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Resumen

La lógica de Markov es un lenguaje para representar conocimiento que combina

lógica y probabilidades, creando un sistema eficiente de inferencia y aprendizaje. La

inferencia implica sustitución y búsqueda. La sustitución transforma la representación

lógica en clausulas proposicionales con pesos que codifican una Red Markov, formando

la red lógica de Markov (MLN) sustituida. La búsqueda sobre una MLN sustituida

provee de inferencia probabiĺıstica. El aprendizaje determina los pesos de las clausulas

o su estructura, aplicando inferencia repetidamente. Como el espacio de soluciones

de una MLN puede crecer rápidamente, su procesamiento se vuelve muy costoso, por

lo que se ha buscado mejorarlo. El paralelismo en multinúcleos se utiliza en sistemas

para MLNs como Tuffy y RockIt, pero no conocemos ningún otro trabajo basado en

el paralelismo masivo que las Unidades de Procesamiento Gráfico (GPUs) proveen.

Esta tesis presenta el diseño, implementación y evaluación de plataformas paralelas

para MLNs en GPUs. Diseñamos la paralelización de las etapas más lentas

del procesamiento de MLNs, describiendo los problemas encontrados y nuestras

propuestas para solucionarlos. Para evaluar nuestros diseños los integramos en

Tuffy y RockIt, pues crear todo desde cero va más allá del enfoque de esta

tesis. Nuestras contribuciones incluyen: sustitución procesada en paralelo utilizando

nuestro sistema de programación lógica; búsqueda particionando y resolviendo un

problema de satisfacibilidad booleana con nuestro algoritmo paralelo o un problema de

programación lineal; aprendizaje de parametros con sustitución paralela y resolución

de un problema de optimización, ajustado con nuestro algoritmo de muestreo paralelo;

y aprendizaje de la estructura utilizando Programación Lógica Inductiva, cuya

operación más intensiva es calculada con nuestro sistema de programación lógica.

Nuestras plataformas fueron probadas con aplicaciones de la literatura y

funcionaron muy bien, pues algunas fueron procesadas en minutos mientras otros

sistemas no terminaron después de horas. Además, los componentes base de nuestras

plataformas también funcionaron bien y pueden usarse como sistemas autónomos.
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Abstract

Markov Logic is a language for knowledge representation that combines logic and

probabilities, providing a powerful framework for inference and learning tasks.

Inference involves grounding and search. Grounding transforms logic representations

into a set of weighted propositional clauses that encode a Markov network, the

grounded Markov logic network (MLN). Search over the grounded MLN provides

probabilistic inference. Learning can be used to find clause weights or structure,

by applying inference repeatedly. As the solution space of MLNs can grow rather

quickly, their processing can become very expensive, motivating research on their

optimization. Multicore parallelism is already used in some well known MLN systems

like Tuffy and RockIt, but we know of no other work based on bulk parallelism that

Graphics Processing Units (GPUs) support.

This document presents the design, implementation and evaluation of parallel

MLN platforms for GPUs. We have designed the parallelization of the most time

consuming parts of the MLN process, describing the design issues encountered in both

MLNs and GPUs, and our approaches to solving said issues. To evaluate our designs

we integrated them into Tuffy and RockIt, as creating a whole system from scratch

is beyond the scope of this work. Our contributions include: grounding processed

in parallel using our logic programming system; search performed by partitioning

and solving a satisfiability problem with our parallel algorithm or an integer linear

programming problem; parameter learning through parallel grounding and solving an

optimization problem, whose parameters are adjusted through our parallel sampling

algorithm; and structure learning using Inductive Logic Programming, whose most

compute intensive operation is also solved with our parallel logic programming system.

Our platforms were tested with applications from the literature and performed

very well, with some applications being processed in minutes while other systems

could not finish after several hours. Moreover, the core components of our platforms

also performed well and can be used as stand-alone systems for general applications.
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Chapter 1

Introduction

This chapter provides a short explanation on Markov Logic Networks (MLNs), their

advantages and the problems they currently face. We begin with the motivation and

the statement of the problem that led to this thesis work. Then, we present our

objectives and our contributions, followed by an overview of the following chapters.

1.1 Motivation

An MLN combines a first-order logic (FOL) language as relational representation and

Markov networks as probabilistic representation. In practice, an MLN application

is a Knowledge Base (KB), i.e., a database plus a set of FOL formulas with

weights [24, 98], such that these weighted formulas establish soft constraints on the

worlds (truth assignments to formulas): worlds that violate an MLN formula are less

likely to exist, but still possible. In contrast, FOL formulas are hard constraints: a

world that violates any formula is not possible.

Many of the shortcomings of logic like non-flexible constraints and inconsistencies

when merging multiple KBs are solved in MLNs with the help of their probabilistic

model. In addition, the probabilistic model benefits from the expressive power of

FOL, as complex statistical problems can be represented with a simple, easy to

understand syntax. MLNs form a simple but powerful language that is the basis of

1
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Figure 1.1: Phases of MLN processing and their steps with the most common solutions used.

various systems for classification [58], information extraction [59], Natural Language

Processing (NLP) [100], among others.

As shown in Figure 1.1, MLN processing is divided in two independent phases:

inference and learning. Inference in this thesis work (there are many kinds as

described in Section 2.4.1) is called Maximum a posteriori and is the process of

finding the most probable world of an MLN, requiring two compute intensive steps:

a) grounding which involves assigning values to all variables in the formulas given

some evidence data, by using a FOL system like Prolog or Datalog [116, 117], or

a Relational Database Management System like MySQL or PostgreSQL; and, after

partitioning the Markov Random Field [56] (MRF, an undirected graphical model

also called Markov network) formed by the ground formulas, we proceed to b) search

the MRF, which involves finding, for each ground formula, if said formula is true
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or false by solving a weighted satisfiability problem (also called weighted MaxSAT)

using algorithms like MaxWalkSAT [53] or by solving a mathematical optimization

problem with Gurobi [149] or a similar solver. Note that the search is bicoloured

because it can be performed by both CPU and GPU at the same time.

The weights of formulas can be learnt by d) grounding the formulas, and then

solving an optimization problem (different from the one used in the search step)

using iterative algorithms like Diagonal Newton, Scaled Conjugate Gradient, amongst

others [24, p. 47]. The parameters of these algorithms are adapted at each iteration

through e) sampling, using techniques like Gibbs sampling or MC-SAT [94]. Finally,

formulas can also be learnt with several techniques like Inductive Logic Programming

(ILP) [84] with some modifications on the way formulas are evaluated: a large number

of candidate formulas are iteratively proposed and c) evaluated (in a process similar

to the grounding) using some training data, stopping once good formulas are found.

1.2 Problem statement

As it can be seen, MLNs are a powerful and flexible framework with many

applications. MLNs are the interface layer that artificial intelligence requires in

order to easily bridge its basic tasks like inference and learning, with high-level

applications like robotics, NLP, among others [24, p.13]. However, MLN processing

is quite complex, with several components (e.g., algorithms and systems) working

together. Moreover, some of these components have high worst-case time complexities

like the grounders (Prolog, Datalog) which are EXPTIME-complete [17] (i.e., its

worst-case scenario can be deterministically solved in exponential time), ILP which

is NEXPTIME-complete [41] (i.e., same as EXPTIME-complete, but using stochastic

algorithms) and MaxWalkSAT which is NP-Hard [12]. If even a single component

delays, the whole MLN processing will suffer greatly, with even “small” MLNs (i.e.,

those with a small amount of evidence data and/or few formulas) taking hours or

days to produce results, if any.
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Several systems have tried, with varying degree of success, to efficiently compute

MLNs by taking advantage of various techniques including multicore parallelism [88,

99, 90]. However, for many real world applications with evidence data not exceeding

a few hundred MBs, the processing time still remains unacceptably high. Our

proposed solution is to use Graphics Processing Units (GPUs) to process MLNs.

GPUs are high-performance many-core processors capable of very high computation

and data throughput [154]. GPUs are now used in a wide variety of applications [153],

including gaming, data mining, bioinformatics, chemistry, finance, numerical analysis,

imaging, weather, etc. Such applications are usually accelerated by at least an order

of magnitude, but accelerations of 100x or more are common.

1.3 Objectives

The main objective of this thesis work is to design, implement and evaluate GPU-

based platforms for MLN processing.

The specific objectives are:

• Create parallel algorithms for Datalog operators, grounding, satisfiability,

sampling, and ILP.

• Describe our designs and approaches for MLNs on GPUs.

• Implement our approaches into two MLN platforms, using as basis existing

MLN systems.

• Ground using our Datalog engine for GPUs, extended with additional

operations.

• Assemble a GPU library to solve the satisfiability and sampling problems.

• Adapt an existing ILP system to handle parallel FOL clause learning.

• Test our platforms with several applications.
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• Analyse our algorithms for performance improvements.

1.4 Contributions

Our contributions comprise GPU parallel algorithms and designs for the most time

consuming phases and steps of MLN processing:

• Grounding using Datalog (a and d in Figure 1.1, and presented in Section 3.3).

• Search seen as a weighted MaxSAT problem (b, Section 3.4).

• Weight learning using Diagonal Newton with MC-SAT sampling (e, Section 3.5).

• FOL clause learning based on ILP (c, Section 3.5), which can be extended for

MLN clause learning by changing the clause evaluation function.

These novel designs are important since they allow a better understanding of

the parallel processing of MLNs, Datalog programs, satisfiability problems, and

ILP. Moreover, they can be used to perform further, yet undiscovered efficiency

optimizations or as the basis for other similar designs (e.g., the Datalog operations

designs can be used in other FOL engines like Prolog, or the parallel MaxWalkSAT

design can be used to parallelise other satisfiability solvers like ManySAT).

Our contributions also include several systems that have been thoroughly

optimized and tested:

• GPU-Datalog, a parallel Datalog engine which can be used to compute general

Datalog programs (and more thanks to its additional operators not part of the

Datalog standard) with great speed-ups.

• A satisfiability and sampling library called GPUSATLIB, which includes the

MaxWalkSAT and SampleSAT [119] algorithms for solving and sampling general

MaxSAT problems.
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• An ILP system based on GPU-Datalog and Aleph, which accelerates clause

learning in FOL.

• The MLN platform called GPU-Tuffy which computes the inference problem

as a weighted MaxSAT problem, using GPU-Datalog to perform the grounding

and our GPUSATLIB library to solve the weighted MaxSAT problem. It can

also compute clause weights in parallel using GPU-Datalog and GPUSATLIB.

• GPU-RockIt, which is another MLN platform that solves the inference problem

as an optimization problem, using GPU-Datalog to perform the grounding.

We believe these contributions will significantly advance the state of the art of

Datalog, ILP, and MLNs. Moreover, we propose in Chapter 6 an extensive future

work that would further enhance the current state of the art. To the best of our

knowledge, these contributions present the first extension of Datalog for GPUs (the

original version is also our work [74]), the first use of Datalog for MLN grounding,

the first MLN GPU-parallel grounding, the first GPU parallel weighted MaxWalkSAT

algorithm, the first GPU-parallel satisfiability-based search on MLNs, the first GPU-

parallel SampleSAT algorithm, the first GPU-parallel weight learning approach in

MLNs, the first GPU-parallel ILP system, and the first GPU-parallel MLN platforms,

GPU-Tuffy and GPU-RockIt.

1.5 Document Structure

This thesis is structured in six self-contained chapters. Next we present a small

overview of the most important topic of each chapter.

1.5.1 Chapter 2. Background

Since MLNs are a complex framework whose processing combines several subjects,

this chapter aims to familiarise the reader with all the necessary subjects, in order to

fully understand MLNs by providing an overview of each subject and references to
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further reading. The subjects covered include: logic with an emphasis on FOL and

logic programming; optimization along with some of the most well-known algorithms

for both constrained and unconstrained problems; the general MLN framework with

a step-by-step example, a comparison with similar frameworks, and some interesting

applications; all types of inference that can be applied to MLNs and the steps

involved including grounding; and MLN weight and structure learning along with

their algorithms that can be used to refine an existing MLN or create one from

scratch.

1.5.2 Chapter 3. Parallel Processing of MLNs on GPUs

This chapter begins by presenting a brief introduction of the current MLN systems and

explaining our choice of GPUs as the main hardware platform and their most relevant

concepts. The chapter then continues with the design issues we faced with both GPUs

and the MLN process including the GPU-CPU computation-to-communication ratio,

the limited amount of GPU memory, and the serial nature of the MLN process.

Finally, we describe our parallel approach and the state of the art for each MLN

task: grounding based on FOL and Datalog; search based on satisfiability with the

MaxWalkSAT algorithm in one proposal and based on integer linear programming on

the other; and learning based on parallel grounding and optimization with sampling

using MC-SAT for weight learning, and based on ILP with a modified evaluation

function for clause learning.

1.5.3 Chapter 4. Experimental Platform

This chapter describes how we solved the design issues presented in Chapter 3

and the integration of our proposed approaches into functional systems. We begin

by introducing the GPU parallel, core components of our MLN platforms: a

Datalog engine with several new operations and optimizations used for grounding; a

satisfiability solver based on the MaxWalkSAT algorithm used during the search step;
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and a sampler of the MLN search space used as part of weight learning. Next, we show

the integration of these components into two existing MLN systems, generating our

MLN platforms called GPU-Tuffy and GPU-RockIt. Finally, we test the validity of

our platforms and their components by executing several applications and comparing

our results with those of other systems.

1.5.4 Chapter 5. Performance Evaluation

The results of testing our MLN platforms and their core components are discussed

in this chapter. First, we present the evaluation of GPU-Datalog alone (the core

component of the grounding) followed by the evaluation of our parallel ILP system

using FOL clause learning. Next, we evaluate the general performance of our

platforms with six applications from the literature. Finally, specific parts of our

platforms were evaluated including the parallel search of GPU-Tuffy, the parallel

grounding on our GPU-RockIt platform and our weight learning based on parallel

sampling. Each evaluation presents the followed methodology, the applications and

hardware used, and the obtained results along with their discussion. After all

evaluations, the chapter ends with some further discussion of the performance of

our MLN platforms and their GPU kernels.

1.5.5 Chapter 6. Conclusions and Future Work

In this final chapter we conclude by showing a positive outlook on our current

designs, their implementation, and their evaluation. We also explain our contributions

and possible future work to improve MLNs in general, the core components of our

platforms (GPU-Datalog and GPUSATLIB), our parallel ILP system, and our MLN

platforms themselves (GPU-Tuffy and GPU-RockIt).
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Background

Markov Logic Networks (MLNs) belong to the branch of Artificial Intelligence (AI)

called Machine Learning (ML), but their processing is a complex task that combines

several subjects and thus, this chapter is dedicated to all the background knowledge

necessary for the full understanding of MLNs and our work to improve them. The

reviewed subjects include: 2.1 logic which is the basis of the grounding step;

2.2 optimization used during the search step and during weight learning; 2.3 an

overview of the most important concepts of MLNs; 2.4 inference described as both a

satisfiability problem and an optimization problem; and 2.5 learning of weights and

clauses.

A summary of the subjects covered in this chapter is presented in Figure 2.1.

MLNs processing is divided in two tasks, which can be further divided into critical

steps that can affect the performance and results of the MLN depending on the chosen

solution and its algorithms or systems. For each subject, the following sections provide

an explanation of the most relevant concepts and numerous references to further

readings. Note that background knowledge for particular MLN systems is discussed

in Chapter 4 and Graphics Processing Units are described in Appendix A.

9



10 Chapter 2

Figure 2.1: Subjects covered in this Chapter.

2.1 Logic

Logic is the analysis of the reasoning methods [78]. In Computer Science, logic is

tightly related to the field of AI, where First-Order Logic (FOL) is used to formally

represent knowledge and logic programming serves as the programming paradigm.

2.1.1 First-Order Logic

Propositional logic studies propositions, their interaction with other propositions

by logical connectives (AND, OR, XOR, etc.), and their truth values (true or

false). While useful for many tasks like electronic circuits representation and system

requirements specifications, higher forms of reasoning including quantified expressions

and expression with variables, are difficult or impossible to represent in this logic

(e.g., to represent that all people are tall, we most write one proposition per person).

Propositional logic can be extended to First-Order Logic [78], which includes a richer

language based on an alphabet and well-formed formulas. The most relevant FOL

definitions taken from [67] are:
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Definition 1. Alphabet. An alphabet consists of variables (usually upper case

letters), constants (lower case letters), function symbols (the letter f or Greek

letters), predicate symbols (whole words like father), connectives, quantifiers, and

punctuation symbols. The connectives are negation (¬), conjunction (∧), disjunction

(∨), implication (⇒), and biconditional ( ⇐⇒ ). The punctuation symbols are “.”

and “,”.

Definition 2. Quantifier. A quantifier is a construct that specifies the quantity of

individuals in a domain. In FOL, the only quantifiers used are the universal quantifier

(∀) and the existential quantifier (∃). As an example, the sentence “for all people X,

there exists some person Y that is taller” can be written as ∀X∃Y taller(X, Y ).

Definition 3. Term. A term is defined inductively as follows:

• A variable is a term.

• A constant is a term.

• If f is an n-ary function symbol and t1, ..., tn are terms, then f(t1, ..., tn) is a

term.

Definition 4. Predicate. A predicate is a boolean function that defines a relationship

between its arguments. For example, P (4) will be true if 4 belongs to the set P and

father(X, Y ) will be true for those Xs who have Y as father.

Definition 5. Atom. If P is an n-ary predicate symbol and t1, ..., tn are terms, then

P (t1, ..., tn) is a formula called atomic formula or, more simply, an atom.

Definition 6. Well-defined formula. It is inductively defined as:

• An atom is a formula.

• If F and G are formulas, then ¬F , F ∧G, F ∨G, F ⇒ G, and F ⇐⇒ G are

formulas.

• If F is a formula and x is a variable, then ∀xF and ∃xF are formulas.
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Definition 7. Literal. A literal is an atom or the negation of an atom. A positive

literal L(t1, ..., tn) is an atom. A negative literal ¬L(t1, ..., tn) is the negation of the

atom L(t1, ..., tn).

Definition 8. Clause. A clause is a formula of the form

∀x1, ...,∀xs(L1∨, ...,∨Lm) (2.1)

where each Li is a literal and x1, ..., xs are all the variables occurring in L1∨, ...,∨Lm.

Definition 9. Ground term. A ground term is a term containing no variables.

Similarly a ground atom is an atom containing no variables.

Definition 10. Ground clause. A clause is called ground whenever each of its

members is a ground term.

