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Unidad Zacatenco

Departamento de Computación

Métodos Orientados a Conjuntos para

Optimización Multi-objetivo

Tesis que presenta

Carlos Ignacio Hernández Castellanos

para obtener el Grado de

Doctor en Ciencias

en Computación

Director de la Tesis:

Dr. Oliver Steffen Schütze
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Resumen

En las últimas décadas se ha incrementado el interés en resolver problemas de
optimización multi-objetivo. Este tipo de problemas aparecen en casi cada aspecto
de la vida, dado que es t́ıpico que se tengan varios objetivos en conflicto. La principal
tarea del área es el encontrar una o varias de las mejores soluciones compromiso (que
forman el conjunto/frente de Pareto). La mayoŕıa de los algoritmos del estado del
arte tienen como objetivo obtener una aproximación de estos conjuntos. Sin embargo,
en muchos de los casos lo hacen sin dar información adicional del problema.

En esta tesis, se presenta el diseño y estudio de métodos orientados a conjuntos
que son capaces de explotar información tal como bases de atracción, óptimos locales
e información del vecindario. Esta información es útil para computar distintos con-
juntos de interés para el tomador de decisiones además del conjunto/frente global de
Pareto. Estos conjuntos incluyen los conjuntos/frentes locales de Pareto y las solu-
ciones aproximadas que pueden ser útiles como respaldo. Además, el conjunto de
soluciones óptimas ligeramente robustas que son de particular importancia cuando
los problemas están sujetos a incertidumbre.
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Abstract

In the last decades there has been an increased interest to solve multi-objective
optimization problems. This kind of problems appear in almost every aspect of life,
since it is typical to have several objectives that are in conflict. The focus of the area
is to find one or several best trade-off solutions (that form the so-called global Pareto
set/front). Most state-of-the-art algorithms aim to find an approximation of these
sets. However, in most of the cases they do not give further information about the
problem.

In this thesis, we focus on the design and study of set-oriented methods that are
capable to exploit information such as basins of attraction, local optimal solutions
and neighborhood information. Such information is useful to compute different sets of
interest for the decision maker besides the global Pareto set/front. These sets include
the local Pareto set/front and the set of nearly optimal solutions which can be useful
as backup solutions. Further, the set of lightly robust optimal solutions which is in
particular important when the problems are subject to uncertainties.
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Chapter 1

Introduction

1.1 The Problem

There is always the wish for getting things better, cheaper, quicker, etc. which is
inherent in human nature. Optimization is the field that deals with this problem.
Sometimes only one objective is selected to be optimized, this leads to what is known
as a single-objective optimization problem (SOP). However, in many cases we have
more than one objective to be optimized and we need to consider them at the same
time. This leads to the so-called multi-objective optimization problems (MOPs).

In the first case, we can use our intuition to define what is best in terms of our
objective. If we are in the context of minimization, we know that the lower the value
of the objective function, the better it is for our problem and we also know, that we
are looking for “the solution”, i.e. we expect to find that one solution is better than
all the others.

In the second case, the problem gets more complicated because the definition of
what is “better” is not as easy to define as it was in the previous case. This leads
to another problem, since now we do not have “the solution” i.e, a unique one, but
rather a set of solutions that are incomparable to each other.

In this kind of studies, typically the main focus is to find the global optimum (in
single-objective optimization) or the global Pareto front (in multi-objective optimiza-
tion). However, in practice, the decision maker may not always be interested in the
best solutions, in particular, if these solutions are sensitive to perturbations. Thus,
there exists an additional challenge. One has to search not only for solutions with a
good performance but also that the solutions are possible to implement.

Notice that the computation of optimal solutions represents in general already
a challenge. Even more, if as mentioned before the decision maker is interested in
other kinds of solutions. For instance, approximate solutions may allow the decision
maker to find alternative or backup solutions to a given problem. However, the set of
these approximate solutions even forms an n-dimensional set, where n is the number
of decision variables involved in the model. In contrast, a Pareto set typically, it is
n >> k and forms a k − 1-dimensional set, where k is the number of objectives.

1
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Another kind of solutions that the decision maker may be interested in are the
so-called robust solutions. Robustness is an important issue when one faces real world
applications. It might be the case that solutions given by traditional methods cannot
be actually implemented with arbitrary accuracy. This means that the implemented
solution differs from the original solution along with its objective value(s).

Designs which are affected by perturbations of any kind might no longer be ac-
ceptable to the decision maker from the practical point of view. Ideally, there exist
optimal solutions that are insensitive to perturbations, up to some point. However,
for most part, robustness and objective values are goals in conflict and one has to be
willing to make a trade-off between them, in order to achieve an acceptable robustness
level.

In this project, we propose to use the cell mapping techniques, which propose a
discretization of the space into hypercubes called cells. The evolution of a dynamical
system is then reduced to a new function, which is not defined in Rn, but on the cell
space. In this case, we restrict ourselves to functions that are strictly deterministically
defined. For this case, we have the so-called simple cell mapping method, which is
effective to obtain the attractors and basins of attraction of a dynamical system.

The basins of attraction are useful for both the computation of approximate and
robust solutions, since they might be used to to get further information of a certain
region of the space without the use of additional sampling techniques.

Thus, we propose to consider the basins of attraction in the context of multi-
objective optimization, first by means of simple cell mapping. Further, we propose to
design archiving techniques that allow us for a representation of the sets of interest
and finally to include this idea into evolutionary algorithms in order to solve this kind
of problems for higher dimensions.

1.2 Objectives

In the following, we state the objectives of this thesis.

1.2.1 General Objective

To design set oriented methods for the numerical treatment of multi-objective opti-
mization problems with a special attention to nearly optimal solutions and robustness.

1.2.2 Particular Objectives

• To adapt cell mapping techniques to multi-objective optimization

• To design an archiving technique to approximate the set of nearly optimal so-
lutions

• To design an evolutionary algorithm to approximate the set of nearly optimal
solutions
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• To design set oriented methods for light robust multi-objective optimization

• To apply the proposed methods to real world applications in multi-objective
optimal control

1.3 Contributions

In the following, we list the publications obtained from this work.

Monographs

1. Sun, J.-Q., Xiong, F.-R., Schütze, O., Hernández, C. (2017). “Cell Mapping
Methods – An Algorithmic Approach” (accepted). Springer International Pub-
lishing.

JCR Journals

1. Hernández, C., Schütze, O., Sun, J.-Q. (2017). Numerical Computation of
Lightly Multi-objective Robust Optimal Solutions by Means of Generalized Cell
Mapping. Knowledge-Based Systems (submitted).

2. Schütze, O., Hernández, C., Talbi, E-G. , Sun, J.-Q., Naranjani, Y., Xiong, F.-
R. (2017). Archivers for the Representation of the Set of Approximate Solutions
for MOPs. Journal of Heuristics (submitted).

3. Sardahi, Y., Sun, J. Q., Hernández, C., Schütze, O. (2017). Many-Objective
Optimal and Robust Design of Proportional-Integral-Derivative Controls With
a State Observer. Journal of Dynamic Systems, Measurement, and Control,
139(2).

4. Qin, Z. C., Xiong, F. R., Ding, Q., Hernández, C., Fernandez, J., Schütze, O.,
Sun, J. Q. (2017). Multi-objective optimal design of sliding mode control with
parallel simple cell mapping method. Journal of Vibration and Control, 23(1),
46-54.

5. Fernández, J., Schütze, O., Hernández, C., Sun, J. Q., Xiong, F. R. (2016).
Parallel simple cell mapping for multi-objective optimization. Engineering Op-
timization, 48(11), 1845-1868.

6. Xiong, F. R., Qin, Z. C., Ding, Q., Hernández, C., Fernandez, J., Schütze,
O., Sun, J. Q. (2015). Parallel cell mapping method for global analysis of
high-dimensional nonlinear dynamical systems. Journal of Applied Mechanics,
82(11).
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Other journals

1. Enŕıquez-Zárate, J., Hernández, C., Trujillo L., Toledo-Ramı́rez, G.K., Ramos-
Cirilo, Á. J. (2017). Smart Materials in Buildings: Vibration Control. Com-
putación y Sistemas (to appear).

2. Naranjani, Y., Hernández, C., Xiong, F. R., Schütze, O., Sun, J. Q. (2017).
A hybrid method of evolutionary algorithm and simple cell mapping for multi-
objective optimization problems. International Journal of Dynamics and Con-
trol, 5(3), 570-582.

3. Hernández, C., Naranjani, Y., Sardahi, Y., Liang, W., Schütze, O., Sun, J.
Q. (2013). Simple cell mapping method for multi-objective optimal feedback
control design. International Journal of Dynamics and Control, 1(3), 231-238.

4. Xiong, F., Qin, Z., Hernández, C., Sardahi, Y., Narajani, Y., Liang, W., Sun,
J. (2013). A multi-objective optimal PID control for a nonlinear system with
time delay. Theoretical and Applied Mechanics Letters, 3(6), 9-063006.

Book chapters

1. Hernández, C., Schütze, O., Sun, J. Q. (2017). Global Multi-objective Opti-
mization by Means of Cell Mapping Techniques. In EVOLVE–A Bridge be-
tween Probability, Set Oriented Numerics and Evolutionary Computation VII
(pp. 25-56). Springer International Publishing.

In proceedings of international conferences

1. Menchaca-Mendez, A., Hernández, C., Coello, C. A. C. (2016). ∆p-MOEA:
A new multi-objective evolutionary algorithm based on the ∆p indicator. In
Evolutionary Computation (CEC), 2016 IEEE Congress on (pp. 3753-3760).
IEEE.

2. Qin, Z. C., Xiong, F. R., Ding, Q., Hernández, C., Fernandez, J., Schütze,
O., Sun, J. Q. (2015). Multi-Objective Optimal Design and Validation of Slid-
ing Mode Control. In ASME 2015 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (pp.
V008T13A015-V008T13A015). American Society of Mechanical Engineers.

3. Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J. Q., Grimme, C.,
Trautmann, H. (2014). Cell mapping techniques for exploratory landscape anal-
ysis. In EVOLVE-A Bridge between Probability, Set Oriented Numerics, and
Evolutionary Computation V (pp. 115-131). Springer International Publishing.

4. Hernández, C., Schütze, O., Emmerich, M., Xiong, F.-R., Sun, J.-Q. (2014).
Barrier Tree for Continuous Landscapes by Means of Generalized Cell Mapping.
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Proceedings of EVOLVE 2014 - A Bridge between Probability, Set Oriented
Numerics, and Evolutionary Computing. Beijing, P. R. China.

5. Y. Naranjani, Y. Sardahi, J.-Q. Sun, Hernández, C. and Schütze, O. (2013)
Proceedings of the 2013 ASME Dynamic Systems and Control Conference -
Control, Monitoring, and Energy Harvesting of Vibratory Systems. Stanford,
California. DSCC2013-3944. “Fine Structure of Pareto Front of Multi-objective
Optimal Feedback Control Design.”

6. Y. Sardahi, Y. Naranjani, W. Liang, J.-Q. Sun, Hernández, C. and Schütze,
O. (2013) Proceedings of ASME 2013 International Mechanical Engineering
Congress & Exposition. San Diego, California. IMECE2013-65506. “Multi-
objective Optimal Control Design with the Simple Cell Mapping Method.”

In memories of national conferences

1. Hernández, C., Schütze, O., Sun, J.-Q. (2016). Cómputo del conjunto soluciones
aproximadas para problemas de optimización multi-objetivo. V Congreso Na-
cional de la Sociedad Mexicana de Investigación de Operaciones.

1.4 Outline

The document is organized as follows. In Chapter 2, we present the required back-
ground including the basic concepts of multi-objective optimization, nearly optimal
solutions and robustness. It also presents some representative algorithms used to
solve those problems. Next, in Chapter 3, we study the cell mapping techniques
in the context of multi-objective optimization. We present several adaptions of the
methods and applications to optimal control problems. Then, in Chapter 4, we study
the problem of finding the set of nearly optimal solutions through stochastic algo-
rithms. Further, in Chapter 5 we present algorithms that aim for an approximation
of the set of lightly robust optimal solutions. Finally, Chapter 6 states our conclusions
and possible paths for future work.
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Chapter 2

Background and Related Work

In this chapter, we look into the basic concepts that are needed to understand this
thesis work. First, we review multi-objective optimization (Section 2.1), next nearly
optimal solutions (Section 2.2), then uncertainty in optimization (Section 2.3) and
finally robust multi-objective optimization (Section 2.4).

2.1 Multi-objective Optimization

In this section, we introduce the formulation of the problem, the notion of optimality,
as well as some most representative methods to solve a multi-objective optimization
problem (MOP).

2.1.1 Formulation of the problem

The multi-objective optimization problem can be defined in its general form as

min
x∈Q
{F (x)},

s.t.

gi(x) ≤ 0, i = 1, . . . , I,

hj(x) = 0, j = 1, . . . , J,

(2.1)

where Q ⊆ Rn is the feasible region defined by

Q = {x ∈ Rn : gi(x) ≤ 0 and hj(x) = 0}, (2.2)

and F : Q→ Rk is a vector consisting of the objective functions

fi : Q→ R, i = 1, . . . , k, (2.3)

x ∈ Q is known as a decision vector, gi : Rn → R, i = 1, . . . , I, are inequality
constraints and hi : Rn → R, j = 1, . . . , J , are equality constraints.

7
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In case there are no constraints MOP(2.1) is said to be unconstrained. We can also
see that in case k = 1 the problem is a single-objective optimization problem (SOP). It
is important to notice that we could also state the MOP as a maximization problem,
however, any maximization problem can be stated as a minimization problem, by
multiplying the objective function vector by −1. For the remainder of this document
we will use the term MOP for problems where the feasible region is only defined by
box constraints QB

QB = {x : lbi ≤ xi ≤ ubi}, (2.4)

where lbi i = 1, . . . , n, and ubi i = 1, . . . , n, are the lower and upper bounds respec-
tively.

2.1.2 Pareto optimality

Here, we present the concept of Pareto dominance and the necessary optimality con-
ditions for differentiable MOPs.

Pareto dominance

In order to compare two vectors of solutions of a given MOP, we introduce the concept
of Pareto dominance (Pareto, 1927).

Definition 1. Let v, w ∈ Rk. Then the vector v is less than w (denoted by v <p w),
if vi < wi, for all i ∈ 1, . . . , k. The relation ≤p is defined analogously.

Definition 2 (Strong Pareto dominance). A vector y ∈ Q is called strongly dominated
by a vector x ∈ Q (denoted by x ≺≺ y) with respect to MOP(2.1) if F (x) <p F (y).

Definition 3 (Pareto dominance). A vector y ∈ Q is called dominated by a vector
x ∈ Q (denoted by x � y) with respect to MOP(2.1) if F (x) ≤p F (y) and F (x) 6=
F (y), else y is called non-dominated by x.

Definition 4 (Weak Pareto dominance). A vector y ∈ Q is called weakly dominated
by a vector x ∈ Q (denoted by x ≺ y) with respect to MOP(2.1) if F (x) ≤p F (y).

Figure 2.1 shows an example of Pareto dominance.
The Pareto dominance determines which of two solutions x and y is “better”.

This leads naturally yo the definition of optimality.

Definition 5 (Pareto optimal solution). A point x ∈ Q is called Pareto point of
MOP(2.1) if there is no y ∈ Q that dominates x.

Strong and weak optimality are defined analogously. Usually, several solutions
will be non-dominated by any other solution in the feasible region. This set is the
so-called Pareto set and its image is known as the Pareto front.
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Figure 2.1: Example of Pareto dominance. In this case P1, P2 and P3 are mutually
non-dominated. P2 dominates both P4 and P5.

Definition 6 (Pareto set and Pareto front). 1. The set of all Pareto optimal so-
lutions is called the Pareto set, i.e.,

P = {x ∈ Q : x is a Pareto optimal point of MOP(2.1)}. (2.5)

2. The image F (P ) of P is called the Pareto front.

Typically, both the Pareto set and the Pareto front form (k − 1)-dimensional
objects under some mild assumptions on MOP(2.1) see Hillermeier (2001) for a more
thorough discussion.

As an example, consider the following bi-objective optimization problem

F (x) = (f1(x), f2(x)), where:

f1(x1, x2) = (x1 − 1)2 + (x2 − 1)4,

f2(x1, x2) = (x1 + 1)2 + (x2 + 1)2,

(2.6)

where −3 ≤ x1, x2 ≤ 3. Figure 2.2 shows the Pareto set/front of MOP 2.6.

Optimality conditions

If all the objectives in an MOP are differentiable, the Theorem of Kuhn and Tucker
(Kuhn and Tucker, 1951) states a necessary condition for Pareto optimality.

Theorem 1 (Karush-Kuhn-Tucker condition). Let x∗ ∈ Rn be a Pareto point of
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Figure 2.2: Example of Pareto set (left) and Pareto front (right) of MOP 2.6.

MOP(2.1), then there exists a vector α ∈ Rk such that

k∑
i=1

αi∇fi(x∗),+
I∑
j=1

µi∇gj(x∗) = 0

αi ≥ 0, i = 1, . . . , k,

k∑
i=1

αi = 1,

µjgj(x
∗) = 0, j = 1, . . . , I,

(2.7)

where ∇fi(x∗) is the gradient of fi at the point x∗ is defined as follows

∇fi(x∗) =

(
∂f1

∂x1

(x∗), . . . ,
∂fi
∂xn

(x∗)

)
, i = 1, . . . , k. (2.8)

This theorem claims for the unconstrained case that the zero vector can be expressed
as a convex combination of the gradients of the objective functions at x∗,

k∑
i=1

αi∇fi(x∗). (2.9)

2.1.3 Solving a multi-objective optimization problem

In the following, we review several methods that have been proposed in the literature
to solve a given MOP.

Classification of techniques

Here, we present two classifications of methods to solve MOPs.
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By the number of solutions generated. Algorithms of this class of methods is
divided by identifying the number of solutions generated (Talbi, 2009).

• Single solution: in this case, one solution is generated at each step. Exam-
ples are scalarization methods such as weighted sum (Zadeh, 1963), weighted
Tchebycheff (Bowman, 1976), normal boundary intersection (Das and Dennis,
1998), among others.

• Population based: generate an approximation of the front in one run of
the algorithm. Examples are cell mapping techniques (Hernández et al., 2013;
Hernández et al., 2013; Fernández Cruz et al., 2014; Naranjani et al., 2013a),
subdivision techniques (Schütze et al., 2003; Dellnitz et al., 2005a,b; Jahn, 2006;
Schütze et al., 2009) and evolutionary algorithms (Deb, 2001a; Coello Coello
et al., 2007). Methods of this kind are also known as set-based methods.

By participation of the decision maker. This classification is based on when
the decision maker participates to select some solutions (Hwang and Masud, 1979).

• A priori: the decision maker must define the preferences of the objective func-
tions before starting the search.

• A posteriori: first, the approximated Pareto front is generated, and then, it is
presented to the decision maker, who selects the most preferred one(s) according
to her/his preferences.

• Interactive: both optimizer and decision maker work progressively. The op-
timizer produces solutions and the decision maker provides preference informa-
tion.

Scalarization techniques

One of the ideas to solve an MOP is to transform the problem into an auxiliary SOP.
With this approach, we simplify the problem by reducing the number of objectives to
one. Once we do this, we are now able to use one of the numerous methods to solve
SOPs that have been proposed. However, typically the solution of a SOP consists
of only one point, while the solution of an MOP is a set. Thus, the Pareto set can
be approximated (in some cases not entirely) by solving a clever sequence of SOPs
(Eichfelder, 2009; Das and Dennis, 1998; Fliege, 2004).

In the following, we shortly review the most widely used scalarization techniques.
For a more thorough discussion we refer the interested reader to Miettinen (1999).

• The weighted sum method (Zadeh, 1963): the weighted sum method
Miettinen (1999) is probably the oldest scalarization method. The underlying
idea is to assign to each objective a certain weight αi ≥ 0, and to minimize the
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resulting weighted sum. Given MOP (2.1), the weighted sum problem can be
stated as follows:

min fα(x) :=
k∑
i=1

αifi(x)

s.t. x ∈ Q,
αi ≥ 0, i = 1, . . . , k,

k∑
i=1

αi = 1.

(2.10)

The main advantage of the weighted sum method is that one can expect to find
Pareto optimal solutions, to be more precise:

Theorem 2. Let αi > 0, i = 1, . . . , k, then a solution of Problem (2.10) is
Pareto optimal.

On the other hand, the proper choice of α, though it appears to be intuitive at
first sight, is, in certain cases, a delicate problem. Further, the images of (global)
solutions of Problem (2.10) cannot be located in parts of the Pareto front, where
it is concave. That is, not all points of the Pareto front can be reached, when
using the weighted sum method, which represents a severe drawback.

• Weighted Tchebycheff method (Bowman, 1976): the aim of the weighted
Tchebycheff method is to find a point whose image is as close as possible to
a given reference point Z ∈ Rk. For the distance assignment, the weighted
Tchebycheff metric is used: Let α ∈ Rk with αi ≥ 0, i = 1, . . . , k, and

∑k
i=1 αi =

1, and let Z = (z1, . . . , zk) ∈ Rk, then the weighted Tchebycheff method reads
as follows:

min
x∈Q

max
i=1,...,k

αi|fi(x)− zi|. (2.11)

Note that the solution of Problem (2.11) depends on Z as well as on α. The
main advantage of the weighted Tchebycheff method is that by a proper choice
of these vectors, every point on the Pareto front can be reached.

Theorem 3. Let x∗ ∈ Q be Pareto optimal. Then there exists α ∈ Rk
+ such

that x∗ is a solution of Problem (2.11), where Z is chosen as the utopian vector
of the MOP.

The utopian vector F ∗ = (f ∗1 , . . . , f
∗
k ) of an MOP consists of the minimum

objective values f ∗i of each function fi.
On the other hand, the proper choice of Z and α might also get a delicate
problem for particular cases.
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• Normal boundary intersection (Das and Dennis, 1998): the Normal
boundary intersection (NBI) method Das and Dennis (1998) computes finite
size approximations of the Pareto front in the following two steps:

1. The Convex Hull of Individual Minima (CHIM) is computed, which is the
(k − 1)-simplex connecting the objective values of the minimum of each
objective fi, i = 1, . . . , k (i.e., the utopian).

2. The points yi from the CHIM are selected and the point x∗i ∈ Q is computed
such that the image F (x∗i ) has the maximal distance from yi in the direction
that is normal to the CHIM and points toward the origin.

The latter is called the NBI-subproblem and can, in mathematical terms, be
stated as follows: Given an initial value x0 and a direction α ∈ Rk, solve

max
x,l

l

s.t. F (x0) + lα = F (x)

x ∈ Q.

(2.12)

Problem (2.12) can be helpful, since there are scenarios where the aim is to
steer the search in a certain direction given in objective space. On the other
hand, solutions of Problem (2.12) do not have to be Pareto optimal Das and
Dennis (1998).

Descent direction methods

Definition 7 (Descent direction). A vector ν is called a descent direction for f at
x ∈ Rn if f(x+ tν) < f(x) for all t ∈ (0, t).

If f is differentiable in x then

〈∇f(x), ν〉 < 0. (2.13)

If a descent direction ν is given at a point x, a further candidate solution xnew that
dominates x can easily be found by line search, i.e., by setting

xnew = x+ tν, (2.14)

where t ∈ R+ is a step size.

The solution of this kind of problems would give as result a curve of dominated
points, i.e., the new point dominates the previous one. Figure 2.3 shows an example
of a descent direction.

In the following, we present several methods which use this idea to find a descent
direction ν.
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Figure 2.3: Example of descent directions.

• Lara’s bi-objective descent direction: one way to combine two gradients
to obtain a descent direction is by a vector sum.

Theorem 4 (Lara’s bi-objective descent direction Lara (2012)). Let x ∈ Rn,
and f1, f2 : Rn → R define a two-objective MOP. If ∇fi(x) 6= 0, for i = 1, 2,
then the direction

ν(x0) = −
(
∇f1(x)

||∇f1(x)||
+
∇f2(x)

||∇f2(x)||

)
(2.15)

is a descent direction of f1 and f2 at x0 of MOP.

However, this approach cannot be generalized for more than two objective func-
tions and it is only for unconstrained problems.

• Directed search: the directed search method Schütze et al. (2016) allows to
steer the search from a given point x ∈ Rn into a desired direction d ∈ Rk. A
direction vector ν ∈ Rn can be computed such that

lim
t←0

fi(x0 + tv)− fi(x0)

t
= di, i = 1, . . . k. (2.16)

In the following, we describe two methods that use this idea. The first one is
a descent method that steers in a given direction d < 0. The second one is a
continuation method with the particular advantage that this method does not
require any second gradient information in contrast to other methods (Allgower
and Georg, 1990; Hillermeier, 2001).

Descent method The following idea is proposed. Assume a point x0 ∈ Q is
given as well as a vector d ∈ Rk representing a desired direction in objective
space. This can be expressed as follows

J(x)ν = d, (2.17)
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where ν ∈ Rn is a search direction in parameter space and J(x) is the Jacobian
matrix, which is defined by

J(x) =


∂f1

∂x1
(x) · · · ∂f1

∂xn
(x)

...
. . .

...
∂fk
∂x1

(x) · · · ∂fk
∂xn

(x)

 . (2.18)

With this the authors propose that v can be computed by solving a system
of linear equations. Since typically the number of parameters is higher than
the number of objectives, the system of equations is under-determined, which
implies that its solution is not unique. To find the greedy direction one can
chose the solution with the lowest norm, the problem can be formulated as

ν = J(x0)+d, (2.19)

where J(x0)+ denotes the pseudo inverse of the Jacobian J(x0) ∈ Rk×n. Further,
we can solve the following initial value problem (IVP):

x(0) = x0 ∈ Rn

ẋ(m) = να(x(m)), t > 0.
(2.20)

Continuation method Once an optimal point has been found e.g. by the
method above, this second method performs a movement along the Pareto set
of a given MOP.

Assume we are given a (local) Pareto point x and the convex weight α such
that

J(x)Tα = 0 (2.21)

and further we assume that

rank(J(x)) = k − 1. (2.22)

It is known (e.g., Hillermeier (2001)) that in this case α is orthogonal to the
Pareto front, i.e.,

α⊥TyδF (Rn), (2.23)

where y = F (x) and δF (Rn) denotes the border of the image F (Rn). Thus, a
search orthogonal to α (in objective space) could be promising to obtain new
predictor points. A QR-factorization of α can be computed to use the method
above, i.e.,

α = QR, (2.24)

where Q = (q1, . . . , qk) ∈ Rk×k is an orthogonal matrix and qi = 1, . . . , k its
column vectors, and R = (r11, 0, . . . , 0)T ∈ Rk×1 with r11 ∈ R\{0}. Since by
Equation (2.24) α = r11q1 and Q orthogonal, it follows that the column vectors
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q2, . . . , qk build an orthonormal basis of the hyperplane which is orthogonal to
α. Thus, a promising set of search directions νi may be the ones which satisfy

J(x)νi = qi, i = 2, . . . , k. (2.25)

Since α is not in the image of J(x) (else x would not be a Pareto point), it
follows that the vectors q2, . . . , qk are in the image of J(x), i.e., Problem (2.25)
can be solved for each i ∈ {2, . . . , k}. Then, the following can be chosen as the
set of predictor direction:

pi = x0 + tνi. (2.26)

Note that by this choice of predictor direction, no second derivative of the
objectives are required.

