑

i=0

pi.

Therefore, the exponentiation a
q−3
4 can be computed by performing the exponentiation

a
p−3
4 , four multiplications in Fq2 , one squaring in Fq2 and two Frobenius over Fq2, plus one

112 Chapter 6. Another Work: Square Roots in Even-Degree Extensions of Finite Fields

evaluation of the sequence Cq2,2 that can be computed using Algorithm 2. The average costs
of computing a

p−3
4 and Cq2,2 are, respectively,

(
1

2
⌊log2(p)⌋ −

3

2

)
Mq2 +

(
⌊log2(p)⌋ − 2

)
Sq2 and

3

2
⌊log2 n⌋(Mq2 + Fq2).

Similarly, the exponentiation (1+α)(q−1)/2 can be computed by performing the exponentiation
(1+α)(p−1)/2, one multiplication and one evaluation of the sequence Cq2,n. Hence, the overall
average computational cost associated to Algorithm 10 for a QR input in Fq2 = Fpm is given
as

(
⌊log2(p)⌋+ 3⌊log2 n⌋+ 7

)
Mq2 +

(
2⌊log2(p)⌋ − 2

)
Sq2 +

(
3⌊log2 n⌋ + 4

)
Fq2 .

6.5.3 A descending algorithm when q ≡ 1 (mod 4)

The main idea of Algorithm 11 is to descend the square root problem from Fq2 to Fq via one
exponentiation with exponent of bitlength log2(q) plus some precomputations. Let a ∈ Fq2

be a QR of which we want a square root. The approach of descending the square root
computation from Fq2 to Fq can be achieved by exploiting the opportunistic identity

a = a
(
a

q−1
2

)q+1

= a
(
a

q−1
2

)q
a

q−1
2

=
(
a

q−1
2

)q
a

q+1
2 , (6.9)

where the first equality is obtained from the fact that a
q2−1

2 = 1, since a in a QR in Fq2.
Then, by taking square roots in both sides of equation (6.9) we get

√
a = ±

(
a

q−1
4

)q√
a

q+1
2 . (6.10)

Now, since
(
a

q+1
2

)q−1

= a
q2−1

2 = 1, the element a
q+1
2 lives in the subfield Fq. Moreover, if

a
q+1
2 is a QR in Fq, then

(
a

q+1
2

) q−1
2

= 1 holds. This implies that the problem of finding square

roots in Fq2 can be reduced to the problem of finding square roots in its proper subfield Fq via
one exponentiation with an exponent of roughly the same bitlength as q. In the case where
a

q+1
2 is not a QR in Fq, precomputing a QNR in Fq2 allows easily to recover the previous

case, as given in Algorithm 11.

6.5. Square roots in even-degree extension fields 113

Algorithm 11 Square root computation in Fq2 when q ≡ 1 (mod 4)

Require: a ∈ F∗

q2 , with q = pn, n ≥ 1.

Ensure: If it exists, x satisfying x2 = a, false other-
wise.

PRECOMPUTATION

1: c0 ← 1.
2: while c0 = 1 do

3: Select randomly c ∈ F∗

q2 .

4: c0 ← χq2(c).
5: end while

6: d← c
q−1

2 .
7: e← (dc)−1.
8: f ← (dc)2.

COMPUTATION

1: b← a
q−1

4 .
2: a0 ← (b2)qb2.
3: if a0 = −1 then

4: return false.
5: end if

6: if bqb = 1 then

7: x0 ← SQRTq(b
2a).

8: x← x0b
q.

9: else

10: x0 ← SQRTq(b
2af).

11: x← x0b
qe.

12: end if

13: return x.

Theorem 6.3. Algorithm 11 returns a square root (if it exists) of an input a ∈ Fq2 via one
exponentiation with exponent of bitlength log2(q) in Fq2 and one square root computation
in the subfield Fq.

Proof. At step 2 of the computation phase, the value of a0 is,

(b2)qb2 = (b2)q+1 =
[
(a

q−1
4)2

]q+1

= (a
q−1
2)q+1,

which corresponds to the quadratic residuosity test of a in Fq2. Thus, if a0 = −1 a is a QNR
in Fq2 and ‘false’ is returned. We assume that a is a QR (a0 = 1) in what follows.

In step 6, it is tested whether bqb = bq+1 = (a
q+1
2)

q−1
2 is 1 or not. If it is 1, then a

q+1
2 is

a QR in Fq. In this case, at step 7, a square root x0 of b2a = a
q+1
2 in Fq is computed and a

square root of a is then given as x = x0b
q, since

x2 = x20b
2q = a

q+1
2

(
a

q−1
4

)2q
= aa

q−1
2

(
a

q−1
2

)q
a
(
a

q−1
2

)q+1

= aa0 = a.

Now, let’s assume that bqb = −1. Note that dqd = dq+1 = c
q2−1

2 = −1 since c is set as a QNR
in Fq2 from the precomputation phase. At step 10, it is easy to see that the element b2af lies
in Fq where it is a QR. To see this, consider the following

(b2af)
q−1
2 = bq−1a

q−1
2 (dc)q−1 = bq−1b2dq−1d2(bqb)(dqd) = (−1)(−1) = 1.

After a square root x0 of b2af in Fq is computed, it is now easy to see that x = x0b
qe is a

square root of a since

x2 = (x0b
qe)2 = b2afb2qe2 = ab2q+2(dc)2

[
(dc)−1

]2
ab2q+2 = aa0 = a.

114 Chapter 6. Another Work: Square Roots in Even-Degree Extensions of Finite Fields

The cost of Algorithm 11 includes the computation of one field exponentiation in Fq2,
one square root in Fq, 5 field multiplications, one squaring and two Frobenius over Fq2.