Note that FOL differs from second-order or other higher-order logics in that

quantifiers can only be defined over variables and predicates cannot include other

predicates as arguments.

2.1.2 Logic Programming

As presented by Kowalski in [61], FOL has a procedural interpretation based

on unification that can be seen as a programming language. This revolutionary

concept is the basis of logic programming and was first implemented in the Prolog

(PROgramming in LOGic) system [13].

Perhaps the most important aspect of logic programming is the separation between

logic and control in an algorithm [67]. Logic specifies what the problem is, while

control specifies how to solve the problem. Separating these aspects brings many

benefits like the possibility of specifying only the logic, leaving the control to the

logic programming system.

There are several variants and extension to logic programming including

Constrained Logic Programming [31], Inductive Logic Programming (ILP) [84],
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among others. Also, there are various systems (besides Prolog) for logic programming

and their variants like Datalog [116, 117] and Progol [85].

As an example of FOL and logic programming, consider the following Prolog

program to compute the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21, 34, ...):

1 fib(1,1).

2 fib(2,1).

3 fib(N,R):- N > 2,

N1 is N-1, fib(N1,R1),

N2 is N-2, fib(N2,R2),

R is R1+R2.

where the first two formulas are clauses with a single predicate and the last one is

also a clause but with several predicates. Note that, unless otherwise specified, in

both FOL and Prolog, variables are considered to be universally quantified and thus

the ∀ symbol is omitted. In conjunction with a query say ?-fib(5,R). (i.e., which

is the 6th number of the Fibonacci sequence?), Prolog will try to answer the query

using the most appropriate clause (3), processing each predicate in the clause from

left to right: as N = 5 then it is greater than 2 (N > 2); N1 is set to N-1 (4); the

process continues with fib(5,R1) which once again requires the processing of the

third clause now with N = 4, then N = 3 and so forth until we reach N = 2 which

causes the predicate N > 2 to be false and the clause to fail, with the second clause

coming into effect instead and providing the first answer for R (1). The process would

then continue with the next predicates of each instance of the third clause, until we

have an answer for R by adding R1+R2.

As it can be seen, the third clause is recursive thanks to its third and fifth

predicates, a common occurrence in many logic programs, and the recursion that

has to follow to answer our query is:

fb(5)

|
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|-------|

fb(4) + fb(3)

| |

|-------| |---|

fb(3) + 1 1 + 1

|

|---|

1 + 1

2.1.3 Summary

Logic is the basis of many ML application including MLNs. The type of logic used by

MLNs is FOL, which is based on well-formed formulas constructed with an alphabet

of variables, predicates, quantifiers, among others (e.g., A = [an overcast sky] implies

that B = [the sun is not visible], is represented with the logical implication symbol

⇒ as A ⇒ B). FOL has an interpretation that serves as a programming language

and is the basis of logic programming. One of the most important logic programming

systems is Prolog, whose syntax is very similar to that of FOL (e.g., “All humans are

mammals” is represented as mammal(X) :- human(X).). The application of FOL for

grounding in MLNs is presented in Sections 3.3, 4.1, and 4.4.

2.2 Optimization

Optimization is a branch of mathematics used in analysis and decision making [89].

It has a wide array of applications like maximizing profits in finance, minimizing

costs in an industrial process, etc. The optimization process begins by constructing a

model with the objective to minimize or maximize (e.g., cost, profit) that depends on

certain variables (e.g., time, resources), which can be constrained (e.g., time cannot

be negative). More formally, the optimization problem is written as:
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min f(x) (2.2)

subject to

ci(x) = 0, i ∈ I

cj(x) ≥ 0, j ∈ J

where f is the objective function, x is the vector of variables, I is the set of equality

constraints (ci) that must be satisfied and J is the set of inequality constraints. Note

that most of the optimization literature assumes a minimization problem (hence the

min in the equation) and that a maximization problem can be seen as a minimization

one by using −f(x).

Once the model is constructed, an optimization algorithm can be used to find its

solution. However, there are several optimization algorithms, there is no universal

optimization algorithm for all problems, and depending on the problem, certain

algorithms are better than others. This rich variety of optimization problems and

algorithms has led to the creation of several branches in the optimization field,

which are usually mutually exclusive (e.g., a problem cannot be both constrained

and unconstrained). The most important cases include:

• Discrete versus continuous optimization. Discrete optimization refers

to those problems whose domain is restricted to a finite set of elements.

Usually, said set is a set of integers and the problem is called an integer linear

programming problem [93]. In contrast, continuous optimization normally deals

with infinite sets of real numbers. For example, the problem min x2 is discrete

when x ∈ Z and continuous when x ∈ R.

• Unconstrained and constrained optimization. When the sets I and J are

empty, the problem is said to be unconstrained. This situation arises in many

practical applications where there are no natural constraints to the variables

or they can be disregarded. Constrained problems always include constraints
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which, depending on the formula that represents them, can be simple bounds

on the variables or complex relations between several variables. As an example,

min x2 is unconstrained, but can be constrained by adding that it is subject to

x > 1.

• Local and global optimization. Many optimization problems have several

local solutions, i.e., points where the value of the objective function is smaller

compared to all other points in the neighbourhood. The best (smallest) of these

local solutions is called the global solution. However, identifying and locating

the global solution can be a very difficult and time consuming task. Thus, global

optimization is usually reserved for small simple problems and local optimization

for large complex problems. For example, min 2x4 − x3 − 3x2 + x has a local

minimum that most algorithms would find at 1, but it is possible that only the

global algorithms would find the global minimum at ∼ −0.784.

• Stochastic and deterministic optimization. Sometimes the model of

a problem cannot be completely specified since some values are missing or

unknown. However, such values can be predicted or estimated using techniques

from stochastic optimization. On the other hand, in deterministic optimization

the model is always fully defined. For instance, min x2 subject to x > a is

stochastic if we can only estimate values for a and deterministic if we know its

exact value.

Finally, a fundamental concept in optimization is the convexity of the problem.

A set S ∈ Rn is said to be convex if the straight line connecting any two points in

S is also inside S. Formally, using the line equation, S is convex if for any points

x, y ∈ S, the result of αx + (1 − α)y for all α ∈ [0, 1] is in S. Furthermore, f is

a convex function if its domain is a convex set and if for any two points x, y in the

domain, the following inequality is preserved:
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f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), for all α ∈ [0, 1] (2.3)

Convex objective functions have an interesting property that is very helpful in

optimization: if the optimization algorithm reaches a local minimum, then we have

also reached the global minimum. In this thesis work, all the objective functions of

our optimization problems are convex.

2.2.1 Optimization Methods for MLN learning

Next we present a general overview of the optimization methods and their

algorithms used during weight learning in MLNs (see Section 3.5 for details of the

implementation). The weight learning problem is continuous and unconstrained,

and all of the following algorithms perform local deterministic optimization. The

descriptions of these methods were mainly taken from [24, 89].

Line Search (Voted Perceptron)

Line search iterative algorithms usually begin from a random point (x0) in the search

space and move over this space finding new, hopefully better points (x0,...,n). To

move around said search space, a direction (ρ) and a step size (α) are required at

each iteration (k). Formally, this movement is defined by the following equation:

xk+1 = xk + αkρk (2.4)

The movement continues until a stopping condition is reached. Common

stopping conditions include reaching a certain number of iterations or finding a good

approximation of the solution, which usually occurs when the change between xk

and xk+1 is bellow a certain user-defined threshold (e.g., if the threshold is 0.01 and
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Figure 2.2: Example of the line search method for a certain function represented with contour lines.

xk = 1.333, xk+1 = 1.332, then the algorithm finishes with xk+1 as solution).

In particular, the Voted Perceptron algorithm follows the direction called the

steepest-descent, in which the objective function decreases most rapidly and is given

as the negative of the derivative of the objective function in xk (also called gradient).

The step size is called learning rate and is initially defined by the user and then

adapted by the algorithm.

Figure 2.2 shows an example of how the line search method would move around

a certain function represented with contour lines (i.e., curves that represent points of

constant value along the function), until it reaches the solution.

Newton’s Method (Diagonal Newton)

Newton’s method belongs to the family of line search methods, but it usually has a

higher convergence rate (arrives at the solution in fewer iterations). In said method,

the descent direction (ρk) is computed as:

ρk = −52 f−1k 5 fk (2.5)

where −52 f−1k is the inverse of the second derivative (also called Hessian) at point

xk and 5fk is the gradient at xk. Computing and inverting the Hessian is usually a

time consuming, error prone task. Fortunately, the Diagonal Newton (DN) algorithm
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simplifies the Hessian by assuming that all off-diagonal entries are zero, yielding an

easy to invert diagonal matrix. The step size of the DN algorithm is defined as:

αk =
−ρTk 5 fk

ρTk 52 fkρk + λkρTk ρk
(2.6)

where λk limits the step size into a good search region and is the ratio between the

actual change (4a) of the objective function value in an iteration and the predicted

change (4p), which are computed as follows:

4a = xk − xk−1 (2.7)

4p = ρTk−15 fk−1 +
1

2ρTk−152 fk−1ρk−1

and then, depending on the ratio, λk is increased or decreased following a common

method presented in [27]:

if(4a/4p > 0.75) then λk+1 = λk/2 (2.8)

if(4a/4p < 0.25) then λk+1 = 4λk (2.9)

Conjugate Gradient (Scaled Conjugate Gradient)

A problem with line search methods is that they often take several steps in the

same direction. The conjugate gradient method attempts to solve this problem by

computing the search direction and step size that warranty the best movement in said

direction, ideally solving a problem in Rn using n steps.

In particular, MLNs use the Scaled Conjugate Gradient [82] algorithm that

iteratively moves through the search space using Equation 2.4 and computes the

step size (α) with Equation 2.6. The search direction (ρ) is computed using the
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Figure 2.3: Example of the conjugate gradient method on a quadratic function.

Polak-Ribiere method which, given the objective function f , is formally defined as:

ρ0 = −5 f0 (2.10)

βk+1 =
5fT

k+1(5fk+1 −5fk)

‖ 5fk ‖2

ρk+1 = −5 fk+1 + βk+1ρk

where 5fk is the gradient of f at the point xk. An example of this method for a

quadratic function is presented in Figure 2.3. The ideal step size is computed along

the search directions and the result is found in two steps (since the problem is in R2).

Quasi-Newton Method (L-BFGS)

Quasi-Newton methods have a faster convergence than the line search methods

without having to compute second derivatives (a costly operation in Newton’s

method). The most popular Quasi-Newton method is called BFGS after its creators:

Broyden-Fletcher-Goldfarb-Shanno.

Once again, Equation 2.4 is used in the BFGS algorithm with its own step size

and search direction. For MLNs, a variant of the algorithm called Limited-memory

BFGS (L-BFGS) [66] computes the search direction (ρ) using an approximation of

the Hessian function based on the difference between solution points (s), between
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their gradients (y), and other values (w, V , and A) in two consecutive iterations:

sk = xk+1 − xk (2.11)

yk = 5fk+1 −5fk (2.12)

wk =
1

yTk sk
(2.13)

Vk = I − wkyks
T
k (2.14)

A0 = I (2.15)

Ak =
sTk−1yk−1

yTk−1yk−1
I (2.16)

All the values of s and y from the first iteration (0) until the current iteration

(k) are necessary to compute the approximation of the Hessian function (H) for

the current iteration. However, as the algorithm progresses, storing all said values

becomes impractical in terms of memory. Fortunately, good values for H can be

obtained by storing only the last m values of s and y, where m is typically between

3 and 20. Formally, H is then defined as follows:

H0 = A0 (2.17)

Hk = (V T
k−1 . . . V

T
k−m)Ak(Vk−m . . . Vk−1) (2.18)

+ wk−m(V T
k−1 . . . V

T
k−m+1)sk−ms

T
k−m(Vk−m+1 . . . Vk−1)

+ wk−m+1(V
T
k−1 . . . V

T
k−m+2)sk−m+1s

T
k−m+1(Vk−m+2 . . . Vk−1)

+ . . .

+ wk−1sk−1s
T
k−1

Note that values with negative indexes (like wk−m where k = 1 and m = 3) are zero.

Once obtained, the value of H can then be used to compute the search direction as:
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ρk = −Hk 5 fk (2.19)

Finally, the step size is initially chosen as α = 1, but is adapted at each iteration

if it violates the Wolfe conditions [121]:

f(xk + αkρk) ≤ f(xk) + c1αk 5 fT
k ρk (2.20)

5f(xk + αkρk)Tρk ≥ c25 fT
k ρk (2.21)

where c1 and c2 are usually 10−4 and 0.9 respectively, since they provide good values

for the step size.

2.2.2 Optimization Methods for MLN inference

The MLN inference problem can be seen as an integer linear programming problem,

i.e., an optimization problem whose domain is the set of integer numbers and has a

linear objective function with linear constraints (the implementation can be found

in Section 4.5). Thus, the inference problem in MLNs is discrete and constrained,

and all the solvers presented next perform local deterministic optimization. A more

detailed description of these methods can also be found in [89].

Simplex method

In the simplex method, the optimization problem (Equation 2.2) is usually written

in standard form:

min cTx, subject to Ax ≤ b, x ≥ 0 (2.22)

where x is a vector with the variables of the problem, c is a vector with the coefficients
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of the objective function, A is a matrix of constants, and b is a vector of constants.

Since inequalities are difficult to handle, this form can be simplified by transforming

them into equalities by eliminating variables or introducing slack variables. For

example, x1 ≥ 3 can be written as y1 = x1− 3, thus eliminating x1 and 2x2 + 5x3 ≤ 7

can be written as 2x2 + 5x3 + s1 = 7.

Due to the constrains on the problem, the feasible region forms a convex polytope

where the global minimum is usually found in one of its vertices. Thus, the simplex

method starts from a vertex and iteratively moves around adjacent vertices until the

solution vertex is found. The method can determine if a solution has been found

thanks to the Karush-Kuhn-Tucker conditions, which state that x is a solution if

there exist vectors φ and s such that:

ATφ+ s = c (s ≥ 0) (2.23)

Ax = b (x ≥ 0) (2.24)

xT s = 0 (2.25)

Finding the starting vertex is a non-trivial task that is usually solved by defining a

simpler optimization problem whose result is a vertex in the original problem. Also,

at each iteration, the decision of which vertex the method should move next can

be performed with several heuristics like estimating the maximum advance the new

vertex would provide and choosing the best. Figure 2.4 shows an example of a simple

polytope created by the constraints of a problem and how the simplex method would

move along these constraints until the optimum is reached.

Barrier method

The barrier method belongs to the family of interior-point methods (i.e., those

methods that must strictly satisfy all constraints at each iteration) and seeks the

solution of the optimization problem by replacing it with a series of unconstrained,
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Figure 2.4: Example of a polytope created by the constraints of an optimization problem and the
path followed by the simplex method to find the solution.

smaller problems. These smaller problems have a modified objective function called

barrier function, that is infinite everywhere except on the feasible region, is smooth

inside the feasible region, and approaches infinity as one approaches the boundaries

of the feasible region. The most popular barrier function is based on the natural

logarithm and is defined as follows:

P (x;µ) = f(x)− µ
∑
i∈I

ln ci(x) (2.26)

where f(x) is the objective function of the original problem, µ is the barrier parameter,

and ci(x) is the ith inequality constraint of the original problem.

With a starting point xs0, an initial value for the barrier parameter µ0, and a

certain tolerance τ , the barrier method begins its iterative process by minimizing

Equation 2.26 with an unconstrained optimizer like Newton’s method, until ‖

5P (xk;µk) ‖≤ τ . Next, a smaller value for µ and a new starting point xs are

chosen and a new iteration begins. The process stops once we have a solution

for P (x;µ) for a sufficiently small µ, as said solution is also a solution to the

original problem [122]. The starting point at each iteration xsk can be computed

by extrapolating the minimizers of the previous iteration (xk−1, ..., x0) and the initial

value µ0 is usually ambitious (around 0.1 or 0.2). Afterwards, how much should µ0
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be reduced at each iteration will depend on the problem.

2.2.3 Summary

The optimization process begins by constructing a mathematical model of the problem

based on an objective function subject to certain constraints. Then, the optimum

(usually the minimum) of said function can be searched using a rich variety of

algorithms. For MLN learning (a continuous unconstrained problem) the optimization

algorithms (line search, Newton’s method, conjugate gradient, and quasi-Newton’s

method) are based on moving from a certain starting point in the search space to the

solution by iteratively taking steps in descent directions (i.e., those who reduce the

value of the objective function). How to determine a descent direction and the size

of the step in that direction are the fundamental differences between the algorithms.

Their application in our work is discussed in Section 3.5. For MLN inference (a

discrete constrained problem) there are two approaches: the simplex method that

moves along the constraints until it reaches the solution (which is usually found in

the vertex formed by two constraints); and the barrier method that transforms the

problem into an unconstrained one and then solves it. These optimization methods

are used in the MLN system RockIt as shown in Section 4.5.

2.3 Markov Logic Networks (MLNs)

Statistical Relational Learning (SRL) [36] is a field of ML that combines logic and

probability to manage the uncertainty arising from noise and incomplete information

which is typical of real-world ML applications. SRL has been successfully used in

a variety of tasks including: collective classification (e.g., given a set of emails,

determine which are spam), link prediction (e.g., given a social network, infer

new, possible user interactions), link-based clustering (e.g., clustering object of

multiple types like web pages with search queries and users, in order to offer better

search suggestions), social network modelling (e.g., infer unobserved friendships in

Cinvestav Departamento de Computación



26 Chapter 2

Facebook), and entity resolution (e.g., determine whether an object on different

photos is the same).

Various SRL frameworks have been proposed including Stochastic Logic

Programs [16], Probabilistic Relational Models [30], PRISM [104], Bayesian Logic

Programs [54], ProbLog [55], Constrained Logic Programming [31], Predicate Functor

Logic [63], and MLNs [24]. MLNs are the main focus of this thesis, as they offer a

simple and highly expressive language along with robust inference.

An MLN is a Knowledge Base (KB) composed of evidence and FOL formulas with

a weight attached to each formula. FOL provides a rich and compact representation of

the problem, while the weights provide probabilistic inference whose solutions cannot

be found by the strict, deterministic inference typical of FOL alone. A detailed

example of an MLN and its inference process is described next.