Now, a corrector step can be used. Given a predictor pi ∈ p, we can use pi as
initial value for IVP (2.20) and choosing α0, i.e., the weight from the previous
solution x0 leads to a new solution x1.

• Method of Schäffler, Schultz and Weinzierl:

Theorem 5 ((Schaeffler et al., 2002)). Let (MOP) be given and q : Rn → Rn
be defined by

q(x) =
k∑
i=1

α̂i∇fi(x), (2.27)

where α̂ is a solution of

min
α∈Rk


∥∥∥∥∥

k∑
i=1

αi∇fi(x)

∥∥∥∥∥
2

2

;αi ≥ 0, i = 1, . . . , k,
k∑
i=1

αi = 1

 . (2.28)

Then either q(x) = 0 or −q(x) is a descent direction for all objective functions
f1, . . . , fk in x.

• Method of Fliege and Svaiter: the following function is defined Fliege and
Fux Svaiter (2000):

fx(ν) = max(Av)i, i = 1, . . . , k, (2.29)

where fx : Rn → R. We can see that fx is convex and positive homogeneous.
Using this function the authors propose the following problem:

min fx(ν) +
1

2
||v||2

subject to ν ∈ Rn.
(2.30)

From this we have that, if x is Pareto optimal, then ν(x) = 0. If it is not the
case, then ν(x) is a descent direction.

Figure 2.4 shows an example of the previous descent direction methods on MOP
2.6 with x0 = [2,−2]T .
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(a) Lara’s descent direction
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(b) Directed search with d = [−0.5;−0.5]T

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x
2

0 5 10 15 20

0

2

4

6

8

10

f1

f
2

(c) Fliege’s descent direction
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(d) SSW’s descent direction

Figure 2.4: Result of the descent direction methods on the MOP 2.6 with x0 =
[2,−2]T .

Multi-objective evolutionary methods

An alternative to the classical methods is given by an area known as Evolutionary
Multi-Objective Optimization. This area has developed a wide variety of methods.
These methods are known as Multi-Objective Evolutionary Algorithms (MOEAs).
Some of the advantages are that they do not require gradient information about the
problem, instead they rely on stochastic search procedures. Another advantage is
that they give an approximation of the entire Pareto set and Pareto front in one
execution. Examples of these methods can be found in Deb (2001a); Coello Coello
et al. (2007).

Algorithm 1 shows a generic framework of a stochastic optimization algorithm
Laumanns et al. (2002), which we will consider in this work. Hereby, j denotes the
iteration step, Pj the candidate set (or population) and Aj the archive.

Algorithm 1 Generic Stochastic Search Algorithm

1: P0 ⊂ Q drawn at random
2: A0 = ArchiveUpdate(P0, ∅)
3: for j = 0, 1, 2, . . . do
4: Pj+1 = Generate(Pj)
5: Aj+1 = ArchiveUpdate(Pj+1, Aj)
6: end for

In the following, we review the most representative methodologies to design a



18 CHAPTER 2. BACKGROUND AND RELATED WORK

MOEA and its most important exponent.

• Dominance based methods: methods of this kind rely on the dominance
relationship directly. In general, these methods have two main components: a
dominance ranking and a diversity estimator. The dominance ranking sorts the
solutions according to the partial order induced by Pareto dominance. This
mechanism puts a pressure towards the Pareto front. The diversity estimator is
introduced to have a total order of the solutions and thus, it allows a comparison
between solutions even when they are mutually non-dominated. The density
estimator is based on the idea that the decision maker would like to have a good
distribution of the solution on the front (diversity).

One of the most popular methods in this class is the non-dominated sorting
genetic algorithm II (NSGA-II) that was proposed in Deb et al. (2002). The
NSGA-II has two main mechanisms. The first one is the non-dominated sorting,
where the idea is to rank the current solutions using the Pareto dominance
relationship, i.e., the ranking says by how many solutions the current solution
is dominated. This helps to identify the best values and to use them to generate
new solutions.

The second mechanism is called crowding distance. The idea is to measure the
distance from a given point to its neighbors. This helps to identify the solutions
with less distance as it means that there are more solutions in that region.

These components aim to accomplish the goals of convergence and spread re-
spectively. Due to these mechanisms, NSGA-II has a good overall performance
and it has become a prominent method when two or three objectives are con-
sidered. Other methods in this class can be found in Zitzler and Thiele (1999);
Zitzler et al. (2002).

• Decomposition based methods: methods of this kind rely on scalarization
techniques to solve an MOP. The idea behind these methods is that a set of
well distributed scalarization problems will generate also a good distribution of
the Pareto front. They use the evaluation of the scalar problem instead of the
evaluation of the MOP. These methods do not need a density estimator since
it is coded in the selection of the scalar problems.

The most prominent algorithm in this class is the MOEA based on decomposi-
tion (MOEA/D) which was proposed in Zhang and Li (2007). The main idea of
this method is to make a decomposition of the original MOP into N different
SOPs also called subproblems. Then the algorithm solves these subproblems us-
ing the information from its neighbor subproblems. The decomposition is made
by using one of the following methods: weighted sum, weighted Tchebycheff
or PBI. Other methods in this class can be found in Zuiani and Vasile (2013);
Moubayed et al. (2014).

• Indicator based methods: these methods rely on performance indicators to
assign the contribution of an individual to the solution found by the algorithm.
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By using a performance indicator, these methods reduce an MOP to an SOP.
In most cases, these methods do not need a density estimator, since it is coded
in the indicator.

One of the methods that has received the most attention is the SMS-EMOA
(Beume et al., 2007). This method is a µ + 1 evolutionary strategy that uses
hypervolume indicator to guide the search. The method computes the contribu-
tion to the hypervolume of each solution. Next, the solution with the minimum
contribution is removed from the population. In order to improve the run-
ning time of the algorithm, SMS-EMOA is combined with the dominance based
methods. In this case, when the whole population is non-dominated the indi-
cator is used to rank the solutions. Other methods in this class are presented
in Zitzler et al. (2008); Wagner and Trautmann (2010) for the hypervolume
indicator and Rudolph et al. (2016); Schütze et al. (2016) for the ∆p indicator.

Diversity based multi-objective evolutionary algorithms

The evolutionary methods described before focus on finding a well distributed ap-
proximation of the Pareto front. However, in some cases it is necessary to provide
extra indications in the characteristics of the solution. For instance, one would like to
reward solutions that are well distributed in design space. This is of special interest
in the presence of many-to-one mappings . In such cases, the methods described
before could neglect some interesting regions of the space for the decision maker. In
the following, we review methods that consider diversity both in design and objective
space. Either to improve their exploratory capacities or to find equivalent Pareto
sets.

Diversity in both design and objective space. In the following, we review some
works that maintain diversity in both design and objective space. These methods are
based on the idea that diversity is the key to find better solutions.

• Toffolo and Benini (2003) used diversity as an aditional objective. An indi-
vidual that is distant from all the others has more chances, when mating, to
produce offspring in regions of the search space not covered by the current pop-
ulation. The solutions are first ranked according to their fitness and then sorted
according their diversity measured in euclidean or hamming distance.

• Shir et al. (2009) proposed a CMA-ES niching framework. In this case, the
method ranks the individuals based upon non-dominated sorting. Then, the
distance between niches is calculated in the aggregated space and the estimation
of the niche radius is adjusted. In order to test their approach, the authors used
the test problems omni-test (Deb and Tiwari, 2008), EBN (Emmerich et al.,
2005), two-on-one (Preuss et al., 2006) and Lamé superspheres (Emmerich,
2007).
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• Zhou et al. (2009) proposed an estimation of distribution algorithm (EDA)
called MMEA. In this algorithm, the population is clustered into a number of
subpopulations based on their distribution in the objective space, the principal
component analysis is used to estimate the dimensionality of the Pareto set
in each subpopulation, and then a probabilistic model is built to model the
distribution of the Pareto optimal solutions in decision space. Such modeling
procedure could promote the population diversity in both decision and objec-
tive space.s. It is interesting to mention that the diversity in design space is
promoted by an operator instead via selection.

• Ulrich et al. (2010) present a modified version of the hypervolume to measure
diversity in design space. For design space diversity, the algorithm computes
the size of the intersections between points to see which individuals are better.
This approach only considers bi-objective problems.

• Zechman et al. (2011) propose an algorithm that generates subpopulations and
that evolves them independently. Then it applies k-means to all individuals (in
objective space) and form niches with individuals from the same subpopulation
and clusters them. From the subpopulation 1, it finds the set of non-dominated
solutions and relaxes it. In order to do this, all solutions from other subpop-
ulations are feasible if they are below a target (using −ε-dominance). Then,
the spread of the solutions is used in a similar way to crowding distance. The
approach was tested on the Lamé superspheres (Emmerich, 2007).

• Xia et al. (2014a) provide a review of methods to maintain diversity in both
spaces. Further, they propose a method that aggregates the non-dominated
rank, and the crowding distance in both spaces. The method uses a local
searcher, the differential evolution operators, as well as, an external archiver.
The method was tested on the UF (Zhang et al., 2008) and the problems used
in Zhou et al. (2009).

Preserving equivalent Pareto sets. Rudolph et al. (2007) identified several
classes of problems according to the number of Pareto sets/fronts that a given MOP
has.

• Type I, One Pareto set and one Pareto front,

• Type II, one Pareto set and multiple Pareto front parts,

• Type III, multiple Pareto subsets and one Pareto front, and

• Type IV, multiple Pareto subsets and Pareto front parts.

Further, Preuss et al. (2006); Rudolph et al. (2007) presented test problems that
make use of the previous classification. In the following, we will introduce methods
that fall into Type IV.
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• Rudolph et al. (2007) propose a multi-start approach. The method uses an
SOO algorithm to find the extreme points of an MOP with a multi-start ap-
proach. Then, the method clusters the solutions to identify all the Pareto
subsets. Further, the method uses those solutions to find the utopian vector
and finally reconstructs the Pareto subsets using weighted Tchebycheff on a
1 + 1 evolutionary strategy. In order to test the approach the authors proposed
the sym-part problems. These problems have 9 different connected components
that map the Pareto front.

• Deb and Tiwari (2008) proposed a global optimizer in order to solve both sin-
gle and multi-objective optimization problems. The method uses a restricted
selection where first an individual is selected at random and then selects the
individual closest to it. In order to rank the solutions a slightly modified ε-
dominance is used in the same for as NSGA (Srinivas and Deb, 1994).

• Rudolph and Preuss (2009) aimed to find solutions with similar characteristics
to one that was previously selected by the decision maker. The method uses 2
objectives, first the distance between the solutions in the objective space and
second the distance in design space. The algorithm works as follows: first, it
uses a MOEA on the bi-objective problem. Then, a local search is performed
on the solutions found. The approach was tested on the two-on-one (Preuss
et al., 2006) and sym-part problems (Rudolph et al., 2007).

• Kramer and Danielsiek (2010) proposed a MOEA with rake selection (Kramer
and Koch, 2009) for objective space and DBScan (Ester et al., 1996) to cluster
in decision space. After the initialization, the method executes DBScan for
decision space. After the initialization, the initialization, the method executes
DBScan to find the clusters and then evolves them independently. Next, for
each solution the method computes the recluster indicator with its neighbor
and if it is bigger than a threshold it applies DBScan again. Further, Kramer
and Danielsiek (2011) present an extension that used SMS-EMOA and kernel
density clustering.

2.1.4 Performance measures

In the following, we review the performance measures that will be used in this work
in order to compare algorithms.

Hausdorff distance

Now, we present the Hausdorff distance dH (e.g. Heinonen (2001)), which is used to
measure the distance between sets. Then, we introduce the indicator ∆p, which is
used to make out comparisons in this work.
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Definition 8 (Distance between sets). Let u, v ∈ Rn and A,B ⊂ Rn. The maximum
norm distance d∞, the semi-distance dist(·, ·) and the Hausdorff distance dH(·, ·) are
defined as follows:

1. d∞ = max
i=1,...,n

|ui − vi|

2. dist(u,A) = inf
v∈A

d∞(u, v)

3. dist(B,A) = sup
u∈B

d∞(u,A)

4. dH(A,B) = max{dist(A,B), dist(B,A)}

It will be assumed that the infinity norm is used unless it is specified otherwise.

Generational distance

The generational distance (GD) is used to measure the distance from the candidate
set A = {a1, . . . , am} to an approximation of the Pareto front B Van Veldhuizen
(1999). The lower the value of GD the better is the candidate set A. A value of zero
means, A ∈ B.

GD(A,B) :=
1

|A|

 |A|∑
i=1

dist2(ai, B)p

 1
p

. (2.31)

However, if an element of the set is duplicated, then the indicator gives a value closer
to zero. To avoid this potential drawback a slight modification was proposed in
Schütze et al. (2012).

GD(A,B)p :=

 1

|A|

|A|∑
i=1

dist2(ai, B)p

 1
p

. (2.32)

Inverted generational distance

The inverted generational distance (IGD) measures the distance from an approxima-
tion of the Pareto front B to the candidate set A (Coello Coello and Cruz Cortés,
2005). However, this indicator is sensitive to the discretization of the Pareto front. If
a better discretization of the Pareto front is used, then it will output a value closer
to zero.

IGD(A,B) :=
1

|B|

 |B|∑
i=1

dist2(bi, A)p

 1
p

. (2.33)
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To avoid this potential drawback, a slight modification was proposed in Schütze et al.
(2012):

IGD(A,B)p :=

 1

|B|

|B|∑
i=1

dist2(bi, A)p

 1
p

. (2.34)

Averaged Hausdorff distance (Schütze et al., 2012)

The Hausdorff distance defines a metric in certain cases. However, since it penalizes
outliers heavily, it is not widely used in evolutionary computation to compare differ-
ent algorithms. To partially overcome this issue (Schütze et al., 2012) proposed an
indicator that can be viewed as an averaged Hausdorff distance.

Let A = a1, . . . , an, B = b1, . . . , bm ⊂ Rk be finite and non-empty sets. Then, we
define ∆p(A,B) as

∆p(A,B) := max(GDp(A,B), IGDp(A,B)). (2.35)

Hypervolume (Zitzler and Thiele, 1998)

One of the issues with the indicators previously presented is that they are not Pareto
compliant. In the following, we define an indicator that is Pareto compliant. That is,
given two sets of solutions A and B whenever A � B and B 6� A the indicator of A
should not be worse than the indicator of B. Thus, the Hypervolume indicator has
received a lot of attention from the community of evolutionary computation.

Given a set of non-dominated solutions P ⊆ Rk and a reference point R ∈ Rk,
where Λ denotes the Lebesgue measure, the hypervolume is defined as follows:

S(P,R) = Λ

(⋃
y∈P

y′|y ≺ y′ ≺ R

)
. (2.36)

2.2 Nearly Optimal Solutions in Multi-objective

Optimization

In certain situations it may be beneficial for the decision maker (DM) to consider in
addition to the optimal solutions also nearly optimal ones, which are alternatively
called approximate solutions or ε-efficient solutions. The reason for this is that by
this the number of valid options for the current setting may increase. Note that if
two points x and y are near in objective space, i.e., if F (x) ≈ F (y), this does not
have to hold in decision space.

2.2.1 Formulation of the problem

We now define another notion of dominance which we will use to define nearly optimal
solutions (Loridan, 1984). Here we define the set of interest, PQ,ε, and investigate
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(a) ε-dominance (b) classical dominance (c) −ε-dominance

Figure 2.5: Regions of dominance for the different dominance concepts. A point
x ∈ Rn dominates the point y if the image F (x) is contained in the shaded region in
Figure (b). Figures (a) and (c) are analog for ε-dominance and −ε-dominance.

its topology. First, we introduce two calculation rules that will be helpful for the
following considerations.

Definition 9. −ε-dominance Let ε = (ε1, . . . , εk) ∈ Rk
+ and x, y ∈ Q. x is said to

−ε-dominate y (x ≺−ε y) with respect to MOP(2.1) if

F (x)− ε ≤p F (y)andF (x) + ε 6= F (y). (2.37)

Figure 2.5 shows the regions of dominance for the different dominance concepts.
Now we are in the position to define PQ,ε.

Definition 10. Denote by PQ,ε the set of points in Q ⊂ Rn that are not −ε-dominated
by any other point in Q, i.e.,

PQ,ε = {x ∈ Q|@y ∈ Q : y ≺−εx}. (2.38)

Note that one would like to compute

P c
Q,ε := {x ∈ Q|∃p ∈ PQ : x ≺ε p} (2.39)

as every point x ∈ P c
Q,ε is ‘close enough’ to at least one efficient solution. Note,

however, that the definition of this set contains the optimal set PQ and is thus not
easy to compute. Therefore, we consider PQ,ε instead. Figure 2.6 shows an example
of nearly optimal solutions.

Finally, some notations from topology. Let d : Rn ×Rn → [0,∞) be a distance in
Rn (within this study we will use the distance coming from the 2-norm, i.e., d(x, y) :=
‖x− y‖2). Given a point x0 ∈ Rn and a value ε > 0, the set

Bε(x0) := {y ∈ Rn : d(x, y) < ε} (2.40)

denotes the ε-ball centered at x0. A point x0 ∈ A ⊂ Rn is called an interior point in
A if there exists an ε > 0 such that Bε(x0) lies entirely in A. A point x0 ∈ A is called
a boundary point of A if any ε-ball Bε(x0) has non-empty intersections with both A
and its complement Rn\A. The set of interior points in A constitutes its interior,
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Figure 2.6: Example of nearly optimal solutions on MOP 2.6 with ε = [0.6, 0.6]T . In
yellow, it is shown the set of nearly optimal solutions PQ,ε. The black lines represent
the Pareto set (left) and front (right). In this case, only x3 ∈ PQ,ε.
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denoted by
◦
A, and the set of boundary points its boundary, denoted by ∂A. A is said

to be open if any point in A is an interior point and it is closed if its boundary ∂A is
contained in A. The closure of A, denoted by Ā, is the union of A and its boundary,
i.e., Ā = A ∪ ∂A. A set A ⊂ Rn is called robust if

◦
A = Ā, (2.41)

which means that every boundary point of A can be approached from the interior.
A set S ⊂ Rn is disconnected if there exist open sets O1, O2 such that S ⊂ O1 ∪ O2,
S ∩O1 6= ∅, S ∩O2 6= ∅, and S ∩O1 ∩O2 = ∅. Otherwise, S is connected.

2.2.2 The Set of Interest and its Topology

The following discussion shows the main challenge to maintain a finite size approxi-
mation of PQ,ε, namely that it forms an n-dimensional set. For this, let x0 ∈ PQ be
given (such a point exists as Q is compact). That is, there exists no y ∈ Q such that
y ≺ x0. Since F is continuous and ε ∈ Rk+ there exists a neighborhood U of x0 such
that

6 ∃y ∈ Q : y ≺−ε u ∀u ∈ U ∩Q, (2.42)

and thus, U ∩Q ⊂ PQ,ε, and we are done since U is n-dimensional.
Before we can investigate the relation of P c

Q,ε and PQ,ε we have to state some
results on the latter set.

Theorem 6. Let Q ⊂ Rn be compact and

(A1) let there be no weak Pareto point in Q\PQ,

(A2) let there be no −ε weak Pareto point in Q\PQ,ε, and

(A3) let B ⊂
◦
Q and q(x) 6= 0 for all x ∈ B, where q is as defined in Theorem 5 and

B := {x ∈ Q|∃y ∈ PQ : F (y) + ε = F (x)}.

Then it holds:

PQ,ε = {x ∈ Q| 6 ∃y ∈ Q : F (y) + ε <p F (x)},
◦

PQ,ε = {x ∈ Q| 6 ∃y ∈ Q : F (y) + ε ≤p F (x)},
∂PQ,ε = {x ∈ Q|∃y1 ∈ PQ : F (y1) + ε ≤p F (x) ∧ 6 ∃y2 ∈ Q : F (y2) + ε <p F (x)}.

(2.43)

The result shows that PQ,ε is in general neither open nor closed, and that the
closure gets ‘completed’ by −ε weak Pareto points. Further, Equation (2.43) can
be used to characterize the boundary: as there exists a j ∈ {1, . . . , k} such that
fj(y1) + εj = fj(x), boundary points are −ε weak Pareto points that are bounded
from F (PQ) by ε.
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Figure 2.7: Left: PQ (black),P c
Q,ε (black and yellow), and PQ,ε (black, yellow and blue)

for OKA1. Right: the respective sets in objective space.

Now we are able to examine the relation between P c
Q,ε and PQ,ε. It is in general

PQ,ε 6⊂ P c
Q,ε (such an example can be found in White (1986) which holds also for

−ε-dominance). Further, PQ,ε is in general a proper superset of P c
Q,ε.

Lemma 7. P c
Q,ε ⊂

◦
PQ,ε

Example

(a) Figure 2.7 shows the different sets for the two-dimensional bi-objective problem
OKA1 (Okabe et al. (2004)): left, black marks the Pareto set, yellow marks the
points that are nearly optimal according to P c

Q,ε (i.e., P c
Q,ε is the union of the

black and the yellow region), and blue marks the points that are included in
PQ,ε but not in P c

Q,ε. Right, the respective sets are shown in image space using
the same colors.

(b) Let F : R → R2, F (x) = ((x − 1)2, (x + 1)2)T , ε = (1, 1)T and Q = [−3, 3].
Then it is PQ = [−1, 1] and PQ,ε = (−2, 2). The boundary ∂PQ,ε is given by
{x1 := −2, x2 := 2}. Since F (x1) = (9, 1), F (x2) = (1, 9), F (−1) = (4, 0) and
F (1) = (0, 4) both points x1 and x2 are −ε-dominated and thus not included in
PQ,ε.

(c) Figure 2.8 shows an example for k = 1 where the set of interest is given by
PQ,ε = {x∗}∪ [c, d], i.e., the set is (i) disconnected and (ii) contains the isolated
point x∗.

Example (c) shows that PQ,ε can contain isolated points which can practically not
be found or approximated via stochastic search. By Lemma 7 it follows that this
is—despite for theoretical investigations—not problematic since its interior, which
can be approximated in any case, already contains all the interesting parts. However,
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Figure 2.8: Example of a set PQ,ε where the closure of its interior is not equal to its
closure.

since we are interested in convergence results measured by the Hausdorff distance we
have to make further assumptions on the model which will do in the following.

Lemma 8. Let in addition to the assumptions made in Theorem 6 be q(x) 6= 0 ∀x ∈
∂PQ,ε, then

◦
PQ,ε = PQ,ε. (2.44)

Roughly speaking, PQ,ε is under the assumptions made in Lemma 8 not ‘flat’
anywhere. As such an example consider the filled letter ‘six’ as A. The interior of
A is then an open circle, and its closure the filled circle, i.e., the upper arc of A is
missing.

The last topological property of PQ,ε we investigate here is its connectedness.
The connectedness of a set is an important property, in particular when tackling the
problem with local search strategies: in that case, the entire set can be detected when
starting with one single solution. Example 2.2.2 (c) shows that the connectedness of
PQ,ε cannot be expected in general. However, in the convex case the following holds.

Theorem 9. Let ε ∈ Rk+. If Q is convex and all fi, i = 1, . . . , k, are convex, then
PQ,ε and F (PQ,ε) are connected.

2.2.3 Computing the Entire Set of Nearly Optimal Solutions

To the best of our knowledge all the works dealing with approximate solutions in
multi-objective optimization are based on the concept of ε-dominance (Loridan (1984);
White (1986)). ε-dominance or ε-efficiency has been studied and used by many re-
searchers, e.g. to allow (or tolerate) nearly optimal solutions (Loridan (1984), White
(1986)), to approximate the set of optimal solutions PQ (Ruhe and Fruhwirt (1990)),
or in order to discretize this set (Laumanns et al. (2002); Schütze et al. (2008, 2010)).
ε-efficient solutions have also been used to tackle a variety of real-world problems
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including portfolio selection problems (White (1998)), a location problem (Blanquero
and Carrizosa (2002)), or a minimal cost flow problem (Ruhe and Fruhwirt (1990)).
The numerical approximation of approximate solutions has been addressed in sev-
eral studies. In most of them, scalarization methods have been employed (e.g., White
(1986); Blanquero and Carrizosa (2002); Engau and Wiecek (2007)). By their nature,
such algorithms can deliver only single solutions by one single execution.

There already exist quite a few archiving strategies for the use within multi-
objective stochastic search algorithms such as the ones presented and analyzed in
Hanne (1999); Eiben and Rudolph (1999); Rudolph and Agapie (2000); Knowles and
Corne (2000); Laumanns et al. (2002); Knowles and Corne (2004); Schütze et al.
(2007b); Schütze et al. (2008); Schütze et al. (2008); Horoba and Neumann (2008);
Yuen et al. (2012); Moubayed et al. (2014). However, all of them store sets of mutually
non-dominating points, and can hence not be utilized for our purpose.

First we aim for the computation of the entire set PQ,ε. This is not only of theo-
retical interest but also relevant in case the function evaluation is expensive and/or
time restrictions just allow to evaluate few candidate solutions. In that case it makes
sense to store all promising solutions to obtain the best overview over the gathered
data.

Algorithm 2 A := ArchiveUpdatePQ,ε (P,A0, ε)

Require: population P , archive A0

Ensure: updated archive A
1: A := A0

2: for all p ∈ P do
3: if 6 ∃a ∈ A : a ≺−ε p then
4: A := A ∪ {p}
5: end if
6: for all a ∈ A do
7: if p ≺−ε a then
8: A := A\{a}
9: end if

10: end for
11: end for

Algorithm 2 shows the pseudo code of ArchiveUpdatePQ,ε. This archiver keeps
all points that are not −ε-dominated by any other considered candidate. First, we
investigate the behavior of the sequence of archives for finitely many iterations. One
possible problem archiving strategies have to cope with is cycling or deterioration
in their entries (e.g., Hanne (1999)). This is of course an unwanted effect since this
implies that information can get ‘lost’. The following result, however, shows that this
is not the case for Algorithm 2.

Theorem 10. Let l ∈ N, ε ∈ Rk+, P1, . . . , Pl ⊂ Rn be finite sets, and Ai, i = 1, . . . , l,
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be obtained by ArchiveUpdatePQ,ε as in Algorithm 1, and Cl =
⋃l
i=1 Pi. Then

Al = PCl,ε = {x ∈ Cl : 6 ∃y ∈ Cl : y ≺−ε x}. (2.45)

Next, we investigate the limit behavior of the sequence Ai of archives. To guaran-
tee convergence, we have to make several assumptions on the MOP and the generation
process. The requirements on the MOP are given by the results in Sec. 2 while for
the generator we have to assume the following (see also Schütze et al. (2008, 2010)):

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ N : Pl ∩Bδ(x) ∩Q 6= ∅) = 1, (2.46)

where P (A) denotes the probability for event A and Bδ(x) the n-dimensional sphere
with center x and radius δ. Assumption (2.46) says that every neighborhood U ∩Q of
every point gets ‘visited’ by Generate() after finitely many steps with probability one.
The following consideration shows that we cannot assume less: if (2.46) does not hold,
there exists with probability one a point x ∈ Q and a neighborhood Ũ = U ∩Q of x
such that no candidate solution p ∈ Pl lies in Ũ for all l ∈ N. Thus, no convergence
can be guaranteed since a part of the Pareto set can be contained in Ũ which is
never ‘visited’. In the case of evolutionary algorithms (2.46) is ensured by the use of
mutation operators such as Polynomial Mutation Deb (2001b).