The exponent (q − 1)/4 of step 1 can be written in base p as q−1
4

= p−1
4

+
n−1∑
i=0

pi. Thus,

a(q−1)/4 is computed by performing the exponentiation a
p−1
4 , one multiplication and one

evaluation of the sequence Cq2(n, 1). Hence, the overall average computational cost associated
to Algorithm 11 for a QR input in Fq2 = Fpm is given as
(
1

2
⌊log2(p)⌋ +

3

2
⌊log2m⌋+

11

2

)
Mq2 +

(
⌊log2(p)⌋ − 2

)
Sq2 +

(
3

2
⌊log2m⌋ + 3

)
Fq2 + SQRTq.

6.6 Experimental comparisons

In this section, we compare the algorithms described above for the cases where one wants to
compute square roots in Fp2, Fp6 and Fp12 , with p an odd prime. In our experiments, two group
of primes have been considered. The first group is composed of primes p ≡ 3 (mod 4) where
Algorithm 10 applies. The second one considers primes p ≡ 1 (mod 4), where Algorithm
11 applies. The extensions Fp6 and Fp12 are obtained by constructing the following field
towering,

Fp ⊂ Fp3 ⊂ Fp6 ⊂ Fp12 .

In these experiments, BN primes [20] and NIST recommended primes for elliptic curve cryp-
tography [72] are selected. These choices are made because computing square roots in exten-
sions fields is required in pairing-based cryptography and elliptic curve cryptography. It is
worth mentioning that BN curves are a rich family of low embedding-degree elliptic curves
defined over a prime field Fp, where p is parametrized as p(u) = 36u4+36u3+24u2+6u+1,
with u ∈ Z. For the sake of simplicity we assume in the following that Mp = Sp.

For comparisons over Fp2 , the quadratic extension is constructed as Fp2 = Fp[U]/ (U
2 − β),

where β is a QNR in Fp. Hence, if u is a root of U2−β, all element a in Fp2 can be represented
as a = a0 + a1u, yielding: Mp2 = 3Mp + 1Mcp, Sp2 = 2Mp + 2Mcp, Ip2 = Ip + 4Mp +Mcp.
Analogous costs also hold for the quadratic extensions Fp3 ⊂ Fp6 and Fp6 ⊂ Fp12 .

The cubic extension Fp ⊂ Fp3 is obtaining by considering a cubic non-residue ξ ∈ Fp. We
chose p ≡ 1 (mod 3) in order to have a simple way for finding cubic non-residues. Indeed,
in this case, an element ξ ∈ Fp is a cubic non-residue if and only if ξ

p−1
3 6= 1. Let ξ ∈ Fp

be a cubic non-residue, then the cubic field extension Fp3 can be built as Fp[U]/ (U
3 − ξ).

Let u be a root of U3 − ξ, then an element α of Fp3 is represented as α2u
2 + α1u + α0u,

with α0, α1 and α2 ∈ Fp. The above construction leads to the following arithmetic costs
Mp3 = 6Mp + 2Mcp, Sp3 = 5Mp + 2Mcp, Ip3 = Ip + 12Mp + 4Mcp.

Tables 6.1-6.4 present our experimental results in terms of number of general field mul-
tiplications, multiplications by a constant, and inversions in Fp, for different choices of odd
primes p.5 For the case p ≡ 3 (mod 4), it can be seen from Tables 6.1 and 6.3 that the

5The corresponding Maple and magma scripts can be downloaded at:

6.7. Concluding remarks 115

complex method is the most efficient procedure followed by Algorithm 10. In the case where
p ≡ 1 (mod 4), it can be seen from Tables 6.2 and 6.4 that the complex method and Al-
gorithm 11 are the two most efficient solutions. All these three algorithms are considerably
faster than the classical Tonelli-Shanks and Müller’s procedures. In the scenario where the
multiplication by constants has negligible cost (for example when the irreducible binomial
that is used to build the extension field has a constant term of value ±1), then Algorithm 11
outperforms the complex method.

6.7 Concluding remarks

In this chapter, the computation of square roots in extension fields of the form Fq2, where
q is a power of an odd prime, has been studied. We introduced two novel algorithms for
the cases q ≡ 1 (mod 4) (Algorithm 10) and q ≡ 3 (mod 4) (Algorithm 11). From our
complexity analysis and the experimental comparisons, we conclude that in the case where
q ≡ 3 (mod 4), the complex method [113] is the most efficient option, while Algorithm 10,
thanks to its simplicity and its deterministic character, offers a good alternative in many
cryptographic applications (see [37]). In the case where q ≡ 1 (mod 4), in many practical
cases Algorithm 11 is the most efficient approach, closely followed by the complex method.

Table 6.1: Number of operations in Fp for square roots in Fq2, q = p, p ≡ 3 (mod 4)

Parameter u = −(262 + 255 + 1) p = 2256 − 2224 + 2192 + 296 − 1 u = 263 + 29 + 28 + 26 + 24 + 23 + 1

Bit length of p 254 256 258

s: p2 − 1 = 2st, t odd 3 97 4

Algo. 9

Mp 1261 1785 1427

Mcp 1091 1271 1157

Ip 0 0 0

Complex Algo.

Mp 885 1149 972

Mcp 6 6 6

Ip 1 1 1

Tonelli-Shanks

Mp 1574 6292 1660

Mcp 1202 6999 1244

Ip 0 0 0

Müller’s Algo.

Mp 3120 3387 3245

Mcp 1521 1537 1546

Ip 1 1 1

http://delta.cs.cinvestav.mx/~francisco/codigo.html.

http://delta.cs.cinvestav.mx/~francisco/codigo.html

116 Chapter 6. Another Work: Square Roots in Even-Degree Extensions of Finite Fields

Table 6.2: Number of operations in Fp for square roots in Fq2, q = p, p ≡ 1 (mod 4)

Parameter p = 2224 − 296 + 1 u = 262 − 254 + 244 u = 263 − 249

Bit length of p 224 254 256

s: p2 − 1 = 2st, t odd 97 46 51

Algo. 10

Mp 1975 1625 1782

Mcp 577 591 603

Ip 1 0 0

Complex Algo.