Markov Logic Networks Overview

In MLNs, FOL formulas are used to define objects/entities along with their attributes

and relationships among them. For example, the well-known smokers application

taken from [24] (which will be used as running example through this thesis),

determines the probability of people having cancer (Ca) based on who their friends

(Fr) are and whether or not their friends smoke (Sm):

1.5 :¬Sm(x) ∨ Ca(x)

1.7 :¬Fr(x, y) ∨ ¬Sm(y) ∨ Sm(x)

1.9 :¬Fr(x, y) ∨ ¬Sm(x) ∨ Sm(y)

where the weights of the formulas (1.5, 1.7, 1.9) transform the FOL program into a

probabilistic model.

Given some evidence E (facts in logic, records in DBs), MLNs typically apply the

structure and weights of their formulas to generate the most probable world, which is
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the one that has the lowest solution cost, determined by the sum of the weights of the

unsatisfied ground formulas. For instance, if E contains four facts, Fr(Frank, Bob),

Fr(Gary, Bob), Sm(Frank), and ¬Sm(Gary), then we begin our search for the most

probable world by grounding the formulas, i.e., assigning the values of the facts to

the variables in the formulas:

1.5 :¬Sm(Bob) ∨ Ca(Bob) (2.27)

1.5 :¬Sm(Frank) ∨ Ca(Frank) (2.28)

1.5 :¬Sm(Gary) ∨ Ca(Gary) (2.29)

1.7 :¬Fr(Gary, Bob) ∨ ¬Sm(Bob) ∨ Sm(Gary) (2.30)

1.7 :¬Fr(Gary, Bob) ∨ ¬Sm(Gary) ∨ Sm(Bob) (2.31)

1.9 :¬Fr(Frank, Bob) ∨ ¬Sm(Bob) ∨ Sm(Frank) (2.32)

1.9 :¬Fr(Frank, Bob) ∨ ¬Sm(Frank) ∨ Sm(Bob) (2.33)

Note that formulas are repeated as many times as necessary to generate all possible

combinations. Once all formulas are grounded, truth values are assigned to each literal

of each formula, starting with those which are true or false based on the evidence.

These initial truth values may already satisfy some formulas (formulas with positive

weights are satisfied when at least one literal is true, those with negative weights

when all literals are false):

1.5 :¬Sm(Frank) = false ∨ Ca(Frank) = unknown (2.28)

1.5 :¬Sm(Gary) = true ∨ Ca(Gary) = unknown (2.29)

1.7 :¬Fr(Gary, Bob) = false ∨ ¬Sm(Gary) = true ∨ Sm(Bob) = unknown (2.31)

1.9 :¬Fr(Frank, Bob) = false ∨ ¬Sm(Bob) = unknown ∨ Sm(Frank) = true (2.32)
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where the underlined literals are those whose truth values were obtained from the

evidence and unknown means that we cannot determine the truth value of the literal

based on that formula.

Unknown values, however, present a conflict: no matter which truth value we

choose for the literals, some formulas may remain unsatisfied. In the example, if we

set Sm(Bob) = false, then formula 2.33 cannot be satisfied; if we set Sm(Bob) = true,

then formula 2.30 cannot be satisfied. This problem is resolved using the weights of

each formula, as they reflect our confidence on the formula holding true when faced

with conflicting formulas or evidence: formulas with higher weights will be satisfied at

the expense of lower weighted formulas being ignored. Thus, we set Sm(Bob) = true

(since the weight of formula 2.33 is greater than that of formula 2.30) and obtain:

1.5 :¬Sm(Bob) = false ∨ Ca(Bob) = true (2.27)

1.7 :¬Fr(Gary, Bob) = false ∨ ¬Sm(Bob) = false ∨ Sm(Gary) = false (2.30)

1.9 :¬Fr(Frank, Bob) = false ∨ ¬Sm(Frank) = false ∨ Sm(Bob) = true (2.33)

Finally, with all truth values assigned, we have the most probable world (whose

solution cost is equal to the weight of the unsatisfied formula, i.e., 1.5): Frank has

cancer since he smokes; Bob has cancer since he is Frank’s friend; and Gary does not

have cancer since he does not smoke. Note that it is also possible to define negative

weights, which mean that the formula should not hold (i.e., it should not be satisfied).

Furthermore, weights can be infinite (in practice it is just a high value) and those

formulas with infinite weights are called hard and should always be satisfied (or not

satisfied in case of −∞), as they are not probabilistic, they are a certainty like normal

FOL formulas.

As illustrated by the smokers example, with MLNs it is possible to transform an

existing FOL program into a probabilistic model by assigning weights to each formula.

Many of the shortcomings of logic like non-flexible constraints and inconsistencies
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when merging multiple KBs are solved with the help of probabilistic models. It

also allows data and formulas from multiple programs to be used together without

resolving their inconsistencies (e.g., when several related domains are used together

to increase the available knowledge). On the other hand, probabilistic models benefit

from the expressive power of FOL, as complex statistical models can be represented

with a simple and easy to understand syntax.

MLNs have surpassed all other frameworks thanks to their ability to combine soft

and hard constraints, since few systems are capable of processing both at the same

time. They also handle a greater degree of uncertainty (i.e., they are able to produce

good results even when the data is incomplete), are easier to specify thanks to their

familiar Prolog-like syntax, and scale better with the data as they swiftly process

small applications and have competitive performance with larger applications.

The result is a simple yet powerful language that is the basis of various systems

including the Semantic Network Extractor [59] which is a scalable, unsupervised, and

domain-independent system that extracts relations, concepts, and learns a semantic

network [9] from the Web, producing better results than three other state-of-the-art

systems. Also, the system by Wu et al. [123] which refines Wikipedia’s infoboxes by

restructuring their information into a clearly defined ontology. The resulting ontology

enhances the infoboxes with improved query processing and other features. Finally,

Riedel and Meza-Ruiz’s system carries out collective semantic role labelling [100] by

processing sentences in three stages that share information between them: predicate

identification, argument identification, and argument classification. It is the second

best out of five similar systems but, thanks to the flexibility provided by the MLNs,

the authors propose several modifications to improve the overall performance.

There are several possible extensions to MLNs like hybrid domains [118] where

both discrete and continuous terms are respectively handled by satisfiability or

mathematical optimization algorithms (normal MLNs can only handle discrete terms).

Another extension is allowing higher-order formulas (normal MLN formulas are FOL

only). Second-order logic can be implemented by grounding with constant symbols
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(as shown in the example above) and predicate symbols, and has been used for

clustering [58].

2.3.1 Summary

An MLN combines FOL and probabilities in a compact and simple representation. In

practice they are databases with weighted formulas that can be used to describe the

most probable world of the database when the formulas are applied to it. MLNs have

surpassed all other similar frameworks thanks to their ability to combine soft and

hard constraints and handle a greater degree of uncertainty. MNLs are also easier to

specify thanks to their familiar, Prolog-like syntax, and scale better with the data.

They have been used as the basis of various systems including the Semantic Network

Extractor which is a system that extracts relations, concepts, and learns a semantic

network from the Web; a system which refines Wikipedia’s infoboxes by restructuring

their information into a clearly defined ontology; and a system to carry out collective

semantic role labelling.

2.4 Inference

Inference is the process of reasoning to derive conclusions from evidence. However,

many applications must reason with uncertain or incomplete evidence [87]. Since

inference is very effective for reasoning tasks, many proposals have been created to

handle the uncertainty using probabilistic reasoning models including fuzzy logic,

probabilistic argumentation, evidential reasoning, among others. The basic idea

behind these proposals is based on the possible worlds that can be created from a

KB. For example, if our KB has a single clause, then there are two possible worlds:

one where the clause is true and the other where it is false. The “right” world is either

of these two, but we do not know which one. This uncertainty can be modelled with

probabilities by assigning a probability p to one world and 1−p to the other. However,

as our KB grows, our possible worlds grow exponentially and thus, the handling of
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probabilities adds an additional layer of complexity to the inference problem. More

formally, these models are based on conditional probabilities, i.e., the probability of an

event A (query) given that another event B (evidence) occurred, which is represented

as P (A|B).

2.4.1 Inference in MLNs

Inference in MLNs is a combination of probabilistic methods with logical inference.

The two approaches to inference in MLNs are marginal and Maximum a posteriori

(MAP) [24, p.23]. Marginal inference uses the KB to answer the question What is

the probability of a set of predicates with unknown truth values (query) to be true,

given a related set of predicates with known truth values (evidence)? (e.g., in the

smokers application, giving a probability to each person of having cancer based on

their friends and their smoking habits). In MAP inference, the task is finding the

most probable world given some evidence, a set of clauses, and a query (e.g., in the

same smokers application, finding the most likely configuration of boolean values

that would determine those people who have cancer and those who do not). Thus,

marginal inference gives a probability of being true to each query predicate, while

MAP inference only determines if it is true or false. The processing of both approaches

is divided in two phases: 1) grounding and 2) search.

In both inference approaches, the 1) grounding phase is the process of assigning

values to all free variables in each clause using the evidence (e.g., clause ¬Fr(x, y) ∨

¬Sm(y) ∨ Sm(x) becomes ¬Fr(Gary, Bob) ∨ ¬Sm(Bob) ∨ Sm(Gary)). Using the ground

clauses, marginal inference 2) search is based on sampling and MAP inference is based

on either weighted satisfiability (weighted MaxSAT) or integer linear programming.

Markov Random Fields

After grounding, the grounded clauses form a Markov Random Field [56] (MRF, also

called Markov network), which is a model for the joint probability distribution of a

set of random variables X = (X1, ..., Xn), that can be represented by an undirected
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Figure 2.5: Markov Random Field representation of the smokers example.

hypergraph G = (X,E). In MLNs, each ground atom is a variable X (a node in

the graph) and there is a hyperedge e ∈ E for each ground clause. For example,

Figure 2.5 shows the graphical representation of the MRF for the grounded smokers

application, where each node is labelled with the atom’s name and each hyperedge is

a coloured polygon.

MRFs belong to the family of Markov processes which group all stochastic

processes that share the Markov property including Markov Chains, Hidden Markov

Models, etc. In general, the Markov property guaranties the memory-less of our

process, i.e., that future states of the process will only depend on the current state

and not on the past states that precede it. However, in MRFs, the Markov property

is best described as a set of three properties based on the graphical model G and the

conditional independence of its random variables X:

Definition 11. Pairwise Markov property. Any two variables Xa and Xb not joined

by an edge (non-adjacent) are conditionally independent given all other variables:

Xa ⊥ Xb | X \ {Xa, Xb}, {Xa, Xb} /∈ E (2.34)

Definition 12. Local Markov property. A variable Xa is conditionally independent of

all other variables given those variables that share a vertex with it (i.e., all variables
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adjacent to Xa, also called the neighbors N(Xa) of said variable):

Xa ⊥ X \ {N(Xa), Xa} | N(Xa) (2.35)

Definition 13. Global Markov property. Any two subsets of variables XA and XB

are conditionally independent given a third, separating subset XC (i.e., a set whose

variables have vertices to the variables in XA and XB, and there are no direct vertices

between any variable in XA and XB):

XA ⊥ XB | XC (2.36)

Formally, the joint probability distribution of the MRF can be easily established

based on the hyperedges of the graph: given the set of random variables X, P (X = x)

(the probability of the whole MLN when all variables in X each takes a certain value

x) is defined as

P (X = x) =
1

Z

∏
e∈E

φe(xe) (2.37)

Z =
∑
X

∏
e∈E

φe(xe) (2.38)

φe(xe) = exp(wefe(xe)) (2.39)

where Z is a normalizing constant (also called partitioning function) that involves

summing over all possible combinations of the variables in the system, xe denotes

the truth values of the variables found in hyperedge e, φe(xe) is a potential function

or feature where we is the weight of the ground clause related to hyperedge e and

fe is a function that returns 1 if the ground clause of the hyperedge is satisfied

and zero otherwise. As example, consider an MLN with only the first rule of the

smokers application (1.5 : ¬Sm(X) v Ca(X)) with Bob as the only person (i.e., the only

value for X). There are four possible worlds for this MLN: 1) {Sm(Bob), Ca(Bob)},
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2) {¬Sm(Bob), Ca(Bob)}, 3) {Sm(Bob),¬Ca(Bob)}, and 4) {¬Sm(Bob),¬Ca(Bob)}. The

probability of each world is given by:

P1(X = x) =
1

Z
exp(1.5 ∗ 1) (2.40)

P2(X = x) =
1

Z
exp(1.5 ∗ 1) (2.41)

P3(X = x) =
1

Z
exp(1.5 ∗ 0) (2.42)

P4(X = x) =
1

Z
exp(1.5 ∗ 1) (2.43)

Z = exp(1.5 ∗ 1) + exp(1.5 ∗ 1) + exp(1.5 ∗ 0) + exp(1.5 ∗ 1) (2.44)

Note how the third world has a lower probability since it does not satisfy the

clause and the other three have the same probability because they do satisfy the

clause. On the other hand, if we assign a negative weight to the clause (i.e., we want

the clause to be unsatisfied), then the third world would be the most probable as

exp(−1.5 ∗ 0) > exp(−1.5 ∗ 1).

The probability distribution P (X = x) can also be represented as a log-linear

model as follows:

P (X = x) =
1

Z
exp(

∑
i∈F

witgi(x)) (2.45)

where the summation is over the set of all MLN formulas F , Z is the normalizing

constant (Equation 2.38), wi is the weight of the ith formula, and tgi(x) is the number

of times formula i is true given the current truth values of its predicates (x) for all

its possible groundings. From the example above, it can be seen that the probability

remains the same: 1
Z
exp(1.5 ∗ 1) for the three worlds that have one true grounding

and 1
Z
exp(1.5 ∗ 0) for the world that has no true groundings.
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Marginal Inference

In marginal inference, the probability of each atom can be computed based on its

Markov blanket. The Markov blanket of an atom Xl is all other atoms that appear

in all clauses where Xl appears (e.g., in the smokers example, the Markov blanket

for Sm(Gary) would be Ca(Gary), F r(Gary,Bob), Sm(Bob)), and the state of the

blanket corresponds to the truth values of the other atoms. Given the Markov blanket

state (MB(Xl)), the probability of an atom Xl is the probability of the blanket (given

by Equation 2.45) when Xl has a truth value xl divided by the probability of the

blanket when Xl = false plus the same probability when Xl = true:

P (Xl = xl|MB(Xl)) = (2.46)

exp(
∑

fi∈Fl

wifi(Xl = xl,MB(Xl))

exp(
∑

fi∈Fl

wifi(Xl = 1,MB(Xl)) + exp(
∑

fi∈Fl

wifi(Xl = 0,MB(Xl))

where Fl is the set of formulas where Xl appears, wi is the weight of the ith formula,

and fi(Xl = xl,MB(Xl)) is the truth value (0 or 1) of the ith formula when atom

Xl has truth value xl and its other atoms keep the values of the state of the Markov

blanket.

The truth state of each atom given their Markov blanket can be computed with

sampling techniques like Gibbs [34] or belief propagation [127]. However, for MLNs,

the MC-SAT algorithm found in [94] and described in Section 3.5, produces much

better results.

MAP Inference as a weighted MaxSAT problem

MAP inference search for the most probable world is based on determining the

maximum sum of the weights of ground clauses that can be satisfied (made true)

through assigning truth values to their atoms. For example, by setting the atom

Ca(Frank) = true, the clause ¬Sm(Frank) ∨ Ca(Frank) becomes satisfied. Also, the
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solution to the MLN presented in Section 2.3 is based on MAP inference. From

Equation 2.45, the probability of the world y given evidence x is:

argmaxyP (y|x) = argmaxy
∑
i∈F

witgi(x, y) (2.47)

where both Z and the exponential functions are constants and were removed since

they do not affect the maximization.

Many MLN systems solve this problem using the MaxWalkSAT [53] algorithm, as

it can solve hard problems with thousands of atoms in a short time. MaxWalkSAT

works by iteratively selecting an unsatisfied clause and switching the truth value of

one of its atoms until no unsatisfied clauses remain. Finally, the most probable world

is determined by the truth values of the query atoms (e.g., Frank has cancer because

Ca(Frank) = true).

MAP Inference as an Integer Linear Programming problem

The search on MAP inference seen as an integer linear programming problem consists

of solving a binary optimization problem [99]. In this problem, each ground clause

represents a variable and each atom inside the clause also represents a variable. With

this representation, we can map the truth values of atoms and clauses to numbers

(where 1 = true and 0 = false) and define, for each clause, one positive (if the

weight of the clause is positive, Equation 2.48) or negative (if the weight of the clause

is negative, Equation 2.49) constraint as follows:

∑
p∈P

xp +
∑
n∈N

(1− xn) ≥ zg (2.48)

∑
p∈P

xp +
∑
n∈N

(1− xn) ≤ (|P |+ |N |)zg (2.49)

where P is the set of positive atoms in the clause, N the set of negative ones, xp are
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those variables generated from positive atoms, xn are the variables generated from

negative atoms and zg are those variables that represent a clause (the ones we seek

to optimize). Finally, the objective function is defined as:

max
∑
g∈G

wgzg (2.50)

where G is the set of ground clauses and wg the weight of each clause. For

example, consider the grounding of the smokers example (Equations 2.27-2.33) with

the following variables for each atom and each clause:

1.5 :(¬Sm(Bob) = x1 ∨ Ca(Bob) = x2) = z1

1.5 :(¬Sm(Frank) = x3 ∨ Ca(Frank) = x4) = z2

1.5 :(¬Sm(Gary) = x5 ∨ Ca(Gary) = x6) = z3

1.7 :(¬Fr(Gary, Bob) = x7 ∨ ¬Sm(Bob) = x1 ∨ Sm(Gary) = x5) = z4

1.7 :(¬Fr(Gary, Bob) = x7 ∨ ¬Sm(Gary) = x5 ∨ Sm(Bob) = x1) = z5

1.9 :(¬Fr(Frank, Bob) = x8 ∨ ¬Sm(Bob) = x1 ∨ Sm(Frank) = x3) = z6

1.9 :(¬Fr(Frank, Bob) = x8 ∨ ¬Sm(Frank) = x3 ∨ Sm(Bob) = x1) = z7

these clauses would generate the following problem:
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max(1.5z1 + 1.5z2 + 1.5z3 + 1.7z4 + 1.7z5 + 1.9z6 + 1.9z7)

Subject to :

(1− x1) + x2 ≥ z1

(1− x3) + x4 ≥ z2

(1− x5) + x6 ≥ z3

(1− x7) + (1− x1) + x5 ≥ z4

(1− x7) + (1− x5) + x1 ≥ z5

(1− x8) + (1− x1) + x3 ≥ z6

(1− x8) + (1− x3) + x1 ≥ z7

which can be solved with a wide variety of methods like interior-point methods or the

simplex method, which are provided by many solvers like Gurobi [149].