The following theorem shows that the sequence of archives converges under these
conditions with probability one to PQ,ε in the Hausdorff sense.

Theorem 11. Let (2.1) be given, where F is continuous and is Q ⊂ Rn compact,
and ε ∈ Rk+. Further, let (2.46) be fulfilled. Then, under the assumptions made in
Lemma 8, an application of Algorithm 1, where ArchiveUpdatePQ,ε (Algorithm 2) is
used to update the archive, leads to a sequence of archives Al, l ∈ N, with

lim
l→∞

dH(PQ,ε, Al) = 0, with probability one. (2.47)

Remark 1. (a) In order to obtain convergence toward PQ,ε we had to postulate
some (mild) assumptions to guarantee (2.44). In the general case, however, we
can still expect that the interior of PQ,ε will be approximated in the limit, which
contains already all the ‘interesting’ part due to Lemma 7. More precisely, even
if assumptions (A1)–(A3) are not fulfilled, we still have

lim
l→∞

dist(
◦

PQ,ε, Al) = 0, with probability one. (2.48)

(b) Note the analogy of the approach proposed above to the straightforward way to
approximate the Pareto front: in case all the non-dominated solutions which are
found so far are kept in the archive, i.e., if

ArchiveUpdateND(A,P ) := {x ∈ A ∪ P : y 6≺ x ∀y ∈ A ∪ P} (2.49)

is used, one can show (Schütze et al. (2008)) that under similar assumptions
as in Theorem 11 an application of Algorithm 1 leads to a sequence of archives
{Ai}i∈N, such that

lim
l→∞

dH(F (PQ), F (Al)) = 0 with probability one. (2.50)
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Due to the above discussion we can expect that the sequence of archives generated
by ArchiveUpdatePQ,ε converges toward the set of interest for a given MOP. However,
as this is typically not finite (except for discrete problems), we have to expect that
the magnitudes of the archive entries go beyond every threshold during the run of
the algorithm. Clearly, this is not admissible for an effective and practical use of the
archiver within a stochastic search algorithm, in particular when numerous candidate
solutions are being considered during the process (which is normally the case). Hence,
suitable discretization strategies are desired which we address in the following sections.

2.2.4 Discretizing the Set either in Decision or Objective
Space

Algorithms 3 and 4 show the pseudocodes of the archivers ArchiveUpdatePQ,εDx and
ArchiveUpdatePQ,εDy which are modifications of ArchiveUpdatePQ,ε that aim for
discretizations of PQ,ε in decision and objective space, respectively. Hereby, 1∆ :=
(∆, . . . ,∆) ∈ Rk

+, where ∆ ∈ R+ can be viewed as the discretization parameter. Since
PQ,ε is n-dimensional, a discretization in decision space could lead to tremendous
magnitudes of the archives except for small values of n, say, n ≤ 5 (see also the
discussion of the archive bounds). Hence, we concentrate in the following on the
analysis of Algorithm 4. As one result, we will show that the upper bound of the
archive sizes obtained by this algorithm is basically the same as when aiming for gap
free discretizations of the Pareto front.

Algorithm 3 A := ArchiveUpdatePQ,εDx (P,A0,∆)

Require: population P , archive A0, ∆ ∈ R+, ∆∗ ∈ (0,∆)
Ensure: updated archive A

1: A := A0

2: for all p ∈ P do
3: if 6 ∃a1 ∈ A : a ≺−ε p and 6 ∃a2 ∈ A : d∞(a2, p) ≤ ∆∗ then
4: A := A ∪ {p}
5: for all a ∈ A do
6: if p ≺−ε a then
7: A := A\{a}
8: end if
9: end for

10: end if
11: end for

First, we investigate the monotonicity behavior of Algorithm 4. An analog state-
ment to Theorem 10 can of course not be expected due to the discretization mech-
anism in line 3. Example 1 shows that by using ArchiveUpdatePQ,εDy one cannot
prevent to maintain points x ∈ PQ,ε+2∆\PQ,ε in the (limit) archive, and by Theorem
12 it follows that the error of 2∆ (in image space) is already the upper bound.
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Algorithm 4 A := ArchiveUpdatePQ,εDy (P,A0,∆)

Require: population P , archive A0, ∆ ∈ R+, ∆∗ ∈ (0,∆)
Ensure: updated archive A

1: A := A0

2: for all p ∈ P do
3: if 6 ∃a1 ∈ A : a ≺−ε p and 6 ∃a2 ∈ A : d∞(F (a2), F (p)) ≤ ∆∗ then
4: A := A ∪ {p}
5: for all a ∈ A do
6: if p ≺−(ε+1∆) a then
7: A := A\{a}
8: end if
9: end for

10: end if
11: end for

Remark 1. Consider the problem F : R → R, F (x) = x, and let Q = [0, 5], ε = 1,
and set ∆∗ = ∆ = 0.1. Then, it is PQ,ε = [0, 1]. Assume that A = {a1 := 1.2}. If fur-
ther a2 = 0.1 is considered, it will be inserted into the archive as d∞(F (a1), F (a2)) >
∆ and since a2 ∈ PQ,ε is not −ε-dominated by a1 nor by any other point x ∈ Q,
and will remain in the archive further on. Since a2 is not −(ε + ∆)-dominating a1

we have for the updated archive A = {a1, a2}. Hence, no element a ∈ [0,∆] will be
taken to the archive since for these points it holds d∞(F (a), F (a2)) ≤ ∆∗, and thus,
a2 ∈ PQ,ε+2∆\PQ,ε will not be discarded from the archive during the run of the algo-
rithm. When on the other side a1 = 0 is taken to the archive, no element x ∈ Q\PQ,ε
will ever be accepted in the sequel by Algorithm 4.

Theorem 12. Let l ∈ N, ε ∈ Rk
+, P1, . . . , Pl ⊂ Rn be finite sets, and Ai, i = 1, . . . , l,

be obtained by ArchiveUpdatePQ,εDy as in Algorithm 1. Then, for Cl =
⋃l
i=1 Pi it

holds:

(i) dist(F (PCl,ε), F (Al)) ≤ ∆

(ii) dist(F (Al), F (PCl,ε)) ≤ dist(F (PCl,ε+2∆), F (PCl,ε))

(iii) dH(F (PCl,ε), F (Al)) ≤ max(∆, dist(F (PCl,ε+2∆), F (PCl,ε)))

(2.51)

Hence, the approximation error depends next to the discretization parameter ∆
on the distance of F (PQ,ε+2∆) to F (PQ,ε). While the former value can be adjusted or
is given by the application, the latter is inherent in the problem and can get large in
some (pathological) cases (Schütze et al. (2008)).

Next, we investigate the limit behavior of ArchiveUpdatePQ,εDy.

Theorem 13. Let (2.1) be given, where F is continuous and Q is compact, and
ε ∈ Rk

+, ∆,∆∗ ∈ R+ with ∆∗ < ∆. For the generation process we assume (2.46 ) and
for the MOP the assumptions made in Lemma 8. Then, an application of Algorithm
1, where AchiveUpdatePQ,ε(P,A,∆) is used to update the archive, leads to a sequence
Al, l ∈ N, with
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(a) For all l ∈ N it holds ‖F (a1)− F (a2)‖∞ ≥ ∆∗.

(b) There exists with probability one l0 ∈ N such that for all l ≥ l0:

(b1) dist(F (PQ,ε), F (Al)) < ∆

(b2) dist(F (Al), F (PQ,ε)) ≤ dist(F (PQ,ε+2∆), F (PQ,ε))

(b3) dH(F (PQ,ε), F (Al)) ≤ D, where D = max(∆, dist(F (PQ,ε+2∆), F (PQ,ε)))

Remark 2. (a) For ∆ = ∆∗ = 0 the archiver coincides with the one presented in
Algorithm 2.

(b) Here we have used a scalar ∆0 ∈ R+ to discretize the ε-efficient front. Analog
results can be obtained by using a vector ∆ ∈ Rk

+ leading to different discretiza-
tions in each objective.

(c) 0 < ∆∗ < ∆ is used for theoretical purposes. In practice, ∆∗ = ∆ can be chosen.

Further on we analyze the bounds of the archive sizes obtained by the two archivers.
The lower bound for both methods is apparently given by one (e.g., for a sufficiently
large value of ∆), more interesting are the upper bounds which represent a potential
obstacle for the efficiency of the related stochastic search algorithms.

Theorem 14. Let ε ∈ Rk
+, ∆∗,∆ ∈ R+ with ∆∗ < ∆ be given. Further, let mi =

minx∈Q fi(x), Mi = maxx∈Q fi(x), 1 ≤ i ≤ k, and l0 as in Theorem 11. Then, when
using ArchiveUpdatePQ ,ε, the archive size maintained in Algorithm 1 for all l ≥ l0 is
bounded by

|Al| ≤
(

1

∆∗

)k k∑
i=1

(εi + 2∆ + ∆∗)
k∏
j=1
j 6=i

(Mj −mj + ∆∗). (2.52)

One interesting aspect is the growth of the limit archives w.r.t. the discretization
parameter ∆. Assuming that ∆ is smaller than any entry of ε (i.e., εi = ci∆ for
ci > 1) and setting ∆ = ∆∗ we obtain by (2.52)

|Al(Dy)| ≤
(

1

∆

)k−1 k∑
i=1

(ci + 3)
k∏
j=1
j 6=i

(Mj −mj + ∆∗), (2.53)

where Al(Dy) denotes here for sake of a better distinction the archive obtained via
ArchiveUpdatePQ,εDy. Thus, the magnitudes are or the order

|Al(Dy)| ∈ O

((
1

∆

)k−1
)

for ∆→ 0 and l→∞. (2.54)

Considering that the Pareto set which is included in PQ,ε typically forms a (k−1)-
dimensional set, we can say that the order of |Al(Dy)| is already optimal.



34 CHAPTER 2. BACKGROUND AND RELATED WORK

An analog result for a discretization in decision space, however, can not hold since
PQ,ε is n-dimensional. To be more precise, the upper bound for the magnitude of the
archive when using ArchiveUpdatePQ,εDx is given by

|Al(Dx)| ≤
(

1

∆∗
+ 1

)n n∏
j=1

(bi − ai), (2.55)

where Q ⊂ [a1, b1]×. . .×[an, bn] (PQ,ε+2∆ is certainly included in [a1, b1]×. . .×[an, bn],
and maximal 1/∆∗ + 1 elements can be placed in each coordinate direction).

2.2.5 Computing approximations of the set of nearly optimal
solutions

In the following, we briefly describe some the proposed methods to find approxima-
tions of PQ,ε.

• Schütze et al. (2007a) proposed to couple a generic evolutionary algorithm (as
the one shown in Algorithm 1) with the ArchiverUpdatePQ,ε (Algorithm 2).
The method was tested on Tanaka and sym-part (Rudolph et al., 2007) problems
to show the capabilities of the method.

• Schütze et al. (2008) presented a modified version of NSGA-II, named PQ,ε-
NSGA-II. The method uses an external archiver to maintain a representation
of PQ,ε and tested the method on a space machine design application. Later, in
Schütze et al. (2009) the method was applied to solve a two impulse transfer to
asteroid Apophis and a sequence Earth-Venus-Mercury (EVMe) problem.

• Schütze et al. (2011) proposed the PQ,ε-MOEA which is a steady-state archive-
based MOEA that uses ArchiverUpdatePQ,ε for the population. The algorithm
draws at random two individuals from the archiver and generates two new
solutions that are introduced to the archiver.

• Hernández et al. (2013) presented an adaption of the simple cell mapping
method to find the set of approximate solutions using ArchiverUpdatePQ,εDy.

• Xia et al. (2014b) designed an algorithm for fault tolerance applications. The
method uses two different kinds of problem dependent mutation and one for
diversity. In this case, a child will replace a random individual if it is better
or with probability one half if they are non-dominated. The method uses a
bounded version of ArchiverUpdatePQ,ε at the end of each generation.

2.3 Uncertainty in Optimization

In the following, we present some ideas that were introduced for uncertainty in opti-
mization.
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2.3.1 Sources of uncertainty

First, we review the sources of uncertainty according to engineering, optimization and
evolutionary algorithms.

Uncertainties in engineering modeling

In engineering modeling there exist a classification according to the source of uncer-
tainty Kiureghian and Ditlevsen (2007); Beyer and Sendhoff (2007). This is taken
from an epistemological perspective differentiating the uncertainties into objective
and subjective ones.

• Aleatory: is one that is presumed to be the intrinsic randomness of a phe-
nomenon. Aleatory uncertainty is of intrinsically irreducible stochastic nature.
The designer has to optimize his design according to this reality. Due to the
probabilistic nature, probability distributions are the adequate means for the
mathematical description of these uncertainties.

• Epistemic: is one that is presumed as being caused by lack of knowledge (or
data) a designer has about the problem of interest (e.g. discretization error,
approximation error, convergence problems).

The reason that it is convenient to have this distinction within an engineering anal-
ysis model is that the lack-of-knowledge-part of the uncertainty can be represented
in the model by introducing auxiliary non-physical variables. These variables capture
information obtained through the gathering of more data or use of more advanced
scientific principles. An uttermost important point is that these auxiliary variables
define statistical dependencies (correlations) in a clear and transparent way.

Uncertainty in Optimization

In the following we present the classification of uncertainty as presented in Beyer and
Sendhoff (2007).

A Changing environmental and operating conditions. Examples are the angle of
attack in airfoil design, operating temperature, pressure, humidity, changing
material properties, among others.

B Production tolerances and actuator imprecision. The design parameters of a
product can be realized only to a certain degree of accuracy. High precision
machinery is expensive, therefore, a design less sensitive to manufacturing tol-
erances reduces costs.

C Uncertainties in the system output. These uncertainties are due to imprecision
in the evaluation of the system output and the system performance. This kind
of uncertainty includes measuring errors and all kinds of approximation errors
due to the use of models instead of the real physical objects (model errors).
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D Feasibility uncertainties. Uncertainties concerning the fulfillment of constraints
the design variables must obey. This kind of uncertainty is different to A - C in
that it does not consider the uncertainty effects on f but on the design space.
In real-world applications it often appears together with the uncertainty types
A and B.

Uncertainty in evolutionary algorithms

According to Jin and Branke (2005) uncertainty in evolutionary algorithms can be
categorized in four classes.

1. Noise: The fitness evaluation is subject to noise. Noise in fitness evaluations may
come from different sources such as sensory measurement errors or randomized
simulations.

2. Robustness: The design variables are subject to perturbations or changes after
the optimal solution has been determined. Therefore, a common requirement is
that a solution should still work satisfactorily when the design variables change
slightly, e.g., due to manufacturing tolerances. Such solutions are termed robust
solutions.

3. Fitness approximation: When the fitness function is very expensive to evaluate,
or an analytical fitness function is not available, fitness functions are often
approximated based on data generated from experiments or simulations. The
approximated fitness function is often known as meta-model.

4. Time-varying fitness functions: The fitness function is deterministic at any point
in time, but is dependent on time t. As a consequence, also the optimum changes
over time. Thus, the evolutionary algorithm should be able to continuously
track the changing optimum rather than requiring a repeated restart of the
optimization process.

2.3.2 Modeling uncertainty

According to Beyer and Sendhoff (2007) there are three different possibilities to quan-
tify the uncertainties mathematically. The authors state that uncertainties can be
modeled deterministically, probabilistically, or possibilistically.:

1. The deterministic type defines parameter domains in which the uncertainties α,
δ, among others can vary,

2. the probabilistic type defines probability measures describing the likelihood by
which a certain event occurs, and

3. the possibilistic type defines fuzzy measures describing the possibility or mem-
bership grade by which a certain event can be plausible or believable.
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2.4 Robust Multi-objective Optimization

Now, we introduce the definition of a robust multi-objective optimization problem
according to several authors.

2.4.1 Approaches to include robustness to an MOP

Here, we present some the ideas used to introduce robustness into an MOP.

Substitute the objective

One of the first approaches to handle robustness is to replace the nominal MOP with
a measure that reflects uncertainty. Typical approaches that follows this approach
are to use: mean, standard deviation or the worst case of the nominal function.

Adding an extra objective

Another option is to use one (or several) objective(s) that reflects the robustness of a
solution. For instance, one could use a combination of the previous approaches with
the nominal function. One drawback of the approach is that the number of objectives
grow quickly (k times the number of additional objectives).

Adding a constraint

A third possibility is to restrict the search to solutions with a minimum accepted
value of robustness. However, it is not always clear what should this value be and
thus it needs further information on the given MOP.

2.4.2 Worst case multi-objective optimization

First, we define an decision uncertain multi-objective optimization problem Eichfelder
et al. (2017). Here, we assume that uncertainties in the problem formulation are
given as scenarios from a known uncertainty set U ⊆ Rn. It is also assumed that
F : Q× U → Rk.

Definition 11. An uncertain multi-objective optimization problem P (U) = (P (δ), δ ∈
U) is defined as the family of parametrized problems

P (δ) := min
x∈Q

F (x+ δ), (2.56)

where F : Q× U → Rk and Q ⊆ Rn.

Note that it is not clear what a solution to such family of problems is. Figure 2.9
shows an example of decision uncertainty on MOP 2.6. In the following, we introduce
several concepts of robustness.
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Figure 2.9: Example of decision uncertainty on MOP 2.6. Left shows 4 solutions in
decision space and each colored region represents the region of uncertainty. Right
shows the image of the 4 solutions. In black, the nominal Pareto set/front is shown .
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Point-based MinMax robust efficiency

Kuroiwa and Lee (2012) replaced the objective functions by their respective worst
cases over all scenarios and hence obtain a deterministic multi-objective optimization
problem whose efficient solutions are called robust. This approach is closely connected
to the concept of minmax robustness for single-objective problems.

Definition 12 (Kuroiwa and Lee (2012)). Given an uncertain multi-objective opti-
mization problem P (U), a feasible solution x ∈ Q is called point-based minmax robust
efficient if it is efficient for

min
x∈Q

Fmax
U . (2.57)

Figure 2.10 shows an example of point-based efficiency.

Set-based MinMax robust efficiency

Ehrgott et al. (2014) Ehrgott et al. (2014) proposed an extension of the concept
of point-based minmax robust efficiency. Here, for a given feasible solution x, the
worst case of the objective vector is interpreted as a set, namely the set of efficient
solutions to the multi-objective problem of maximizing the objective function over
the uncertainty set.

Definition 13 (Ehrgott et al. (2014)). Given an uncertain multi-objective optimiza-
tion problem P (U), a feasible solution x̄ ∈ Q is called set-based minmax robust effi-
cient if there is no x′ ∈ Q\{x̄} such that

FU(x′) ⊆ FU(x̄)− Rk�. (2.58)

Note that Rk� represents the dominance cone. The robust counterpart of an un-
certain multi-objective optimization problem is the problem of identifying all x ∈ Q
which are re. Thus, the robust counterpart problem can be defined as

min
x∈Q

sup
δ∈U

F (x+ δ), (2.59)

where supδ∈U is defined as the set of efficient solutions of the following multi-objective
optimization problem

max
δ∈U

F (x+ δ). (2.60)

Figure 2.10 shows an example of set-based efficiency.

Lightly robust efficiency

One of the main criticism to previous definitions is that it could be over-conservative
since it considers the worst case. Thus, solutions with a poor performance in terms
of their objective functions could be selected. As a possible remedy, in Ide and
Schöbel (2016) the authors extended the notion of lightly robust solutions to the
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Figure 2.10: Example of point-based minmax (left)/right-based minmax (left)/ robust
efficiency on MOP 2.6. In black, the nominal Pareto front is shown . The different
colors represent the region of uncertainty in objective space. The squares (left)/light
blue represents the worst case. In both cases, x1, x3, x4 are mutually non-dominated.
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multi-objective context. Given a nominal scenario δ̂ ∈ U , let Qδ(δ̂) be the set of
efficient solutions P (δ̂). For each efficient solution x̂ ∈ Qδ(δ̂) to P (δ) and some
given 0 ≤ ε ∈ Rk we define the uncertain multi-objective optimization problem
LR(x̂, ε, U) := LR(x̂, ε, δ), δ ∈ U , as the family of parametrized, deterministic multi-
objective optimization problems.

LR(x̂, ε, δ) := minF (x+ δ)

s.t.F (x̂, δ̂) ∈ P c
Q,ε.

(2.61)

Definition 14. Given an uncertain multi-objective optimization problem P (U) with
nominal scenario δ ∈ U and some ε ∈ Rk≥. Then a solution x̄ ∈ Q is called lightly ro-
bust efficient for P (U) w.r.t. ε if it is set-based minmax robust efficient for LR(x̂, ε, U)
for some x̂ ∈ Qδ(δ̂).

Thus, the robust counterpart of this uncertain multi-objective optimization prob-
lem is the problem of identifying all x ∈ Q which are lre. Thus, the robust counterpart
problem can be defined as

min
x∈P cQ,ε

sup
δ∈U

F (x+ δ). (2.62)

Figure 2.11 shows an example of lightly robust efficiency.

2.4.3 Other definitions and related concepts

In this section, we discuss several alternative definitions for robustness as well as other
related concepts.

Alternative definitions

Here, we present other definitions that have been used in the context of robust multi-
objective optimization.

Deb and Gupta (2006) extended the idea of Branke (1998) to the context of
multi-objective optimization. The idea is to replace the objective functions by their
respective mean over a given neighborhood or to add a constraint to the MOP. Then,
the authors use NSGA-II Deb et al. (2002) to solve the new problem. The main
drawback is the high number of function evaluations (30 times higher that a regular
MOEA). In the following, we present the two types of robust solutions proposed by
the authors.

Definition 15 (Multi-objective Robust Solution of Type I Deb et al. (2005)). A
solution x∗ is called a multi-objective robust solution of Type I, if it is the global
feasible Pareto optimal solution to the following multi-objective minimization problem.
Which is defined with respect to a δ-neighborhood (Bδ(x) of a solution x):

min
x∈Q

(f eff1 (x), f eff2 (x), . . . , f effk (x)), (2.63)



42 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.11: Example of lightly robust efficiency on MOP 2.6 with ε = [0.6, 0.6]T .
In black, it is shown the set of nearly optimal solutions PQ,ε. The different colors
represent the region of uncertainty in objective space. The light blue represents the
worst case. In this case, only x3 ∈ PQ,ε and thus is the lightly robust efficient solution.
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where f effj (x) is defined as follows:

f effj (x) =
1

|Bδ(x)|

∫
y∈Bδ(x)

fj(y)dy. (2.64)

Definition 16 (Multi-objective Robust Solution of Type II Deb et al. (2005)). A
solution x∗ is called a multi-objective robust solution of Type II, if it is the global
feasible Pareto optimal solution to the following multi-objective minimization problem:

min
x∈Q

(f1(x), f2(x), . . . , fk(x)),

s.t.
||F p(x)− F (x)||
||F (x)||

≤ η.
(2.65)

Although these definitions do not follow the classical concepts of robustness for
single-objective optimization (Ide and Schöbel, 2016), these definitions have attracted
special interest in the field of evolutionary computation. In the following, we review
some of this works.

• Bader and Zitzler (2010) studied how to incorporate robustness when using the
hypervolume indicator within an evolutionary algorithm. They also proposed
an extension of the hypervolume indicator that enables more general trade-offs
between objective values and robustness of a solution.

• Saha et al. (2011) proposed several techniques in order to lower the number
of function evaluations. They proposed to use an external archive to minimize
the need for new function evaluations. Further, the method only evaluate the
neighborhood of promising solutions and also to use a different sampling method
than Latin hypercube sampling.

• Mendes et al. (2013) proposed to use a surrogate model to make an estimation
of the neighborhood of a solution to lower the number of function evaluations
needed.

For a further review on definitions of robust multi-objective optimization the in-
terested reader is referred to Ide and Schöbel (2016).

Sensitivity

Gunawan and Azarm (2005) presented a method to measure the multi-objective sen-
sitivity of a design alternative, and an approach to use such a measure to obtain
multi-objective robust Pareto optimum solutions. The sensitivity measure does not
require a presumed probability distribution of uncontrollable parameters and does
not utilize gradient information.

Barrico and Antunes (2006) presented the concept of degree of robustness and use
it in an evolutionary algorithm. In the method, non-dominated solutions are classified
according to their degree of robustness. This information is provided to support the
decision maker in the selection a robust compromise solution.
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2.5 Cell Mapping Techniques

The cell mapping method was originally proposed by Hsu Hsu (1980, 1987) for the
global analysis of non-linear dynamical systems in the decision space. The cell map-
ping methods have been extensively studied, namely, the simple cell mapping, the
generalized cell mapping Hsu (1987), the interpolated cell mapping Tongue (1988),
the adjoining cell mapping Zufiria and Guttalu (1993); Guttalu and Zufiria (1993),
the hybrid cell mapping Mart́ınez-Maŕın and Zufiria (1999), among others. The cell
mapping methods have been applied to optimal control problems of deterministic and
stochastic dynamic systems Hsu (1985); Bursal and Hsu (1989); Zufiria and Mart́ınez-
Maŕın (2003); Gomez et al. (2008). In Zufiria and Guttalu (1993), the cell mapping
techniques where combined with dynamical systems theory in order to find all solu-
tions to a system of non-linear algebraic equations.

The cell mapping methods transform the point-to-point dynamics into a cell-to-
cell mapping by discretizing the space. The simple cell mapping (SCM) offers an
effective approach to investigate global response properties of the system. The cell
mapping with a finite number of cells in the computational domain will eventually lead
to closed groups of cells of the period equal to the number of cells in the group. The
periodic cells represent approximate invariant sets, which can be periodic motion and
stable attractors of the system. The rest of the cells form the domains of attraction of
the invariant sets. For more discussions on the cell mapping methods, their properties
and computational algorithms, the reader is referred to the book by Hsu Hsu (1987).

2.5.1 Dynamical systems

Definition 17 (Dynamical system). A continuous dynamical system Hsu (1987) can
be considered to be a model describing the temporal evolution of a system and it is
defined as follows:

ẋ = G(x),

where x is a N-dimensional vector and G : RN → RN is, in general, a non-linear
vector function. The evolution of such a dynamical system can be described by a
function of the form:

xm+1 = G(x(m), µ), (2.66)

where x is a N-dimensional vector, m denotes the mapping step, µ is a parameter
vector, and G is a general non-linear vector function.

In this case ordinary differential equations can be used to describe the dynamical
systems. These are defined as follows:

ẋ = F (x, t, µ); x ∈ Rn, t ∈ R, µ ∈ Rl,

where x is a N -dimensional state vector, t is the time variable, µ is a l-dimensional
parameter vector, and F is a vector-valued function of x, t and µ.
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Definition 18 (Fixed point). When the evolution of a dynamical system is made one
may find a point that satisfies the following:

x∗ = G(x∗, µ).

In this case, x∗ is called a fixed point of Equation (2.66).

Definition 19 (Periodic group). A periodic solution of Equation (2.66) of period l
is a sequence of l distinct points x∗(j), j = 1, 2, . . . , l such that

x∗(o+ 1) = Go(x∗(1), µ), o = 1, 2, . . . , l − 1,

x∗(1) = Gl(x∗(1), µ).
(2.67)

We say that there exists a periodic solution of period l. Any of the points x∗(j), j =
1, 2, . . . , l, is called a periodic point of period l. One can see that a fixed point is a
periodic solution with l = 1.