Mp 2653 2079 2357

Mcp 7 5 5

Ip 3 1 1

Tonelli-Shanks

Mp 6705 2934 3199

Mcp 6065 2402 2669

Ip 0 0 0

Müller’s Algo.

Mp 2743 3197 3254

Mcp 1342 1521 1545

Ip 1 1 1

Table 6.3: Number of operations in Fp for square roots in Fq2 , q = p3, p ≡ 3 (mod 4)

Parameter u = −(262 + 255 + 1) p = 2256 − 2224 + 2192 + 296 − 1 u = 263 + 29 + 28 + 26 + 24 + 23 + 1

Bit length of p 254 256 258

s: p6 − 1 = 2st, t odd 3 97 4

Algo. 9

Mp 7686 10830 8682

Mcp 3693 4921 4091

Ip 0 0 0

Complex Algo.

Mp 3698 4926 4096

Mcp 1229 1589 1345

Ip 1 1 1

Tonelli-Shanks

Mp 31993 62886 32368

Mcp 14469 29715 14650

Ip 0 0 0

Müller’s Algo.

Mp 49299 47032 47033

Mcp 19838 20054 20144

Ip 1 1 1

6.7. Concluding remarks 117

Table 6.4: Number of operations in Fp for square roots in Fq2 , q = p6, p ≡ 1 (mod 4)

Parameter p = 2224 − 296 + 1 u = 262 − 254 + 244 u = 263 − 249

Bit length of p 224 254 256

s: p12 − 1 = 2st, t odd 98 47 52

Algo. 10

Mp 28487 23203 24262

Mcp 11665 10158 10586

Ip 1 0 0

Complex Algo.

Mp 34279 20436 23293

Mcp 11045 7559 8676

Ip 7 3 3

Tonelli-Shanks

Mp 265861 213111 222382

Mcp 115155 91636 95669

Ip 0 0 0

Müller’s Algo.

Mp 243036 274681 278824

Mcp 102438 115789 117569

Ip 1 1 1

118 Chapter 6. Another Work: Square Roots in Even-Degree Extensions of Finite Fields

7 Concluding Remarks

7.1 Conclusions

We presented a comprehensive study of the DLP algorithms introduced in 2013 and their
different variants by devising a convenient framework and tools for performing concrete anal-
yses. This analysis allowed us to assess the real impact these algorithms have on the security
of Type 1 pairing-based cryptography.

We first showed that using the new algorithms on the finite fields F36·509 , F212·367 and
F24·3041 , the supersingular curves with embedding degree 6, 12 and 4 defined, respectively,
over F3509 , F2367 and F23041 that had been considered for implementing Type 1 pairing-based
cryptosystems at the 128-bit and 192-bit security levels in fact provides only a significantly
lower level of security.

We then examined the effectiveness of the new algorithms when incorporating the poly-
nomial representation of Granger and Zumbrägel [64] for computing discrete logarithms in
F36·1429 and subsequently computed discrete logarithms in the 1303-bit finite field F36·137 and
the 1551-bit finite field F36·163 using a Magma implementation of Joux’s algorithm.

Next, we showed that the practical improvements from [60], [61] and [82] yield lower
bounds on the estimates for computing discrete logarithms in F36·509 . The estimates have
plummeted to such an extent that we were able to compute discrete logarithms in the order-
r subgroup of F∗

36·509 , where r = (3509 − 3255 + 1)/7 is an 804-bit prime, in about 220 CPU
years. Moreover, we used techniques from [60] to further weaken the field F36·1429 for Type 1
pairing-based cryptography.

The concrete analyses and experimental computations performed in this study allow us
to conclude that Type 1 pairings are no longer suitable for pairing-based cryptography, and
thus this marks the sad end to constructive uses of these pairings in cryptography.

Finally, we introduced two novel algorithms for computing square roots in even-degree
extension fields. Our complexity analysis and experimental comparisons suggest that the new
algorithms are good candidates as alternatives to the previous fastest algorithm, namely,
Scott’s complex method [113]. We also presented a fast procedure for testing quadratic
residuosity in extension fields.

7.2 Future work

Solving the DLP in F24·1223 . After the effective discrete logarithm computation projects for
the fields F36·137 , F36·163 and F36·509 , another challenge can be to compute discrete logarithms in
the fields F24·1223 . In fact, the embedding degree 4 elliptic curve E2 : y

2+y = x3+x over F21223

with |E(F21223)| = 5r where r is a 1221-bit prime had been proposed [9] for pairing-based
cryptography under the argument that the finite field F24·1223 offers approximately 128 bits of

119

120 Chapter 7. Concluding Remarks

security against attacks on the DLP by Coppersmith’s algorithm. Granger et al. [60] analyzed
the security level of the DLP in this field and found that it offers a much lower level of security,
namely 259 multiplications modulo a 1221-bit prime. However, the proposed plan of attack
is still infeasible in practice because of the high cost of the linear algebra. Exploiting the
latest improvements on the new DLP algorithms, in particular partitioning the linear algebra
into several smaller subproblems, one can derive estimates allowing a reasonable effort for
practical discrete logarithm computations in F24·1223 .

Improving the Gröbner bases descent. The bilinear systems arising from Gröbner
bases descents need to be studied in a more specific way according to their particular shape.
By doing this, one can find more adapted variants of the existing Gröbner basis extractor
algorithms for the purpose of accelerating the Gröbner bases descent and therefore allowing
descents from higher degrees. In this scenario, one expects to automatically have a larger
range of practical applicability of the new algorithms. The mentioned study can be done
by first trying to efficiently implement Faugere’s F4 algorithm in a low-level language, such
as C, since only very few researchers have efficient implementations of this algorithm, which
they typically want to keep private (this is the reason way we have to always use Magma to
perform the Gröbner bases descent).