2.4.2 Summary

Statistical inference is the process of reasoning with uncertain or incomplete

information. In MLNs there are two approaches, marginal and MAP, which are based

on sets of query and evidence atoms and whose processing is divided in two steps:

grounding and search. Grounding is the process of assigning values to the variables

in the formulas. The grounded formulas then form an MRF, an undirected graph

where each atom is a node and each formula is a hyperedge, that is used during the

search. The search step in marginal inference determines the probability of the query

atoms being true given the evidence. This is performed by sampling the MRF with

algorithms like Gibbs [34] or MC-SAT[94]. The search in MAP inference finds the

most likely configuration of truth values for the query atoms. This task can be seen

as a satisfiability problem that can be solved with algorithms like MaxWalkSAT [53]

or an optimization problem to be solved with the simplex or barrier methods [89].
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Further information can be found in Sections 3.4 and 4.2.1.

2.5 Learning

ML is a branch of AI focused on creating and refining algorithms that can perform

predictions by learning from data [81]. Such learning is usually divided in two:

unsupervised and supervised. Unsupervised learning involves working with unlabelled

data and making predictions about its structure. It is used in a wide variety of tasks

including clustering and neural networks. However, the unlabelled data makes the

performance of these algorithms difficult to evaluate. A simple example of this kind

of learning is the detection of anomalies in a data set (of bank operations or website

logins for example), where the learner would first determine the normal instances

(i.e., the majority of the data) and then the abnormal ones (outliers) without the

need of any extra information or labels on the data.

In the supervised learning approach, a set of known examples of a problem are

provided as training data and the task is to analyse this data in order to provide a

function to map new unknown examples. Supervised learning is used in classification,

regression, and ranking, among other tasks. As an example, consider the problem of

classifying tree leaves where, given a set of known leaves and their characteristics, we

can create a concept that determines, for instance, the type of leaf based on its shape,

colour, size, etc. for all leaves known and unknown. Learning in MLNs is based on

the supervised approach and is used to automatically create or refine weights and

clauses.

2.5.1 Weight Learning

Weights in MLNs can be learnt or refined either generatively or discriminatively. The

basic idea in both cases is to construct a function for the weights using the training

data and then find the optimal values of said formula which correspond to the ideal

values for the weights, starting the search from a “good” initial value. Also, both
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approaches must first ground the MLN (similar to the inference grounding explained

in Section 2.4.1).

Generative Learning

In generative weight learning, the evidence and clauses are used as training data and

a close-world assumption [35] is made (i.e., all ground atoms not in the evidence are

considered false). The function to compute the weights is based on the pseudo-log-

likelihood [8] of the evidence X for the given weights w and is defined as follows:

logP ∗w(X = x) =
n∑

l=1

logPw(Xl = xl|MB(Xl)) (2.51)

where n is the number of ground atoms, Xl is a ground atom, and xl its truth value,

and Pw(Xl = xl|MB(Xl)) is the probability of Xl taking value xl for the current

weight values w given its Markov blanket. Equation 2.46 shows how to calculate

said probability, the only difference is that the weights wi change at each iteration

when learning. In order to optimize Equation 2.51 using the L-BFGS optimizer,

the gradient with respect to the weight of each formula i in the MLN (wi) must be

computed using the following equation:

∂

∂wi

logP ∗w(X = x) = (2.52)

n∑
l=1

tgi(x)− Pw(Xl = 0|MB(Xl))tgi(x[Xl=0])− Pw(Xl = 1|MB(Xl))tgi(x[Xl=1])

where tgi(x) is the number of times the formula i is true for all its possible groundings.

Likewise, tgi(x[Xl=1]) and tgi(x[Xl=0]) are the number of times formula i is true when

we force an atom Xl to be true or false. For example, given a(X) ∨ ¬b(X) with

evidence a(1), b(1), b(2), b(3), the possible groundings of this formula and its truth

values would be a(1) = true ∨ ¬b(1) = false, a(2) = false ∨ ¬b(2) = false, a(3) =
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false ∨ ¬b(3) = false. Thus, the formula has a single true grounding by default

(a(1) = true ∨ ¬b(1) = false) and tgi(x) = 1, but if we force b(X) = false then

all groundings evaluate to true (tgi(x[b(X)=0]) = 3) and if we force b(X) = true, once

again we get a single true grounding (tgi(x[b(X)=1]) = 1).

With the function and the gradient, the L-BFGS algorithm can iteratively

compute better values for the weights until a good solution is reached. Moreover,

the process is rather fast, with most of the processing time spent grounding and

counting the number of true groundings (tgi(x), tgi(x[Xl=1]), tgi(x[Xl=0])).

Discriminative Learning

Discriminative weight learning not only considers the evidence and the clauses but

also a set of query atoms. Said additional consideration allows discriminative learning

to outperform generative learning and other methods based solely on either logic or

probabilities [107]. By grounding the MLN and then partitioning the ground atoms

into X evidence atoms and Y query atoms, the main function of the discriminative

learner called conditional log likelihood (CLL) can be defined as:

−logPw(Y = y|X = x) = log(Zx)−
n∑

i=1

witgi(x, y) (2.53)

where Zx is a normalizing constant for the evidence X, n is the number of formulas in

the MLN, wi is the current weight for the ith formula, and tgi(x, y) is the number of

times the value of the ith formula is true. Note that we are using the negative of the

CLL (hence the negative in the formula) because it allows us to express the problem

as a weight minimization problem (instead of a maximization one), which is consistent

with most of the optimization literature. Thus, the gradient is also negative and is

computed as:
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∂

∂wi

(−logPw(Y = y|X = x)) = Ew,y(tgi(x, y))− tgi(x, y) (2.54)

where Ew,y(tgi(x, y)) is the expected number of times the i formula is true, based on its

current weight w. Since Ew,y(tgi(x, y)) depends on the weights (unlike tgi(x, y)) and

the truth values of y cannot be determined using only the evidence, its computation

cannot be performed using deterministic methods and is instead performed using

inference (as presented in Section 2.4.1).

The optimization algorithms used to compute discriminative learning include

Voted Perceptron (based on MAP inference), DN, and Scaled Conjugate Gradient

(both based on marginal inference). The last two methods also require information

from the second derivative (Hessian), which is computed as:

∂

∂wi∂wj

(−logPw(X = x|Y = y)) = (2.55)

Ew,y(tgi(x, y)tgj(x, y))− Ew,y(tgi(x, y))Ew,y(tgj(x, y))

2.5.2 Clause Learning

MLN clauses can also be learnt or refined using ILP-like methods. In normal ILP, we

are given a set of positive examples E+, a set of negative examples E−, a description

of the examples in FOL (background knowledge B), a language bias, and a set of

constraints. The goal is to find a FOL hypothesis H that ideally covers (explains) all

positive examples and none of the negative ones.

In general, there is no constructive algorithm to obtain the best rules. Instead, ILP

enumerates legal rules and selects the best one found. The most popular algorithm

to learn a rule is shown in Algorithm 1. This algorithm is based on Progol’s [85].

Progol is one of the first ILP systems implemented. Aleph [139], the system used in

this work, is based on Progol and, therefore, uses the same algorithm.
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Algorithm 1 The ILP algorithm used by Aleph.

1: R0 ← Init();
2: {P0, N0} ← Coverage(R0);
3: while StopNotReached do
4: R← NextNode()
5: {P,N} ← Coverage(R);
6: if Better(P0, N0, P,N) then
7: R0 ← R;P0 ← P ;N0 ← N ;
8: break
9: end if

10: end while

The process starts from an initial rule R0 (which is also considered the best rule

found so far) and its coverage counters P0 and N0. Then, the algorithm searches for

better rules until it finds a high-quality rule (one which covers all positive examples

and no negative ones), all possible rule combinations are tried, or a certain number

of iterations is reached. Three functions are critical to the algorithm. NextNode()

(line 4) creates a new rule R by using increasingly larger combinations of the best

predicates (as shown in the example below). Coverage (line 5) obtains the number of

examples that are explained by the rule R and stores them in P and N , for positive

and negative examples, respectively. Finally, Better() (line 6) compares the current

best number of covered examples with the newly generated ones and changes the best

rule found so far along with its coverage counters if the new one is better. Usually, to

measure if a rule is better than other, a quality score is compared like the difference

between P and N (P −N) versus P0 −N0, selecting the one with the higher value.

As an example of this algorithm, consider the ’grandfathers’ application where the

task is to find a person’s grandfather based on father relationships, with the following

background knowledge, positive, and negative examples:

Background Knowledge

father(Bob, Sam).

father(Sam, John).

father(David, Greg).
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father(Greg, Harry).

father(Ana, Gary).

father(Helen, Frank).

Positive Examples

grandfather(Bob, John).

grandfather(David, Harry).

Negative Examples

grandfather(Gary, Ana).

grandfather(Frank, Helen).

Often we start with R0 as the rule that is always true. In our example, this

corresponds to saying that everyone is a grandfather:

grandfather(Y,X) :- true.

and the initial coverage would be P = 2 and N = 2, having an initial score of

P −N = 0. To start searching, we include a body literal:

grandfather(Y,X) :- father(X,Y).

and we get P = 0, N = 2, and P − N = −2. Since the score was worse, we discard

that rule and try another until we reach the rule:

grandfather(Y,X) :- father(Y,Z), father(Z,X).

which has the best possible score P = 2, N = 0, and P −N = 2.

Coverage computation (line 5 of Algorithm 1) is a key operation in this (and most)

ILP algorithms, often dominating running time. It is usually implemented in Prolog

using several optimization techniques like indexing [103] and coverage lists [139].

For MLN clause learning, coverage is replaced by a function that better reflects

MLN applications called weighted pseudolog-likelihood, which is explained in detail

in Section 3.5.1.

Cinvestav Departamento de Computación



Background 45

2.5.3 Summary

ML is used to perform predictions by learning data. In MLNs, weights can be

learnt generatively or discriminatively by constructing a function for them based

on some training data and then optimizing said function. In generative learning, all

training data is considered evidence and the objective function and its gradient can

be calculated by grounding the MLN and then counting the number of groundings

whose truth value is true. The optimization algorithm used for generative learning

is the L-BFGS algorithm. In discriminative learning the training data is divided in

evidence and query data, and a much better objective function can be constructed

with them. The values for said function, its gradient, and Hessian are computed by

grounding and sampling (a process similar to marginal inference). These values are

then used by optimization algorithms like Voted Perceptron and DN [24, 89]. Our

work on weight learning is discussed in Sections 3.5 and 4.2.2. Clauses can also be

learnt using ILP-like methods, where given a set of positive and negative examples,

the task is to generate good clauses that cover all positive examples and none of the

negative ones. ILP systems like Aleph [139] iteratively propose and evaluate new

clauses until a good clause is found or a certain number of iteration have passed.

More about clause learning is presented in Sections 3.5 and 4.3.
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Proposal: Parallel Processing of

MLNs on GPUs

The use of Markov Logic Networks (MLNs) for various types of applications has

fostered the development of several systems. Alchemy was the first MLN system

implementation [24, 137]. It is written in C++ and is one of the most comprehensive

systems, including various algorithms for inference and learning based on satisfiability.

However, Alchemy does not include any kind of parallelism and does not cope

well with large real-world applications. theBeast [99] (now called theppl) was the

next system written in Scala and based on integer linear programming instead of

satisfiability. Like Alchemy, theBeast is not a parallel system, however, its latest

version (theppl) was designed with heavy emphasis on modularity and thus, users

can create parallel modules adapted to their needs for grounding, search, etc. Despite

the absence of parallelism, theBeast is faster than Alchemy for some problems, but

lacks many of Alchemy’s features and has a slightly different syntax. Tuffy [88, 136],

written in Java and also based on satisfiability followed a few years after theBeast.

Tuffy greatly improves upon Alchemy’s approaches by relying on a relational database

management system (RDBMS) and exploiting multicore parallelism during the search

phase. Finally, RockIt is the latest system [90, 138] that, like theBeast, treats inference

as an integer linear programming problem. It is written in Java and makes ample use
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of parallelism for grounding, search, and learning, allowing it to outperform all other

CPU-based systems.

Said systems have tried, with varying degree of success, to efficiently compute

MLNs by taking advantage of various techniques, specially multicore parallelism.

However, for many real world applications with data not exceeding a few hundred

MBs, the processing time remains unacceptably high, ranging from several hours to

days, as shown in our results in Section 5.3.2.

The purpose of our research is to investigate how to efficiently use Graphics

Processing Units (GPUs) to process MLNs. In this chapter we first justify our use

of GPUs to accelerate MLN processing (Section 3.1). We then discuss some of the

design issues for MLN processing (Section 3.2). Next, we present our designs and the

state of the art for processing each MLN phase, namely: inference, whose steps are

grounding (Section 3.3) and search (Section 3.4), and learning (Section 3.5). Finally,

we conclude with a summary of the whole chapter (Section 3.6).

3.1 Why use GPUs?

GPUs are high-performance many-core processors capable of very high computation

and data throughput [154]. GPUs are now used in a wide array of applications [153],

including gaming, data mining, bioinformatics, chemistry, finance, numerical analysis,

imaging, weather forecast, etc. Such applications are usually accelerated by at least an

order of magnitude, but accelerations of 10x or more are common. Moreover, there

is a huge difference in the cost-benefit of using GPUs instead of CPUs on highly-

parallel applications and we believe the difference will only continue to increase in

the following years. For example, at the time of writing of this thesis, NVIDIA had

just released the GeForce 1080Ti GPU, boasting 11.3 Tera Floating-Point Operations

per Second (TFLOPS) with a power consumption of 250 Watts (W) and a retail price

of $700 US dollars (USD). In contrast, Intel is about to release the Core i9-7980XE

CPU processor, which has been promoted as the first commercial processor capable
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of 1 TFLOPS with a power consumption of 165W and a retail price of $1,999 USD.

As it can be seen, GPUs offer much greater performance at a lower cost and mildly

higher energy requirements.

While various different brands of GPUs and programming models are available,

our work is based exclusively on NVIDIA GPUs programmed using their Compute

Unified Device Architecture (CUDA) [147] interface to the C language. However, it

is important to mention the Open Computing Language (OpenCL) framework of the

Khronos group [134], which seems to have a bright future since many companies are

working on it and it is more flexible than CUDA as it can be executed on both NVIDIA

and AMD GPUs, and on the CPU. Nevertheless, we chose the CUDA framework for

our work, since OpenCL lacks many useful tools like an advanced debugger or profiler

and, for some applications, CUDA has better performance. Hence, unless otherwise

stated, any mention of GPUs in our work refer to NVIDIA GPUs and its programming

model. In the following subsections, we present only the most important aspects of

GPUs. A detailed presentation of GPUs is given in Appendix A.

GPU Architecture and Programming Model

GPUs are akin to single-instruction-multiple-data (SIMD) machines: many processing

elements run the same program but on distinct data items. The program, referred to

as the kernel, is similar to a C function and can be quite complex including control

statements such as if and while statements. A kernel is executed by groups of threads

called warps. Each warp has a single control unit that makes all its threads execute

the same instruction at a time. When threads diverge in their execution path, the

warp serially executes each branch path, disabling threads not on the path being

executed, until all paths complete and the threads converge to the same execution

path. Hence, if for example, a kernel has to compare strings, processing elements that

compare longer strings will take longer and other processing elements that compare

shorter strings will have to wait.

GPU threads and memory are organized hierarchically as shown in Fig. 3.1. Each
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thread has its own per-thread local memory. Threads are grouped into blocks of the

same size (defined by the programmer), with each block having a memory shared

by all threads in the block. Blocks are internally divided by the GPU driver into

warps, based on the hardware capabilities of the GPU (see “Thread Hierarchy” in

Appendix A.2.2). Finally, thread blocks (as many as the programmer defines) are

grouped into a single grid to execute a kernel — different grids can be used to run

different kernels. All grids share the global memory, whose transfers are coalesced by

the GPU into as few transactions as possible when good access patterns are used.

The simplest and most commonly used pattern makes thread n access element n in

an array.

At hardware level, GPU cores are grouped into Streaming Multiprocessors (SMs),

with each SM handling the registers, caches, and other functions of its cores. When

work is scheduled by the GPU driver, each SM receives a certain number of warps

and executes them at the same time if possible.

3.2 Design Issues for Processing MLNs on GPUs

GPUs can substantially improve performance and are now being used for general

purpose computing in addition to game applications. GPUs are particularly suitable

for compute-intensive, highly parallel applications. They perform well in scientific

applications that model physical phenomena over time and space, wherein the

“compute-intensive” aspect corresponds to the modelling over time, while the “highly

parallel” aspect to the modelling at different points in space. Data-intensive, highly

parallel applications such as database relational operations and MLNs can also benefit

from this model.

3.2.1 GPU Issues

As we explored the design space of parallel processing of MLNs on GPUs, we

considered several aspects of GPU programming, in order to create efficient GPU
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Figure 3.1: Thread and memory hierarchy on GPUs. Image taken from [147].

Cinvestav Departamento de Computación



52 Chapter 3

algorithms. One of the most important aspects of GPU programming is the handling

(transferring and processing) of data in bulk, rather than element by element. How

large a bulk of data should be depends on the computation-to-communication ratio,

which reflects that a proper amount of data was selected to be transferred. This

amount should be small enough to fit in the limited amount of GPU memory available,

but large enough so that the number of transfers is minimized and the processing time

is spent computing data on the GPU, rather than transferring it. For MLNs, a good

ratio could be maintained by having a large amount of evidence data and by selecting

the best hardware platform (CPU, GPU, or both) for each operation (e.g., sending a

few rows instead of a whole evidence table to the GPU is a poor choice, as is using

the GPU to control the flow of the MLN processing algorithm, instead of using it for

key operations like sorting).

Other important efficiency consideration is maximizing occupancy, i.e., each time

a kernel is launched, it should be processed by all available cores. Less than maximum

occupancy occurs when some warps cannot be executed in parallel because they use

too many registers, too much shared memory and/or an incorrect number of threads

per block was defined (e.g., if one defines blocks of 28 threads for a GPU whose SMs

have 32 cores, then 4 cores will go unused, thus not achieving maximum occupancy).

This leads to slower kernels as the full computational resources of the GPU are not

completely used. Fortunately, MLN operations do not require an excessive amount of

registers or shared memory and understanding the number of threads that a certain

operation requires is relatively easy (e.g., most relational operations like selections

and joins use one thread per row to be processed).