Definition 20 (Domain of attraction). We say x∗(j) is an attractor if there exists
a neighborhood U of x∗(j) such that for every open set V ⊃ x∗(j) there is a N ∈ N
such that f j(U) ⊂ V for all j ≥ N . Hence, we can restrict ourselves to the closed
invariant set x∗(j), and in this case we obtain

x∗(j) =
⋂
j∈N

Gj(U).

Thus, we can say that all the points in U are attracted by x∗(j) (under iteration
of G), and U is called basin of attraction of x∗(j). If U = Rn, then x∗(j) is called the
global attractor.

Several kinds of attractors exists, however, only the ones formed by the set of
periodic solutions will be considered in this work.

2.5.2 Simple Cell Mapping

Definition 21 (Cell state space). An N-dimensional cell space S (Hsu, 1987) is a
space whose elements are N-tuples of integers, and each element is called a cell vector
or simply a cell, and is denoted by z.

The simplest way to obtain a cell structure over a given Euclidean decision space is
to construct a cell structure consisting of rectangular parallelepipeds of uniform size.

Definition 22 (Cell functions). Let S be the cell decision space for a dynamical
system and let the discrete time evolution process of the system be such that each cell
in a region of interest S0 ⊂ S has a single image cell after one mapping step. Such
an evolution process is called Simple Cell Mapping (SCM)

z(n+ 1) = C(z(n), µ), z ∈ ZN , µ ∈ Rl, (2.68)

where C : ZN × Rl → ZN , and µ is a l-dimensional parameter.
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Definition 23 (Periodic group). A cell z∗ which satisfies z∗ = C(z∗) is said to be an
equilibrium cell of the system. Let Cm denote the cell mapping C applied m times with
C0 understood to be the identity mapping. A sequence of l distinct cells z∗(j), j ∈ l,
which satisfies

z∗(m+ 1) = Cm(z∗(1)),m ∈ l − 1, z∗(1) = C l(z∗(1)), (2.69)

is said to constitute a periodic group or P-Group of period l and each of its elements
z∗(j) a periodic cell of period l. One can see that an equilibrium cell is a periodic
group with l = 1.

Definition 24 (Domains of attraction). A cell z is said to be r steps away from a
periodic group if r is the minimum positive integer such that Cr(z) = z∗(j), where
z∗(j) is one of the cells of that periodic group.

The set of all cells, which are r steps or less removed from a periodic group is
called the r-step domain of attraction for that periodic group. The total domain of
attraction of a periodic group is its r-step domain of attraction with r →∞.

The unraveling algorithm developed by Hsu (1987) extracts the cyclic groups of
cells in the SCM that represent approximate solutions of the steady-state responses
of the system including periodic and chaotic motions.

To describe the global properties of the steady-state responses of non-linear dy-
namical systems the SCM uses the following sets:

• Group motion number (Gr): the group number uniquely identifies a periodic
motion; it is assigned to every periodic cell of that periodic motion and also to
every cell in the domain of attraction. The group numbers, which are positive
integers, can be assigned sequentially.

• Period (Pe): defines the period of each periodic motion.

• Number of steps to a P-group (St): used to indicate how many steps it takes
to map a particular cell into a periodic cell.

After the algorithm is executed, each cell is assigned a group number, step number
and periodicity number.

According to the previous discussion, the algorithm works as follows: until all
cells are processed, the value of the group motion indicates the state of the current
cell and it also points out the corresponding actions to the cell.

• A value of Gr(cell) = 0 means that the cell has not been processed. Hence, the
state of the cell changes to “under process” and then, we follow the dynamical
system to the next cell.

• A value of Gr(cell) = −1 means that the cell is under process, which means we
have found a periodic group, and we can compute the global properties of the
current periodic motion.
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• A value Gr(cell) > 0 means that the cell has already been processed. Hence,
we found a previous periodic motion along with its global properties which can
be used to complete the information of the cells under process.
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Chapter 3

Cell Mapping Techniques for
Multi-objective Optimization

In this chapter, we argue that cell mapping techniques are in particular advantageous
for the thorough investigation of low dimensional problems. Such problems occur, for
instance, in optimal control (Zufiria and Mart́ınez-Maŕın, 2003; Gomez et al., 2008;
Hernández et al., 2013; Xiong et al., 2014). Cell mapping techniques were first intro-
duced in Hsu (1980) for the global analysis of non-linear dynamical systems. They
transform classical point-to-point dynamics into a cell-to-cell mapping by discretizing
both phase space and the integration time. In particular the phase space discretiza-
tion bounds the method to a small number of variables that can be considered (say,
n < 10), but this global analysis offers in turn much more information than other
methods. In the context of multi-objective optimization this is in particular the ex-
tended set of options that can be offered to the DM after analyzing the model. There
are first of all the Pareto set and the set of approximate solutions as motivated above.
In particular if there exist several possibilities to obtain the same optimal or nearly
optimal performance, other methods have problems to detect them all since the no-
tion of dominance is defined in objective space (and thus, typically only one of these
solutions is detected). Further, the entire set of local optima can be identified that
also serve as potential backup solutions (Schütze et al., 2011) and that are interest-
ing for landscape analysis (Mersmann et al., 2011). It is important to note that the
relevant information about all these sets of interest is available after one single run
of the algorithm (together with an ex post analysis of the obtained data).

In this chapter, we will investigate adaptations of the cell mapping techniques to
the context of multi-objective optimization where we will concentrate on the compu-
tation of optimal and nearly optimal solutions of a given MOP.

3.1 Simple Cell Mapping

In the following, we will present an adaptation to the SCM in order to handle multi-
objective optimization problems.

49
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3.1.1 The algorithm for multi-objective optimization prob-
lems

First, we need an appropriate dynamical system to run SCM. For this, we propose to
utilize descent directions. For the bi-objective problems presented in this section, we
have used the Lara’s bi-objective descent direction 2.15.

Using such system

ẋ(t) = v(x(t)), (3.1)

can now be used since it defines a pressure toward the Pareto set/front of the MOP at
hand: v(x) = 0 for every (locally) optimal point, and for all other points improvements
can be found by integrating (3.1). Thus, the set of locally optimal Pareto points is
contained in the global attractor of (3.1).

It remains to discretize the time in (3.1), i.e., to define a ‘suitable’ step size t for
the related discrete dynamical system

xi+1 = xi + tν(xi). (3.2)

This is in general not an easy task as we have two conflicting aims. On the one
hand, we would like to choose a step size t that lowers all objective functions as much
as possible for a given descent direction ν. On the other hand, it is desired to make
this decision as cheap as possible in terms of computing time and number of function
evaluations. One option is to use an inexact step size control as the one proposed in
Fliege and Fux Svaiter (2000).

Here, we can take advantage of the particular setting of the multi-objective SCM.
Most importantly, we have the size hi = (ubi − lbi)/Ni for i = 1, . . . , n of the cells
and know that the initial point is the center of a cell. Using this, we already have a
value for sufficient decrease. If there exists a tνi ≥ hi

2
, i = 1, . . . , n, then we ensure

that we leave the current cell, which is required for the SCM in case the cell does not
contain a part of the Pareto set. Now, to decide if the step size t is accepted, we can
use a dominance test. We are left with the choice of the initial step size t0. In the
current context, it is promising to compute the distance to the nearest neighbor cell
given the descent direction ν from the current cell center. Thus, we suggest taking
(compare to Figure 3.1):

t = max

(
hi
νi

)
+ ε, ∀i|νi 6= 0. (3.3)

We used this approach in the present work, with good computational results.
Alternatively, one could use a more sophisticated method such as the one presented in
Zufiria and Guttalu (1993). The authors of this work propose an adaptive integration
scheme which either finds a neighboring cell or stays in the same cell.

In both cases, although a bigger value of t0 may lead to a bigger decrease in the
objective function, this value of t0 is enough to leave the current cell, and we have
several advantages. We would lose less information since we would be moving to a
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Figure 3.1: Illustration of the setting of the step size control problem for the SCM
method.

neighbor cell. Also, with this step size control we would be in the frontier between
the current cell and its neighbor, thus if the step size t0 is not accepted there is no
need to use backtracking. Given that we would not be able to leave the current cell
and also, since all cells are visited in the SCM method the advantages that bigger
step sizes would have by going to an optimal solution with less function evaluations
would be lost.

Inequality constraints are handled in the following (straightforward) way: if the
center point xi of cell i is violating any constraint, it will be discarded (i.e., mapped
to the sink cell), else, the point will be mapped as described above. The inclusion of
more sophisticated constraint handling techniques including the adequate treatment
of equality constraints is the subject of ongoing study.

Algorithm 5 shows the pseudo code of the cell mapping technique for the treatment
of MOPs that contains the above discussion. Figure 3.2 gives some insight into the
behavior of the SCM using the MOP CONV2 (see Table A.1) on a 10 × 10 grid. The
figure shows the result of the SCM after 1, 3, 10 and 50 iterations in cell space. First,
we look at the cell located in (1, 1), which has been taken as the starting cell. Next,
we can follow the mapping from this cell by following its arrow. These arrows are
formed as follows: We take the center point of the current cell, then we apply the
dynamical system (e.g., the descent direction method that we have chosen) on the
center point and finally, with the new solution found, we compute to which cell it
belongs. In our example, the path is formed by the cells (1, 1), (2, 1), (3, 2), (4, 3), and
(5, 4). Cell (5, 4) is an end cell in this case, since there is not an arrow from this cell
to another cell, which means we have a periodic group of 1. All the cells processed
belong to the same domain of attraction and, therefore, they should have the same
group number. Since this is the first group motion discovered, we assign to it the
group number 2 (the group number 1 is reserved for those periodic motions that go
to the sink cell). Once we have the global properties of those cells, we have to choose
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a new starting cell. Since the cell (2, 1) has already been processed, we skip it and
continue with the cell (3, 1). The mapping of this cell also finishes in the cell (5, 4).
Thus, this cell together with the new path should have the same group number as
before (group number 2).

Then, we choose a new starting cell and continue until we finish processing all the
cells. As we process the cells, we gather more information of the problem. For this
example we have 8 periodic motions with the same number of optimal solutions.

After one run of the SCM the information of the sets of interest can be extracted.

3.1.2 Computing the Pareto set

Since the Pareto set of a MOP is contained in the global attractor of the dynamical
system that is derived from a descent direction, all cells with periodic groups are at
first point interesting. That is, such cells can potentially contain a part of the Pareto
set. It is important to note that due to the properties of the dynamical system periodic
groups with size larger than 1 should not appear, however, due to the discretization
both in space and time exactly this happens (i.e., oscillations around Pareto optimal
solutions can be observed leading to such periodic groups). Hence, we also consider
those cells as candidates. The collection of those cells form the candidate set.

This collection can then be further investigated (e.g., via a more fine grain cell
mapping or via subdivision techniques), or an approximation of the Pareto set can be
directly determined via the center points of the boxes (e.g., via a non-dominance test).
Technically speaking, we introduce a set called cPs (see Algorithm 5). Candidate
optimal cells are thus those cells with St = 0 and Gr 6= 1. St = 0 means they are
part of a periodic group and Gr 6= 1 ensures we do not add cells that map to the sink
cell.

3.1.3 Error estimates

Since SCM evaluates the entire discretized search space in one run of the algorithm,
we are able to provide estimations on the maximal error that can occur in the ap-
proximation of the set of interest. Since we are particularly interested in errors of
the Pareto front (i.e., errors in objective space) the following estimates are based on
Lipschitz continuity.

Assume in the following that the objective function F is Lipschitz continuous on
each cell, i.e.,

‖F (x)− F (y)‖ ≤ LB(c,r)‖x− y‖, ∀x, y ∈ B(c, r), (3.4)

where

B(c, r) := {y ∈ Rn : |ci − yi| ≤ ri, i = 1, . . . , n} (3.5)

is a cell (or generalized box) with center c and radius r, and LB(c,r) is the Lipschitz
constant of F within B(c, r). Since SCM evaluates cells at the center c and since the
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Figure 3.2: Iteration of the SCM. The white cells represent the optimal solutions
found so far. The arrows show the path from the starting cell to an optimal solution
of the MOP. The darker cells represent unexplored regions.
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maximal distance on the right hand side of (3.4) is given for vertices of the cell, e.g.,
y = c+ r, we can estimate (3.4) at least for unconstrained problems by

‖F (c)− F (y)‖ ≤ LB(c,r)‖r‖, ∀y ∈ B(c, r). (3.6)

The above formula might already be used to measure errors in image space. In
the context of multi-objective optimization, however, a potential trouble is that some
objectives may be in completely different ranges (e.g., the model SSW that will be
considered in the next section). We suggest hence to consider the error bounds for
each objective, that is

‖Fi(c)− Fi(y)‖ ≤ L
(i)
B(c,r)‖r‖, ∀y ∈ B(c, r), i = 1, . . . , k, (3.7)

where L
(i)
B(c,r) is the Lipschitz constant for objective fi. If the boxes are small enough,

one may approximate this value by the absolute value of the gradient at the center
point leading to the estimate

E(B(c, r), fi) := |∇fi(c)|‖r‖, ∀y ∈ B(c, r), i = 1, . . . , k, (3.8)

which we use in this study. As errors for the entire approximation we thus define

Ei := max
E(c,r)∈Q

E(B(c, r), fi), i = 1, . . . , k. (3.9)

Complexity of SCM

Note that each cell is visited only twice during the execution of the algorithm. For
each cell the following operations are computed: find the center point, compute the
descent direction and compute the next cell. All of these operation take constant time
with respect the number of cells Nc. Once a cell that was visited before, the method
does a backtracking to assign the group number, step number, and period number.
Thus, the complexity is given by O(Nc). Further, the number of cells depends on the
number of variables n of the problem

Nc =
n∏
i=1

Ni. (3.10)

Thus, the complexity with respect to the number of variables n is O(Nn
max), where

Nmax = max(Ni) for i = 1, . . . , n.

3.1.4 Numerical results

First we consider the capability of the SCM to compute approximations of the global
Pareto set. Figure 3.3 shows some results obtained by SCM on four MOPs (see
Appendix A for the description of the problems). CONV2 is a convex bi-objective
problem. The Pareto set is a curve connecting the points (−1,−1)T and (1, 1)T . SSW



3.2. GENERALIZED CELL MAPPING 55

is a bi-objective problem whose Pareto set falls into four connected components. Due
to symmetries of the model two of these components (the two outer curves on the
boundary of the domain) map to the same region in the Pareto front. Finally, CONV3
is a convex tri-objective problem. We have used a 1,000 × 1,000 grid to perform the
cell mapping for the problems with n = 2 and a 100 × 100 × 100 grid for n = 3.
In all cases SCM is able to obtain a fine-grain approximation of both Pareto set and
front.

Table 3.1 shows the error estimate discussed in the previous section on MOPs
considered with different grid sizes together with their IGD values. The match of
both values (for each objective value) are (much) better than the Ei values since
these describe the worst case scenario.

3.2 Generalized Cell Mapping

While the SCM offers an effective approach to investigate the global properties of
a dynamical system for problems with complicated characteristics, we need a more
sophisticated algorithm. This is due to the fact that SCM allows only one mapping
for each cell, however it could be the case that a cell would map to different cells
depending on the point considered. One way is to incorporate more information on
dynamics of the system into the cell mapping – which is done in the GCM method.
In GCM, a cell z is allowed to have several image cells, being the successors of z.
Each of the image cells is assigned a fraction of the total transition probability, which
is called the transition probability with respect to z.

The transition probabilities can be grouped into a transition probability matrix
P of order Nc ×Nc, where Nc is the total number of cells. Then the evolution of the
system is completely described by

p(n+ 1) = P · p(n), (3.11)

where p is a probability vector of dimensionNc that represents the probability function
of the state. This generalized cell mapping formulation leads to absorbing Markov
chains (Kemeny and Snell, 1976).

In the following, we introduce some concepts that are useful to our work.

Absorbing Markov chain A Markov chain is absorbing if it has at least one
absorbing state, and it is possible to go to an absorbing state from every state (not
necessarily in one step).

Classification of cells Two types of cells can be distinguished:

A periodic cell i is a cell that is visited infinitely often once it has been visited.
In our work, we focus on periodic cells of period 1, i.e., Pii = 1. This kind of cells
correspond to the local optima candidates.
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A transient cell is by definition a cell that is not periodic. For absorbing Markov
chain, the system will leave the transient cells with probability one and will settle on
an absorbing (periodic) cell.

Canonical form (cf) Consider an arbitrary absorbing Markov chain. Renumber
the states so that the transient states come first. If there are r absorbing states and
ts transient states (Nc = r + ts), the transition matrix has the following canonical
form:

P =

(
I 0
R Q

)
,

where Q is a ts by ts matrix, R is a non-zero t by r matrix, 0 is an r by t zero matrix,
and I is the r by r identity matrix. Matrix Q gathers the probabilities of transitioning
from some transient state to another whereas matrix R describes the probability of
transitioning from some transient state to some absorbing state.

Fundamental matrix (fm) For an absorbing Markov chain the matrix I −Q has
an inverse N = (I−Q)−1. The (i, j)-entry nij of the matrix N is the expected number
of times the chain is in state sj, given that it starts in state si. The initial state is
counted if i = j. The matrix

fm = I +
∞∑
k=1

Qk (3.12)

is called the fundamental matrix (fm) of the Markov chain which satisfies the following
equation

fm = N. (3.13)

Absorbing probability This is defined as the probability of being absorbed in the
absorbing state j when starting from transient state i, which is the (i, j)-entry of the
matrix B = NR. In terms of cell mapping, the set of all Bi,j 6= 0 for i ∈ [1, . . . , ts]
is called the basin of attraction of state j, and an absorbing cell within that basin is
called attractor.

3.2.1 Dynamical system

In the following, we present the dynamical systems used for both single and multi
objective optimization.

Single-objective optimization In this case, a given cell si ∈ S will map to all
neighbors Ne(si) that have a lower function evaluation. Then, the probability to
map to each neighbor is proportional to the improvement in terms of function the
evaluation. If there is no neighbor with lower function evaluation, then it belongs to
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a periodic group (candidate to be a local optimum). In the following, we present the
dynamical system used.

bci = {sj|f(sj) < f(si) for all sj ∈ Ne(si)} (3.14)

pgi = {sj|f(sj) = f(si) for all sj ∈ Ne(si)} (3.15)

pij =


(f(si)− f(sj)) ·

(
|bci|∑
k=1

f(si)− f(sk)

)−1

, if sj ∈ bci

|pgi|−1 , if bci = ∅ and sj ∈ pgi
0 , otherwise

(3.16)

Multi-objective optimization Here, we extend the dynamical system used in the
single-optimization case. A cell si will map to those neighbors that dominate si.

bci = {sj|F (sj) � F (si) for all sj ∈ Ne(si)} (3.17)

pgi = {sj|F (sj) = F (si) for all sj ∈ Ne(si)} (3.18)

pij =


‖F (si)− F (sj)‖ ·

(
|bci|∑
k=1

‖F (si)− F (sk)‖

)−1

, if sj ∈ bci

|pgi|−1 , if bci = ∅ and sj ∈ pgi
0 , otherwise

(3.19)

3.2.2 The algorithm

Algorithm 6 shows the key elements to compute the characteristics needed to deter-
mine the features described within this section. For each cell z, we compare f(z) to
the objective values of its neighbors Ne(z). Next, we assign a probability, proportional
to their function values, to pass into those cells. If there is no better neighbor cell,
equal transition probabilities are assigned to the neighbor cells with equal function
values. Worse neighbor cells always get transition probability 0.

Complexity of GCM

In the case of GCM, all cells are visited once to compute the probability matrix.
For each cell the following operations are computed: find the center point, compute
the descent direction (which can be done comparing with the 2n or 3n − 1 neighbors
based on the type of neighborhood used) and compute the transition probabilities.
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Afterwards, the computation of the canonical matrix is linear with respect to Nc and
the computation of the fundamental matrix takes cubic time since it implies solving a
linear system of equations. Thus, the complexity is given by O(N3

c ). Note that if only
the canonical matrix is needed, then the complexity is O(Nc). Further, the number
of cells depends on the number of variables n of the problem Nc =

∏n
i=1 N(i). Thus,

the complexity with respect to the number of variables n is O(Nn
max).

3.2.3 Numerical results

Similar to the numerical results of SCM, we use GCM to compute approximations of
the global Pareto set. Figure 3.4 shows the results obtained by GCM on four MOPs
(see Appendix A for the description of the problems). We have used a 1,000 × 1,000
grid to perform the cell mapping for the problems with n = 2 and a 100 × 100 × 100
grid for n = 3. In all cases GCM is able to obtain an approximation of both Pareto
set and front.

3.3 Hybrid Cell Mapping

Although the SCM method can find the global and fine structure of optimal solutions,
its computational time increases dramatically as the dimension of the decision space
goes up (Naranjani et al., 2013b). The computational time can be reduced if we apply
the SCM method only in the vicinity of the solution instead of sweeping the entire
decision space. This approach is particularly beneficial to MOPs of high dimensions,
and is also the key feature for the set oriented numerics (Dellnitz and Hohmann,
1997; Dellnitz and Junge, 1998, 2002). Subdivisions can also be applied to improve
the accuracy and resolution of the solution.

Since the Pareto set forms under some mild regularity conditions locally a (k−1)-
manifold, specialized continuation methods which perform a search along the Pareto
set are very efficient if one (or more) solution is at hand. One of the first methods of
that kind is proposed in Hillermeier (2001) which has been coupled with set oriented
methods leading to the recovering algorithm in Dellnitz et al. (2005b); Schütze et al.
(2005). This method is by construction of local nature and needs multiple starting
points in case the Pareto set/front is disconnected.

The main idea is to use EAs to find a random collection of points close to the
true Pareto set. The SCM method is then applied to the covering region of these
random points. The benefit of using EAs is that it reduces the computational burden
of searching the entire decision space, because the Pareto set occupies only a small
fraction of the decision space. Furthermore, we use a small population size in EAs.
Hence, the results of EAs do not cover the whole Pareto set. The SCM method is
modified such that it checks the neighbor cells for possible optimal solutions. As
a result, the SCM method can find not only a more accurate Pareto set, but also
recover the part missed by EAs. Finally, subdivisions of the cells representing the
approximate solution of MOPs are applied to enhance the accuracy of the Pareto set
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with fine structures. The EA+SCM hybrid method is compared to the EA and SCM
methods when they are applied separately on a selection of test problems. In order
to be fair in the comparison, the total number of function evaluations is kept to be
nearly the same for all the methods.

3.3.1 The algorithm

As mentioned earlier, the hybrid method takes advantages of the GA and SCM. The
hybrid method starts with the GA which returns a rough Pareto solution. The set
of cells that contain all the solutions obtained with the GA is identified. The SCM
method starts with this covering set of cells.

Algorithm 7 shows the steps of the hybrid method. The problem inputs include
the number N of initial cell partitions, cell subdivision number sub, iterations of
subdivisions iter, and objective functions F . The output is the set Bl of cells, an
approximation of the Pareto set P .

NSGA-II has been used in this study. Because there are extensive studies and
analyses available on this method (Deb et al., 2002; Deb, 2001c), it is not discussed
further in this paper. The cell mapping method is implemented in the algorithm
named Explore. It takes a set of cells, and explores these cells and their neighbors to
look for the possible solution. In the process, the parts of the Pareto set missed by
the GA are recovered.

The details of the explore algorithm are presented in Algorithm 8. The set B is
a dynamically increasing array which contains all the cells we are interested. The
objective function values for each cell cs in B are compared to all its orthogonal
neighbors N (cs) (to be more precise, the center points center(si) of cells si and
sj are compared). If one or more dominant cells is found, the one with the steepest
decent is chosen to be the destination cell and is added to B. If no dominant neighbor
is found, the current cell cs has non-empty intersection with the solution set and is
added to the set Bl of candidate boxes. All its non-dominant neighbors are added to B
for further investigation later. The set B grows initially, and stops growing when most
cells in the Pareto set are discovered. When the solution set is found, the dominance
of all the cells in the set is checked. The recovery procedure of the exploration is
similar to the recovery process used in the continuation method for multi-objective
optimization in Schütze et al. (2003), which requires the knowledge of at least one
exact solution point on the Pareto set. Furthermore, we should emphasize that the
dominance relationship among the neighboring cells is applied to construct the simple
cell mappings instead of using the Jacobian gradient matrix.

3.3.2 Convergence of the method

Here, we investigate the algorithm EA+SCM theoretically. As the algorithm is defined
on the discretized search space, error bounds (e.g., via Lipschitz estimations) for the
analysis are hard to obtain in practice and may lead to unrealistic results as they may
be too pessimistic. Instead, we follow the suggestion made in Dellnitz and Hohmann
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(1997); Dellnitz et al. (2005b) and investigate the underlying abstract algorithm where
we consider all points in all cells of the collections.

Note that GA+SCM performs a recovering and a subdivision step applied in a
loop. For the abstract algorithm, however, only one iteration has to be performed as
the following convergence analysis shows as both recovering and subdivision of the
abstract algorithm are without error. That is, the initial recover step is performed
starting from an initial cell collection B until no more non-dominated neighboring
cells can be added to the current collection. In a second step, subdivision is started
on the resulting cell collection B0. Algorithm 9 shows the pseudo code of the abstract
algorithm.

Hereby, we assume that the domain is contained inside

Q ⊂ Q̂ = [a1, b1]× . . . [an, bn] ⊂ Rn, (3.20)

where the bounds ai ≤ bi, i = 1, . . . , n, are chosen accordingly. To realize the subdi-
vision in lines 13-15 we consider multi-level partitions of Q̂ as described in Dellnitz
and Hohmann (1997):

A n-dimensional cell B (or box) can be expressed as

B = B(c, r) = {x ∈ R : ci − ri ≤ xi ≤ ci + ri,

i = 1, . . . , n},
(3.21)

where c ∈ Rn denotes the center and r ∈ Rn the box size, respectively. Every cell B
can be subdivided with respect to the j − th coordinate. This division leads to two
cells B−(c−, r̂) and

r̂i =

{
ri for i 6= j
ri/2 for i = j

,

ĉi =

{
ci for i 6= j
ci/2 for i = j

.

Let P (Q̂, 0) := Q̂, that is, P (Q̂, 0) = B(c0, r0), where

c0
i =

ai + bi
2

, r0
i =

bi − ai
2

, i = 1, . . . , n.

Denote by P (Q̂, d), d ∈ N, the set of cells obtained after d ∈ N subdivision
steps (d is also called the insertion depth) starting with B(c0, r0), where in each step
i = 1, . . . , d the cells are subdivided with respect to the ji− th coordinate, where ji is
varied cyclically. That is, ji = ((i−1)modn)+1. Note that for every point y ∈ Q and
every subdivision step d there exists exactly one cell B = b(y, d) ∈ P (Q, d) with center
c and radius r such that ci−ri ≤ yi < ci+ri, ∀i = 1, . . . n. Thus, every set of solutions
SB leads to a (unique) set of cell collections Bd(SB) := {b(y, d) ∈ P (Q̂, d) : y ∈ SB}.