Computing discrete logarithms in F36·709 . The integer 709 is the largest prime n smaller
than 729 for which there is a supersingular curve E over F3n with |E(F3n)| a prime. For
n = 709, the size of the curve E(F3n) is a 1124-bit prime r, and the field F36·n is a 6743-bit
field. Guillevic [65] recently proposed an alternative to continued-fractions descent. Using
this new descent technique, our preliminary estimates show that the discrete logarithms in the
order r subgroup of F36·709 can be computed in approximately the same time as we expended
on our F36·509 computation.

How to render F36·1429 and F24·3041 breakable in practice. An interesting avenue for future
research would be to investigate whether the new algorithms and their implementations can
be improved to the extent that discrete logarithms in F36·1429 and F24·3041 can actually be
computed in practice. Note that every effective discrete logarithm computation in a finite
field of high level of difficulty is very likely to open new doors of interesting improvements.
Thus, the objective of trying to solve the DLP in larger and larger finite fields is a good
means to achieve better algorithms for this problem.

7.3 List of publications

• G. Adj, A. Menezes, T. Oliveira and F. Rodríguez-Henríquez, “Weakness of F36·509 for
discrete logarithm cryptography”, Pairing-Based Cryptography – Pairing 2013, LNCS
8365 (2014), 20–44.

• G. Adj, A. Menezes, T. Oliveira and F. Rodríguez-Henríquez, “Weakness of F36·1429 and
F24·3041 for discrete logarithm cryptography”, Finite Fields and Their Applications, 32
(2015), 148–170.

7.3. List of publications 121

• G. Adj, A. Menezes, T. Oliveira and F. Rodríguez-Henríquez, “Computing discrete
logarithms in F36·137 and F36·163 using Magma”, Arithmetic of Finite Fields – WAIFI

2014, LNCS 9061 (2014), 3–22.

• G. Adj and F. Rodríguez-Henríquez, “Square root computation over even extension
fields”, IEEE Transactions on Computers, 63 (2014), 2829–2841.

122 Chapter 7. Concluding Remarks

Bibliography

[1] Abacus Supercomputer – Cinvestav, http://www.abacus.cinvestav.mx/.

[2] J. Adikari, M. Anwar Hasan and C. Negre, “Towards faster and greener cryptoprocessor
for eta pairing on supersingular elliptic curve over F21223 ”, Selected Areas in Cryptography

– SAC 2012, LNCS 7707 (2013), 166–183.

[3] G. Adj, A. Menezes, T. Oliveira and F. Rodríguez-Henríquez, “Weakness of F36·509 for
discrete logarithm cryptography”, Pairing-Based Cryptography – Pairing 2013, LNCS
8365 (2014), 20–44.

[4] G. Adj, A. Menezes, T. Oliveira and F. Rodríguez-Henríquez, “Weakness of F36·1429 and
F24·3041 for discrete logarithm cryptography”, Finite Fields and Their Applications, 32
(2015), 148–170.

[5] G. Adj, A. Menezes, T. Oliveira and F. Rodríguez-Henríquez, “Computing discrete log-
arithms in F36·137 and F36·163 using Magma”, Arithmetic of Finite Fields – WAIFI 2014,
LNCS 9061 (2014), 3–22.

[6] G. Adj and F. Rodríguez-Henríquez, “Square root computation over even extension
fields”, IEEE Transactions on Computers, 63 (2014), 2829–2841.

[7] L. Adleman and M.-D. Huang, “Function field sieve method for discrete logarithms over
finite fields”, Information and Computation, 151 (1999), 5–16.

[8] L. Adleman, “A subexponential algorithm for the discrete logarithm problem with appli-
cations to cryptography”, Found. Comp. Sci. Symp. – 20th annual IEEE, (1979), 55–60.

[9] O. Ahmadi, D. Hankerson and A. Menezes, “Software implementation of arithmetic in
F3m”, International Workshop on Arithmetic of Finite Fields – WAIFI 2007, LNCS 4547
(2007), 85–102.

[10] D. Aranha, J. Beuchat, J. Detrey and N. Estibals, “Optimal eta pairing on supersingular
genus-2 binary hyperelliptic curves”, Topics in Cryptology – CT-RSA 2012, LNCS 7178
(2012), 98–115.

[11] M. Atiyah and I Macdonald “Introduction to commutative algebra”, Sarat Book House,
(2007).

[12] A. Atkin, “Probabilistic primality testing, summary by F. Morain”, Research Report

INRIA, 1779 (1992), 159–163.

123

http://www.abacus.cinvestav.mx/

124 Bibliography

[13] E. Bach and K. Huber, “Note on taking square-roots modulo N ”, IEEE Transactions on

Information Theory, 45 (1999), 807–809.

[14] R. Barbulescu, C. Bouvier, J. Detrey, P. Gaudry, H. Jeljeli, E. Thomé, M. Videau and
P. Zimmermann, “Discrete logarithm in GF (2809) with FFS”, Public Key Cryptography

– PKC 2014, LNCS 8383 (2014), 221–238.

[15] R. Barbulescu and P. Gaudry, personal communication, August 12, 2013.

[16] R. Barbulescu, P. Gaudry, A. Joux and E. Thomé, “A heuristic quasi-polynomial algo-
rithm for discrete logarithm in finite fields of small characteristic: Improvements over
FFS in small to medium characteristic”, Advances in Cryptology – EUROCRYPT 2014,
LNCS 8441 (2014), 1–16.

[17] P. Barreto, S. Galbraith, C. Ó hÉigeartaigh and M. Scott, “Efficient pairing computation
on supersingular abelian varieties”, Designs, Codes and Cryptography, 42 (2007), 239–
271.

[18] P. Barreto, H. Kim, B. Lynn and M. Scott, “Efficient algorithms for pairing-based cryp-
tosystems”, Advances in Cryptology – CRYPTO 2002, LNCS 2442 (2002), 354–368.