As mentioned in Section 3.1, thread divergence is another issue that can adversely

affect the kernels. However, it is very difficult to avoid as MLN operations are rather

complex, requiring several if conditions and while cycles that may cause divergence.

Furthermore, MLN evidence is usually encoded using strings of variable sizes, whose

processing uses a variable number of cycles and is also a cause of divergence.

Also, the amount of GPU memory is limited and cannot be automatically
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“extended” using paging like the CPU does. For MLNs, while the whole evidence in a

single MLN may be larger than the total amount of GPU memory, it is usually divided

in tables and not all tables are necessary to perform an operation. However, if several

tables are loaded and then discarded to free up memory each time an operation is

performed, we would create a poor computation-to-communication ratio. A control

mechanism that decides when to load and discard tables is necessary (like the one

presented in Section 4.1).

Finally, there are some GPU optimizations that can be easily applied when working

with MLNs, since the data in MLN tables can be evaluated in any order: coalesced

memory access occurs when threads within the same warp read contiguous memory

locations (e.g., thread 1 reads location 1, thread 2 location 2, and so forth) and

accelerates the execution by allowing the driver to perform a single read of the data for

all threads, rather than one per thread; memory transfer operations can be performed

concurrently with kernel executions, allowing the processing of a kernel and the data

loading for the next kernel to be performed at the same time; and shared memory

can be used instead of global memory to store data that threads constantly access,

improving the performance of said accesses.

Figure 3.2 summarizes the concepts covered in this subsection and in Section 3.1.

There are several aspects to consider like designing GPU algorithms that handle the

data in bulk, working with the limited amount of GPU memory available and ensuring

that all threads are occupied and their execution does not diverge. GPU algorithm

performance can be optimized by overlapping memory transfers with processing, by

having consecutive threads read consecutive memory locations and by exploiting the

speed of the shared memory. Also, CPU and GPU can interact in many ways:

memory transfers between GPU and CPU should not take longer than the GPU

processing time; working together at the same time; and deciding which hardware

is best for a certain operation. Finally, recall that there are two main languages

for GPU programming (but this thesis work is based only on CUDA), and that the

substantial processing power of the GPUs has prompted their use in a rich variety of
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Figure 3.2: Summary of the most important GPU concepts.

applications [153] spanning several different fields.

3.2.2 MLN Issues

In MLN processing, grounding (the process of assigning values to the variables in the

formulas) can be performed using a top-down approach (similar to Prolog), which

reduces a problem to simpler problems and then composes the solution of the original

problem as the solutions of simpler problems. However, top-down grounding offers

little in terms of optimization or parallelisation as it process one element at a time. In

contrast, bottom-up grounding (BUG) works by applying the rules to the given data,

thereby deriving new data, and repeating this process until a fixed point is reached

(i.e., no more new data is derived). As BUG works with sets of elements, it fits well

with the GPU’s bulk data handling. Moreover, BUG is an iterative processes that

works over a set of formulas not related to each other in the same iteration. This

means that formulas can be evaluated in parallel at each iteration. Finally, a formula

can in turn be seen as a series of relational algebra (RA) operations (mainly selection,

join, and projection) which can also be parallelised individually [23]. For example, if
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an MLN has formulas f1 and f2, and f1 requires a join operation, then f1 and f2

can be independently evaluated from each other and the join in f1 can be performed

in parallel.

As an example of the difference between top-down grounding and BUG, recall the

last rule of the smokers example presented in Section 2.3 (¬Fr(x, y)∨¬Sm(x)∨Sm(y))

along with the facts fr(frank, bob), fr(gary, helen), sm(frank), and sm(gary).

The top-down approach can be exemplified using Prolog by rewriting the rule with

Prolog’s syntax (sm(Y) :- fr(X,Y), sm(X).) and executing the trace command.

In YAP Prolog [15], the query to determine all smokers (sm(Y).) produces the

following trace (the first part is omitted for brevity):

1 ?- sm(Y).

2 ...

3 (1) redo:sm(gary) ?

4 (2) call:fr(_131205,_131116) ?

5 ? (2) exit:fr(frank,bob) ?

6 (3) call:sm(frank) ?

7 ? (3) exit:sm(frank) ?

8 ? (1) exit:sm(bob) ?

9 Y = bob ? ;

10 (1) redo:sm(bob) ?

11 (3) redo:sm(frank) ?

12 (4) call:fr(_131395,frank) ?

13 (4) fail:fr(_131395,frank) ?

14 (3) fail:sm(frank) ?

15 (2) redo:fr(frank,bob) ?

16 ? (2) exit:fr(gary,helen) ?

17 (5) call:sm(gary) ?

18 ? (5) exit:sm(gary) ?

19 ? (1) exit:sm(helen) ?
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20 Y = helen ? ;

21 (1) redo:sm(helen) ?

22 (5) redo:sm(gary) ?

23 (6) call:fr(_131395,gary) ?

24 (6) fail:fr(_131395,gary) ?

25 (5) fail:sm(gary) ?

26 (2) redo:fr(gary,helen) ?

27 (2) fail:fr(_131205,_131116) ?

28 (1) fail:sm(_131116) ?

29 false.

As it can be seen, top-down is a lengthy process that obtains the results one by

one (note that the results are frank, gary, bob, and helen). For example, the process

to find bob starts at line 3 by resuming from the last solution found and attempting

to generate alternative solutions. Since there are no other solutions for sm(gary),

YAP calls the first predicate of the next possible rule (line 4, where the numbers

starting with an underscore represent YAP’s variable identifiers). The call then exits

with the first value that satisfies the variables (line 5) and the last predicate is called

(line 6, whose value is already known, hence no variable). With the result of the last

predicate (line 7), the whole rule is true and bob is obtained as result (line 8). A

similar process is repeated to find helen and then again to determine that all results

have been found. Furthermore, each new addition to either fr or sm would imply

many more steps to find all solutions.

In contrast, the bottom-up process of GPU-Datalog (our Datalog engine presented

in Section 4.1) begins by finding all the rules that are relevant to the query. Since

the only rule is relevant, it is processed by loading all facts with the same name as

the first predicate (fr(frank, bob) and fr(gary, helen)) and then loading all the

facts from the second predicate (sm(frank) and sm(gary)). The rule is then solved

with the RA formula:
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ΠY(fr(X, Y) ./X sm(X)) ∪ sm(X) (3.1)

that indicates that a join is performed between the first column of the first

predicate and the only column of the second one. The result (fr(frank, bob) and

fr(gary, helen)) is then projected to leave only bob and helen, and they are in turn

appended to the already known values for sm (frank and gary). If more values are

added to fr and/or sm, all solutions would still be found by using the same formula,

the RA operations would simply process more elements.

The search phase as a satisfiability problem can also benefit from parallelism as

the MaxWalkSAT algorithm [53], despite its extensive data dependencies, it can be

parallelised by switching the truth value (flipping) of several atoms at the same time,

trying to satisfy many clauses at each iteration (e.g., if formula f1 and formula f2

are unsatisfied and are conformed of different atoms, then we could use a thread to

flip an atom in f1 and another thread to flip an atom in f2 during the same iteration,

instead of taking two iterations). This idea is corroborated by the similar, parallel

SAT algorithms that exist in the literature [92]. When solving an integer linear

programming problem, the search phase can also be parallelised using finely-tuned,

multicore solvers like Gurobi [149].

As weight learning (described in Section 2.5.1) requires grounding, it can also

benefit from its parallelisation. Furthermore, the optimization algorithms used to find

the best weight values have to do sampling using an algorithm similar to MaxWalkSAT

called MC-SAT. This MC-SAT algorithm also switches the truth values of the atoms

and thus, it can be parallelised like MaxWalkSAT.

Finally, in general clause learning (Section 2.5.2) with Inductive Logic

Programming (ILP), a great number of candidate clauses can be created. To

determine if said clauses are useful or not they need to be grounded and this grounding

can also be done in parallel (e.g., if the ILP system proposes formula f1, how useful
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f1 is can only be determined by grounding it and counting the number of positive and

negative groundings). This idea can be extended to MLNs by using an MLN-specific

formula (like Equation 3.11 of Section 3.5.1) instead of counting the groundings.

Based on our analysis of the design space, we propose two designs for parallel

processing of MLNs on GPUs called GPU-Tuffy (Section 4.4) and GPU-RockIt

(Section 4.5). The main motivation behind having two designs is their different

approach to the inference problem, which results in one design outperforming the

other for some applications and vice versa. However, before presenting our proposals

(Chapter 4), the following sections detail our approach to grounding, search, weight

learning, and clause learning in GPUs and the current state of the art for each one.

3.3 Our Approach to Grounding on GPUs

Grounding can be one of the most time-consuming tasks of MLN processing, thus we

propose the use of a GPU-accelerated language to perform it. We consider grounding

in MLNs as a First-Order Logic (FOL) program and the processing infrastructure for

FOL in both our MLN platform designs (GPU-Tuffy and GPU-RockIt) is Datalog,

a language that has been used as a data model for relational databases [116, 117];

syntactically it is a subset of Prolog. Similar to MLNs, Datalog programs can be

processed top-down or bottom-up (as discussed in Section 3.2.2).

A Datalog program consists of a finite number of facts, rules, and queries. Facts

are statements about something relevant, for example “John is Harry’s father”. Rules

are sentences that allow the deduction of new facts from known facts, e.g., “If X is

the father of Y and if Y is the father of Z, then X is the grandfather of Z”. If we are

only interested in a subset of all facts that can be derived from the rules, a query

can be used (e.g., the query “Who is the grandfather of harry?”). Facts can be seen

as rows in a relational database table, while rules and queries can be seen as SQL

queries.

Every Datalog program can be translated into a series of RA operations [11].
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Figure 3.3: Equivalence of Datalog rules and relational operators.

Figure 3.3 shows this equivalence between rules and relational operators. Selections

are made when constants appear in the body of a rule. Next, a join is made between

two or more predicates in the body of a rule using the variables as reference. The

result of a join can be seen as a temporary predicate (or table) that has to be joined

in turn to the rest of the predicates in the body. Finally, a projection is made over

the variables in the head of the rule. Any query that can be answered using RA can

also be answered using a Datalog program. Thanks to recursion, Datalog may even

evaluate queries which cannot be evaluated in RA (like the recursive query in the

smokers example).

A pure Datalog program consists of normal and recursive clauses, and a

single query. However, in order to allow Datalog to process MLNs, it has to

be extended with: management of negation, built-in comparison predicates, and

interfaces to communicate directly with Relational Database Management Systems.

Furthermore, in order to be able to run inductive logic programs (the basis of clause

learning), additional extension have to be included like: running several queries

in sequence, arithmetic predicates (+,−, ∗, /, e.g., a(Z), Z + 3), and aggregation

(GROUP BY operator in SQL).
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From the perspective of GPU programming, Datalog programs can be processed

using GPU-based RA operations. However, this approach presents some design issues

including: handling strings found in the data, as its processing on GPUs causes

warp divergence; minimizing the number of data transfers between GPU and CPU,

since each transfer implies some overhead; and efficiently processing RA and other

operations. Also, to handle large amounts of data that exceed the memory capacity

of the GPU and to allow multiple GPU to process an application simultaneously, a

data partitioning scheme is necessary. Of great importance to this scheme is the size

of the partition. If the partition is too small, performance is adversely affected as we

need to perform many more iterations. If it is too large, the result of the operation

may not fit and the whole process will fail.

Likewise, RA operations in GPUs present their own issues. Perhaps the most

important one is the impossibility of knowing the result size beforehand (e.g., in

the selection, we do not know how many tuples will be selected until we actually

perform the operation). To further complicate matters, while the issue can be solved

in the CPU using dynamically allocated containers (like those provided by stdlib in

C++), in GPUs this method is inefficient as memory reallocation may require several

GPU-CPU-GPU transfers.

Further narrowing the design issues by operation, the join is a complex operation

that can be performed using many algorithms including nested-loop join with or

without indexes, sort-merge join, and hash join [48]. The best algorithm has to be

chosen and adapted based on the particularities of GPU programming. Also, the

comparison predicates need to be evaluated as soon as their variables are bound, i.e.,

as soon as the variables appear in a positive predicate. Otherwise, many tuples

that could be eliminated earlier in the evaluation are not, potentially increasing

computation costs and memory usage.

For negation, in order to correctly map the variables to the data, a safety

consideration has to be introduced: variables occurring in a negative literal

must also occur in a positive literal of the same clause body. Thus, clauses
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like s(X) :- t(X), not r(X) and s(X) :- t(Y,X), not r(X) are allowed, but

s(X) :- not r(X) or s(X) :- t(Y), not r(Y,X) are not. This restriction is

necessary because negation in RA is the set difference operator (\) which, given

some sets of tuples A and B, A \ B removes all the common tuples between A and

B, leaving only the odd ones in A. If there are no tuples to remove from (i.e.,

there is no set A), the operation cannot be performed. For example, if we have

t(1), t(2), and r(1), then the clause s(X) :- t(X), not r(X) can be performed

by doing t(X) \ r(X) ({1, 2} \ {1}), getting s(2) :- t(2) as result. In contrast, the

clause s(X) :- not r(X) cannot be performed because r(X) has no set to remove

from (? \ r(X)).

Another restriction when combining negation and recursion is that the program

should never allow a predicate to be invoked recursively in its negated form. In other

words, we should never allow clauses to be specified as p(X) :- not p(X). Otherwise,

recursion may never reach a fixed-point and the program would never finish.

MLN grounding can be seen as a Datalog program where the facts are the MLN

evidence and the rules are the MLN formulas, as shown in Algorithm 2. The result

of this grounding is the closure of the active atoms (AA): atoms whose truth value

might change from true to false or vice versa during search, and the active clauses

(AC): clauses that can be violated (i.e., their truth value becomes false) by flipping

zero or more active atoms. The idea is to generate a queue of Datalog rules (DR)

and apply the RA operators on said rules to find first the active atoms and then, the

active clauses. Note that each recursive rule (R) is not removed from DR until it has

reached a fixed-point that will generate no new data. Details on how this algorithm

is implemented in our platforms can be found in Sections 4.4 and 4.5.

3.3.1 State of the Art for Grounding

The first grounding algorithms for MLNs were sequential and were written in C++

for the Alchemy [24, 137] system and in Scala for theBeast [99]. They were based

on a top-down approach where MLN formulas are evaluated in a manner similar to
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Algorithm 2 General algorithm for GPU grounding in MLNs based on Datalog.
1 Input: MLN clauses MC and evidence E

2 Output: grounded active atoms AA and active clauses AC

3 TR <- Translate MC to Datalog rules

4 DR <- TR

5 RF <- Read E from database into facts

6 While DR is not empty

7 For each rule R in DR

8 AA <- Perform the RA operations of R using RF

9 If R will not generate more data

10 Remove R from DR

11 End if

12 End for

13 End while

14 DR <- TR

15 While DR is not empty

16 For each rule R in DR

17 AC <- Perform the RA operations of R using AA and RF

18 If R will not generate more data

19 Remove R from DR

20 End if

21 End for

22 End while

23 Return AA, AC
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Prolog. However, this type of grounding did not cope well with large applications.

To overcome this problem, newer systems like Tuffy [88, 136] and RockIt [90, 138]

follow a bottom-up approach based on a RDBMS. This approach translates the MLN

formulas into SQL queries, allowing a much faster grounding thanks to indexing, query

planification, parallelism, among other advantages. Furthermore, RockIt exploits

multicore based parallelism by mapping each query to a CPU core.

Some applications can benefit from lifted inference [109], where the MLN is

computed without having to materialize groundings, thus reducing the overall

processing time. Lifted inference is based on Belief propagation (BP), where similar

predicates are grouped together into supernodes and similar clauses into superfeatures

of a factor graph [62], with vertices going from a supernode to superfeature if a

predicate in the supernode appears in a clause of the superfeature.

The factor graph is initially constructed with three supernodes for each predicate,

one with all true groundings, another with all false groundings, and the last with the

unknown groundings (some supernodes can be empty). The superfeatures are initially

constructed with all possible combinations of the supernodes with the clauses. As

example, Figure 3.4 shows the initial graph for the smokers example with evidence

Sm(John), Fr(John,Bob). The coloured vertices represent which supernodes (sni)

were used to create which superfeatures (sfi). Note that the true groundings are

represented without variables (like Sm(John)), the unknown groundings have at least a

variable that should exclude all values already covered in the true and false groundings

(Sm(X). X != John), and there are no false groundings because all the evidence is

positive.

The initial factor graph can be prohibitively large to work with but can be

iteratively compacted by counting the times and position of each atom in a

superfeature and grouping together those atoms with the same counts into a new

supernode. With the new finer supernodes, new finer superfeatures can be computed

and the process is repeated until no new supernodes can be created. The compacted

graph can then be used to search as presented in Section 3.4.1.
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Figure 3.4: Initial factor graph for the smokers MLN, where sni are the supernodes and sfi are the
superfeatures.

Similar to lifted inference, after grounding the MLN, Shavlik and Natarajan [105]

propose the use of a preprocessing algorithm called Fast Reduction Of Grounded

networks (FROG) that can substantially reduce the effective size of the grounded

MLNs by rapidly counting how often the evidence satisfies each clause, regardless

of the truth values of the query atoms. Since these counts are constant through

the following tasks, i.e., Markov Random Field (MRF) construction and search,

these counts are computed once and their related ground clauses are safely ignored.

The authors’ comparison of several MLNs using Alchemy with and without said

preprocessing algorithm shows that it can reduce both processing time and memory

requirements, but its effectiveness depends on the MLN clauses, as clauses composed

entirely of query and/or hidden literals (i.e., those literals that do not appear in the

evidence) cannot benefit from the algorithm at all and offers little benefit to those

clauses with few negative literals.
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3.4 Our Approach to Search

The search phase is also a time consuming process which is affected by suboptimal

solutions, since current algorithms cannot cover the entire search space to find the

best solution. Our proposal is to parallelise a satisfiability algorithm using GPUs, in

order to improve both processing time and solution quality by covering more of the

search space in less time.

Our first approach to search (used in GPU-Tuffy) is thus based on satisfiability

where, once the active atoms and active clauses are computed by the grounding step,

said search begins by creating and partitioning the corresponding MRF. The resulting

partitions include active atoms and active clauses that are completely independent

from each other and can be solved in any order. These properties make them easy to

parallelise in multicores, with one thread solving one partition through running the

MaxWalkSAT algorithm. Workload can be balanced by storing all partitions in a list

and having each thread take a partition, solve it, and take another partition until no

partitions remain. While this scheme works well for partitions with uniform sizes,

our first experimental results showed that this regularity rarely occurs in MRFs with

hundreds of thousands of atoms and clauses (see Table 5.5 in Section 5.3.2). The

culprit is usually a single partition that takes several orders of magnitude more time

than the others to solve. The processing of such partition dominates the search time,

forcing the single thread that processes it to finish much later than all other threads

which, after having solved the rest of the MRF, keep idly waiting for that thread to

finish.