Further, ∆(T ) ⊂ P (Q̂, d) denotes the set of all neighboring cells of a given cell
T ∈ P (Q̂, d). The dominance relation is considered cell-wise as follows: a cell bj ∈ Bl
is dominated by a vector bi ∈ Bl (in short bi ≺ bj) if ∀y ∈ bj there exists a x ∈ bi such
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that x ≺ y. Else bj is non-dominated by bi (bi ⊀ bj). Finally, points x ∈ Q̂ ⊂ Q are
discarded from the algorithm as they are not feasible.

Convergence toward the Pareto set can be guaranteed under certain assumptions
on the given MOP as the following result shows.

Theorem 15. Let an MOP of the form (2.1) be given and assume that there exists
no weak Pareto point in Q\P. Further, assume that P is connected and compact and
that the initial cell collection B contains a part of the Pareto set, i.e.,

B ∩ P 6= ∅. (3.22)

Then, an application of Algorithm 9 leads to a sequence of cell collections Bl such
that

dH(Bl,P)→ 0 for l→∞. (3.23)

Proof. Let d be the insertion depth of B. First, we show that P ⊂ B0. For this,
let ρ ∈ P . By assumption (3.22) there exist a point x ∈ B ∩ P and by connectivity
of P there exists a path from x to ρ, i.e., a curve c : [0, 1] → P with c(0) = x and
c(1) = ρ. By construction of the recover algorithm (lines 3 to 11) every cell B(c(t), d),
t ∈ [0, 1], will be added to the collection B0. Thus, in particular ρ will be added to
B0 by which the claim follows. Further, the recover algorithm stops with finitely
many cells as P is connected. The convergence toward P is then guaranteed by the
following subdivision algorithm: by construction of the algorithm it follows directly
that every cell b(x, l) for every point x ∈ P and every step l ∈ N will be kept in the
cell collection Bl. Finally, we have to show that for every x /∈ P there exists a depth
l0 ∈ N such that the cell b(x, l0) is not contained in Bl0 . Let x ∈ Q̂ ⊂ P . Since x
is not weakly Pareto optimal there exists a point ρ ∈ P such that F (ρ) <p F (x).
Further, by continuity of F there exists a neighborhood ∆(ρ) of ρ with

F (y) <p F (x) ∀y ∈ ∆(ρ). (3.24)

Finally there exists a l0 ∈ N with b(ρ, l0) ⊂ ∆(ρ). Thus, b(x, l0) will be discarded
from the cell collection (if contained before), and the claim follows.

We stress that the above proof is done for connected Pareto sets, but that these
sets do not have to be connected in general. The result, however, can easily be
extended to all connected components of P that have a non-zero intersection with
B. Thus, the entire Pareto set can be retrieved in case B contains elements from all
connected components of P . As the EAs tend to quickly identify promising regions
and as we start with relatively large initial cells (respectively low insertion depths d)
the chance is quite high that the EA has detected all connected components of the
given MOP, and that the set oriented methods in EA+SCM can reliably compute
suitable finite size approximations of the entire set of interest.
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3.3.3 Numerical results

Here, we apply the hybrid cell mapping to compute approximations of the global
Pareto set. Figure 3.5 shows the results obtained by GCM on four MOPs (see Ap-
pendix A for the description of the problems). In all cases, a population of size 50
and 50 generations were used. The results show that HCM is able to obtain an ap-
proximation of both Pareto set and front comparable to the one of GCM although
using less function evaluations.



64 CHAPTER 3. CMT FOR MOO

Algorithm 5 Simple cell mapping for MOPs.

Require: MOP F , dynamical system DS, upper bound ub, lower bound lb, divisions
per dimension N , cell size h = (ubi − lbi)/Ni for i = 1, . . . , n, Total number of
cells Nc = N1 ×N2 × . . . Ni for i = 1, . . . , n

Ensure: Set of cells z, image of cells C, group number Gr, period number Pe, step
number St, candidate Pareto set cPs

1: current group← 1
2: cPs = {}
3: Gr(i)← 0,∀i ∈ Nc

4: for all pcell ∈ Nc do
5: cell← pcell
6: i← 0
7: while newcell = true do
8: xi ← center point of cell
9: if Gr(cell) = 0 then

10: ν ← compute as in Equation (3.1)
11: t← compute as in Equation (3.3)
12: pi+1 ← xi + νt
13: ncell← cell where pi+1 is located
14: C(cell)← ncell
15: cell← ncell
16: i← i+ 1
17: end if
18: if Gr(cell) > 0 then
19: Gr(Cj(pcell))← Gr(cell), j ← 0, · · · , i
20: Pe(Cj(pcell))← Pe(cell), j ← 0, · · · , i
21: St(Cj(pcell))← St(cell) + i− j, j ← 0, · · · , i
22: cell← C(cell)
23: newcell← false
24: end if
25: if Gr(cell) = −1 then
26: current group← current group+ 1
27: Gr(Ck(pcell))← current group, k ← 0, · · · , i
28: j ← ith value when period appears
29: Pe(Ck(pcell))← i− j, k ← 0, · · · , i
30: St(Ck(pcell))← j − k, k ← 0, · · · , j − 1
31: St(Ck(pcell))← 0, k ← j, · · · , i
32: cPs← cPs ∪ cellk, k ← j, · · · , i
33: cell← C(cell)
34: newcell← false
35: end if
36: end while
37: end for
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Figure 3.3: Pareto sets (left) and fronts (right) on the problems CONV2, RUDOLPH,
SSW and CONV3.
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Algorithm 6 Generalized Cell Mapping for Optimization

Require: f : Objective function, s: Set of cells
Ensure: cf , fm

Compute f(si) for all si ∈ Ne(si)
Compute the set of better cells bc Equation 3.14 or 3.17
Compute the set of equal cells pg Equation 3.15 or 3.18
Compute the probability p Equation 3.16 or 3.19

Compute canonical form of p, cf =

[
I 0
R Q

]
Compute fundamental matrix of cf , fm = N = (I −Q)−1

Algorithm 7 The programming logic of the EA+SCM hybrid method

Require: EA configuration; Coarse cell space partition N ; Cell subdivision sub;
Number of iteration iter; MOP definition F

Ensure: Final solution set Bl
1: B0 ← Run EA to find rough solution
2: for l = 1, . . . , iter do
3: B̃l ← Explore(N,Bl−1, F )
4: N ← sub×N
5: Bl ← Mapping B̃l to refined grid
6: end for
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Figure 3.4: Pareto sets (left) and fronts (right) obtained on the problems CONV2,
RUDOLPH, SSW and CONV3.
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Algorithm 8 Explore algorithm for searching the Pareto optimal solution with re-
covery technique

Require: Intermediate solution set of cells Bl; MOP definition F ; Cell space partition
N ; Orthogonal neighbors function N ; cell center function center

Ensure: Non-dominant solutions at current partition level Bl
1: S ← Bl, Bl ← ∅, i← 0
2: while i < |S| do
3: cs← Si, dest cell← cs, dist← 0
4: for all s ∈ N (cs) do
5: if center(s) ≺ center(cs) & ‖F (center(s)) − F (center(cs))‖2 > dist

then
6: dest cell← s
7: dist← ‖F (center(s))− F (center(cs))‖2

8: end if
9: end for

10: if dest cell /∈ S then
11: S ← S ∪ dest cell
12: end if
13: if dest cell = cs then
14: if dest cell /∈ Bl then
15: Bl ← Bl ∪ dest cell
16: end if
17: for all s ∈ N (cs) do
18: if center(cs) ⊀ center(s) & @b ∈ Bl : b ≺ s then
19: S ← S ∪ s
20: end if
21: end for
22: end if
23: i← i+ 1
24: end while
25: Bl ← dominance check(Bl)
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Algorithm 9 Abstract Algorithm of GA-SCM

Require: Cell collection B ⊂ P (Q̂, d0)
Ensure: Sequence Bl of cell collections

1: create a queue Q using B
2: set V := B . (Start Recover)
3: while Q is not empty do
4: T ← Q.dequeue(), where T is the current cell
5: for all C ∈ ∆(T ) s.t. 6 ∃b ∈ V : b � C do
6: if C /∈ V then
7: add C to V
8: enqueue C onto Q
9: end if

10: end for
11: end while
12: B0 := {v ∈ V : 6 ∃ṽ ∈ V, ṽ � v} ⊂ P (Q̂, d0) . (Start Subdivision)
13: for l = 1, 2, . . . do
14: Subdivision: construct B̂l ⊂ P (Q̂, d0 + l) from Bl−1 such that⋃

B∈B̂l

B =
⋃

B∈Bl−1

B

15: Selection: define the new collection Bl ⊂ P (Q̂, d0 + l) by

Bl = {b ∈ B̂l :6 ∃b̃ ∈ B̂l : b̃ � b}

16: end for
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Figure 3.5: Pareto sets (left) and fronts (right) obtained CONV2, RUDOLPH, SSW
and CONV3.
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3.4 Comparison of the Cell Mapping Methods

In the following, we compare the results obtained by SCM, GCM and HCM in terms
of Delta2 in both decision and objective space. Table 3.2 shows the results for deci-
sion space; Table 3.3 shows the results for decision space. Further, we compare the
number of function evaluations used by the methods in Table 3.4. From the results,
it is possible to observe that GCM and HCM have similar performance on the test
problems. This is expected since they use the same dynamical system. Also, in 3 out
of the 4 problems SCM obtains a better performance.

Table 3.2: ∆2 values in decision space.

Method SCM GCM HCM
CONV2 k = 2 0.013881 0.023877 0.023877(7.1192e-18)
Rudolph 0.02434 0.016094 0.0283
SSW 0.61219 0.81151 1.0899(1.4596)
CONV3 0.051548 0.061572 0.061572(2.1357e-17)

Table 3.3: ∆2 values in objective space.

Method SCM GCM HCM
CONV2 k = 2 0.013717 0.038304 0.038304
Rudolph 0.022249 0.016115 0.00054543(2.2247e-19)
SSW 0.19784 0.19629 0.25255
CONV3 0.33386 0.47757 0.47757(5.6953e-17)

Table 3.4: Function evaluations used by the methods for each problem.

Method SCM GCM HCM
CONV2 1e+06 1e+06 1.9063e+04(2.1255e+03)
Rudolph 1e+06 1e+06 8.2289e+03(620.0414)
SSW 1.25e+05 1.25e+05 4.6214e+04(7.8306e+03)
CONV3 1.25e+05 1.25e+05 6.0591e+04(5.1436e+03)

3.5 Selected Applications

In the following, we present several applications where the cell mapping techniques are
well-suited to tackle them. These applications include from optimal control problems
and landscape analysis.
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Figure 3.6: Demonstration of the cell evolution on a 20 × 20 grid of the FOPTD
system. Black crosses are the transient cells while red dots are the invariant set cells
represent coarse cell solutions for further refinement. Blue arrows represent a path
from a transient cell evolutes to steady state.

3.5.1 First order system plus time delay

Here, we use the problem stated in Appendix B.1.3. For the SCM method, we select
the number of initial partitions of the decision space Q as N = [50, 50]. Subdivisions
for finer structure of Pareto set are taken as 3 on each dimension. The total CPU
time for computing all the solutions is 123.94 seconds on a laptop PC with an Intel
core 2 duo and 2 GB of RAM. Figure 3.6 and 3.7 demonstrate the solving process of
SCM on coarse and refined cellular space with a 20 × 20 grid. Figure 3.8 and 3.10
show the coarse Pareto set and front. 43 coarse cells are found as the covering set
for further refinement. We take the subdivision as 3 × 3 on each searched cell at
first stage. 130 cells are found in refined cellular space and the Pareto set and front
are shown in Figure 3.9 and 3.11. The time domain response of a selected control
is plotted in Figure 3.12 with the PI design parameters as [kp, ki] = [2.4133, 3.5500]
and corresponding objectives of this control design tp = 1.1500s, Mp = 1.0987%,
eIAE = 0.2986, λ = −1.9163. Good tracking performance can be reached.

3.5.2 Second order linear oscillator

Now, we use the problem stated in Appendix B.1.5. Initially, we select the number of
divisions in the three control gain intervals N = [20, 20, 30]. The integrated absolute
tracking error eIAE is calculated over time with Tss = 20 seconds. After the first run
of the SCM program, we refine the Pareto set with 3× 3× 3 subdivisions. The total
CPU time for this example is 3893.4 seconds.

Figure 3.13 and 3.14 show the Pareto set of coarse and refined cellular space.
376 and 886 cells are found at each stage respectively. Figure 3.15 and 3.16 are the
Pareto front of coarse and refined cellular space. The fine structure of Pareto front



3.5. SELECTED APPLICATIONS 73

1.8 2 2.2 2.4 2.6 2.8 3 3.2

3

3.5

4

4.5

kp

k
i

Figure 3.7: Demonstration of the cell evolution on a 60 × 60 grid of the FOPTD
system at the refined cellular space. Note this process is based upon the acquired
coarse cell set shown in Figure 3.6. The 3 × 3 subdivsion is taken on each coarse
cell and SCM is constructed on smaller cells to acquire finer solutions. Black crosses
are the transient cells while red dots are the invariant set cells represent coarse cell
solutions for further refinement. Blue arrows represent a path from a a transient cell
evolutes to steady state.
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Figure 3.8: Coarse Pareto set of the FOPTD system with cell space partition 50×50.
43 cells are found as solution cells.
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Figure 3.9: Refined Pareto set of the FOPTD system with initial cell space partition
50× 50 and 3× 3 as subdivision. 130 cells are found as solution cells.
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Figure 3.10: Coarse Pareto front of FOPTD system. Color code indicates the level
of the other objective not shown in each subplot. Red is the highest level while blue
is the lowest.
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Figure 3.11: Refined Pareto front of FOPTD system. Color code indicates the level
of the other objective not shown in each subplot. Red is the highest level while blue
is the lowest.
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Figure 3.12: Time domain control effect of a selected control design from Pareto set.
The selected PI design parameters are [2.4133, 3.5500]. Corresponding objectives of
this control design are tp = 1.1500s, Mp = 1.0987%, eIAE = 0.2986, λ = −1.9163.
Good tracking performance can be reached.
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Figure 3.13: Coarse Pareto set of the second order LTI system. 376 cells are found
as covering set. Color code indicates the other parameter level not shown in each
subplot. Red indicates the highest level while blue the lowest.

can be clearly observed from 3.16 with the conflicting nature among design objectives.
Temporal response of a selected control design is shown in Figure 3.17 with the PID
design parameter as [kp, ki, kd] = [0.6750, 0.2708, 3.8500] and corresponding objectives
tp = 0.7400s, Mp = 3.1689%, eIAE = 0.2917, λ = −2.3015.
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Figure 3.14: Refined Pareto set of the second order LTI system. 886 cells are found
as covering set. Color code indicates the other parameter level not shown in each
subplot. Red indicates the highest level while blue the lowest.
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Figure 3.15: Coarse Pareto front of the second order LTI system.
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Figure 3.16: Refined Pareto front of the second order LTI system. Fine structure
can be observed from the refined solutions, which indicates the intrinsic conflicting
nature among the objectives.
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Figure 3.17: A selected control design from Pareto set as [0.6750, 0.2708, 3.8500] with
objectives as tp = 0.7400s, Mp = 3.1689%, eIAE = 0.2917, λ = −2.3015.
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Figure 3.18: The Pareto set obtained on the rough grid by the SCM method for the
Duffing system with delayed control.

3.5.3 Non-linear Duffing system

Now, we use the problem stated in Appendix B.1.6. Initially, we select the number
of divisions in the three control gain intervals as N = [30, 15, 15]. The cells of the
rough Pareto set is sub-divided into 27 cells (3 × 3 × 3). The first run of the SCM
method on the rough grid finds 460 cells representing the Pareto set shown in Figure
3.18. The corresponding Pareto front is shown in Figure 3.19. The CPU time of the
first run is 1, 382.4 seconds. The second run on the sub-divided cells finds the Pareto
set with 2386 cells shown in Figure 3.20. The refined Pareto front is shown in Figure
3.21. The CPU time of the second run is 5, 695.5 seconds.

We should point out that the Pareto fronts obtained by the SCM method have
fine global structures. Such fine structures of Pareto fronts are not often found in the
literature before. Finally, we present an example of step response under the delayed
control with the gain [kp, ki, kd] = [82.4444, 21.7778, 14.2222]. The result is shown
in Figure 3.22. The step response shows excellent time-domain performance with
[tp,Mp, eIAE, λ] = [0.3300, 4.8829%, 0.2155,−0.2781].

3.5.4 An inverted pendulum

Now, we use the problem stated in Appendix B.2.1. The SCM hybrid algorithm is
carried out in the gain space with lower and upper bounds set as [−1, 0,−1, 0]T and
[0, 5, 0, 1]T . Hence,

Q = {k ∈ R4 | [−1, 0,−1, 0] ≤p k ≤p [0, 5, 0, 1]}. (3.25)
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Figure 3.19: The Pareto front of the Duffing system corresponding to the Pareto set
in Figure 3.18.
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Figure 3.20: The refined Pareto set shown in Figure 3.18 of the Duffing system with
delayed control by the SCM method.
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Figure 3.21: The refined Pareto front of the Duffing system corresponding to the
Pareto set in Figure 3.20.
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Figure 3.22: An example of the step response of the Duffing system under the delayed
PID control with [kp, ki, kd] = [82.4444, 21.7778, 14.2222].
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Figure 3.23: The 3D projection of Pareto set for the full state feedback control gains
for the inverted pendulum. Color code indicates the level of kd,α. Bright color indi-
cates the highest level while dark color indicates the lowest level.

The cell space partition for the coarse computation is by 10 × 10 × 8 × 8 and the
refinement of the cell is by 3 × 3 × 3 × 3. The CPU time of the computation is 341
seconds in the first run, and 343 seconds in the refinement. The number of cells in
the Pareto set in the first run is 41, and the number of cells in the refinement is 134.

Figures 3.23 and 3.24 show the Pareto set and Pareto front of this example. A fine
structure of the Pareto front can be observed from Figure 3.24, which presents various
compromises of the objectives. Figure 3.25 shows the time-domain responses of the
system under four control gains of extremal cases (solid lines) when each objective
function takes its minimum on the Pareto front as well as the responses with all other
gains in the Pareto set. All the simulations start from an initial condition x(0) =
[0.3, 0, 0, 0]T . As an example, the control gains corresponding to the smallest λmax

among all the Pareto optimal solutions are k = [−0.8176, 3.0833,−0.3125, 0.4375].
The values of this control are [tp,α,max |α|, ts, λmax] = [0.1079, 5.5675, 1.1112,−5.6207].
The four responses shown in the figure with the extremal gains in the Pareto set ap-
proximately define the range such that the time-domain responses of the system under
all Pareto optimal controls are within or slightly outside the range.

3.5.5 A flexible rotary arm

Now, we consider the full state feedback tracking control of a flexible rotary arm (see
Appendix B.2.1). The decision space is initially divided into 10× 10× 8× 8× 5 cells.
Each cell is sub-divided into 3×3×3×3×3 smaller cells in the refinement step. The
CPU time of the computation is 1, 256 seconds for the first run, and 38768 seconds
for the refinement. The number of cells in the Pareto set in the first run is 704, and
the number of cells in the refinement is 2, 140.

The Pareto set and Pareto front of the system are shown in Applications 3.26 and
3.27. Applications 3.28 and 3.29 show the time-domain simulations of the system
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Figure 3.24: The Pareto fronts of the full state feedback control of the inverted
pendulum. Color code of the upper figure indicates the level of λmax. For the lower
figure, the color code indicates the level of ts. In both sub-figures, red indicates the
highest level while blue indicates the lowest level. Conflicting nature of the objectives
can be clearly seen.
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Figure 3.25: Numerical simulations of time domain responses of θ and α of the inverted
pendulum and the control signal subject to an initial condition [0.3, 0, 0, 0]T . Solid
black lines: With gains of four extremal cases from the Pareto set when each objective
function is minimal. Dashed color lines: With all other gains in the Pareto set.
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Figure 3.26: The Pareto set of full state feedback control gains of the flexible rotary
arm. The 5D Pareto set is projected to a 3D sub-space (kp,θ, kp,α, kd,θ) with the color
code indicating the level of kd,α. Red in the color code indicates the highest level
while dark blue indicates the lowest level.

under six control gains of extremal cases (solid lines) when each objective function
takes its minimum on the Pareto front as well as the responses with every 15 of all
other gains in the Pareto set. When the settling time of θ is minimal, the control
gains are ke = [7.5000,−1.4583, 0.4062, 0.1562, 0.1833] and the corresponding objec-
tive function values are

[ts,θ,Mp,θ, eIAE,max |α|, ts,α, λmax] = [0.3s, 1.484%, 0.0546, 4.5569◦, 0.738s,−0.0245].

As is the case in the previous example, the six responses shown in the figure with
the extremal gains in the Pareto set approximately define the range such that the
time-domain responses of the system under all Pareto optimal controls are within or
slightly outside the range.
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Figure 3.27: The Pareto front of full state feedback control of the flexible rotary arm.
The Pareto front is projected to a 3D sub-space (ts,θ,Mp,θ, eIAE) with the color code
indicating the level of max |α|. Red in the color code indicates the highest level while
dark blue indicates the lowest level.
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Figure 3.28: Numerical simulations of α and θ responses under Pareto optimal con-
trols. Solid black lines: With gains of six extremal cases from the Pareto set when
each objective function is minimal. Dashed color lines: With every 15 of all other
gains in the Pareto set.
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Figure 3.29: Pareto optimal controls of the flexible rotary arm. Solid black lines:
With gains of six extremal cases from the Pareto set when each objective function is
minimal. Dashed color lines: Every 15 of all other gains in the Pareto set.



Chapter 4

Computing the Set of Nearly
Optimal Solutions

To tap the full potential of the additional consideration of approximate solutions
against the ‘sole’ consideration of the optimal solutions it is required to maintain a
representation of the entire set of approximate solutions PQ,ε. The challenge in this
case is that for the consideration of a problem with n parameters and k objectives
the set PQ,ε forms an n-dimensional object while PQ is under some mild regularity
assumptions on F ‘only’ (k− 1)-dimensional. Hence, for the effective extension from
PQ to PQ,ε as the basis for the decision making process a suitable discretization of the
latter set is essential.

In this chapter we address the problem of computing PQ,ε via stochastic search
algorithms. To be more precise, we design and investigate an archiving strategy that
aims for the approximation of this set with a good distribution in both decision and
objective space. Next, we make a comparative study on some test problems in order
to visualize the effect of all strategies. Finally, we couple the proposed archiver with
an evolutionary algorithm and compare with algorithms of the state of the art.

The remainder of this chapter is organized as follows: in Section 4.1 we present
an archiver that aims for a good discretization according to decision and objective
space of a given MOP. Then, in Section 4.2 we present a MOEA for the computation
of the set of approximate solutions.

4.1 Discretizing the Set both in Decision and Ob-

jective Space

Here, we present an archiving strategy that aims for a finite representation of PQ,ε
in decision and objective space of an MOP. Further, we analyze its limit behavior
as well as its bounds. We finish the section with numerical results on representative
academic examples.

87
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4.1.1 The algorithm

Algorithm 10 shows the pseudo code of ArchiveUpdatePQ,εDxy. The discretization
allows to keep solutions that have similar objective values (measured by ∆y) but are
significantly different in decision space (measured by ∆x).

Algorithm 10 A := ArchiveUpdatePQ,εDxy (P,A0, ε,∆x,∆y)

Require: population P , archive A0, ε ∈ Rn+, ∆x ∈ R+, ∆y ∈ R+,∆
∗
x ∈ (0,∆x),∆

∗
y ∈

(0,∆y)
Ensure: updated archive A

1: A := A0

2: for all p ∈ P do
3: if @a1 ∈ A : a1 ≺−ε p and @a2 ∈ A : (d∞(F (a2), F (p)) ≤ ∆∗y and d∞(a2, p) ≤

∆∗x) then
4: A← A ∪ {p}
5: Â = {a1 ∈ A|@a2 ∈ A : a2 ≺−(ε+∆y) a1}
6: for all a ∈ A\Â do
7: if p ≺−(ε+∆y) a and dist(a, Â) ≥ 2∆x then
8: A← A\{a}
9: end if

10: end for
11: end if
12: end for

Complexity of ArchiveUpdatePQ,εDxy

The algorithm goes through all the set of candidate solutions p ∈ P and in the worst
case, the algorithm compares them with all the solutions a ∈ A. Note that the −ε-
dominance operation takes constant time with respect of the sizes of P and A.Thus,
the complexity of the archiver is O(|P ||A|) which in the worst case is quadratic
(O(|P |2)).

4.1.2 Limit behavior

The limit behavior of ArchiveUpdatePQ,εDxy is investigated next.

Theorem 16. Let (2.1) be given, where F is continuous and Q is compact, ε ∈ Rk+,
∆x,∆

∗
x,∆y,∆

∗
y ∈ R+ with ∆∗y < ∆y and ∆∗x < ∆x. For the generation process

we assume (2.46) and for the MOP the assumptions made in Lemma 8. Then, an
application of Algorithm 1, where AchiveUpdatePQ,εDxy is used to update the archive,
leads to a sequence of archives Al, l ∈ N, such that there exists an l0 ∈ N such that
for all l ≥ l0:

(i) dist(PQ,ε, Al) < ∆x and dist(F (PQ,ε), F (Al)) < ∆y
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(ii) dist(Al, PQ,ε) ≤ dist(B2∆x(PQ,ε+2∆y), PQ,ε) and
dist(F (Al), F (PQ,ε)) ≤ dist(F (B2∆x(PQ,ε+2∆y)), F (PQ,ε))

(iii) dH(PQ,ε, Al) ≤ max(∆x, dist(B2∆x(PQ,ε+2∆y), PQ,ε) and
dH(F (PQ,ε), F (Al)) ≤ max(∆y, dist(F (B2∆x(PQ,ε+2∆y)), F (PQ,ε))

Proof. As the results in objective space are analog to the results in Theorem 10, we
only prove here the results in decision space.

Note that a point p is discarded from an existing archive A in two cases (line 2):

(D1) ∃a1 ∈ A : a1 ≺−ε p, or

(D2) ∃a2 ∈ A : ‖F (a2)− F (p)‖∞ ≤ ∆∗y and ‖a2 − p‖∞ ≤ ∆∗x.
(4.1)

(i) since PQ,ε is compact, dist(PQ,ε, Al) = dist(PQ,ε, Al) and Al, l ∈ N, is finite it
follows that

dist(PQ,ε, Al) = max
p∈PQ,ε

min
a∈Al
‖p− a‖∞. (4.2)

The claim is right for an archive Al, l ∈ N, if for every p ∈ PQ,ε there exists an
element a ∈ Al such that ‖p− a‖∞ < ∆x. Thus, we need to prove that PQ,ε is
contained in

CA,∆x :=
⋃
a∈A

B∞∆x
(a), (4.3)

where B∞δ (x) := {y ∈ Rn : ‖x− y‖∞ < δ}.
First we show that if there exists an l0 ∈ N with dist(PQ,ε, Al) < ∆x then this
inequality holds for all l ≥ l0. Assume that such an l0 is given. Let

Ã := {a ∈ Al0|∃p1 ∈ PQ,ε : ‖p1 − a‖∞ < ∆x or ∃p2 ∈ PQ,ε : ‖F (p2)− F (a)‖∞ < ∆y} .
(4.4)

The following discussion shows that no element a ∈ Ã will be discarded further
on due to the construction of the archiver. It holds

p ∈ PQ,ε and a ∈ Q : ‖p− a‖ ≤ ∆x ⇒ a ∈ B∆x(PQ,ε), (4.5)

Assume an element a ∈ Ã is discarded. For this to happen the following has
to hold: (i) a 6∈ PQ,ε+∆y , (ii) an element a2 ∈ Al is added to the archiver

such that @a3 ∈ Ã : dist(F (a2), F (a3)) < ∆y and a2 ≺−(ε+∆y) a, and (iii)

@b ∈ Ã : dist(a, b) ≤ 2∆x, and hence, dist(a, Â) > 2∆x.