[19] P. Barreto, B. Lynn and Michael Scott, “Constructing elliptic curves with prescribed
embedding degrees”, Security in Communication Networks – SCN 2002, LNCS 2576
(2003), 257–267.

[20] P. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of prime order, Selected Areas

in Cryptography – SAC 2005, LNCS 3897 (2005), 319–331.

[21] P. Barreto and J. Voloch, “Efficient computation of roots in finite fields”, Des. Codes

Cryptography, 39 (2006), 275–280.

[22] P. Barrett, “Implementing the Rivest Shamir and Adleman public key encryption algo-
rithm on a standard digital signal processor”, Advances in Cryptology – CRYPTO ’86,
LNCS 263 (1987), 311–323.

[23] N. Benger and M. Scott, “Constructing tower extensions of finite fields for implementa-
tion of pairing-based cryptography”, Arithmetic of Finite Fields – WAIFI 2010, LNCS
6087 (2010), 180–195.

[24] D. Bernstein, “How to find small factors of integers”, manuscript, 2002; available at
http://cr.yp.to/papers/sf.pdf.

[25] J. Beuchat, J. Detrey, N. Estibals, E. Okamoto and F. Rodríguez-Henríquez, “Fast archi-
tectures for the ηT pairing over small-characteristic supersingular elliptic curves”, IEEE

Transactions on Computers, 60 (2011), 266–281.

http://cr.yp.to/papers/sf.pdf

Bibliography 125

[26] J. Beuchat, J. González-Díaz S. Mitsunari, E. Okamoto, F. Rodríguez-Henríquez and
Tadanori Teruya, “High-speed software implementation of the optimal Ate pairing
over Barreto-Naehrig curves”, Pairing-Based Cryptography – Pairing 2010, LNCS 6487
(2010), 21–39.

[27] J. Beuchat, E. López-Trejo, L. Martínez-Ramos, S. Mitsunari and F. Rodríguez-
Henríquez, “Multi-core implementation of the Tate pairing over supersingular elliptic
curves”, Cryptology and Network Security – CANS 2009, LNCS 5888 (2009), 413–432.

[28] I. Blake, R. Fuji-Hara, R. Mullin and S. Vanstone, “Computing logarithms in finite
fields of characteristic two”, SIAM Journal on Algebraic and Discrete Methods, 5 (1984),
276–285.

[29] A. Bluher, “On xq+1+ax+ b”, Finite Fields and Their Applications, 10 (2004), 285–305.

[30] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing”, Advances

in Cryptology – CRYPTO 2001, LNCS 2139 (2001), 213–229.

[31] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing”, Journal

of Cryptology, 17 (2004), 297–319.

[32] D. Boneh and H. Shacham, “Group signatures with verifier-local revocation” ACM Con-

ference on Computer and Communications Security – CCS 2004, (2004), 168 – 177.

[33] I. Canales Martinez, “Implementación eficiente de prueba de suavidad para
polinomios”, Tesis de Maestría – CINVESTAV-IPN 2015, available at
http://delta.cs.cinvestav.mx/~francisco/Thesis_IAC.pdf.

[34] S. Chatterjee, D. Hankerson, E. Knapp and A. Menezes, “Comparing two pairing-based
aggregate signature schemes”, Des. Codes Cryptography, 55 (2010), 141–167.

[35] S. Chatterjee, D. Hankerson and A. Menezes, “On the efficiency and security of pairing-
based protocols in the Type 1 and Type 4 settings”, International Workshop on Arith-

metic of Finite Fields – WAIFI 2010, LNCS 6087 (2010), 114–134.

[36] Q. Cheng, D. Wan and J. Zhuang, “Traps to the BGJT-algorithm for discrete loga-
rithms”, LMS Journal of Computation and Mathematics 17 (2014), 218–229.

[37] C. Chuengsatiansup, M. Naehrig, P. Ribarski, P. Schwabe, “PandA: pairings and arith-
metic”, Pairing-Based Cryptography – Pairing 2013, LNCS 8365 (2014), 229–250.

[38] M. Cipolla, “Un metodo per la risoluzione della congruenza di secondo grado”, Rend.

Accad. Sci. Fis. Mat. Napoli, 9 (1903), 154–163.

[39] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercauteren,
“Handbook of elliptic and hyperelliptic curve cryptography”, Discrete Mathematics and

Its Applications – CRC Press, (2005).

http://delta.cs.cinvestav.mx/~francisco/Thesis_IAC.pdf

126 Bibliography

[40] D. Coppersmith, “Fast evaluation of logarithms in fields of characteristic two”, IEEE

Transactions on Information Theory, 30 (1984), 587–594.

[41] D. Coppersmith, “Solving homogeneous linear equations over GF (2) via block Wiede-
mann algorithm”, Mathematics of Computation, 62 (1994), 333–350.

[42] The Cunningham Project, http://homes.cerias.purdue.edu/~ssw/cun/.

[43] W. Diffie and M. Hellman, “New directions in cryptography”, IEEE Transactions on

Information Theory, 22 (1976), 644–654.

[44] J. Doliskani and E. Schost, “Taking roots over high extensions of finite fields”, CoRR,
1110 (2011), 4350.

[45] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms”, IEEE Transactions on Information Theory, 31 (1985), 469–472.

[46] N. Estibals, “Compact hardware for computing the Tate pairing over 128-bit-security
supersingular curves”, Pairing-Based Cryptography – Pairing 2010, LNCS 6487 (2010),
397–416.

[47] J. Faugère, “A new efficient algorithm for computing Gröbner bases (F4)”, Journal of

Pure and Applied Algebra, 139 (1999), 61–88.

[48] J. Faugère, “A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5)”, International Symposium on Symbolic and Algebraic Computation – ISSAC

2002 (2002), 75–83.

[49] G. Frey and H. Rück, “A remark concerning m-divisibility and the discrete logarithm in
the divisor class group of curves”, Mathematics of Computation, 62 (1994), 865–874.