To mitigate this problem, we devised a hybrid solution wherein the larger

partition/s are processed in parallel by the GPU, while the remaining smaller

partitions are processed in the multicore. This solution required the design and

implementation of a GPU-based MaxWalkSAT solver. MaxWalkSAT [53] usually

starts at a random point in the search space — if we consider all possible truth

assignments of the atoms as our search space, a random starting point would be any
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truth assignment. This initial assignment is an initial solution to the SAT problem

that leaves many unsatisfied clauses. The sum of the weights of these unsatisfied

clauses serves as a measure called the cost of the solution, which determines how

good a solution is. Note that, in order to set the lowest possible cost at zero (when

the number of unsatisfied clauses is also zero) the absolute values of the weights of

negative clauses are used in the summation.

The MaxWalkSAT solver tries to find zero cost solutions by iteratively selecting

an unsatisfied clause and flipping the truth value of one of its atoms (i.e., changing it

from true to false or vice versa). The atom is chosen either randomly or to maximize

the sum of the satisfied clause weights. Once the atom is flipped, any clause containing

the atom is checked to determine if it is satisfied or not and a new iteration begins.

The process is repeated for a number of iterations based on the total number of clauses

or until no clauses are unsatisfied.

To perform a parallel search in the GPU, we considered the following two options:

1) each GPU thread starts at a random point in the search space and executes an

instance of the MaxWalkSAT algorithm (i.e., each thread performs alone all the

MaxWalkSAT steps); at the end, the best solution from all threads is chosen; or

2) all GPU threads start from the same random point and perform together a single

instance of the MaxWalkSAT algorithm (i.e., each step is performed in parallel by all

threads), with threads flipping different atoms of different clauses and returning the

single solution found by these combined flips.

One of the issues of parallelising MaxWalkSAT is the inherently sequential nature

of the algorithm, with many dependencies among the data. Another issue we found

while testing the GPU design is that, as the algorithm approached a zero cost solution

or a good solution with few unsatisfied clauses, the fixed number of flips per iteration

may lead to overshoot the solution (too many atoms are being flipped, increasing the

number of unsatisfied clauses rather than reducing it).

Our hybrid search approach is shown in Algorithm 3. It receives the active atoms

AA and clauses AC, and returns the most probable world (i.e., the truth values for AC).
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The algorithm begins by creating and partitioning the MRF and then, at the same

time, the CPU processes the smaller partitions while the GPU is processing the larger

ones. This processing is performed by MaxWalkSAT which is presented in a resumed

version with simple stopping and flipping criteria (the full version for CPUs can be

found in [53] and for GPUs in Algorithm 6) where initial truth values TV are assigned

to the active clauses AC in each partition P and, while P has unsatisfied clauses UC,

the algorithm flips the atoms AA of the unsatisfied clauses UC, removing all satisfied

clauses and adding any new unsatisfied ones. Once there are no unsatisfied clauses

UC in a partition P, the final truth values TV are stored and the hardware (CPU or

GPU) moves to the next partition until no partitions remain and the final result is

displayed.

Algorithm 3 General algorithm for hybrid search in MLNs based on MaxWalkSAT.
1 Input: grounded active atoms AA and active clauses AC

2 Output: truth values TV for AC

3 PS <- Create and partition MRF using AA and AC

4 For each small partition P on PS --- CPU

5 TV <- assign truth values to every AC in P

6 While P has unsatisfied clauses UC

7 Flip an atom AA of a clause in UC

8 Remove all satisfied clauses from UC

9 UC <- Add newly unsatisfied clauses if any

10 End while

11 TV <- final truth values of every AC in P

12 End for

13 For each large partition P on PS --- GPU

14 TV <- assign truth values to every AC in P

15 While P has unsatisfied clauses UC

16 Flip an atom AA of several clauses in UC

17 Remove all satisfied clauses from UC

18 UC <- Add newly unsatisfied clauses if any

19 End while

20 TV <- final truth values of every AC in P

21 End for

22 Return TV

While satisfiability is a very efficient approach, we found that mathematical
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optimization using integer linear programming produces better results for some

applications (as shown in Section 5.3.2). Thus, our second approach (used by GPU-

RockIt) is called Cutting Plane Inference [99] (CPI) and is based on integer linear

programming. We make use of CPI as defined in RockIt without any modifications,

since it is quite efficient and designing competitive, parallel optimization algorithms

is a considerable challenge in itself.

CPI is an iterative algorithm that works by dividing the large optimization

problem created by the clauses and atoms of the MLN (such creation is described

in detail in Section 2.4.1) into several, smaller optimization problems. Said

smaller problems are further compacted with a technique called Cutting Plane

Aggregation [90] (CPA), which groups similar groundings into a single constraint

to the problem. At each iteration, CPI maintains a current, intermediate solution

to the whole MLN and only those clauses that are not satisfied by the intermediate

solution are compacted by the CPA algorithm and then used as constraints in the

optimization problem, which creates a new intermediate solution and so forth until

convergence. The system in charge of solving these optimization problems is called

Gurobi and uses both the simplex and the barrier methods presented in Section 2.2.2.

3.4.1 State of the Art for Searching

The search in the Alchemy system is performed over the whole MRF with different

algorithms, depending on the type of inference being used [24, p.23]. For MAP

inference, Alchemy uses a single CPU-core MaxWalkSAT implementation and for

marginal inference, it uses the MC-SAT algorithm with sampling provided by the

SampleSAT algorithm in a process similar to the weight learning described in 4.2.2,

with the main difference being that no optimization algorithm is used. Alchemy’s

other inference algorithm is lifted inference, based on BP as described in Section 3.3.1.

In this algorithm, once the factor graph has been built and compacted, the marginal

probability of the supernodes with query atoms can be computed given the rest of the

factor graph. Said computation is iteratively performed by passing messages from
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supernodes to superfeatures and vice versa.

In order to formally introduce the passed messages, we must first define the

concept of not-sum or summary [62], a non-standard summation notation that

indicates which variables are not being summed over, instead of indicating those

variables being summed as traditionally used in the summation notation. Formally,

given a set of variables x1, ..., xn each belonging to a corresponding domain D1, ..., Dn

and a function of these variables f(x1, ..., xn), the summary of f for a variable xi is

defined as the summation of all values of f given all possible combinations of the

values of the variables except xi, which is left at a fixed value:

∑
∼{xi}

f(x1, ..., xn) =
∑

x1∈D1

...
∑

xi−1∈Di−1

∑
xi+1∈Di+1

...
∑

xn∈Dn

f(x1, ..., xn) (3.2)

As example, consider a boolean function with 3 boolean variables f(x1, x2, x3)

that returns 1 if at least one of its arguments is 1 and 0 otherwise. The summary for

x2 = 0 is:

∑
∼{x2}

f(x1, x2, x3) = f(0, 0, 0) + f(1, 0, 0) + f(0, 0, 1) + f(1, 0, 1) = 0 + 1 + 1 + 1 = 3

(3.3)

With the summary notation, the messages µ passed from a supernode sn to a

superfeature sf (µsn→sf ) and from sf to sn (µsf→sn) are defined as:

µsn→sf =
∏

sg∈nbf(sn)\{sf}

µim(sg,sn)
sg→sn (3.4)

µsf→sn =
∑
∼{sn}

(f(nbn(sf))
∏

sm∈nbn(sf)\{sn}

µsm→sf ) (3.5)

where nbf(sn) is the set of superfeatures connected to sn (i.e., its neighbourhood),
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Figure 3.5: Part of the factor graph for the smokers MLN. The extra white boxes in the supernodes
represent the truth value of their atoms (T for true and U for unknown) and the extra white boxes
in the superfeatures contain the weight of the clauses inside them.

nbn(sf) is the set of supernodes connected to sf , im(sg, sn) is the number of identical

messages that have to be sent to the superfeature sg, one for each time an atom of

sn appears in a clause of sg, and f(nbn(sf)) is a function based on the clauses of the

superfeature, whose arguments are the truth values of the atoms in the neighbouring

supernodes, and over which the summary is applied. There are two possible return

values for f : ewsf , where wsf is the weight of the clauses in the superfeature, which

occurs for those combinations of the truth values of the atoms in nbn(sf) that make

the clauses in the superfeature to be true; and 0 for those truth value combinations

that make the clauses to be false or contradict the evidence.

The message passing iterations begin with the supernodes sending 1 as message

to their corresponding superfeatures, the superfeatures calculate their message, and

send it to their corresponding supernodes, and so forth until convergence (a difficult

topic as shown in [83], Alchemy usually executes BP for a fixed number of iterations).

Once the algorithm has converged, the unnormalised marginal probability of all atoms

in a supernode sn can be computed as:

∏
sg∈nbf(sn)

µim(sg,sn)
sg→sn (3.6)

To summarize the process, consider the superfeatures sf3 and sf4 presented in

Figure 3.5 (part of the factor graph presented in Figure 3.4). In the second iteration,

after receiving 1 as message from all their neighbouring supernodes (sn1, sn2, and

Cinvestav Departamento de Computación



Proposal: Parallel Processing of MLNs on GPUs 71

sn4) during the first iteration, said superfeatures compute their message back to sn4

as follows:

µsf3→sn4 =
∑
∼{sn4}

µsn1→sf3µsn2→sf3f(sn4, sn2, sn1) (3.7)

= µsn1→sf3µsn2→sf3(f(T, F, F ) + f(T, T, F ) + f(T, F, T ) + f(T, T, T ))

= 1 ∗ 1 ∗ (0 + 0 + e1.7 + e1.7)

= 10.947

µsf4→sn4 =
∑
∼{sn4}

µsn1→sf4µsn2→sf4f(sn4, sn1, sn2) (3.8)

= µsn1→sf4µsn2→sf4(f(T, F, F ) + f(T, T, F ) + f(T, F, T ) + f(T, T, T ))

= 1 ∗ 1 ∗ (0 + 0 + 0 + e1.9)

= 6.685

where T and F represent the case where the atoms in the corresponding supernode

sni are true or false respectively. Note how the truth value for sn4 always remains

true and how f(T, F, T ) = 0 in Equation 3.8 even though ¬T v ¬F v T = T, because it

contradicts the evidence by setting Sm(John) = F. With the messages µsf3→sn4 and

µsf4→sn4, sn4 can then calculate its next messages as:

µsn4→sf3 = µ
im(sf4,sn4)
sf4→sn4 (3.9)

= 6.6851

µsn4→sf4 = µ
im(sf3,sn4)
sf3→sn4 (3.10)

= 10.9471

where the exponentials im(sf4, sn4) and im(sf3, sn4) are equal to 1 because only

one message has to be sent. If there was a variable involved like X in sf2
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(¬Sm(X) v Ca(X). X! = John), then the number of messages for sn3 (Ca(X)) would be

n − 1, where n is all the possible values for X (i.e., all people in the evidence) and

the −1 excludes John.

About the other systems, Tuffy implements the same algorithms as Alchemy for

MAP and marginal inference, but does not include lifted inference. Tuffy was the first

to improve MAP inference by using partitioning on the MRF and then processing the

parts in parallel, as described above (Section 3.4). theBeast was the first to introduce

the idea that MAP inference can be seen as integer linear programming problem

and the first to use the CPI approach. CPI is also used by RockIt, which improved

its performance thanks to the CPA preprocessing algorithm and the efficient Gurobi

optimizer.

Finally, Beedkar et al. implemented fully parallel inference for MLNs [5]. Their

system parallelises grounding by considering each clause as a set of joins and

partitioning them according to a single join graph. The search step of inference

is also parallelised using importance sampling together with Markov chain Monte

Carlo [60]. Since the MLN is partitioned during grounding, no further partitioning of

the resulting MRF is required before searching. The authors compared their approach

against Tuffy’s and found it to be more efficient since the partition is performed over

a smaller data independent graph, while Tuffy must search for partition opportunities

in the whole MRF. Experimental evaluation shows that this is faster and produces

similar results when compared with Tuffy.

3.5 Our Approach to Learning

We chose to design and implement the most successful method for weight learning,

called discriminative weight learning (presented in Section 2.5.1), on GPUs using the

Diagonal Newton (DN) optimization method [70]. Said process begins (like inference)

by finding the active atoms and active clauses through grounding the MLN. With the

active atoms and active clauses, the MRF is created (but not partitioned like in
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MaxWalkSAT, as the whole search space has to be considered), an initial value for

the weights of each clause is defined and the DN method begins.

The DN method (described in Section 2.2.1) attempts to give the optimum value

to each weight by starting from the initial value and iteratively computing new values,

each better than the last, until the optimum is reached. This iterative “movement”

towards the optimum requires the gradient and Hessian function values which are

obtained by sampling over the truth values of the active atoms and active clauses

using MC-SAT.

MC-SAT [94] is an iterative uniform slice sampler that uses SampleSAT starting

from a different point in the search space at each iteration, in order to count the

expected number of true groundings of the clauses. SampleSAT is a combination of the

MaxWalkSAT algorithm with an optimization technique called Simulated Annealing

(SA). The idea is to have MaxWalkSAT’s ability to quickly converge towards solutions

and SA’s ability to uniformly sample solutions.

The problem of the DN method is that it has a rather high complexityO(N∗M∗L),

since each iteration N of the DN method has to execute M iterations of MC-SAT and

each MC-SAT iteration requires L iterations of SampleSAT. Moreover, the solutions

found by SampleSAT might be suboptimal as, like MaxWalkSAT, it cannot cover the

entire search space. Thus, we propose to accelerate weight learning and improve its

solutions by computing the grounding and the SampleSAT algorithm in the GPU (see

the results in Section 5.3.2).

Algorithm 4 resumes GPU weight learning in MLNs based on DN and MC-SAT. It

receives the MLN clauses MC, the evidence E, an error tolerance for the DN method D,

and a number of iterations for MC-SAT I (which can also be computed automatically

based on the number of active clauses). The algorithm returns the optimum weights

W for the MLN. First, the MLN is grounded and initial value for the weights are

proposed. Then, while our error in the weight values is above our threshold D, for I

iterations, assign random truth values TV to the active clauses AC, apply SampleSAT

(i.e., MaxWalkSAT with SA for atom flipping, which has also been simplified like in
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Algorithm 3) and, once SampleSAT finishes, count the number of true groundings of

each clause AC according to its truth value found on TV. When the I SampleSAT calls

are over, use the total count of true groundings TG to compute the gradient G and the

Hessian function H, which allow the DN method to calculate a better value for the

weights W and move to the next iteration.

Algorithm 4 General algorithm for GPU weight learning in MLNs based on DN and
MC-SAT.
1 Input: MLN clauses MC, evidence E, error torelance D,

2 and MC-SAT iteration number I

3 Output: weights W for the clauses in MC

4 AA, AC <- Ground using MC and E

5 W <- Define an initial value to the weight of each clause in MC

6 While the error in W is more than D

7 For I iterations

8 TV <- assign random truth values to every AC

9 While AC has unsatisfied clauses UC

10 Flip atom AA of a clause in UC using SA or MaxWalkSAT

11 Remove all satisfied clauses from UC

12 UC <- Add newly unsatisfied clauses if any

13 End while

14 TG <- count the true grounding of AC acording to TV

15 End for

16 G, H <- Compute the gradient and the Hessian using TG

17 W <- Update the weights using G and H

18 End while

19 Return W

For FOL clause learning on GPUs using ILP, the search space (i.e., the number

of candidate formulas that can be proposed) is very large. Moreover, each formula

has to be evaluated to compute its coverage (i.e., the number of positive and negative

examples it covers). As the coverage problem can also be seen as a Datalog program

where the training data is a series of Datalog facts and the proposed formula is a

Datalog rule, we propose to accelerate this coverage using Datalog on GPUs. In

MLN clause learning, changing the coverage function to an MLN-specific function

would require grounding every proposed clause, a task which can also be solved by a

Datalog program.
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3.5.1 State of the Art for Learning

Alchemy is the most complete system in terms of learning as it includes generative

learning and discriminative learning with several optimization algorithms (both

described in Section 2.5.1) for weight learning, and top-down structure learning [57]

(TDSL) and bottom-up structure learning [80] (BUSL) ILP-like algorithms for clause

learning. All other systems are only capable of weight learning based on an algorithm

first proposed by Alchemy like DN or conjugate gradient.

In its normal configuration, TDSL iteratively learns one literal at a time, starting

from an MLN with the single atoms of the evidence as clauses (e.g., Sm(X). would be

one of the first clauses in the smokers example). Clauses of length 2 (i.e., those with

two literals) are then proposed from all possible combinations of literals, variables, and

signs (e.g., the candidates to join with Sm(X). are Fr(X,X)., ¬Fr(X, X)., Fr(X,Y).,

¬Fr(X, Y)., Fr(Y,X)., ¬Fr(Y, X)., Ca(X)., and ¬Ca(X).). Next, the best combination

is selected and clauses of length 3 are proposed and selected, repeating the process

until a user-defined maximum length is reached. The best combination is selected

by maximizing the weighted pseudolog-likelihood (WPLL) of the current MLN and

selecting the combination with the highest value. WPLL is a function similar to the

one presented in Equation 2.51 of Section 2.5.1 that better balances the contributions

of each predicate regardless of its arity and is defined as:

logP •w(X = x) =
∑
a∈A

ca

ga∑
k=1

logPw(Xa,k = xa,k|MB(Xa,k)) (3.11)

where A is the set of atoms of the MLN, ga is the number of groundings of atom a,

Xa,k is the kth grounding of a, with xa,k being its truth value, and MB(Xa,k) is the

state of the Markov Blanket of Xa,k (i.e., the truth values of all atoms that appear

in the same clauses as Xa,k). For each proposed clause, the maximization of WPLL

may create a possible bottleneck as optimization is a costly operation that has to

be done several times. However, this bottleneck is avoided by employing the fast
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L-BFGS optimization algorithm (explained in Section 2.2.1) with a relaxed converge

goal (i.e., a larger margin of error is accepted in the solution) and with the result

found in a former TDSL iteration as starting point, since said point should be close

to the solution of the current problem. These two changes to the L-BFGS algorithm

allow it to rapidly optimize the WPLL function, usually in just a few iterations.