For all p ∈ PQ,ε there exists an element a ∈ Ã such that ‖p− a‖∞ < ∆x.

Thus, there exists an element b such that b ∈ Ã : dist(a, b) ≤ 2∆x and b ∈ Â.
Otherwise, there would exist elements in PQ,ε such that their distance to Ã is
bigger than ∆x which is a contradiction to the assumption. Further, since by
assumption dist(PQ,ε, Al0) < ∆x, there exists for all p ∈ PQ,ε an element a ∈ Ã
with ‖p− a‖∞ < ∆x, and by the above consideration this holds for all archives
Al with l ≥ l0.
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It remains to show the existence of such an integer l0, which we will do by
contradiction: first we show that by using ArchiveUpdatePQ,εDxy and under the
assumptions made above only finitely many replacements can be done during
the run of the algorithm. Then, we construct a contradiction by showing that
under the assumptions made above infinitely many replacements have to be
done during the run of the algorithm with the given setting.

Let a finite archive A0 be given. If a point p ∈ Rn replaces a point a ∈ A0 (lines
5 to 7) it follows by construction of ArchiveUpdatePQ,εDxy that

F (p) <p F (a)−∆y and ‖p− a‖ ≥ ∆y. (4.6)

Since the relation ‘≺’ is transitive, there exists for every a ∈ A a ‘history’ of
replaced points ai ∈ Ali where Equation (4.6) holds for ai and ai−1 which has
to be finite as F (Q) is bounded.

Assume that such an integer l0 as claimed above does not exist, that is, that
PQ,ε 6⊂ CAl,∆ for all l ∈ N. Hence, there exists a sequence of points

pi ∈ PQ,ε : pi ∈ PQ,ε\CAi,∆ ∀i ∈ N. (4.7)

Since PQ,ε ⊂ Q and Q is compact there exists an accumulation point p∗ ∈ PQ,ε,
that is, there exists a subsequence {ij}j∈N with

pij → p∗ ∈ PQ,ε for j →∞. (4.8)

By (8) it follows that the set

Ũ1 := B∞(∆x−∆∗x)/2(p∗) ∩
◦

PQ,ε, (4.9)

is not empty. By (2.46) it follows that there exists with probability one an
l1 ∈ N and an element x̃1 ∈ Pl0+l1 generated by Generate() with x̃1 ∈ Ũ1.
There are two cases for the archive Al0+l1 : (a) x1 can be discarded from the
archive, or (b) x1 is added to it.

Assume first that x1 is discarded. Since, x1 ∈ PQ,ε there exists no x̄ ∈ Q such
that x̄ −ε-dominates x1. Hence, (D1) can not occur (see (4.1)), and thus, there
must exist an a2 ∈ Al0+l1 such that ‖F (a2)−F (x1)‖∞ ≤ ∆∗y and ‖a2−x1‖ ≤ ∆∗x
(see (D2)). Thus, whether x1 is added to the archive or not there exists an
ã1 ∈ Al0+l1 such that ‖ã1− y∗‖∞ ≤ ∆x (since in case x1 is added to the archive
ã1 = x1 can be chosen), and we obtain

‖ã1 − ỹ‖∞ ≤ ‖ã1 − x1‖∞ + ‖x1 − ỹ‖∞ < ∆x ∀ỹ ∈ Ũ1 (4.10)

By (4.7) and (4.8) there exist integers j1, l̃1 ∈ N with

yij1 ∈ Ũ1\Cl0+l1+l̃1,∆x
. (4.11)
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Since by (4.10) it holds that ‖yij1 − a1‖∞ < ∆x it follows that a1 6∈ Al0+l1+l̃1
,

which is only possible via a replacement in Algorithm 10 (lines 4 to 7).

In an analogous way a sequence {ai}i∈N of elements can be constructed which
have to be replaced by other elements. Since, this leads to a sequence of infinitely
many replacements. This is a contradiction to the assumption, and the proof is
complete.

(ii) let Ã and l0 be as above, and let l ≥ l0. Further, let x ∈ Q\B2∆x(PQ,ε+2∆y),
that is, there exists a p ∈ PQ,ε such that p ≺−(ε+2∆y) x. Since, l ≥ l0 there

exists an a ∈ Ã ⊂ Al such that ‖F (p) − F (a)‖∞ < ∆y. Combining both
facts we see that a ≺−(ε+∆y) x and dist(a, x) ≥ ∆x (line 6). Thus, no element
x ∈ Q\B2∆x(PQ,ε+2∆y) is contained in Al, l ≥ l0, or will ever be added to the
archive further on. The claim follows since the archive can only contain elements
in B2∆x(PQ,ε+2∆y).

(iii) follows immediately by (i) and (ii).

4.1.3 Bounds on the archiver sizes

Finally, we analyze the bounds of the archive sizes obtained by Algorithm 10. Note
that for the special case ∆x =∞ Algorithm 10 is equivalent to ArchiveUpdatePQ,εDy

those upper bounds are discussed above. For ∆x <∞ we have

|Axl | ≤
(

1

∆∗
+ 1

)n n∏
j=1

(bi − ai), (4.12)

where Q ⊂ [a1, b1] × . . . × [an, bn] (PQ,ε+2∆ is included in [a1, b1] × . . . × [an, bn], and
maximal 1/∆∗x + 1 elements can be placed in each coordinate direction). To see that
this bound is tight we consider the example

F : [0, 1]n → Rk, F (x) ≡ c0 ∈ Rk, (4.13)

and let ∆x = 1/s, s ∈ N. Define xi1,...,in = (i1∆x, . . . , in∆x) and

D := {xi1,...,in|0 ≤ i1, . . . , in ≤ s} . (4.14)

Since D ⊂ [0, 1]n and d∞(z1, z2) ≥ ∆x > ∆∗x for all z1, z2 ∈ D, z1 6= z2, all points in
D will be accepted by the archiver (assuming that only points z ∈ D are inserted)
leading to an archive A with |A| = |D| = (s+ 1)n.

Since PQ,ε is n-dimensional, the growth of the magnitudes of the archives is also
beyond this constructed example of order

O
((

1

∆x

)n)
for ∆x → 0. (4.15)
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4.1.4 Numerical Results

Now, we present the numerical results of the novel archiver. First, we show an
experiment with uniform sampling. Next, we use a non-uniform sampling which
simulates the behavior of an evolutionary algorithm. Finally, we show the capabilities
of the archiver on a non-uniform beam problem.

Uniform Sampling

First, we investigate the effect of all the archivers where we use uniform sampling
of the candidate solutions within the domain Q. As first example, we consider the
problem OKA1 to demonstrate the effect of the different strategies. We generated 20
files with 100, 000 candidate solutions that were uniformly sampled from Q. Then,
we applied the archivers on each file in order to assure that each archiver is fed with
the same data.

We used ε = [1, 1],∆x = [0.2, 0.2], and ∆y = [0.2, 0.2] . In order to compare
the approaches, we measured the ∆2 indicator value (Schütze et al. (2012), using
p =∞), which measures the Hausdorff distance between two sets, in decision as well
as in objective space. To construct the reference set for the ∆2 computation, we used
uniform sampling within Q using 10, 000, 000 candidates.

Figure 4.1 shows the median results of each archiver on the benchmark problems
for both decision and objective space with respect to ∆2. Figure 4.2 shows the box
plots for the different indicator values. From the results we can see that ArchiverPQ,ε
obtains the best results for this problem, however, with a much higher computa-
tional cost. ArchiverPQ,εDx obtains a good distribution in decision space while
ArchiverPQ,εDy obtains a good distribution in objective space. ArchiverPQ,εDxy

obtains similar ∆2 values compared to those of ArchiverPQ,εDx (decision space) and
ArchiverPQ,εDy (objective space). However, note that the approximation qualities
of ArchiverPQ,εDxy come with a (slightly) higher cost in both time and archive size.

Next, we study the MOPs Two-on one, Sym-part (Rudolph et al. (2007)), and
SSW (Schaeffler et al. (2002)), using the same setting of 100, 000 uniformly sampled
candidate solutions. Table 4.1 shows the parameters used for each problem. To
construct the reference set for the ∆2 computation, we used Simple Cell Mapping
Hernández et al. (2013) with a grid of 100× 100 test points for the two-dimensional
problems and 20× 20× 20 for the three-dimensional problem.

Figures 4.3, 4.4 and 4.5 show the median results of each archive on the benchmark
problems for both decision and objective space with respect to ∆2 in decision space.
Tables 4.2, 4.3 and 4.4 show the mean values of the averaged values on the different
indicators. Further, Figure 4.6 shows the box plots for the different indicator values.

For Two-on one, ArchiveUpdatePQ,εDxy shows better results in decision space
than ArchiveUpdatePQ,εDy and it is not possible to conclude which one is better
in objective space according to the Wilcoxon rank sum test. This is not surprising
since there are disconnected components that map to the same region in objective
space. Thus, the discretization in objective space ∆y becomes entire responsible for
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Figure 4.1: Set of approximate solutions on OKA1 with ε = 0, ∆x = 1 and ∆y = 0.01.

Table 4.1: Parameters used on benchmark problems.

Problem ε ∆y ∆x

Two-on one [0.15, 0.15] 0.1 0.02
Sym-part [0.15, 0.15] 0.2 1
SSW n=3 [0.1, 0.001] 1

3
ε 1

the acceptance rule in the archiver. In Sym-part, ArchiveUpdatePQ,εDxy can be seen
as an intermediate result between the other archivers. It captures all 9 connected
components which leads to similar results of the ones of ArchiveUpdatePQ,ε on ∆2

indicator. While, it represents the set with 4 times fewer solutions. For SSW, all
archivers show the same behavior in objective space, but ArchiveUpdatePQ,εDy has
the worst ∆2 value in decision space. However, in this case more than 20% of the
search space is in the set PQ,ε. Thus, the size of the set increases a lot which shows
the potential problem of ArchiveUpdatePQ,εDxy if the discretization values are not
chosen properly.

Table 4.2: Averaged ∆2 values on benchmark problems (decision space).

Problem ArchivePQ,ε ArchivePQ,εDy ArchivePQ,εDxy

Two-on one 0.0347 0.1551 0.1067
Sym-part 0.2374 5.3890 0.3970
SSW n=3 4.2106 5.0036 4.2119
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Figure 4.2: Box plots of ∆2 in decision/objective space, archive size and computa-
tional time on OKA1.

Table 4.3: Averaged ∆2 values on benchmark problems (objective space).

Problem ArchivePQ,ε ArchivePQ,εDy ArchivePQ,εDxy

Two-on one 0.0880 0.1957 0.1906
Sym-part 0.1157 0.2035 0.1569
SSW n=3 1.9283 1.9283 1.9283

Table 4.4: Averaged archive sizes on benchmark problems.

Problem ArchivePQ,ε ArchivePQ,εDy ArchivePQ,εDxy

Two-on one 2778.6 117.8 117.8
Sym-part 442.6 20.3 104.6
SSW n=3 21360 4194.3 18708
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Figure 4.3: Set of approximate solutions of MOP (Two-on one) with ε = 0, ∆x = 1
and ∆y = 0.01.
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Figure 4.4: Set of approximate solutions of MOP (Sym-part) with ε = 0, ∆x = 1 and
∆y = 0.01.
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Figure 4.5: Set of approximate solutions of SSW with ε = [0.1, 0.001], ∆x = 1 and
∆y = 1

3
ε.

Non-uniform Sampling

So far we used uniform sampling to see the effect of the different archivers. If, however,
an evolutionary algorithm or another stochastic search algorithm is used, typically
one region of the search space is exploited first before the rest is explored. Here, we
try to simulate such a case for Sym-part. We generated 20 archives in the following
manner. First, we generated 20, 000 uniform random points in the region [−3, 3]2 and
fed the archivers with this data. Next, we generated another 80, 000 uniform random
points in the whole domain and updated the archives by this information.

Figure 4.7 shows of the median results of each archive on Sym-part problem for
both decision and objective space with respect to ∆2 in decision space. Next, Table
4.5 shows the mean values of the averaged values on the ∆2 indicator. Further, Figure
4.8 shows the box plots for the different indicator values.

From the results, we can observe that ArchivePQ,εDxy captures all 9 connected
components while ArchivePQ,εDy keeps only the component that was visited first and
a few solutions in other connected components. Thus, ArchivePQ,εDxy leads here to
better results in both decision and objective space which is also in general the case
at least for complex MOPs by construction of the archiver.

Application to Non-uniform Beam

Finally, we consider a non-uniform beam problem taken from Sun (1995). Non-
uniform beams present a commonly used structure in many applications such as ship
hull, rocket surface and aircraft fuselage. In this application structural and acoustic
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Figure 4.6: Box plots of ∆2 in decision/objective space and archive size on the bench-
mark problems.

Table 4.5: Averaged ∆2 values on RUDOLPH.

Archiver Decision space ∆2 Objective space ∆2

ArchivePQ,ε 0.2583 0.1228
ArchivePQ,εDy 4.8192 0.2146
ArchivePQ,εDxy 0.4047 0.1714
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Figure 4.7: Set of approximate solutions Sym-part with ε = 0, ∆x = 1 and ∆y = 0.01.
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properties are presented as constraints and performance indexes of candidate non-
uniform beams.

The primary goal of structural-acoustic optimization is to design a light-weight and
quiet structure. Thus, it is a bi-objective optimization problem where the objectives
are weight reduction and sound isolation. The number of interpolation coordinates
to describe the thickness profile of the beam is 10 (i.e., the decision space is 10-
dimensional) and the number of beam discretizations for the response calculation
with the transfer matrix method is 50. Here, we consider a simply supported beam
design. Mass constraint is 10-30kg; minimum fundamental frequency is 8Hz and
maximum successive segment height difference of the discretized beam is 1.75mm.
Searching range of spline coordinates is 1-15mm. Beam length is 1.0m. For more
details we refer to Sun (1995).

The parameters for the archiver were set to ε = [1, 0.00003], ∆x = 2.5× 10−3 and
∆y = [0.3, 0.000003]. That is to say, we are willing to accept a deterioration of 1 Kg
and 0.3 × 10−5 W/m/s. In this case, we took 10 million points uniformly sampled
from the domain Q = [1e− 3, 1.5e− 2]10.
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Figure 4.9: Set of approximate solutions for the non-uniform beam problem.
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Figure 4.9 shows the approximated set PQ,ε together with the cross sections of
nine selected beams, where three of them are non-dominated and the other six ones
are nearly optimal. From this we can observe that it is possible to design beams that
have similar objective values while having a completely different shape. Thus, the
additional consideration of nearly optimal solutions leads in this case to a wider range
of geometrical choices for possible structural designs.

4.2 Multi-objective Evolutionary Algorithm for the

Set of Approximate Solutions

In this section, we present an evolutionary multi-objective algorithm that aims for a
finite representation of PQ,ε.

4.2.1 Ranking nearly optimal solutions

First, we present an algorithm in order to rank nearly optimal solutions. The algo-
rithm is an adaption from NSGA-II. In this case, the best solutions are those that
are non ε-dominated by any other solution in the population and are also well dis-
tributed in both decision and objective space. The second layer will be formed with
those solutions the solutions that are non ε-dominated but were not well distributed.
The next layers follow the same pattern.

Algorithm 11 Non ε-Dominated Sorting

Require: P0, ε,∆x,∆y

Ensure: F
1: while p 6= ∅ do
2: Ai+1 ←MArchivePQ,εDxy(Pi, [], ε,∆x,∆y)
3: Pi+i ← Pi ∩ Ai+1

4: Fi ← Ai+1

5: end while

4.2.2 Avoiding weakly dominated solutions

The archivers presented before assume that no weak Pareto optimal solutions exits.
However, this is not always the case in practice. Here, we modify the archiver to
remove weakly dominated solutions. In order to achieve this, we propose to approxi-
mate the nadir point. Algorithm 12 shows the modified archiver. The difference with
respect to the original archiver can be found in line 3. The archiver first checks if the
candidate solution p dominates nadir + 2ε and then it continues as usual.
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Algorithm 12 A := MArchiveUpdatePQ,εDxy (P,A0, ε,∆x,∆y)

Require: population P , archive A0, ε ∈ Rn+, ∆x ∈ R+, ∆y ∈ R+,∆
∗
x ∈ (0,∆x),∆

∗
y ∈

(0,∆y), nadir ∈ R
Ensure: updated archive A

1: A := A0

2: for all p ∈ P do
3: if p � nadir + 2ε and @a1 ∈ A : a1 ≺−ε p and @a2 ∈ A : (d∞(F (a2), F (p)) ≤

∆∗y and d∞(a2, p) ≤ ∆∗x) then
4: A← A ∪ {p}
5: Â = {a1 ∈ A|@a2 ∈ A : a2 ≺−(ε+∆y) a1}
6: for all a ∈ A\Â do
7: if p ≺−(ε+∆y) a and dist(a, Â) ≥ 2∆x then
8: A← A\{a}
9: end if

10: end for
11: end if
12: end for

4.2.3 The algorithm

Algorithm 13 presents the complete algorithm to approximate the set of nearly op-
timal solutions. First, the algorithm initializes a random population and generates
the first archiver with the best solutions found. Next, in each iteration the genetic
operators are applied and then the solutions are ranked using Algorithm 11 and the
best solutions are kept. Finally, the archiver is applied in order to keep the non ε-
dominated solutions. It is important to notice that the algorithm uses diversity in
both decision and objective space. This is due to the fact that nearly optimal solu-
tions can be similar in objective space but very different in decision space. In order
to achieve it, half the population is selected according their NearestNeighborDistance
in objective space and half using decision space.

Complexity of NεSGA

In the following, we comment on the complexity of NεSGA. Let G be the number of
generations and |P | the size of the population.

• Initialization: in this step all the individuals are generated at random and
evaluated. This task takes O(|P |)

• External archiver: from the previous section, the complexity of the archiver is
O(|P ||A|), where |A| is the size of the archiver. Note that the maximum size of
the archiver at the end of the execution is G|P |.

• Non ε-dominated sorting: until there are no solution in the population P ,
MArchiveUpdatePQ,εDxy is executed. In the worst case each rank has only
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one solution and the archiver is executed |P | times. Thus, the complexity of
this part of the algorithm is O(|P |3).

• Main loop: the main loop selected the parents and applies the genetic op-
erators (each of this tasks take O(|P |)), then the algorithm uses the Non ε-
dominated sorting (O(|P |3)), next it finds those solutions that are well dis-
tributed (O(|P |2)) and finally applies the external archiver O(|P |2). Note that
all these operations are executed G times. Thus, the complexity of the algorithm
is O(max(G|P |3, (G|P |)2)). Which is the maximum of the Non ε-dominated
sorting or the external archiver.

Algorithm 13 Non ε-Dominated Sorting EMOA

Require: number of generations: ngen, population size: npop, ε ∈ Rn+, ∆x ∈ R+,
∆y ∈ R+,∆

∗
x ∈ (0,∆x),∆

∗
y ∈ (0,∆y)

Ensure: updated archive A
1: Generate initial population P1

2: A←MArchivePQ,εDxy(P0, [], ε,∆x,∆y, nadir)
3: for i = 1 . . . ngen do
4: Select dλ

2
e Parents Qi with Tournament

5: Õi ← SBXCrossover(Qi)
6: Oi ← PolynomialMutation(Õi)
7: P̃i ← Pi ∪Oi

8: F ← Non ε-DominatedSorting(P̃i)
9: Pi+1 = ∅

10: j = 1
11: while |Pi+1|+ |Fj| ≤ npop do
12: NearestNeighborDistance(Fj) . in both parameter/objective space
13: Pi+1 = Pi+1 ∪ Fj
14: j ← j + 1
15: end while
16: Sort(Fi,≺n)
17: Pi+1 = Pi+1 ∪ Fj[1 : npop− |Pi+1|]
18: Ai+1 ←MArchivePQ,εDxy(Oi, Ai, ε,∆x,∆y, nadir)
19: end for

4.2.4 Using subpopulations

Here, we propose the use of two subpopulations in order to improve the pressure
towards the set of interest of the novel algorithm. Each subpopulation has a different
aim. The first one aims to approximate the global Pareto set/front. While the second
one aims to approximate PQ,ε. A key aspect of the approach is how the information
between the subpopulations is shared. Thus, in the following we describe two schemes
to share the information via migration.
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1. Every nf generations, nr individuals are exchange between the population. The
individuals are chosen at random from the rank 1 individuals.

2. Every nf generations, the crossover is performed between the populations. One
parent is chosen from each population at random.

As it can be observed. The use of subpopulations introduces three extra parame-
ters to the algorithm, namely:

• nf : frequency of migration,

• nr: the number of individuals to be exchanged, and

• ratio: the ratio of individuals between subpopulation in the range [0, 1].

4.2.5 Numerical Results

In this section, we present the numerical result corresponding the evolutionary algo-
rithm. We performed several experiments in order to validate the novel algorithm.
First, we enhance the state-of-the-art algorithms with the novelArchiverUpdatePQ,εDxy.
Then, we validate the use of an external archiver in the evolutionary algorithm. Next,
we compare several some strategies of subpopulations. Finally, we compare the re-
sulting algorithm with the enhanced state-of-the-art algorithms.

In all cases we used the following problems: Deb99, two-on-one, sym-part, ssw,
omni test, Lamé superspheres. Next, 20 independent experiments were performed
with the following parameters: 100 individuals, 100 generations, crossover rate = 0.9,
mutation rate = 1/n, eta c = 20 and eta m = 20. Then, Table 4.6 shows the ε, ∆y

and ∆x values used for each problem. Further, for all cases were measured with the
∆2 indicator and a Wilcoxon ranksum test was performed with a significance level
α = 0.05. Finally, all ∆p tables, the bold font represents the best mean value and the
arrows represent:

• ↑ ranksum rejects the null hypothesis of equal medians and the algorithm has
a better median,

• ↓ ranksum rejects the null hypothesis of equal medians and the algorithm has
a worse median and

• ↔ ranksum cannot reject the null hypothesis of equal medians.

The comparison is always made with the algorithm in the first column.
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Table 4.6: Parameters used for all experiments.

Problem ε ∆y ∆x

Deb99 [0.011 0.011] [0.2 0.2] [0.2 0.2]
Two-on-one [0.1, 0.1] [0.1 0.1] [0.02 0.2]
Sym-part [0.15, 0.15] [0.2 0.1] [1 1]
SSW n=3 [0.011, 0.0001] 1

3
ε [1 1 1]

Omni-test [0.01 0.01] [0.05 0.05] [0.1 0.1 0.1 0.1 ]
LSS [0.1 0.1] [0.05 0.05] [0.1 0.1 0.1 0.1 0.1]

Experiment 1: enhancing the state-of-the-art algorithms

Before analyzing the proposed algorithm, we present the numerical results of adapted
versions PQ,εNSGA-II and PQ,εMOEA using ArchiverUpdatePQ,εDxy against the orig-
inal versions that use ArchiverUpdatePQ,εDy. As it could be expected, the results
show that allowing the algorithms to keep solutions that are well distributed in deci-
sion space improved their performance according to the ∆2 indicator. Figures 4.10-
4.15 show the median approximations to PQ,ε and F (PQ,epsilon) obtained by the al-
gorithms. In all cases, it is possible to observe that the algorithms using the novel
archiver have a better distribution in decision space, as expected, while maintaining a
good distribution in objective space. Figure 4.16 and Figure 4.17 show the box plots
in both decision and objective space. From the results, we can observe that in none
of the cases the algorithms that use ArchiverUpdatePQ,ε are superior to those using
ArchiverUpdatePQ,εDxy which indicates an advantage of using the novel archiver.
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Figure 4.10: Numerical results on Deb99 for the state-of-the-art algorithms.
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Figure 4.11: Numerical results on Two-on-one for the state-of-the-art algorithms.
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Figure 4.12: Numerical results on sym-part for the state-of-the-art algorithms.
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Figure 4.13: Numerical results on SSW for the state-of-the-art algorithms.
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Figure 4.14: Numerical results on Omni test for the state-of-the-art algorithms.



110 CHAPTER 4. COMPUTING NEARLY OPTIMAL SOLUTIONS

0
2

4
6

0

2

4

6
0

2

4

6

x1
x2

x
3

−5 −4 −3 −2 −1 0
−5

−4

−3

−2

−1

0

f1

f
2

(a) PQ,εNSGA-II

0
2

4
6

0

2

4

6
0

2

4

6

x1
x2

x
3

−5 −4 −3 −2 −1 0
−5

−4

−3

−2

−1

0

f1

f
2

(b) PQ,εDxyNSGA-II

0
2

4
6

0

2

4

6
0

2

4

6

x1
x2

x
3

−5 −4 −3 −2 −1 0
−5

−4

−3

−2

−1

0

f1

f
2

(c) PQ,εMOEA

0
2

4
6

0

2

4

6
0

2

4

6

x1
x2

x
3

−5 −4 −3 −2 −1 0
−5

−4

−3

−2

−1

0

f1

f
2

(d) PQ,εDxyMOEA

Figure 4.15: Numerical results on Lamé Superspheres for the state-of-the-art algo-
rithms.
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Figure 4.16: Box plots of ∆2 in decision space for PQ,ε-NSGA2, PQ,εDxy-NSGA2,
PQ,ε-MOEA and PQ,εDxy-MOEA (from left to right).
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Figure 4.17: Box plots of ∆2 in objective space for PQ,ε-NSGA2, PQ,εDxy-NSGA2,
PQ,ε-MOEA and PQ,εDxy-MOEA (from left to right).
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Experiment 2: validation of the use of an external archiver

Next, we perform an experiment to validate the use of an external archiver in the
novel algorithm. Figure 4.18 and Figure 4.19 show the box plots in both decision
and objective space. Tables 4.7 and 4.8 show the mean and standard deviation of the
Delta2 values obtained by the algorithms. From the results, we can observe that in
5 of the 6 problems the use of the external archiver has a significant impact on the
algorithm. This indicates an advantage of using the novel archiver. It is important
to notice, that the use of the external archiver does not use any function evaluation.
Thus, the comparison is fair in terms of the number of evaluations used.
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Figure 4.18: Box plots of ∆2 in decision space of NεSGA without external archiver
(left) and with external archiver(right).
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Figure 4.19: Box plots of ∆2 in objective space of NεSGA without external archiver
(left) and with external archiver(right).

Table 4.7: Averaged ∆2 in decision space for the use of the external archiver and the
base case.

Problem NεSGA NεSGA-A
Deb99 0.1077(0.0100) 0.1177(0.0032)↓
Two-on-one 0.1125(0.1397) 0.0595(0.1467)↑
Sym-part 0.2466(0.0242) 0.0741(0.0039)↑
SSW 2.9840(0.2123) 1.0050(0.0226)↑
Omni test 1.5740(0.1163) 0.8680(0.2806)↑
Lamé Superspheres 1.5092(0.0532) 0.6415(0.0163)↑

Table 4.8: Averaged ∆2 in objective space for the use of the external archiver and
the base case.