[50] P. Friedland, “Algorithm 312: Absolute value and square root of a complex number”,
Commun. ACM, 10 (1967), 665–.

[51] S. Galbraith, “Supersingular curves in cryptography”, Advances in Cryptology – ASI-

ACRYPT 2001, LNCS 2248 (2001), 495–513.

[52] S. Galbraith, K. Harrison and D. Soldera, “Implementing the Tate pairing”, Algorithmic

Number Theory – ANTS 2002, LNCS 2369 (2002), 324–337.

[53] S. Galbraith, K. Paterson and N. Smart, “Pairings for cryptographers”, Discrete Applied

Mathematics, 156 (2008), 3113–3121.

[54] C. F. Gauss, “Untersuchungen über höhere Arithmetik”, Chelsea publishing company,
second edition, reprinted, New York (1981).

http://homes.cerias.purdue.edu/~ssw/cun/

Bibliography 127

[55] W. Geiselmann, A. Shamir, R. Steinwandt and E. Tromer, “Scalable hardware for sparse
systems of linear equations, with applications to integer factorization”, Cryptographic

Hardware and Embedded Systems – CHES 2005, LNCS 3659 (2005), 131–146.

[56] C. Pereira Geovandro, M. Simplício Jr., M. Naehrig and P. Barreto, “A family of
implementation-friendly BN elliptic curves”, Journal of Systems and Software, 84 (2011),
1319–1326.

[57] F. Göloğlu, R. Granger, G. McGuire and J. Zumbrägel, “On the function field sieve and
the impact of higher splitting probabilities: Application to discrete logarithms in F21971”,
Advances in Cryptology – CRYPTO 2013, LNCS 8043 (2013), 109–128.

[58] F. Göloğlu, R. Granger, G. McGuire and J. Zumbrägel, “Solving a 6120-bit DLP on
a desktop computer”, Selected Areas in Cryptography – SAC 2013, LNCS 8282 (2014),
136–152.

[59] R. Granger, T. Kleinjung and J. Zumbrägel, “Breaking ‘128-bit secure’ supersingular
binary curves (or how to solve discrete logarithms in F24·1223 and F212·367)”, available at
http://eprint.iacr.org/2014/119.

[60] R. Granger, T. Kleinjung and J. Zumbrägel, “Breaking ‘128-bit secure’ supersingular
binary curves (or how to solve discrete logarithms in F24·1223 and F212·367)”, Advances in

Cryptology – CRYPTO 2014, Part II, LNCS 8617 (2014), 126–145.

[61] R. Granger, T. Kleinjung and J. Zumbrägel, “On the powers of 2”, available at
http://eprint.iacr.org/2014/300.

[62] R. Granger, D. Page and M. Stam, “Hardware and software normal basis arithmetic for
pairing based cryptography in characteristic three”, IEEE Transactions on Computers,
54 (2005), 852–860.

[63] R. Granger, D. Page and M. Stam, “On small characteristic algebraic tori in pairing-
based cryptography”, LMS Journal of Computation and Mathematics, 9 (2006), 64–85.

[64] R. Granger and J. Zumbrägel, “On the security of supersingular binary curves”, presen-
tation at ECC 2013, September 16 2013.

[65] A. Guillevic, “Faster individual discrete logarithms in non-prime finite fields with the
NFS and FFS algorithms”, available at http://eprint.iacr.org/2016/684.

[66] D. Han, D. Choi and H. Kim, “Improved computation of square roots in specific finite
fields”, IEEE Transaction on Computers, 58 (2009), 188–196.

[67] D. Hankerson, A. Menezes and M. Scott, “Software implementation of pairings”, Identity-

Based Cryptography – Cryptology and Information Security Series, 12 (2009), 188–206.

[68] R. Hartshorne, “Algebraic geometry”, Graduate Texts in Mathematics – Springer New

York, (2013).

http://eprint.iacr.org/2014/119
http://eprint.iacr.org/2014/300
http://eprint.iacr.org/2016/684

128 Bibliography

[69] T. Hayashi, T. Shimoyama, N. Shinohara and T. Takagi, “Breaking pairing-based cryp-
tosystems using ηT pairing over GF (397)”, Advances in Cryptology – ASIACRYPT 2012,
LNCS 7658 (2012), 43–60.

[70] T. Helleseth and A. Kholosha, “x2
l+1+x+a and related affine polynomials over GF(2k)”,

Cryptogr. Commun., 2 (2010), 85–109.

[71] M. Hellman and J. Reyneri, “Fast computation of discrete logarithms in GF(q)”, Ad-

vances in Cryptography – CRYPTO 82, (1983), 3–13.

[72] IEEE, “IEEE P1363-2000 Draft Standard for Traditional Public-Key Cryptography”,
1363 (2006).

[73] T. Itoh, O. Teechai and S. Tsujii, “A fast algorithm for computing multiplicative inverses
in GF(2m) using normal bases”, Information and Computation, 78 (1988), 171-177.

[74] H. Jeljeli, “Accelerating iterative SpMV for discrete logarithm problem using GPUs”,
Arithmetic of Finite Fields – WAIFI 2014, LNCS 9061 (2014), 25–44.

[75] A. Joux, “A one round protocol for tripartite Diffie-Hellman”, Journal of Cryptology, 17
(2004), 263–276.

[76] A. Joux, “Faster index calculus for the medium prime case: Application to 1175-bit and
1425-bit finite fields”, Advances in Cryptology – EUROCRYPT 2013, LNCS 7881 (2013),
177–193.

[77] A. Joux, “A new index calculus algorithm with complexity L(1/4 + o(1)) in very small
characteristic”, Selected Areas in Cryptography – SAC 2013, LNCS 8282 (2014), 355–379.

[78] A. Joux, “Discrete logarithm in GF (26128)”, Number Theory List, May 21 2013.