One problem of the TDSL method is that a large search space must be covered

with little guidance, often resulting in the creation of suboptimal clauses. In contrast,

BUSL attempts to guide the search by constructing templates based on the training

evidence. These templates are conjunctions of predicates that are constructed by

setting a head predicate for the template from an atom of the evidence and then

including other atoms that share constants with the head predicate in the template,

abstracting any similar constants into similar variables. For example, if we have

Sm(John). and Fr(John,Bob). as evidence, the head predicate could be Sm(X) and

since John is an argument in both predicates Sm and Fr, it can be included into the

template as Fr(X,Y). With the templates, the search for clauses can be limited to

candidates that include the head predicate of the template and some or all other

predicates in the template in positive or negative form and said candidates can also

be evaluated with the L-BFGS method using the WPLL function.

Alchemy can also handle unsupervised learning [95], where the truth value of

some predicates is not known in the training data (i.e., information is incomplete).

Unsupervised weight learning can be done generatively using pseudo-log-likelihood (as

presented in Equation 2.51 of Section 2.5.1), however the counts of true groundings

tgi() for the gradient cannot be counted exactly for those predicates with unknown

truth values and must instead be approximated through inference over the MLN.

Unsupervised discriminative learning can be computed by minimizing the negative

of the conditional log-likelihood (CLL) as shown by Equation 2.53 of Section 2.5.1,

but the gradient is based on two expectation instead of one, the expected number of

times the ith MLN formula is true based on the unknown query atoms Z given the

evidence X (Ew,z) and the same expectation but this time based on both Z and the
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known query atoms Y (Ew,y,z) also given the evidence:

∂

∂wi

(−logPw(Y = y|X = x)) = Ew,z(tgi(x, y, z))− Ew,y,z(tgi(x, y, z)) (3.12)

Both the gradient and the Hessian function, which is now the difference of two

matrices, one when only the unknown query atoms vary their truth values and the

other when both query atoms vary said values, can be approximated using MC-SAT,

but the optimization algorithm for the CLL must consider that the function may no

longer be convex.

Predicates can also be learnt with unsupervised learning through statistical pred-

icate invention based on the Multiple Relational Clusterings (MRC) algorithm [58],

which attempts to discover new properties from the data based on current properties,

using a probabilistic approach. These new properties can be used to cluster the data

in multiple clusters that can be represented as MLN predicates. The basis of the

MRC algorithm is a second-order MLN were variables can range over both predicate

and constant symbols. Given a symbol x, the first set of rules of said MLN (many

similar rules are used, one for each time a predicate variable requires quantification)

state that x must belong to at least one cluster γ:

∀x∃γ such that x ∈ γ (3.13)

Since the truth value of these rules cannot be false in the resulting world of the

MLN (i.e., just like normal FOL formulas, they cannot be violated), they are assigned

an infinite weight. The second set of rules, called the mutual exclusion rules, also have

infinite weights and state that a symbol can only belong to a single cluster:

∀x, γ, γ′ x ∈ γ ∧ γ 6= γ′ ⇒ x /∈ γ′ (3.14)
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If r is a predicate symbol belonging to cluster γr and x1, ..., xn are r’s argument

symbols that belong to clusters γ1, ..., γn, then the predicate r(x1, ..., xn) is in the

combination of clusters (γ1, ..., γn). The next rules with infinite weights state that

each predicate belongs to exactly one combination of clusters:

∀r, x1, ..., xn∃(y1, ..., yn) such that r ∈ γr ∧ x1 ∈ γ1 ∧ ... ∧ xn ∈ γn (3.15)

The rules in the last set are called the atom prediction rules and state that the

truth value of a predicate is determined by the single cluster combination it belongs

to:

∀r, x1, ..., xn, y1, ..., yn r ∈ γr ∧ x1 ∈ γ1 ∧ ... ∧ xn ∈ γn ⇒ r(x1, ..., xn) (3.16)

Equation 3.16 is repeated for each combination (y1, ..., yn) and each repetition k

has its own weight wk based on the number of true tk and false fk atoms of the

combination given the evidence:

wk = log(
tk + β

fk + β
) (3.17)

where β is a smoothing parameter. The atom prediction rules are the key of the

MRC algorithm, since they allow the prediction of the probability of query atoms

given the symbol clusterings that compose each atom. Said rules together with the

mutual exclusion rules, allow the prediction of the clusterings for evidence atoms and

the probability of the query atoms given the evidence.

The MRC algorithm is a recursive algorithm which is divided in two: a top level

that finds possible clusterings for the atoms and a bottom level that constructs the

clusters. MRC receives the evidence, an initial set of clusterings γr of predicates
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grouped by arity and type, and a set of clusterings γi of constants by type. At each

iteration, MRC creates a cluster for each clustering it received and then searches

for better clusters and clusterings, first by creating or removing clusters, followed

by moving symbols between clusters, merging or splitting clusters. Said operations

are performed greedily and with restarts, always striving to increase the probability

of the second-order MLN, computed using MAP inference. Once good clusters and

clusterings are found, the algorithm calls itself again with each possible combination

of the new formed clusters and clusterings, repeating the process until the probability

of the second-order MLN does not increase with any new combination.

As an example of how MRC works, consider that our initial knowledge consists

of a group of people (like person(John), person(Bob), and in general person(X)),

along with their hobbies (like hobby(John,reading), and in general hobby(X,Y))

and profession (profession(X,Z)). The initial predicate clusterings for the input of

the MRC algorithm would be γr1 = person, γr2 = hobby, and γr3 = profession, and

the symbol clusterings would be γx = X (a cluster for all constants of type person),

γy = Y (constants of type hobby), and γz = Z (constants of type profession). MRC

would then construct six possible initial clusterings (3 for all γr, 1 for γx, γy, and

γz) and start the search for better clusters and clusterings. Next, suppose that a

good clustering has hobby in cluster γp, but has divided its variable X in clusters γa1

and γa2, and its variable Y in clusters γb1 and γb2, then the MRC algorithm must

be recursively called with all combinations: (γp, γa1, γa2), (γp, γa1, γb1), (γp, γa1, γb2),

and so forth (other atoms may also recursively call MRC, not just hobby). At the

end, the algorithm should find some interesting clusterings like groups of people who

are friends because they share the same hobby or groups of coworkers that share the

same profession.
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3.6 Summary

This chapter described the motivation behind our proposal of processing MLNs in

GPUs by giving an overview of the current MLNs systems, a synopsis on GPUs, the

possible design issues of our proposal, and our approach to solving them. GPUs

are many-core processors with high data-throughput that have a wide array of

applications in several fields like bioinformatics, finance, etc., and are programmed

using C-like functions called kernels that are written in the CUDA language and

executed by many threads.

GPU performance can be affected by several issues, programmers should always

strive to: handle all data transfers in bulk and minimize the number of such transfers;

ensure that threads are always busy and do not process to much conditional code (if,

while, etc.); and use good memory access patterns like having consecutive threads

performing reads on consecutive memory locations, without exceeding the total

amount of GPU memory. In MLNs, the main issue of the grounding step is deciding

the approach to follow: top-down, which is similar to Prolog’s and finds solutions one

element at a time or bottom-up, which works on whole groups of elements at a time.

For our proposal, we consider bottom-up to be a better approach. The main issue of

the other MLNs steps is whether they can be parallelised or not. We prove that they

can indeed be parallelised by proposing two MLN platform designs called GPU-Tuffy

and GPU-RockIt.

Our approach to grounding in MLNs is based on Datalog [116, 117], a FOL

language similar to Prolog. Datalog processing is performed bottom-up and requires

the computation of RA operations, extended with negations, comparisons, among

others. Said operations can be parallelised using GPUs but there are several issues

that most be addressed like string handling, data transfers, and more. The first

MLN systems solved the grounding problem using an inefficient, top-down, Prolog-

like approach. Modern systems consider the grounding as a set of SQL queries and

answer them using a RDBMS, producing the results much faster. For some MLNs,
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grounding can be avoided by using lifted inference [109].

Our search approach in GPU-Tuffy is based on solving a satisfiability problem

using MaxWalkSAT. MaxWalkSAT [53] is an iterative algorithm that tries to satisfy

(i.e., make true) as many clauses as possible by selecting an atom of an unsatisfied

clause and flipping its truth value (i.e., changing its value from true to false or

vice versa). The CPU version flips one atom at each iteration, requiring millions of

iterations to solve a large MLN. We propose the use of GPU threads to flip multiple

atoms at the same time and note the issues of doing so. Our approach in GPU-RockIt

is based on solving an optimization problem by splitting it into smaller problems and

then solving them using the Gurobi [149] solver. The Alchemy and Tuffy systems are

also based in satisfiability, with Tuffy being faster thanks to its partitioning of the

problem. theBeast and RockIt are based on integer linear programming, but RockIt

further simplifies the optimization problems and its solver is better. Some MLNs can

benefit from lifted inference, which solves the search step using BP [109].

We propose a parallel weight learning approach using the DN method [24, p. 49].

DN computes the optimum of each weight by starting from the initial value and

iteratively computing better values. To adapt the DN parameters, the MLN must be

grounded in parallel as explained in Section 3.3 and then, at each DN iteration, the

grounding must be sampled with the MC-SAT and the SampleSAT algorithms [94].

Since SampleSAT is essentially an extension of the MaxWalkSAT algorithm, it was

also parallelised in GPUs. For FOL clause learning, we propose the use of an ILP

system where formula coverage, the most demanding task, is parallelised in the GPU.

While Tuffy, RockIt, and theBeast can only learn weights, Alchemy includes several

algorithms for both weight and clause learning. MLN clause learning in Alchemy is

based on TDSL [57] and BUSL [80], which are similar to ILP, but the evaluation is

based on likelihood. Learning can also be performed with incomplete information,

using modified functions for weight learning and statistical predicate invention [58]

for clause learning.

Table 3.1 resumes some of the characteristics of the four most relevant, CPU-based
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Table 3.1: Characteristics of the most relevant MLN systems.

System Language Grounding Search Parallelism Particulars
Alchemy
(2012)

C++ Prolog-like SAT None The only capable of
clause learning.

theBeast/theppl
(2013)

Scala Prolog-like Optimization None/Modularity Different syntax
compared to the
other systems.

Tuffy
(2014)

Java PostgreSQL SAT Multicores (search only) Solves many of
Alchemy’s short-
comings.

RockIt
(2015)

Java MySQL Optimization Multicores Currently the
fastest CPU sys-
tem.

GPU-Tuffy
(2016)

Java & CUDA Datalog SAT GPUs
Multicores (search only)

Our system based
on Tuffy.

GPU-RockIt
(2016)

Java & CUDA Datalog Optimization GPUs (grounding only)
Multicores

Our system based
on RockIt.

MLN systems (Alchemy, theBeast/theppl, Tuffy, and RockIt) and our two proposed,

GPU-based systems (GPU-Tuffy and GPU-RockIt), including: the year of publication

for the latest version; the programming language which is built upon; the type of

grounding used, which can be based on top-down Prolog, on SQL with a RDBMS,

or on Datalog queries; the search approach adopted, where some systems prefer to

formulate the search problem as a satisfiability problem and others prefer to formulate

it as an integer linear programming problem; the parallelism used, where Alchemy and

theBeast use none, theppl allows programmers to design their own parallel modules

with any type of parallelism, Tuffy parallelises only the search, RockIt is fully parallel,

GPU-Tuffy is fully GPU-parallel and uses GPU and CPU together during the search,

and GPU-RockIt parallelises grounding on the GPU and the rest on multicores; and

finally, some of the particulars of each system, like Alchemy being the only system

capable of learning both weights and clauses (other systems can only learn weights),

theBeast whose MLN syntax specification is different from the rest of the systems,

Tuffy was created following Alchemy’s approach, but includes many upgrades that

speed-up MLN processing, RockIt is currently the fastest CPU system thanks to its

optimizations and multicore parallelism, and GPU-Tuffy along with GPU-RockIt are

our systems described in detail in Chapter 4.
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Experimental Platforms

In Chapter 3 we presented our approach to process on GPUs the main phases of

MLN processing: inference and learning. However, in order to have a fully functional

platform, our designs must be integrated with an input/output system, a First-Order

Logic (FOL) language compiler, among other components. Although it is possible to

develop all the components of an MLN platform, this endeavour is beyond the scope

of our research. Hence, we set out to design two fully functional, GPU parallel MLN

platform using existing CPU platforms as their basis.

Our platforms are thus the integration of several components working together

to process MLNs: with Tuffy [88] and RockIt [90] serving as the base, the core

components of said platforms are GPU-Datalog [74] (Section 4.1), our parallel Datalog

engine, and GPUSATLIB (Section 4.2), our parallel library of satisfiability solvers.

Our GPU parallel ILP system (Section 4.3) works well for FOL clause learning and

will be a future component for MLN clause learning on our platforms.

We named our platforms GPU-Tuffy (Section 4.4) and GPU-RockIt (Section 4.5)

after their base systems and validated them, along with their core components, using

several tests (Section 4.6). We chose to have two platforms in order to test the

flexibility of our grounding design, which is included in both platforms with minimal

changes between them, and because some MLN applications are better modelled as a

satisfiability problem like Tuffy does, while others are better modelled as optimization
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Figure 4.1: Our GPU-based platforms and their components along with their functions.

problems like RockIt does (refer to Section 5.4 for more details). Figure 4.1 shows

the core components of our platforms, distinguishing between those we created, those

we simply use, and our ILP system for GPUs which we hope to include for MLN

clause learning. Also, each component indicates the tasks that it performs (whose

details are in their corresponding sections for our components and on the description

of GPU-Tuffy and GPU-RockIt for the other components).

It is worth to mention that the complex integration of all elements was possible

thanks to the modular well designed APIs found in both the base systems and the

core components. Also, all components involved (except the Gurobi [149] solver) and

our platforms are free, open software1.

1GPU-Datalog is available at https://github.com/vscosta, other systems coming soon.
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4.1 GPU-Datalog

GPU-Datalog [74] is our parallel, bottom-up engine for the Datalog language based

on GPUs. Its latest version currently has over 7,000 lines of C and CUDA code and

its main components are shown in Figure 4.2. GPU-Datalog was integrated as a

module into the YAP Prolog system [15] in order to bridge the database model to

the GPU world and represents a hybrid solution where both GPU and CPU are used.

Highly parallel code (i.e., relational algebra operators) is executed on the GPU while

sequential code (i.e., input/output operations, control) is executed on the CPU. Our

engine is organized into three stages (P, E, and T in Figure 4.2) with a single host

thread executing the first and third stages, and scheduling work to the GPU during

the second stage.

The Preparation stage begins with YAP reading and compiling the Datalog

program into a numerical representation (NR) suitable for GPU processing where

each unique string is assigned a unique integer Id. By using an NR, our GPU kernels

show relatively short and constant processing time because all tuples in a table, being

managed as sets of integers, can be processed in the same amount of time. Once

compiling is completed, YAP sends the NR to GPU-Datalog and its Preprocessor

analyses each rule to determine which operations to perform and over which tables

and columns said operations will be performed. Finally, the query is analysed to

determine which rules are to be evaluated. A queue is created with these rules.

The Evaluation stage takes the rule queue and evaluates each rule one at a time.

If the rule has only one normal predicate (a1), any reductions (i.e., selections and

comparison predicates) required are performed first (b1), followed by any selfjoins (c1)

and a single projection based on the variables in the head of the rule (d1). Finally,

any extra operations (i.e., arithmetic or aggregation predicates) are performed (e1)

and the result is returned (f1).

When the rule has two or more normal predicates, the first two predicates are

taken (a2) and any necessary reductions (b2) and selfjoins (c2) are performed. Next,
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Figure 4.2: GPU-Datalog engine organisation.
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the two predicates are joined (d2, using single or multijoin depending on the variables

in the predicate) and a projection is performed (e2) to discard columns that are not

going to be used in further operations and to create a temporary table A with the

result (f2). When there are more normal predicates in the rule, we take the next

predicate B (g2), perform any needed reductions (h2) and selfjoins (i2), and then it

is joined with the temporary table A (f2). We then perform a projection to create

a new temporary table A (k2) that either has to be joined to the next predicate B

(g2 again) or it is used to compute any extra operations (l2) before being returned

as result (m2). Finally, once we have the result of the rule evaluation, duplicate

elimination is performed to reduce memory and computation requirements.

When all the rules in the queue have been evaluated, we proceed to the

Termination stage. This stage removes from the queue those rules which will not

yield new facts if evaluated again. After the finished rules are removed, if the queue

does not become empty, each rule still in the queue is evaluated again. This process

is repeated until the rule queue becomes empty. Once the queue is empty, the queries

are answered by taking all the rule results required by the queries and performing any

selections and/or projections specified by the variables and constants in said queries.

Finally, the query results are returned to YAP to be translated back into strings and

displayed.

About rule removal from the queue, rules composed only of fact predicates finish

their evaluation in the first iteration (and are thus removed), while those that

include other rule predicates are removed after the first rule representing one of its

predicates has finished. For example, if we have the facts f1(1,2,3). and f2(2).,

along with rules r1(X,Y) :- f1(X,Y,Z)., r2(Y) :- r1(X,Y), f2(Y)., and query

r2(Y)?, then r1 finishes in the first iteration because all that needs to be done is

project f1 to leave r1(1,2) as the result of the rule, while r2 does nothing on this

iteration because the value of r1 is still empty. On the second iteration the queue has

only one rule r2, said rule can now calculate its result which would be r2(2)., and

at the end, it would also be removed from the queue because one of its predicates
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(r1) will not produce more results, thus finishing the evaluation. Special cases like

self-recursive rules (e.g., r(X) :- f(X,Y), r(Y)) are removed when they reach a

fixed point or an orbit of at most 5 points (i.e., they return the same result in two

consecutive iterations or a series of results that repeat after at most 5 iterations).

In order to minimize the number of data transfers between GPU and CPU memory,

each time a table is necessary to perform an operation, the request is handled through

our memory management module. Its purpose is to maintain facts and rule results

in GPU memory for as long as possible. To do so, it keeps track of GPU memory

available and GPU memory used, and maintains a list with information about each

fact and rule result that is resident in GPU memory. Such information includes the

fact or rule result represented, its size, and the pointer to its location in GPU memory.

When some data (facts or rule results) is requested to be loaded into GPU memory,

its entry is first looked up in that list. If found, said entry in the list is moved at the

beginning of the list; otherwise, memory is allocated and a new list entry is created at

the beginning of the list for the data. In either case, the address of the data in GPU

memory is returned. If allocating memory for the data requires deallocating other

facts and rule results, those at the end of the list are deallocated first until enough

memory is obtained — rule results are written to CPU memory before deallocating

them. By doing so, most recently used fact and rule results are kept in GPU memory.