Problem NεSGA NεSGA-A
Deb99 5.4251(0.2816) 5.3544(0.1341)↔
Two-on-one 0.9771(0.1385) 0.2726(0.2522)↑
Sym-part 0.3147(0.0116) 0.1232(0.0087)↑
SSW 0.7916(0.0908) 0.2128(0.0016)↑
Omni test 0.0513(0.0047) 0.0203(0.0061)↑
Lamé Superspheres 0.1610(0.0079) 0.0222(0.0036)↑
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Experiment 3: validation of the use of subpopulations

Further, we perform an experiment to validate the use of subpopulations in the novel
algorithm. Figure 4.20 and Figure 4.21 show the box plots in both decision and
objective space. Tables 4.9 and 4.10 show the mean and standard deviation of the
Delta2 values obtained by the algorithms. From the results, we can observe that
the first subpopulation approach is better in 2 and 4 problems out of 6 according
to decision/objective space respectively. While the second approach outperforms the
base algorithm in 2 and 5 problems out of 6 according to decision/objective space.
Thus, there is an advantage with the use of subpopulation in the test problems used.
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Figure 4.20: Box plots of ∆2 in decision space of NεSGA without external archiver
(left) and with external archiver(right).
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Figure 4.21: Box plots of ∆2 in objective space of NεSGA without external archiver
(left) and with external archiver(right).

Table 4.9: Averaged ∆2 for the algorithms that use subpopulations and the base case
in decision space.

Problem NεSGA NεSGA-Is1 NεSGA-Is2
Deb99 0.1177(0.0032) 0.1077(0.0078)↑ 0.1059(0.0065)↑
Two-on-one 0.0595(0.1467) 0.0925(0.2025)↔ 0.0266(0.0003)↔
Sym-part 0.0741(0.0039) 0.0597(0.0034)↑ 0.0621(0.0061)↑
SSW 1.0050(0.0226) 1.0402(0.0279)↓ 1.0554(0.0179)↓
Omni test 0.8680(0.2806) 1.0647(0.3026)↓ 0.9321(0.2316)↔
Lamé Superspheres 0.6415(0.0163) 0.6657(0.0109)↓ 0.6917(0.0219)↓

Table 4.10: Averaged ∆2 for the algorithms that use subpopulations and the base
case in objective space.

Problem NεSGA NεSGA-Is1 NεSGA-Is2
Deb99 5.3544(0.1341) 4.7753(0.4766)↑ 4.6843(0.5331)↑
Two-on-one 0.2726(0.2522) 0.3004(0.3565)↔ 0.1874(0.0659)↑
Sym-part 0.1232(0.0087) 0.0884(0.0108)↑ 0.0943(0.0170)↑
SSW 0.2128(0.0016) 0.2116(0.0020)↑ 0.2109(0.0029)↑
Omni test 0.0203(0.0061) 0.0198(0.0063)↔ 0.02092(0.0044)↔
Lamé Superspheres 0.0222(0.0036) 0.0145(0.0043)↑ 0.01560(0.0029)↑
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Experiment 4: comparison to state-of-the-art algorithms

Now, we compare the proposed algorithm with PQ,εDxy-NSGA2 and PQ,εDxy-MOEA.
Figures 4.22-4.27 show the median approximations to PQ,ε and F (PQ,epsilon) obtained
by the algorithms. Figure 4.28 and Figure 4.29 show the box plots in both decision
and objective space. Tables 4.11 and 4.12 show the mean and standard deviation
of the Delta2 values obtained by the algorithms. From the results, we can observe
that the novel algorithm outperforms PQ,εDxy-NSGA2 in 5 out of 6 problems ac-
cording to decision space and 3 according to objective space. When compared with
PQ,εDxy-MOEA, the novel algorithm outperforms in 5 problems in according both de-
cision and objective space. This shows that an improvement in the search engine to
maintain solutions well spread in decision and objective space is advantageous when
approximating PQ,ε.
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Figure 4.22: Numerical results on Deb99 for the comparison of NεSGA and the state-
of-the-art algorithms.
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Figure 4.23: Numerical results on Two-on-one for the comparison of NεSGA and the
state-of-the-art algorithms.
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Figure 4.24: Numerical results on sym-part for the comparison of NεSGA and the
state-of-the-art algorithms.
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Figure 4.25: Numerical results on SSW for the comparison of NεSGA and the state-
of-the-art algorithms.
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Figure 4.26: Numerical results on Omni test for the comparison of NεSGA and the
state-of-the-art algorithms.
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Figure 4.27: Numerical results on Lamé Superspheres for the comparison of NεSGA
and the state-of-the-art algorithms.
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(f) Lamé Superspheres

Figure 4.28: Box plots of ∆2 in decision space of NεSGA without external archiver
(left) and with external archiver (right).
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Figure 4.29: Box plots of ∆2 in objective space of NεSGA without external archiver
(left) and with external archiver(right).

Table 4.11: Averaged ∆2 in decision space for the comparison of the state-of-the-art
algorithms.

Problem NεSGA PQ,εDxy-NSGA-II PQ,εDxy-MOEA/D
Deb99 0.1077(0.00787) 0.0769(0.01702)↑ 0.0771(0.00700)↑
Two-on-one 0.0925(0.20251) 0.2585(0.32223)↓ 0.4298(0.29135)↓
Sym-part 0.0597(0.00342) 0.2238(0.47463)↓ 6.2978(2.07630)↓
SSW 1.0402(0.02791) 2.0611(1.26990)↓ 4.6774(0.57909)↓
Omni test 1.0647(0.30264) 2.3839(0.39110)↓ 3.4810(0.57159)↓
Lamé Superspheres 0.6657(0.01099) 0.9327(0.10483)↓ 1.9653(0.17019)↓

Table 4.12: Averaged ∆2 in objective space for the comparison of the state-of-the-art
algorithms.

Problem NεSGA PQ,εDxy-NSGA-II PQ,εDxy-MOEA/D
Deb99 0.1177(0.0032) 0.1077(0.0078)↑ 0.1059(0.0065)↑
Two-on-one 0.0595(0.1467) 0.0925(0.2025)↓ 0.0266(0.0003)↓
Sym-part 0.0741(0.0039) 0.0597(0.0034)↑ 0.0621(0.0061)↓
SSW 1.0050(0.0226) 1.0402(0.0279)↓ 1.0554(0.0179)↓
Omni test 0.8680(0.2806) 1.0647(0.3026)↓ 0.9321(0.2316)↓
Lamé Superspheres 0.6415(0.0163) 0.6657(0.0109)↑ 0.6917(0.0219)↓
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Application to Non-uniform beam

Finally, we present the results of the novel algorithm on the non-uniform beam pre-
sented before. The parameters were set as follows:

• Population size: 500

• Number of generations: 200

• The rest of the parameters were set as before

Figure 4.30 shows the approximated set PQ,ε. The results matches those solutions
in Figure 4.9 while using significantly less function evaluations (10 million function
evaluations for the archiver and 100,000 for the novel algorithm).
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Figure 4.30: Approximation of PQ,ε obtained with NεSGA.
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Chapter 5

Computing Lightly Robust
Optimal Solutions of an MOP

The typical goal of an MOP is to identify the Pareto set/front. However, in practice,
the decision maker may not always be interested in the best solutions, in particular,
if these solutions are sensitive to perturbations (Beyer and Sendhoff, 2007; Jin and
Branke, 2005; Deb and Gupta, 2006; Avigad and Branke, 2008). In such cases, there
exists an additional challenge. One has to search not only for solutions with a good
performance but also for solutions that can be implemented, leading to the so-called
robust multi-objective optimization problem (RMOP) (Deb and Gupta, 2006; Ehrgott
et al., 2014). In this context, the notion of robustness is not clear since it relies on the
information at hand from the given problem as well as the preferences of the decision
maker. Thus, there exist multiple definitions of robustness according to the different
scenarios (Deb and Gupta, 2006; Kuroiwa and Lee, 2012; Doolittle et al., 2012; Fliege
and Werner, 2014; Ehrgott et al., 2014).

Recently, the lightly robust multi-objective optimal solutions were proposed (Ide
and Schöbel, 2016). These solutions are often good candidates for the decision maker,
since solutions have to be reliable as well as to yield good performances. In this case,
a solution is considered to be feasible if it is “close enough” to an optimal solution.
Then, the “most reliable” solutions are chosen with respect to the set-based minmax
robust efficiency Ehrgott et al. (2014). Thus, lightly robust optimal solutions yield
similar performance to optimal ones while being more reliable.

In this chapter, we address the problem of computing PQ,ε via generalized cell
mapping technique and stochastic search algorithms. To be more precise, adapt the
generalized cell mapping to the context of lightly robust optimal solutions. Next, we
design and investigate an archiving strategy based on ArchiveUpdatePQ,εDxy that
maintains a representation of the set of worst cases for the elements in PQ,ε. Then,
we integrate the archiver an the evolutionary algorithm NεSGA and we make a com-
parative study on some test problems in order to visualize the effect of all strategies.
Finally, we present an application to a non-uniform beam.

123
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5.1 GCM for Lightly Robust Optimal Solutions

In this section, we present a novel algorithm for the computation of lightly robust op-
timal solutions for low dimensional multi-objective optimization problems. We adapt
the generalized cell mapping, which was originally designed for the global analysis
of dynamical systems. Further, we argue that cell mapping techniques (Hsu, 1987)
are in particular advantageous for the computation of lightly robust multi-objective
optimal solutions in optimal control problems. As these methods allow for the thor-
ough investigation of small dimensional problems (Zufiria and Mart́ınez-Maŕın, 2003;
Gomez et al., 2008; Hernández et al., 2013; Xiong et al., 2014, 2016). The algorithm
couples GCM with subdivision techniques to first compute the set of nearly optimal
solutions. Then, it computes the worst case scenarios for each solution found exploit-
ing the information about the basin of attraction already computed by the GCM.
Finally, the algorithm keeps the most reliable solutions with respect to the set-based
minmax robust efficient. The results show that the algorithm is able to compute
a good approximation of the solution set on several low-dimensional academic test
function measured with the ∆2 indicator.

5.1.1 Proposed algorithm

In this section, we present the algorithm for the computation of lightly robust optimal
solutions based on the generalized cell mapping.

General framework

In the following, we present the general procedure to compute lightly robust opti-
mal solutions (Algorithm 14). First, the algorithm computes GCM to compute the
canonical matrix (line 2 of Algorithm 14). The sub-matrix I contains the periodic
cells (candidate optimal solutions of the MOP). Next, these solutions are the starting
point to look for nearly optimal solutions with a backward search algorithm (line
3 of Algorithm 14). Then, the cells containing the set of nearly optimal solutions
are subdivided and process is repeated for a number of iterations. After that, the
algorithm computes the worst case for each cell found in the previous step by solving
max
δ∈U

F (x+ δ) where x ∈ PQ,ε (line 6 of Algorithm 14). Finally, the algorithm uses an

archiver to filter the best sets worst cases (line 7 of Algorithm 14). The next sections
give details on how to perform each of the steps.
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Algorithm 14 GCM for Multi-objective Light Robust Optimal Solutions

Require: F : objective function, δ ∈ Rn: error, lb ∈ Rn and ub ∈ Rn: lower and
upper bounds respectively, N0 ∈ Rn: cells per dimension, s0 set of cells, iter
number of subdivision steps

Ensure: LR: Set of lightly robust solutions
1: for l = 0, . . . , iter do
2: [P l, s̄l]← GCM(F, sl, lb, ub,N l)
3: P l

Q,ε ← BackwardSearch(P l, s̄l, ε)
4: [sl+1, N l+1]← Subdivide(P l

Q,ε, l + 1)
5: end for
6: WC ← ComputeWC(P iter, siter, δ)
7: LR← ArchiveUpdatePre(WC, [])
8: return LR

After one run of the GCM algorithm, we have gathered the information on the
global dynamics of the system and are hence able to approximate the set of interest
in a post-processing step. For the problem at hand, the approximation of PQ,ε, we
use the archiving technique ArchiveUpdatePQ,ε (Schütze et al., 2008, 2010).

The integration of both algorithms is as follows: Algorithm 15 updates the archive
first with the periodic cells discovered with GCM and continues with the rest of the
periodic motion by inverting the cell mappings. First, a queue is generated with the
periodic cells and until the queue is empty the algorithm searches for nearly optimal
solutions. The algorithm takes advantage of the fact that GCM has already encoded
the mappings in the canonical matrix. Thus, it is possible to exploit that information
to perform a breadth-first search where new cells are enqueued if they are accepted
by the archiver. Note that if a cell s is not accepted by the archiver neither would be
the cells that map to s, since by construction these cells are dominated by s. Thus,
Algorithm 15 computes the set of nearly optimal solutions without testing all cells in
the search space.

Algorithm 15 Computation of PQ,ε with backward search

Require: P : canonical form of probability matrix, s: set of cells
Ensure: PQ,ε approximation

1: A← ArchiveUpdatePQ,ε(I, [], ε)
2: Create a queue Q using A
3: while Q 6= ∅ do
4: cell← Q.dequeue()
5: c← P T

cell

6: A← ArchiveUpdatePQ,ε(c, A, ε)
7: Q.enqueue(c ∩ A)
8: end while
9: return A
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Compute worst case

Once we have a suitable representation of the set of nearly optimal solutions, we
can search for the worst cases for each solution in PQ,ε. As before, the information
provided from GCM allows us to compute the set of worst cases with a post-processing
of the data. For a given cell s, the algorithm finds the 2d δi

hi
e neighbors for i = 1, . . . , n,

where h is the size of the cell and δ is the uncertainty. Then, the algorithm computes
the set of worst cases. Note that this can be done by transposing the matrix P and
then looking for those cells that do not have any image in Q̄ = {x̄|xi−δi ≤ x̄ ≤ xi+δi}.
Algorithm 16 shows the procedure to compute the worst cases.

Algorithm 16 Computation of worst cases

Require: PQ,ε: PQ,ε approximation, p: probability matrix
Ensure: set of worst cases

1: for all cell ∈ PQ,ε do
2: Select neighbors of cell
3: Compute max of the selected elements
4: end for
5: return WC

Compute best worst cases

Finally, it is required to filter the solutions to keep the best worst cases. Algorithm
17 extends the archiver ArchiveUpdatePQ to handle families of solution sets. In this
case, both P and A0 are families of sets. Note that in line 3 of the algorithm uses
set-based dominance instead of classical Pareto dominance.

Algorithm 17 A := ArchiveUpdatePre (P,A0)

Require: population P , archive A0

Ensure: updated archive A
1: A := A0

2: for all p ∈ P do
3: if 6 ∃a ∈ A : a ≺ p then
4: A := A ∪ {p}
5: end if
6: for all a ∈ A do
7: if p ≺−ε a then
8: A := A\{a}
9: end if

10: end for
11: end for
12: return A
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Computational complexity

In this section, we discuss the computational time complexity of each of the algorithms
presented with respect to the number of cells to process.

• GCM: all cells are visited once O(Nc) and for each cell the algorithm computes
its neighbors. The neighbors depend on the type of vicinity that one uses. It
could be n if one selects orthogonal neighbors or 3n − 1 with the full neigh-
borhood. Note that the number of neighbors is in general much lower that the
number of cells. Thus, the complexity of GCM is O(Nc).

• BackwardSearch: in the worst case all the cells have to be visited (all cells are
nearly optimal solutions). Since a breadth first search is used, the cells are
visited only once. Next, the complexity of ArchiveUpdatePQ,ε is O(Nc) since
in the worst case all candidate solutions are compared with the solutions in the
archiver. Thus, the complexity of BackwardSearch is O(Nc2).

• Computation of worst cases: in this case, the algorithm has to analyze at most
Nc cell to find their worst cases. The size of each grid is of size 2d δi

hi
e) + 1 since

their size is given by the number of neighbors. Note the as in GCM it takes
linear time to find the worst cases. Thus, the complexity of this algorithm is
O(max(d δi

hi
e)Nc) for i = 1, . . . , n.

• ArchiveUpdatePre: in the worst case each candidate solution will be formed
by 2d δi

hi
e) + 1 solutions. From this follows, that each dominance comparison

have a complexity of O(max(d δi
hi
e). Thus, the complexity of the archiver is

O(max(d δi
hi
e)Nc2) for i = 1, . . . , n.

From the above discussion it follows that the total time complexity of the algorithm to
compute lr solutions is O(max(d δi

hi
e)Nc2). It is also important to notice that the total

number of cells is given by
∏n

i=1N . If one would like to maintain the precision, the
number of cells required will increase exponentially with the number of dimensions.
Thus, the complexity with respect to the number of dimensions is O(max(N)n).
Which is the main reason GCM is restricted to low dimensional problems.

5.1.2 Numerical results

In the following, we present the experimental design used to validate the perfor-
mance of the novel algorithm. The algorithms were implemented in Matlab R©R2012a
and C (connected through mex files). All the executions were performed in a desk-
top computer with Intel R©CoreTM i7-2600K CPU 3.40GHz processor and 4 GB of
RAM. Here, we use four academical test problems. These problems were proposed
for multi-objective optimization without uncertainty. However, the problems present
interesting features for light robust optimization (see Appendix A) for the description
of the problems):
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Figure 5.1 shows the results of the novel algorithm on Deb99 in each step of the
algorithm. First, Figure 5.1a shows the GCM, there we can see that the Pareto set
is located in x2 = 0.2. Next, Figure 5.1b shows the results after the application of
the BackwardSearch algorithm. In this case, there are two regions of interest located
around x2 = 0.2 and x2 = 0.6. These regions corresponds to the local Pareto sets.
Then, once the set PQ,ε was computed, the next step is to compute the worst cases
for each x ∈ PQ, ε. Figure 5.1c shows the computation of worst cases. Here, we can
observe a curve connecting [1, 2] and [0.110] that did not appear in the set of nearly
optimal solutions. This curve corresponds to the worst case of the global Pareto front.
Finally, Figure 5.1d shows the lightly robust optimal solutions after the application
of the ArchiverPre. There we can see the global Pareto front is dominated (in the re
sense) by the local front. Thus, the lightly robust solutions are those solutions in the
local front located in x2 = 0.6.

Now, we show the results for all the problems. Table 5.1 shows the parameters
used to perform the experiments. In this case ε denotes the allowed deterioration
from the Pareto optimal solutions, δ represents the uncertainty and N is the number
of cells used per dimension. In our experimental study, we use the ∆2 indicator to
measure the distance of the best solutions found by the algorithm to the real solution
in decision space.

Table 5.1: Parameters used for each problem.

Problem ε δ N
Deb99 [0.0110 0.0110]T [0.0068 0.0075]T [200 200]T

Two-on-one [0.1000 0.1000]T [0.0450 0.0450]T [200 200]T

Sym-part [0.1500 0.1500]T [0.3000 0.3000]T [200 200]T

SSW [0.0100 0.0001]T [3.00 3.00 3.00]T [20 20 20]T

Figure 5.2 shows the GCM approximation of the set of lightly robust optimal
solutions as well as their respective worst-case images. Table 5.2 shows the ∆2 values
in decision space between the real solution and the approximation set found. From
the results we can observe that in Deb99 the solutions in the nominal global front are
dominated by those in the local front in terms of lre. In the cases of two-to-one and
sym-part the nominal global front is the lightly robust front. Finally, in SSW one of
the connected components that was optimal for the nominal MOP is now dominated
in terms of lre.

Table 5.2: ∆2 values and running times (in seconds) of GCM for each problem.

Problem ∆2 Time
Deb99 0.0015 131.73
Two-on-one 0.0124 127.73
Sym-part 0.0739 130.45
SSW 8.2199 287.32
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(a) Pareto optimal solutions of Deb99 found by GCM.
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(b) Nearly optimal solutions of Deb99 after the backward search.
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(c) Worst cases of PQ,ε of Deb99.

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 1

x
2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f 1

f
2

(d) Lightly robust solutions of Deb99 computed by GCM.

Figure 5.1: Numerical results on Deb99.
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Figure 5.2: Numerical results of GCM on the academical problems. Decision space
(left) and objective space (right) obtained on the problems Deb99, two-on-one, sym-
part and SSW from above to below.
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5.1.3 Application to optimal control

Next, we consider a second order oscillator subject to a proportional-integral-derivative
(PID) control B.1.4. Previously, this problem was only studied without uncertainty.
In this case, the error was considered to be δ = [0.4, 0.29, 0.01]T which corresponds
to a 1% error and ε = [0.10.10.1]T .

GCM was executed with an initial grid of N = [30, 18, 8]T and 3 subdivision steps.
Figure 5.3 shows the Pareto optimal solutions. Figure 5.4 shows the nearly optimal
solutions. Figure 5.5 shows the approximation of the lightly robust optimal solutions
and their worst-case image found by GCM as well as the Pareto optimal solutions of
the nominal problem. Note that optimal solutions and lightly optimal solutions have
the same structure. However, there is a ∆2(PQ, PLR) = 1.0525. The running time
was 709.13s.
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Figure 5.3: Approximation of the optimal solutions and their worst-case image found
by GCM.
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Figure 5.4: Approximation of the nearly optimal solutions and their worst-case image
found by GCM.



5.2. A MOEA FOR LIGHTLY ROBUST OPTIMAL SOLUTIONS 133

10
20

30
40

50

10

20

30
1

1.2

1.4

1.6

1.8

2

x 1
x 2

x
3

0

0.2

0.4

0

10

20

30
0

0.1

0.2

0.3

0.4

0.5

f 1
f 2

f
3

Figure 5.5: Approximation of the lightly robust optimal solutions and their worst-case
image found by GCM.

5.2 A MOEA for Lightly Robust Optimal Solu-

tions

In this section, we present an evolutionary algorithm that aims to approximate the
set of lightly robust optimal solutions. An evolutionary algorithm is of high interest
since, when dealing with problems with a higher number of dimensions (n ≥ 5) the cell
mapping algorithm are not able to work due to its computation complexity. First, we
present an external archiver that aim to maintain a representation of the worst cases
for the solutions in PQ,ε. Then, we present the integration of the archiver to a MOEA
an the computation of the lightly robust optimal solutions as a post-processing step.
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Next, we show the numerical results on several academical problems and compare the
results with those of GCM.

5.2.1 Archiver for lightly robust optimal solutions

Now, we present the adaption of ArchiverUpdatePQ,εDx to the computation of the
worst cases for each solution in PQ,ε. As it was mentioned before, in the set-based
case for each solution x the worst case max

δ∈U
F (x + δ) is a set of points (see Figure

2.10). Thus, it is necessary for each solution in the archiver a to keep a representation
of the set of worst cases. Algorithm 18 computes the set of nearly optimal solutions
PQ,ε with a good distribution in both decision an objective space (lines 2-11). When a
solution a is added to the archiver, it also initializes the set of worst cases a.max with
−F (a). Further, if a candidate solution p is close to a solution (line 13), then p will
be used to update the set of worst cases of a (a.max). This process is done by using
the archiver ArchiveUpdatePQ,ε with ε = 0. In this case, the parameter ∆x is used
as the uncertainty (2δ). Note that the archiver in this case is used for maximization
since we are interested in the worst cases (e.g. the evaluation of p, F (p) is multiplied
by −1).

Algorithm 18 A := ArchiveUpdatePQ,wc (P,A0, ε,∆x)

Require: population P , archive A0, ε ∈ Rn+, ∆x ∈ R+, ∆y ∈ R+,∆
∗
x ∈ (0,∆x)

Ensure: updated archive A
1: A := A0

2: for all p ∈ P do
3: if @a1 ∈ A : a1 ≺−ε p and @a2 : d∞(a2, p) ≤ ∆∗x) then
4: a.max← −F (a)
5: A← A ∪ {p}
6: Â = {a1 ∈ A|@a2 ∈ A : a2 ≺−(ε+∆y) a1}
7: for all a ∈ A\Â do
8: if p ≺−(ε+∆y) a and dist(a, Â) ≥ 2∆x then
9: A← A\{a}

10: end if
11: end for
12: else if ∃a1 ∈ A : d∞(a1, p) ≤ ∆∗x) then
13: a.worst← ArchiveUpdatePQ,ε(a.worst, p, 0)
14: end if
15: end for
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5.2.2 Proposed evolutionary algorithm for lightly robust op-
timal solutions

Next, we present the integration of the archiver with NεSGA. We have chosen this
algorithm since it has shown the best capabilities to maintain a representation of PQ,ε
which is the feasible set to search for lightly robust optimal solutions. The algorithm
works as follows: first, NεSGA computes an approximation of PQ,ε and with the use
of the archiver ArchiveUpdatePQ,wc the algorithm is also capable to compute the set
of worst cases in one execution of the algorithm. Then, as a post-processing step the
algorithm filters the worst case using Algorithm 17. Algorithm 19 shows main steps
of the method.

Algorithm 19 LiRo-EMOA

Require: number of generations: G, population size: npop, ε ∈ Rn+, ∆x ∈ R+,
∆y ∈ R+,∆

∗
x ∈ (0,∆x)

Ensure: updated archive LR with the set of lightly robust optimal solutions
1: Generate initial population P1

2: A← ArchiveUpdatePQ,wc(P0, [], ε,∆x)
3: for i = 1 . . . ngen do
4: Select dλ

2
e Parents Qi via Tournament

5: Õi ← SBXCrossover(Qi)
6: Oi ← PolynomialMutation(Õi)
7: P̃i ← Pi ∪Oi

8: F ← Non ε-DominatedSorting(P̃i)
9: Pi+1 = ∅

10: j = 1
11: while |Pi+1|+ |Fj| ≤ npop do
12: NearestNeighborDistance(Fj) . in both parameter/objective space
13: Pi+1 = Pi+1 ∪ Fj
14: j ← j + 1
15: end while
16: Sort(Fi,≺n)
17: Pi+1 = Pi+1 ∪ Fj[1 : npop− |Pi+1|]
18: Ai+1 ← ArchiveUpdatePQ,wc(Oi, Ai, ε,∆x)
19: end for
20: LR← ArchiveUpdatePre(A, [])

Computational complexity of LiRo-MOEA

In this section, we discuss the computational time complexity of each of the algorithms
presented. Let G be the number of generation of the algorithm, |P | the size of the
population and |A| the size of the archiver.
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• ArchiveUpdatePQ,wc: by construction a candidate solution p can only belong to
the neighborhood of a solution a ∈ A. Thus, the complexity remains the same
as ArchiveUpdatePQ,εDx, O(|P ||A|).

• MOEA: as it was stated before the complexity of NεSGA isO(max(G|P |3, (G|P |)2)).

• ArchiveUpdatePre: in the worst case all solutions generated during the search
have to be compared (G|P |). Thus, the complexity of the comparison isO((G|P |)2).
Note that in general the complexity of the archiver is O(|W ||P ||A|) where
W := maxa∈A |a.max|.

From the above discussion it follows that the total time complexity of LiRo-MOEA
is O(max(G|P |3, (G|P |)2)).

5.2.3 Numerical results

In this section, we present the numerical result corresponding the evolutionary algo-
rithm. We performed several experiments in order to validate the novel algorithm.
First, we investigate the effect of the novel ArchiverUpdatePQ,lreDxy. Then, we
validate the use of an external archiver in the evolutionary algorithm. Finally, we
compare the resulting algorithm with the GCM.