[79] A. Joux and R. Lercier, “The function field sieve is quite special”, Algorithmic Number

Theory – ANTS 2002, LNCS 2369 (2002), 431–445.

[80] A. Joux and R. Lercier, “Improvements to the general number field sieve for discrete log-
arithms in prime fields. A comparison with the Gaussian integer method”, Mathematics

of Computation, 72 (2003), 953–967.

[81] A. Joux and R. Lercier, “The function field sieve in the medium prime case” Advances

in Cryptology – EUROCRYPT 2006, LNCS 4004 (2006), 254–270.

[82] A. Joux and C. Pierrot, “Improving the polynomial time precomputation of Frobenius
representation discrete logarithm algorithms”, Advances in Cryptology – ASIACRYPT

2014, LNCS 8873 (2014), 378–397.

[83] E. Kachisa, E. Schaefer and Michael Scott, “Constructing Brezing-Weng pairing-friendly
elliptic curves using elements in the cyclotomic field”, Pairing-Based Cryptography –

Pairing 2008, LNCS 5209 (2008), 126–135.

Bibliography 129

[84] H. Kato, Y. Nogami and Y. Morikawa, “A high-speed square root algorithm for extension
fields”, Memoirs of the Faculty of Engineering, Okayama University, 43 (2009), 99–107.

[85] H. Katou, F. Wang, Y. Nogami and Y. Morikawa, “A high-speed square root algorithm
in extension fields”, Information Security and Cryptology - ICISC 2006, LNCS 4296
(2006), 94–106.

[86] N. Koblitz, “A course in number theory and cryptography”, Graduate Texts in Mathe-

matics – Springer New York, 2012.

[87] N. Koblitz and A. Menezes, “Pairing-based cryptography at high security levels”, Cryp-

tography and Coding – IMA 2005, LNCS 3796 (2005), 13–36.

[88] N. Koblitz and A. Menezes, Y. Wu and R. Zuccherato, “Algebraic aspects of cryptogra-
phy”, Algorithms and Computation in Mathematics – Springer Berlin Heidelberg, (2012).

[89] F. Kong, Z. Cai, J. Yu and D. Li, “Improved generalized Atkin algorithm for computing
square roots in finite fields”, Information Processing Letters, 98 (2006), 1–5.

[90] T. Kleinjung “Discrete Logarithms in GF (21279)”, Number Theory List, October 17 2014.

[91] A. Knopfmacher and J. Knopfmacher, “Counting irreducible factors of polynomials over
a finite field”, Discrete Mathematics, 112 (1993), 103–118.

[92] M. Kraitchik, “Théorie des nombres”, Gauthier-Villars – Paris, (1922).

[93] B. LaMacchia and A. Odlyzko, “Solving large sparse linear systems over finite fields”,
Advances in Cryptology – CRYPTO ’90, LNCS 537 (1991), 109–133.

[94] A. Lenstra, “Unbelievable security: Matching AES security using public key systems”,
Advances in Cryptology – ASIACRYPT 2001, LNCS 2248 (2001), 67–86.

[95] A. Lenstra, A. Shamir, J. Tomlinson and E. Tromer, “Analysis of Bernstein’s factoriza-
tion circuit”, Advances in Cryptology – ASIACRYPT 2002, LNCS 2501 (2002), 1–26.

[96] R. Lidl and H. Niederreiter “Finite Fields”, Encyclopedia of Mathematics and its Appli-

cations – Cambridge University Press, 20 (1997).

[97] S. Lindhurst, “An analysis of Shanks’s algorithm for computing square roots in finite
fields”, CRM Proc. and Lecture Notes, 19 (1999), 231–242.

[98] Magma Computational Algebra System, http://magma.maths.usyd.edu.au/magma/.

[99] Maple 17, http://www.maplesoft.com/products/maple/.

[100] A. Menezes, T. Okamoto and S. Vanstone, “Reducing elliptic curve logarithms to log-
arithms in a finite field”, IEEE Transactions on Information Theory, 39 (1993), 1639–
1646.

http://magma.maths.usyd.edu.au/magma/
http://www.maplesoft.com/products/maple/

130 Bibliography

[101] R. Merkle, “Secrecy, authentication, and public key systems”, Ph.D. dissertation, Dept.

of Electrical Engineering – Stanford Univ. (1979).

[102] J. Miller, “On factorization, with a suggested new approach”, Math. Comp. 29 (1975),
155–172.

[103] V. Miller, “Use of elliptic curves in cryptography”, Advances in Cryptology – CRYPTO

’85, LNCS 218 (1985), 417–426.

[104] M. Morrison and J. Brillhart, “A method of factoring and the factorization of F7”, Math.

Comp. 29 (1975), 183–205.

[105] G. Mullen and D. Panario, “Handbook of finite fields”, Discrete Mathematics and Its

Applications – CRC Press, (2013).

[106] S. Müller, “On the computation of square roots in finite fields”, Des. Codes Cryptogra-

phy, 31 (2004), 301–312.

[107] NIST, “Digital Signature Standard”, FIPS Publication, 186-2 (2000).

[108] D. Page, N. Smart and F. Vercauteren, “A comparison of MNT curves and supersingular
curves”, Applicable Algebra in Engineering, Communication and Computing, 17 (2006),
379–392.

[109] J. Pollard, “Monte Carlo methods for index computation mod p”, Mathematics of Com-

putation, 32 (1978), 918–924.

[110] A. Sahai and B. Waters, “Fuzzy identity-based encryption”, Advances in Cryptology –

EUROCRYPT 2005, LNCS 3494 (2005), 457–473.

[111] R. Sakai, K. Ohgishi and M. Kasahara, “Cryptosystems based on pairing”, The 2000

Symposium on Cryptography and Information Security – Japan, 28 (2000), 45–26.

[112] R. Schoof, “Elliptic curves over finite fields and the computation of square roots mod p”,
Mathematics of Computation, 44 (1985), 483–494.

[113] M. Scott, “Implementing cryptographic pairings over Barreto-Naehrig curves”, Pairing-

Based Cryptography – Pairing 2007, LNCS 4575 (2007), 177–196.

[114] D. Shanks, “Five number-theoretic algorithms”, Proceedings of the second Manitoba

conference on numerical mathematics, (1972), 51–70.

[115] N. Shinohara, T. Shimoyama, T. Hayashi and T. Takagi, “Key length estimation of
pairing-based cryptosystems using ηT pairing”, Information Security Practice and Expe-

rience – ISPEC 2012, LNCS 7232 (2012), 228–244.

[116] V. Shoup, “Lower bounds for discrete logarithms and related problems”, Advances in

Cryptology – EUROCRYPT 1997, (1997), 256–266.

Bibliography 131

[117] J. Silverman, “The Arithmetic of elliptic curves”, Graduate Texts in Mathematics –

Springer New York, (2009).

[118] R. Swan, “Factorization of polynomials over finite fields”, Pacific J. of Math. 12 (1962),
1099–1106.

[119] G. Tornaría, “Square roots modulo p”, Theoretical Informatics – LATIN 2002, LNCS
2286 (2002), 430–434.

[120] A. Tonelli, “Bemerkung uber die Auflosung quadratischer Congruenzen”, Götinger

Nachrichten, (1891), 344–346.

[121] F. Wang, Y. Nogami and Y. Morikawa, “An efficient square root computation in finite

fields GF
(
p2

d
)
”, IEICE Transactions, 88 (2005), 2792–2799.

[122] L. Washington, “Elliptic curves: number theory and cryptography”, Discrete Mathe-

matics and Its Applications – CRC Press, (2003).

[123] A. Western and J. Miller, “Tables of indices and primitive Roots”, Royal Society Math-

ematical – Cambridge Univ. Press (1968).

[124] D. Wiedemann, “Solving sparse linear equations over finite fields”, IEEE Transactions

on Information Theory, 32 (1986), 54–62.

	Intoduction
	Motivation
	Contributions
	Outline

	Basic Concepts
	Mathematical background
	Groups, rings and fields
	Elliptic and hyperelliptic curves over finite fields

	Type 1 pairings
	Bilinear pairing types
	Type 1 pairing-based protocols

	Coppersmith's index-calculus algorithm
	Computing the logarithms of the base factor elements
	Descent stage

	Counting smooth polynomials
	Smoothness testing
	Basic method for evaluating w(X)
	Improved method for evaluating w(X)

	Weakness of F36 509 and F24 3041 for Discrete Logarithm Cryptography
	Introduction
	On the asymptotic nature of the QPA algorithm
	New DLP algorithm of Joux and Barbulescu et al.
	Setup
	Finding logarithms of linear polynomials
	Finding logarithms of irreducible quadratic polynomials
	Continued-fraction descent
	Classical descent
	QPA descent
	Gröbner bases descent

	Computing discrete logarithms in F36 509
	Setup
	Finding logarithms of linear polynomials
	Finding logarithms of irreducible quadratic polynomials
	Continued-fraction descent
	Classical descent
	QPA descent
	Gröbner bases descent
	Overall running time
	Comparisons with Joux-Lercier

	Computing discrete logarithms in F212 367
	Setup
	Finding logarithms of linear polynomials
	Finding logarithms of irreducible quadratic polynomials
	Continued-fraction descent
	Classical descent
	QPA descent
	Gröbner bases descent
	Overall running time
	Comparisons with Joux-Lercier

	Computing discrete logarithms in F24 3041
	Setup
	Finding logarithms of linear polynomials
	Finding logarithms of irreducible quadratic polynomials
	Continued-fractions descent
	Classical descent
	QPA descent
	Gröbner bases descent
	Overall running time
	Comparisons

	Concluding remarks

	Weakness of F36 1429 and Discrete Logarithm Computations in F36 137 and F36 163
	Introduction
	The DLP algorithm of Joux, Barbulescu et al. and Granger-Zumbrägel
	Setup
	Finding logarithms of linear polynomials
	Finding logarithms of irreducible quadratic polynomials
	Continued-fractions descent
	Classical descent
	QPA descent
	Gröbner bases descent

	Computing discrete logarithms in F36 1429
	Setup
	Finding logarithms of linear polynomials
	Finding logarithms of irreducible quadratic polynomials
	Continued-fractions descent
	Classical descent
	QPA descent
	Gröbner bases descent
	Overall running time
	Comparisons

	Solving the discrete logarithm problem in F36 137
	Problem instance
	2-to-1 descent
	A remark on Strategy 4.1
	Estimates
	Experimental results

	Solving the discrete logarithm problem in F36 163
	Problem instance
	Experimental results

	Concluding remarks

	Improved Discrete Logarithm Computations in F36 509
	Introduction
	The DLP algorithm of Joux, Granger et al. and Joux-Pierrot
	Setup
	Finding logarithms of quadratic polynomials
	Finding logarithms of cubic polynomials
	Finding logarithms of quartic polynomials
	Powers-of-2 descent

	Solving the discrete logarithm problem in F36 509
	Problem instance
	Estimates
	Experimental results
	Some implementation details on the computation of logarithms of degree-4 elements

	Computing discrete logarithms in F36 1429
	Concluding remarks

	Another Work: Square Roots in Even-Degree Extensions of Finite Fields
	Introduction
	Preliminaries
	Reviewing the quadratic residuosity test
	Square roots in odd-degree extension fields
	Square roots in Fq when q 3 (mod4)
	Square roots in Fq when q 1(mod4)

	Square roots in even-degree extension fields
	The complex method
	A deterministic algorithm when q 3 (mod4)
	A descending algorithm when q 1 (mod4)

	Experimental comparisons
	Concluding remarks

	Concluding Remarks
	Conclusions
	Future work
	List of publications

	Bibliography