In all cases we used the following problems: Deb99, two-on-one, sym-part, ssw,
omni test, Lamé superspheres. Table 5.3 shows the ε, ∆y and ∆x values used for each
problem. Finally, for all cases were measured with the ∆2 indicator.

Table 5.3: Parameters used for all experiments.

Problem ε ∆y ∆x

Deb99 [0.011 0.011] [0.2 0.2] [0.2 0.2]
Two-on-one [0.1, 0.1] [0.1 0.1] [0.02 0.2]
Sym-part [0.15, 0.15] [0.2 0.1] [1 1]
SSW n=3 [0.011, 0.0001] 1

3
ε [1 1 1]

Omni-test [0.01 0.01] [0.05 0.05] [0.1 0.1 0.1 0.1 ]
LSS [0.1 0.1] [0.05 0.05] [0.1 0.1 0.1 0.1 0.1]

Experiment 1: stand-alone archiver

First, we investigate the effect of all the archivers where we use uniform sampling
of the candidate solutions within the domain Q. Here, we study the MOPs Two-on
one, Sym-part (Rudolph et al. (2007)), and SSW (Schaeffler et al. (2002)), generating
20 files with 100, 000 uniformly sampled candidate solutions. Figure 5.6 show the
median results of each archive on the benchmark problems with respect to ∆2 in
decision space.
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Figure 5.6: Set lightly robust optimal solutions found by the archiver.
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Experiment 2: MOEA for lightly robust optimal solutions

Now, we compare the proposed algorithm with the GCM results obtained previously.
To this end, 20 independent experiments were performed with the following param-
eters: 200 individuals, 200 generations, crossover rate = 0.9, mutation rate = 1/n,
eta c = 20 and eta m = 20. Figures 5.7 show the median approximations to the
lightly robust optimal solutions obtained by LiRo-MOEA. Table 5.4 shows the mean
and standard deviation of the ∆2 values obtained by the algorithms in decision space.
From the results, we can observe that GCM outperfoms the evolutionary algorithm
in all cases. This is to be expected since GCM has a global view of the problem.
However, the results of LiRo-MOEA are promising since the algorithm can be scaled
to medium size problems (10 ≤ n ≤ 20).

Table 5.4: ∆2 values for Liro-MOEA and GCM in decision space.

Problem GCM LiRo-MOEA
Deb99 0.0015 0.0558(0.0288)
Two-on-one 0.0124 0.0408(0.0038)
Sym-part 0.0739 1.4070(0.9794)
SSW 8.2199 12.470(2.1213)

Application to Non-uniform beam

Now, we present the results of the novel algorithm on the non-uniform beam presented
before. The parameters were set as follows:

• Population size: 500

• Number of generations: 200

• The rest of the parameters were set as before

Figure 5.8 shows the approximated set PQ,ε. From the results, we can observe that
the algorithm is capable to detect 52 solutions from the set of approximate solutions
found. In this case, we can observe that some of these solutions belong to the nominal
Pareto front, while others are dominated solutions but they are non-dominaeted in
the re sense.
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Figure 5.7: Set lightly robust optimal solutions found with LiRo-MOEA.
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Figure 5.8: Approximation of the set of lightly optimal solutions obtained with LiRo-
MOEA.



Chapter 6

Conclusions and Future Work

In this work, we have studied in depth different set oriented methods for multi-
objective optimization problems. We have analyzed the advantages that knowledge
acquired during the search can give to compute different sets of interest, namely the
Pareto set/front, set of approximate solutions and the set of lightly robust optimal
solutions.

This is an important issue since most of the current research in multi-objective op-
timization focuses on the computation of the Pareto set/front. However, the decision
maker could be interested in different solutions. In particular this is the case, if the
solutions are sensitive to perturbations. The computation of the set of approximate
solutions offers the decision maker solutions that have a small deterioration with re-
spect to the Pareto optimal ones. Thus, this kind of solutions can be of interest as
backup solutions. Further, the set of lightly robust optimal solutions offer solutions
that are also close to the optimal ones and that they are possible to implement.

The material presented in this thesis contributes to increase the knowledge about
techniques and to motivate their use to both analyze and solve a given problem. Also,
we have shown the potential of the use of knowledge acquired during the search to
look for different sets of solutions. In the following, we state our conclusions as well
as future paths for research.

6.1 Conclusions

First we have investigated cell mapping techniques for the numerical treatment of
multi-objective optimization problems. Cell mapping techniques have been designed
for the global analysis of dynamical systems that replace the common point-to-point
by a cell-to-cell mapping via a discretization of both space and time. We have adapted
the cell mapping techniques to the given context via considering dynamical systems
derived from descent methods and have argued that the resulting algorithm is in
particular beneficial for the thorough investigation of small problems. That is, the new
algorithms are capable of detecting the global Pareto set in one run of the algorithm
which is of course important for the related decision making process. For the latter,

141
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however, also other points are of potential interest such as locally optimal solutions
and approximate solutions which can serve as backup solutions for the DM in case
he/she is willing to accept a certain deterioration measured in objective space. The
cell mapping techniques are capable of delivering all the sets after the same run of
the algorithm in the same approximation quality as the computed Pareto set. While
satisfactory algorithms for the computation of the Pareto set exist, such as specialized
evolutionary algorithms, this does not hold for the local and approximate solutions.
The cell mapping techniques presented in this work offer hence a surplus in the design
of small dimensional problems.

Next, we applied the novel and efficient cell mapping method for multi-objective
optimal design of full state feedback and PID controls. The time-domain specifications
of the step response are used as the objective function. A constraint on the closed-loop
eigenvalue of the linearized system about the steady-state equilibrium solution is also
imposed that provides the stability robustness of the optimized PID controls. In the
first run of the hybrid algorithm, the directed search for the SCM method delivers a set
of cells that covers the Pareto set. In the second run, a gradient search is applied to the
covering set of cells and delivers much fine resolution of the global optimal solutions
of Pareto set and Pareto front. We have found that the hybrid algorithm for the
SCM method delivers substantial computational savings while obtaining comparably
accurate solutions for the Pareto set and Pareto front. Simulations of the multi-
objective optimal full state feedback controls for an inverted pendulum and a flexible
rotary arm are presented to validate the SCM design method. The controls are
optimally designed for 4 and 5 design parameters respectively, which represents a
numerical challenge in MOP studies. The simulations show that the controls in the
Pareto set are closely clustered indicating the tight range of performances in tuning
the control gains when multi-objectives are considered in the design. What is more,
the hybrid searching algorithm provides an effective tool for quantitative design of
controls for non-linear dynamic systems.

Then, we have addressed the problem of computing suitable representations of the
entire set of approximate solutions of a given multi-objective optimization problem
with stochastic search algorithms. Since the computation of the entire set may be
too costly in many applications, we have proposed an archiving strategy that aims
to capture a good representation of PQ,ε in both decision and objective space and
we have studied its limit behavior as well as the size bounds. We have investigated
the novel archiver empirically in order to illustrate the behavior and applicability of
the archiver on some benchmark problems as well as for a non-uniform beam prob-
lem. The numerical results indicate that the archiver ArchivePQ,εDxy that aims for
a discretization of both decision and objective space might be of most practical use
for the use within stochastic search algorithms though the adjustment of the right
discretization parameter value in decision space might be a delicate issue. Finally, we
used the archivers within a stochastic search algorithms. In this case the interplay of
generator and archiver was a delicate problem including a proper balance of explo-
ration and exploration, a suitable density distribution for all generational operators.
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The results show that the novel algorithm is competitive against other methods of
the state of the art on academic problems.

After that, we have proposed a novel multi-objective evolutionary algorithm which
aims to compute the set of approximate solutions. The algorithm uses the archiver
ArchivePQ,εDxy in order to maintain a well-distributed representation in both decision
and objective space. The results show that the novel algorithm is competitive against
other methods of the state of the art on academic problems as well as the non-uniform
beam problem.

Further, we have investigated cell mapping techniques for the numerical treatment
of uncertain multi-objective optimization problems in terms of lre. The new algorithm
is capable of detecting solutions that have almost the same performance than the
optimal solutions but that are more reliable. This gives the decision maker solutions
that are less susceptible to uncertainties and thus are good candidates to implement.
The main advantage of the novel algorithm is that lr solutions can be computed with
the same effort as computing optimal solutions in terms of function evaluations. It
is important to notice that this algorithm is capable to deliver approximations to the
Pareto set/front, set of approximate solutions and the set of lightly optimal solutions
in one execution of the algorithm.

Finally, we have proposed a novel multi-objective evolutionary algorithm which
aims to compute the set of lightly optimal solutions. In this case, we have found
that the external archiver integrated with the evolutionary algorithm is capable to
approximate the set of interest on several academical problems. This shows that it is
possible to extract information from past solutions (individuals) in order to improve
the quality of the result.

6.2 Future Work

For future work, there are many interesting open questions to address. Though
the results presented in this work regarding the cell mapping techniques are very
promising, there are some points that have to be addressed in order to make the
algorithm applicable to a broader class of problems. The main drawback of the cell
mapping techniques is that they are restricted to small dimensional problems. Thus,
it is of high interest to parallelize the algorithms since the core of the algorithm is
the mapping of each cell which can be realized with small effort. We expect thus that
the use of massive parallelism realized e.g. via GPUs will lead to an applicability to
higher dimensional problems.

Next, it is of high interest to design bounded versions of the archiver techniques.
This can improve their applicability while making them easier to integrate with evo-
lutionary algorithms. Since, it would not be necessary to give explicitly the values
for ∆x and ∆y. Then, the knowledge acquired during the search could be further
exploited by using it to build meta-models and performing a search in them. Further,
from the evolutionary algorithms perspective, it is interesting to apply different kind
of meta-heuristics on this kind of problems to exploit their advantages. For instance,
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MOPSO, that have a high pressure towards the set of interest, are a good candidate
as search engine of the first subpopulation of NεGA.

Finally, there exists several definition and kinds of uncertainty. In this work, we
have focused on lre and uncertainty in decision variables, such as the one found in
manufacturing tolerance errors. Thus, it would be interesting to extend the algorithm
to the treatment of other kinds and definitions of uncertainty. For instance, it would
be interesting to compute the confidence radius of a given basin of attraction. It also
opens the possibility to design an archiving technique to get an estimation of the
domain of attraction of a given MOP and to integrate the techniques with a multi-
objective evolutionary algorithm. Finally, it would be interesting to further test the
novel methods on real world applications.



Appendix A

Test Functions

In this Appendix, we define the MOPs used in this thesis.
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Table A.1: MOPs used in this work.

Problem Description Comments

Conv2

F (x) = (f1(x), f2(x)), where:

f1(x1, x2) = (x1 − 1)
2

+ (x2 − 1)
4
,

f2(x1, x2) = (x1 + 1)
2

+ (x2 + 1)
2
.

− 3 ≤ x1 ≤ 3

− 3 ≤ x2 ≤ 3

Conv3

F (x) = (f1(x), f2(x), f3(x)), where:

f1(x1, x2) = (x1 − 1)
4

+ (x2 − 1)
2

+ (x3 − 1)
2
,

f2(x1, x2) = (x1 + 1)
2

+ (x2 + 1)
4

+ (x3 + 1)
2
,

f2(x1, x2) = (x1 + 1)
2

+ (x2 + 1)
4

+ (x3 + 1)
4
.

− 3 ≤ x1 ≤ 3

− 3 ≤ x2 ≤ 3

− 3 ≤ x3 ≤ 3

Deb99

F (x) = (f1(x), f2(x)), where:

f1(x1, x2) = x1,

f2(x1, x2) =
g(x2)

x1
,

where:

g(x) = 2− exp

(
−
(
x2 − 0.2

0.004

)2)
− 0.8 exp

(
−
(
x2 − 0.6

0.4

)2)
0 < x1 ≤ 1

0 ≤ x2 ≤ 1

Two-on-one

F (x) = (f1(x), f2(x)), where:

f1(x) = (x1 − t1(c + 2a) + a)
2

+ (x2 − t2b)
2

+ δt

f2(x) = (x1 − t1(c + 2a)− a)
2

+ (x2 − t2b)
2

+ δt

where

t1 = sgn(x1) min

(⌈ |x1| − a− c/2
2a + c

⌉
, 1

)
,

t2 = sgn(x2) min

(⌈ |x2| − b/2
b

⌉
, 1

)
,

δt =

{
0 for t1 = 0 and t2 = 0
0.01 else

a = 0.5

b = 5

c = 5

− 10 ≤ x1 ≤ 10

− 10 ≤ x2 ≤ 10

Sym-part

F (x) = (f1(x), f2(x)), where:

f1(x) = (x1 − t1(c + 2a) + a)
2

+ (x2 − t2b)
2

+ δt

f2(x) = (x1 − t1(c + 2a)− a)
2

+ (x2 − t2b)
2

+ δt

where

t1 = sgn(x1) min

(⌈ |x1| − a− c/2
2a + c

⌉
, 1

)
,

t2 = sgn(x2) min

(⌈ |x2| − b/2
b

⌉
, 1

)
,

δt =



0 for t1 = 0 and t2 = 0
0.01 for t1 = −1 and t2 = 0
0.02 for t1 = 1 and t2 = 0
0.03 for t1 = 0 and t2 = −1
0.04 for t1 = −1 and t2 = −1
0.05 for t1 = 1 and t2 = −1
0.06 for t1 = 0 and t2 = 1
0.07 for t1 = −1 and t2 = 1
0.08 for t1 = 1 and t2 = 1

a = 0.5

b = 5

c = 5

− 20 ≤ x1 ≤ 20

− 20 ≤ x2 ≤ 20

SSW

F (x) = (f1(x), f2(x)), where:

f1(x) =
n∑

j=1

xj ,

f2(x) = 1−
n∏

j=1

(1− wj(xj)),

wj(z) =

 0.01 · exp(−( z
20

)2.5) for j = 1, 2

0.01 · exp(− z
15

) for j > 2

0 ≤ x1 ≤ 40

0 ≤ x2 ≤ 40

0 ≤ x3 ≤ 40

Omni-test

F (x) = (f1(x), f2(x)), where:

f1(x) =
n∑

j=1

sin(πxi),

f2(x) =
n∑

j=1

cos(πxi),

0 ≤ xi ≤ 6, for: i = 1, . . . , 5

Lamé super-
spheres

F (x) = (f1(x), f2(x)), where:

f1(x) = (1 + r) cos(x1),

f2(x) = (1 + r) sin(x1),

where

r = sin
2
(πξ),

ξ =
1

n− 1

n∑
i=2

xi

0 ≤ x1 ≤
π

2
,

1 ≤ xi ≤ 5, for: i = 2, . . . , 5



Appendix B

Real World Problems

B.1 Multi-objective Optimal PID Controller De-

sign

B.1.1 Time-Delayed Control System

Time delay is a common phenomenon in control systems due to signal transmission
delay. The time delay may deteriorate the control performance and stability. For
linear delayed system, the transfer function in the frequency domain leads to a tran-
scendental character equation that helps determine the stability region for controller
design. Unfortunately, the frequency domain analysis cannot be applied to nonlinear
systems. In this section, we present an approach to design multi-objective optimal
PID controls for linear and nonlinear systems with feedback time delay.

Consider a second order nonlinear dynamical system with time delays given by,

ẋ1 = x2 (B.1)

ẋ2 = f (x1, x2, x1 (t− τs) , x2 (t− τs)) + u (t− τc) ,

where f is a nonlinear function of its arguments. τs is a system delay, and τc is a
control delay. We consider a PID feedback control given by

u(t) = kp [r(t)− x1(t)] + ki

∫ t

0

[
r(t̂)− x1(t̂)

]
dt̂− kdx2(t), (B.2)

where r(t) is a reference input, kp, ki and kd are the PID control gains. We introduce
a third state variable x3 such that ẋ3(t) = r(t) − x1(t). The extended system is
governed by the following equations.

ẋ1 = x2,

ẋ2 = f (x1, x2, x1 (t− τs) , x2 (t− τs)) + u (t− τc) ,
ẋ3 = r(t)− x1(t), (B.3)
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where

u(t) = kp [r(t)− x1(t)] + kix3 − kdx2(t). (B.4)

Assume that the closed-loop system is stable and r(t) is a step function. In
steady-state, we have a unique equilibrium solution,

x∗1 = 1, x∗2 = 0,

x∗3 = − 1

ki
f(1, 0, 1, 0). (B.5)

It should be pointed out that the uncontrolled nonlinear system may have multiple
equilibrium solutions. The stability of the steady state response can be analyzed by
linearizing the system. Let z = [z1, z2, z3]T be the perturbation of the system away
from the steady state x∗ = [x∗1, x

∗
2, x
∗
3]T . We have

ż(t) = Az(t) + Asz (t− τs) + Acz (t− τc) , (B.6)

where A, As and Ac are matrices of the linearized system and are functions of the
control gains. The stability of the linearized system can be analyzed by the method
of continuous time approximation (CTA) Sun (2008); Song and Sun (2011).

B.1.2 Multi-objective Optimal Design Formulation

As an example of MOPs, we consider the multi-objective optimal control design with
the gains k = [kp, ki, kd]

T as design parameters for the system discussed the following
examples. Peak time and overshoot are common objectives in time domain control
design (Liu and Daley, 1999, 2000; Panda, 2011). We consider the multi-objective
optimization problem (MOP) for the optimal control gain k to minimize the following
three objectives

min
k∈Q
{tp,Mp, eIAE} subject to the stability of the system (B.6), (B.7)

where Mp stands for the overshoot of the response to a step reference input, tp is the
corresponding peak time and eIAE is the integrated absolute tracking error

eIAE =

∫ Tss

0

∣∣r(t̂)− x1(t̂)
∣∣ dt̂. (B.8)

where r(t) is a reference input and Tss is the time when the response is close to be
in the steady state. The closed-loop response of the system for each design trial can
be computed with the help of numerical integration programs of delayed differential
equations.
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B.1.3 First Order Plus Time Delay System

Consider a first order plus time delay (FOPTD) system,

X(s) =
K

Ts+ 1
e−τsU(s), (B.9)

where K and T are constants and τ is the time delay. We take K = 1, T = 1,
τ = 0.25 in this study. We augment the plant with an additional state x2 such that
ẋ2 = r(t) − x1(t) where r(t) is a reference input and x1 = x. The augmented state
equations and the control read

ẋ1 = − 1

T
x1(t) +

K

T
u(t− τ), (B.10)

ẋ2 = r(t)− x1(t), (B.11)

u(t) = kp[r(t)− x1(t)] + kix2(t). (B.12)

We consider the MOP design of the feedback control with respect to the gains
k = [kp, ki]

T . The space of the parameters is chosen as follows,

Q = {k ∈ [0, 4]× [0, 5] ⊂ R2}. (B.13)

Design objectives are selected as shown in the next equation

min
k∈Q
{tp,Mp, eIAE} subject to the stability of the system (B.6), (B.14)

The stability of closed loop system near setpoint is computed as

λ = max {Re [eig(A)]} (B.15)

where A is the CTA discretized coefficient matrix. To further ensure control quality,
we impose constrains over objectives

{tp,Mp, eIAE, λ} ≤ {1.5s, 5%, 0.8,−1.5} (B.16)

B.1.4 Second Order Oscilator

Next, we consider a second order oscillator subject to a proportional-integral-derivative
(PID) control (Hernández et al., 2013).

ẍ+ 2ζωnẋ+ ω2
nx = ω2

nu(t), (B.17)

where ωn = 5, ζ = 0.01,

u(t) = kp [r(t)− x(t)] + ki

∫ t

0

[
r(t̂)− x(t̂)

]
dt̂− kdẋ(t), (B.18)
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r(t) is a step input, kp, ki and kd are the PID control gains. We consider the MOP

with the control gains k = [kp, ki, kd]
T as design parameters. The design space for the

parameters is chosen as follows,

Q = {k ∈ [10, 50]× [1, 30]× [1, 2] ⊂ R3}. (B.19)

Peak time and overshoot are common in time domain control design objectives Liu
and Daley (1999, 2000); Panda (2011). We consider the multi-objective optimization
problem to design the control gain k,

min
k∈Q
{tp,Mp, eIAE}, (B.20)

where Mp stands for the overshoot of the response to a step reference input, tp is the
corresponding peak time and eIAE is the integrated absolute tracking error

eIAE =

∫ Tss

0

∣∣r(t̂)− x(t̂)
∣∣ dt̂, (B.21)

where r(t) is a reference input and Tss is the time when the response is close to be
in the steady state. The closed-loop response of the system for each design trial is
computed with the help of closed form solutions. The integrated absolute tracking
error eIAE is calculated over time with Tss = 20s. In this case, the error was considered
to be δ = [0.4, 0.29, 0.01]T which corresponds to a 1% error and ε = [0.10.10.1]T .

B.1.5 Second Order Linear-Time Invariant System

Consider a second order oscillator subject to a delayed PID control.

ẍ+ 2ζωnẋ+ ω2
nx = ω2

nu(t− τ), (B.22)

where ωn = 5, ζ = 0.01, τ = 0.1,

u(t) = kp [r(t)− x(t)] + ki

∫ t

0

[
r(t̂)− x(t̂)

]
dt̂− kdẋ(t), (B.23)

r(t) is a step input, kp, ki and kd are the PID control gains. We consider the MOP

in Section B.1.2 with the control gains k = [kp, ki, kd]
T as design parameters. The

design space for the parameters is chosen as follows,

Q = {k ∈ [0, 1]× [0, 0.5]× [2, 5] ⊂ R3}. (B.24)

Objectives of this system are the same as the previous one and the performance
constrains are set as

{tp,Mp, eIAE, λ} ≤ {1.5s, 5%, 0.8,−1}. (B.25)
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B.1.6 Nonlinear Duffing System

Next, we study the Duffing system such that

f (x1, x2, x1 (t− τs) , x2 (t− τs)) = −ax1 − bx3
1 − cx2, (B.26)

where f is the term of the general second order system defined in Equation (B.1).
a = −1, b = 0.25 and c = 0.01. Note that the system at the origin of the state
space is unstable. The control time delay is 0.05 seconds. The system is under the
delayed PID control in Equation (B.4). We study the multi-objective optimization
problem defined in Equation (B.7) to design the control gain k. The time-domain
response of the Duffing system for each selection of the control gain is generated
with the delayed differential equation integration algorithm (dde23) in Matlab. The
integrated absolute tracking error eIAE is calculated over time with Tss = 20 seconds.
The design space for the parameters is chosen as follows,

Q = {k ∈ [80, 120]× [10, 30]× [10, 30] ⊂ R3}. (B.27)

We impose the constraints

[tp,Mp, eIAE, λ] ≤ [2.5, 6%, 0.75,−0.25], (B.28)

The constraint on the eigenvalues is intended to provide the stability robustness
of the optimized control system. Since the original system is nonlinear, the stability
condition should be imposed on the steady-state equilibrium solutions.

B.2 Multi-objective Optimal Full State Feedback

Control Design

B.2.1 Regulation Control: An Inverted Pendulum

An inverted pendulum model is used to study the full state feedback regulation control
in this subsection. The model of the 2DOF inverted pendulum is given below.

ẋ(t) = Ax(t) + Bu(t), (B.29)

where

A =


0 0 1 0
0 0 0 1
0 53.1012 −0.6586 0.6575
0 98.3814 −0.6575 1.2182

 , (B.30)

B = [0, 0, 274.4012, 273.9627]T . (B.31)

The state space vector is given as x = [θ, α, θ̇, α̇]T where θ denotes the angle of
a rotating base and α denotes the angle of the pendulum consisting of a rigid rod.
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Figure B.1: The rotary flexible joint experimental setup made by Quanser.

α = 0 represents the upward vertical position of the pendulum. The model of the
pendulum is provided by Quanser.

A full state feedback control u = −kx with k = [kp,θ, kp,α, kd,θ, kd,α] is applied
to stabilize the system at the upward vertical position. The first priority of the
control design is to guarantee the robust stability of the closed-loop system. Thus,
we select the maximum real part of the closed loop eigenvalues denoted by λmax

as an objective. Since the goal of control is to make the pendulum stand up, we
consider the maximum absolute oscillatory response max |α| of α when α is in the
vicinity of the upward vertical position. The peak time tp,α when α reaches max |α|
is also considered as a measure of the regulation speed. The system settling time ts
is considered when both θ and α reach their steady-state positions. Therefore, the
full state control MOP design of the inverted pendulum can be formulated as

min
k∈Q
{tp,α,max |α|, ts, λmax}. (B.32)

B.2.2 Tracking Control: A Flexible Rotary Arm

Here, we present the full state feedback tracking control of a flexible rotary arm. The
experimental apparatus by Quanser is shown in Figure B.1.

Feedback controls are often designed to achieve the best tracking response of the
system according to the time domain specifications such as the peak time, settling
time, overshoot, and steady-state tracking error. The state vector describing the
system dynamics is given as x = [θ, α, θ̇, α̇]T where θ is the angle of the base and α is
the relative angle of the flexible arm with respect to the base. The control goal is to
let θ follow a given command while keeping the vibration of α minimal.

The state equation for this system has the same form as Equation (B.29) with the
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state matrices given by

A =


0 0 1 0
0 0 0 1
0 628.5625 −40.4033 0
0 −1024.7473 40.4033 0

 , (B.33)

B = [0, 0, 61.7567,−61.7567]T . (B.34)

To achieve tracking control, we need to augment the original dynamic system by
introducing an additional state variable xi =

∫ t
0
(θ− θd)ds. The state equation for the

augmented system can be written as

ẋe(t) = Aexe(t) + Beu(t) + Geθd(t), (B.35)

where xe(t) = [xT , xi]
T is the augmented state vector. Ae,Be and Ge are given as

Ae =

[
A 0
e 0

]
,Be =

[
B
0

]
,Ge =

[
0
−1

]
, (B.36)

where e = [1, 0, 0, 0]T .
The full state feedback control for the augmented system is given as

u(t) = −kexe(t) + kp,θθd(t), (B.37)

where
ke = [kp,θ, kp,α, kd,θ, kd,α, ki,θ]. (B.38)

The performance indices to be minimized are the overshoot Mp,θ, settling time ts,θ
and absolute integrated error eIAE of θ. The control objectives of θ are selected to
optimize the tracking control. In order to suppress the unwanted vibration of α, the
maximum absolute response of α, denoted as max |α|, and the settling time of ts,α are
also considered. All these objectives serve the control mission that θ follows the given
command and α oscillates as little as possible. To ensure the robust stability of the
closed loop system, we also minimize the maximum real part λmax of the closed-loop
eigenvalues, and even impose a constraint on it. The MOP formulation of this control
design can be stated as

min
ke∈Q
{ts,θ,Mp,θ, eIAE,max |α|, ts,α, λmax}. (B.39)

The lower and upper bounds of the five feedback gains are chosen to be [0,−2.5, 0, 0, 0]
and [10, 0, 1.5, 1.5, 0.5] so that

Q = {ke ∈ R5 | [0,−2.5, 0, 0, 0] ≤p k ≤p [10, 0, 1.5, 1.5, 0.5]}. (B.40)

We further narrow down the choices by imposing a performance constraint such
that

{ts,θ,Mp,θ, eIAE,max |α|, ts,α, λmax} ≤p [2s, 8%, 0.1, 5◦, 1s,−0.02]. (B.41)
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