This approach is very similar to the Demand Paging and Not Recently Used Page

Replacement algorithm described in [114]; but our approach works with memory

sections as opposed to pages.

As an example, consider the rule a(X):- b(X,Y), c(Y,Z), d(Z)., where b and

c are joined first so they are loaded in order into GPU memory and registered into

our memory management module. The result of said first join (we will call it r1)

remains in GPU memory and is also registered by our module (leaving 3 memory

chunks b, c, and r1 registered in the module). Next, the join between r1 and d is

to be performed, but our GPU does not have enough memory to load d. Our memory

management module detects this insufficiency problem and removes b from both GPU
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memory and the module’s registry (note that b is deleted and not returned to CPU

memory because it is not a rule result). If there is enough GPU memory, then d is

loaded, otherwise c is also removed before loading d. Finally, the join is performed

and the result of the whole rule is obtained.

4.1.1 GPU Operators

Next, we present the operators of the original GPU-Datalog [74], followed by the

new additions required for MLN processing like negation and aggregation. These

operators use some support functions like sort, scan (also called prefix sum), and

duplicate elimination, which is based on sorting and then removing all but one

duplicate element with the unique function. We use the efficient implementations of

these functions provided by the Thrust library [151]. This library is a C++ template

library for GPUs based on the Standard Template Library [86] and provided as part

of CUDA. Also, our operators include several optimizations not part of the Datalog

standard, aimed at improving performance. The most important optimizations are

executing a projection at the end of each join (as shown in j2 of Figure 4.2), allowing

us to discard unnecessary columns earlier in the computation of a rule, and fusing

operators by applying two or more operators to a data set in a single read of the data

set, as opposed to applying only one operator, which involves as many reads of the

data set as the number of operators to be applied.

Note that our operators are implemented as one (e.g., all arithmetic operators)

or three (e.g., selections and joins) kernel calls depending on whether the size of the

solution is known beforehand or not.

Original GPU-Datalog operators

The first original operator, selection, uses three different kernels. The first kernel

marks in a new array all the rows in a table that satisfy the selection predicate with

a value of one. The second kernel performs a prefix sum on the marks to determine

the size of the results buffer and the location where each GPU thread must write the
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results. The last kernel writes the results.

Projection requires little computation, as it simply involves one kernel taking all

the elements of each required column and storing said elements in a new memory

location. While it may seem pointless to use the GPU to move memory, the higher

memory bandwidth of the GPU, compared to that of the host CPU/s, and the fact

that the results remain in GPU memory for further processing, make Projection a

suitable operation for GPU processing.

Our Datalog engine uses three types of Joins: Single join, Multijoin, and Selfjoin.

A Single join is used when only two columns are to be joined, e.g., table1(X,Y)

./Y table2(Y,Z). A Multijoin is used when more than two columns are to be joined:

table1(X,Y) ./(X,Y ) table2(X,Y). A Selfjoin is used when two columns have the same

variable in the same predicate: table1(X,X).

Algorithm 5 Our modified version of the INLJ for single joins.
Create an array with the elements of one of the columns to be joined

Sort the array

Create a CSS-Tree using the sorted array

Search the tree to determine the join positions

Do a preliminary join to determine the size of the result

Do a second join to write the result

Single join uses a modified version of the Indexed Nested Loop Join (INLJ)

described in [48], which is presented in Algorithm 5. The CSS-Tree [97] (Cache

Sensitive Search Tree) is a special B+-Tree that is very adequate for the GPU because

it can be quickly constructed in parallel and because tree traversal is performed via

address arithmetic instead of the traditional memory pointers. While the tree allows

us to know the location of an element, it does not tell us how many times each

element is going to be joined with other elements nor in which memory location

must each thread write the result. Hence, we must perform a “preliminary” join.

This preliminary join counts the number of times each element has to be joined and

returns an array that, as in the select operation, allows us to determine the size of the

result and the write locations when a prefix sum operation is applied to this array.
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With the size and write locations known, a second join writes the results.

To perform a Multijoin operation, for example table1(X,Y) ./(X,Y ) table2(X,Y),

we first take any column to be joined (say X in table1) and create and search in

the CSS-Tree as described above. Then, in the first join, after performing the

counting but before writing the result to global memory, we check if the values of

the remaining columns are equal (in our example we check if Y = Y) and reduce the

count accordingly to discard the rows that are not equal. In the second join, since we

only know the count of the number of times a row has to be joined, but not to which

other rows it must be joined, we check the additional join columns again to decide if

we write the row join or not.

The Selfjoin operation is very similar to the Selection operation. The main

difference is that, instead of each thread checking a constant value on its corresponding

row, each thread checks if the values match on the columns affected by the Selfjoin.

Built-in Comparison Predicates

Built-in comparison predicates (<,>,<>,=, >=, <=) are similar to the Selection

and Selfjoin operations, i.e., they use a pipeline of three kernel executions. The

first kernel marks all the rows that satisfy the comparison predicate. The second

kernel performs a prefix sum on these marks to determine the size of the result buffer

and to use them as the indexes where each GPU thread must write its result. The

third kernel writes the results. The difference is that comparison predicates use the

given operator instead of always testing for equality. Also, comparison predicates

can compare columns against a constant value (Y > 3) or against another column

(Y > Z).

In the first version of GPU-Datalog, these predicates used be to performed at the

end of each clause evaluation [75]. It was a simple, restriction-free evaluation, but

inefficient, as many tuples that could be eliminated earlier in the evaluation were

removed only at the end.

Comparison predicates are now evaluated as soon as their variables are bound,
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ORIGINAL RULE: r(Z, X) :- f1(Y, X),f2(Z, X),f3(Z, W),X > 2,f4(W).

OLD GPU-Datalog: r(Z, X) :- f1(Y, X),f2(Z, X),f3(Z, W),f4(W),X > 2.

NEW GPU-Datalog: r(Z, X) :- f1(Y, X),X > 2,f2(Z, X),f3(Z, W),f4(W).

----------------------------------------------------------------------

SQL: SELECT C1 FROM t WHERE C1 > 3 OR C2 < 1;

CONJUNCTIONS: res(C1) :- t(C1, C2), C1 > 3.

res(C1) :- t(C1, C2), C2 < 1.

DISJUNCTIONS: res(C1) :- t(C1, C2), C1 > 3, C2 < 1.

Figure 4.3: Improved processing of comparison predicates in GPU-Datalog. The upper part
represents how comparisons are now performed as soon as possible and the lower part how handling
disjunctions simplifies translating SQL queries to Datalog.

i.e., as soon as the variables appear in a positive predicate, allowing us to eliminate

the computational cost and memory usage of tuples that are not to be used in the

rest of the rule. This was achieved by evaluating any possible comparison predicate

before performing each join in a clause (similarly to how selections and self-joins are

performed before a join). The upper part of Figure 4.3 shows an example of how

we used to evaluate comparison predicates and how the new version of GPU-Datalog

evaluates them.

Also, it is now possible to specify if a clause should evaluate comparison predicates

as it normally would using conjunctions or as disjunctions. Disjunctions simplify

specifying some SQL queries and greatly improve their processing by reducing the

number of Datalog clauses required to represent said queries. The lower part of

Figure 4.3 illustrates this simplification: as conjunctions the SQL query requires two

clauses and their results may include many repeated tuples (those where both C1 > 3

and C2 < 1 are true).

Arithmetic predicates

These predicates (+,−, ∗, /) are performed after all joins and comparison predicates

are completed (e1 and l2 in Figure 4.2). Since the result size is always equal to the

input size, arithmetic predicates can be executed in a single kernel instead of the 3

kernels common in other operations. Thanks to YAP’s syntactic analysis of rules,

these predicates can be written in the usual infix notation and are automatically
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translated to postfix notation for easier evaluation. As an example on how to write

arithmetic predicates, consider the rule:

result(Z,W) :- fact1(X,Y), Z is X + 3, W is Y / 5.

where the operations X + 3 and Y/5 will be internally translated to X 3 + and Y 5 /,

solved, and the results stored in Z and W respectively.

Aggregation and related operations

Aggregation (GROUP BY) is commonly used with other operations like summation

(SUM), count (COUNT), average (AVG), among others. Aggregation indicates a

series of columns whose combined row values will determine the result of the related

operations. They were implemented by adding a dummy predicate called aggregation

that simply indicates the required variables. The related operations are represented

by predicates with two values: the variable representing the input column and the

one representing the output column.

The related operations are performed by sorting the data according to the

aggregation variables and then using Thrust’s reduce by key operation with the sorted

variables as keys. Note that reduce by key always performs a summation over the

data. However, count can be implemented by creating an additional column filled

with 1’s and performing the summation on said column. The last operation, average,

can be implemented by performing the summation on the required columns and then

dividing the result by the result of the count. As an example, consider the rule:

result(X,Y,W) :- fact1(X,Y,Z), aggregation(X,Y), sum(Z,W).

with fact1 having the following values:

X Y Z

1 2 3

1 1 5

1 2 7
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the result of the rule after performing a summation over column Z and aggregating

over X and Y is in column W:

X Y W

1 2 10

1 1 5

Negation

One of the most important new additions to GPU-Datalog is the ability to evaluate

negated literals in the body of a clause. This allows the processing of new programs

that would have been impossible otherwise. At source level, negation is similar to

our join operators: we know which columns must be compared based on their same

variables and the result is a temporary table with all the rows of the positive data

whose columns were not matched in the negative data. For example, consider the

clause t(Y) :- r(Y), not s(X,Y) with r(1), r(2), s(3,2), s(1,4), which will

compare column one of the positive data r and column two of the negative data s,

removing r(2) and leaving r(1) as result.

Evaluation begins by taking an appropriate column from the positive data. The

column is sorted and a CSS-Tree constructed with it. Using the CSS-Tree, we launch

a kernel that can efficiently traverse through the data in order to mark which tuples

are to be removed. Next, we perform a prefix sum on these marks to determine the

size of the result buffer and to use them as the indexes where each GPU thread must

write its result. The final kernel writes the results.

4.1.2 Data partitioning

To handle large amounts of data that exceed the memory capacity of the GPU and to

allow multiple GPU to process an application simultaneously, we implemented a first

version of a data partitioning scheme adapted for our operators. For all operations

except joins, the partitioning scheme loads into the GPU the first n rows of data,

Cinvestav Departamento de Computación



Experimental Platforms 95

performs the operation, unloads the result to CPU memory, removes the processed

rows from GPU memory and loads the next n rows. These steps are repeated until

there is no data left to process.

The join operations follow a similar procedure where both tables to be joined

are partitioned. However, the join operations require more processing steps as each

partition of a table needs to be joined with all partitions of the other table (e.g., if

table1 has partitions A and B, and table2 has partitions C and D, we need to perform

4 joins A with C, A with D, B with C, and B with D). Thus, for joining two tables

say X and Y , the partitioning scheme loads the first m rows of both tables, performs

the join, unloads the result, removes the processed partition of X and loads the next

m rows of X. When all rows of X are processed, the steps are repeated with the

next partition of Y and once again, all partitions of X. The join finally ends when

all partitions of Y are processed.

Of great importance to the scheme are the choices of n and m. If they are too

small, performance is adversely affected as we need to perform many more iterations.

If they are too large, the result of the operation may not fit and the whole process

will fail. A safe choice would be to consider the worst-case scenario: not a single

row is removed in selections, comparisons, and other operations, thus the size of the

result is equal to the size of the input; and, in the case of join operations, each row

in one table joins with all rows of the other table (a Cartesian join). Hence, a safe

value for n would be approximately (we say approximately because some memory is

necessary for auxiliary arrays) half the amount of GPU memory available, leaving the

other half for the result. Considering two tables with an equal number of columns

and that the result will include all rows from both tables, the safe value for m can be

computed by adding m twice (because we are loading two tables) and the size of the

worst-case result which is m2. This addition should be equal to the total amount of

GPU memory t and that gives us a quadratic equation m2 + 2m = t, whose positive

root
√
t+ 1− 1 equals the approximate safe value for m.

However, worst-case scenarios rarely occur and most of the time we would be
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performing more iterations than necessary. Thus, we devised a scheme where partition

sizes can change at runtime and each operator can write its result in batches if

necessary. The idea is to start with partitions sizes larger than the worst-case and

then, once an operator has calculated the size of the result but before it is written

(after the second kernel as explained above), we check if the result would fit in the

available amount of GPU memory. If the result fits, the operator continues normally

with the writing and the partition size is maintained if the result fit with little memory

left unused or it is increased if plenty of memory was still left. When the size

of the result does not fit, then the operator must write its result in two or more

steps. At each step, the operator writes the maximum possible number of elements

in the available amount of GPU memory and said write result is then flushed to CPU

memory, liberating GPU memory for the next step. This process is repeated until

the whole result is written and the operator finishes by indicating to the system’s

control flow that the result is in CPU memory and that the partition size should be

decreased.

4.1.3 The GPU-Datalog Architecture on Multicores

Our GPU-Datalog engine was ported to multicores using OpenMP [143]. The CPU

version of GPU-Datalog has some 1,000 lines of code, uses the same YAP interface,

and it is based on the same relational algebra operations, with one major difference:

instead of using 3 function calls (kernels) for selections and joins, we decided to

capitalize on the CPU’s flexible memory scheme by using size-changing arrays (i.e.,

vectors and lists found in the Standard Template Library [140]). With these arrays,

each thread can write a resulting tuple as soon as it is found, and the final result is

given by joining all the arrays. This reduces the number of function calls to a single

call, and therefore reduces processing time.

While this CPU version is suitable for Datalog and ILP programs, it lacks some of

the latest operations recently included in GPU-Datalog like negation and improved

comparison predicates and thus, said CPU version is currently not being used in MLN
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processing.

4.1.4 State of the Art for Datalog

As presented in [72], Datalog has a wide array of applications [50] and many of those

applications extend the language with new ideas like special predicates or values over

predicates, showing the flexibility of the language. Some of the most interesting

applications include:

• Data Integration is the combining of heterogeneous data sources into an

unified query and view schema. In the work of Green et al. [45], Datalog

is used to calculate provenance information of datasources. In another work

by Lenzerini [65], the power of Datalog to express queries and views of

heterogeneous data is compared against other languages with very good results.

• Declarative Networking is a programming methodology to specify network

protocols and services using high-level declarative languages. Boon Thau Loo et

al. [68] proposed NDlog, an extension of Datalog with networking specifics such

as distribution, linklayer constraints. Overlog [69] is another Datalog extension

that implements the soft-state approach common in network protocols. The

idea is that data, represented as predicates, has a lifetime in seconds attached

to each predicate and has to be refreshed when the lifetime expires.

• Program Analysis is the automatic analysis of computer programs to ensure

correctness or find potential optimizations. Martin Bravenboer and Yannis

Smaragdakis [10] implemented the Doop framework, a points-to analyser for

Java based on Datalog that determines “What objects can a program variable

point to?”. By exploiting Datalog recursion, their analyser was 15 times faster

compared to other well-known analysers.

• Information Extraction is the automatic extraction of structured information

from documents, web pages, etc. Lixto is a web data extraction project by
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Gottlob et al. [40] based on Elog, an extension of Datalog with conditions to

detect false positives while extracting data, among other things, making it an

efficient data extraction language. Also, Shen et al. [106] created a Datalog

extension called XLog, whose information extraction rules are smaller and easier

to understand compared to those of other systems. They also introduced

procedural predicates that perform some computations over the arguments using

Java or C++ and return the result back to Datalog.

• Network Monitoring is the continuous analysis of a computer network to

obtain traffic information, component failure, etc. To this end, Abiteboul

et al. [1] created a distributed extension of Datalog called dDatalog, which

distributes its rules over the peers in the network according to the information

each of them possesses.

• Security. Marczak et al. [71] implemented SecureBlox a distributed query

processor with security policies. This Datalog extension allows, among other

things, the declaration of integrity constraints like functional dependencies.

Trevor Jim [51] created the Secure Dynamically Distributed Datalog (SD3)

platform. SD3 extends Datalog’s predicates with an additional value that

determines who is in control of the predicate. Thus, a predicate will be true

only if its controller says it is true. The advantages of this system over others

are its high-level language and its ability to quickly create security policies from

scratch or by modifying existing ones.

• Cloud Computing is the execution of programs over many computers

connected in a network. Alvaro et al. [4] presented a distributed data analytic

stack implemented using Overlog. It allows Java objects to be stored in tuples

and Java functions to be called from Datalog. Their system was tested against

Hadoop [135] showing a slightly worse but still competitive performance.

Similar to our GPU-Datalog engine, He et al. [47] have designed, implemented, and

evaluated GDB, an in-memory relational query co-processing system for execution on
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both CPUs and GPUs. GDB consists of various primitive operations (scan, sort,

prefix sum, etc.) and relational algebra operators built upon those primitives.

We modified the INLJ of GDB for our single join and multijoin (presented in

Section 4.1.1), so that more than two columns can be joined (i.e., the multijoin case),

and a projection performed, at the same time. Their selection operation and ours are

conceptually similar too; but ours were created from the beggining to takes advantage

of GPU shared memory and uses the prefix sum of the Thrust Library. Our projection

is fused into the join and does not perform duplicate elimination (that task is handled

by another function), while they have optional duplicate elimination and do not use

fusion at all.

Diamos et al. [22, 23], Wu et al. [124, 126], and Young et al. [128] have

also developed relational operators for GPUs which integrated into the Red

Fox [150] platform based on LogiQL, an extended version of Datalog developed by

LogicBlox [44]. Their join algorithm, compared to the INLJ of GDB, shows 1.69

performance improvement [22], we believe a similar performance difference exists

with our modified version of the GDB’s INLJ because the core of the algorithm was

not modified. Their selection performs two prefix sums and the result is written

and then moved to eliminate gaps; our selection performs only one prefix sum and

writes the result once. They discuss kernel fusion and fission in [126]. We applied

fusion (e.g., simultaneous selections, selection then join, etc.) at source code, while

they implement it automatically through the compiler. Kernel fission, the parallel

execution of kernels and memory transfers, is not yet adopted in our work.

4.1.5 Summary

A summary of GPU-Datalog is presented in Figure 4.4. GPU-Datalog is based in three

main RA operators: selection (σ), join (./), and projection (π). GPU-Datalog also

includes secondary operators like negation (¬), comparisons (<,>,<>,=, >=, <=),

aggregation (GROUP BY) and its related operations (SUM,COUNT,AVG), and

arithmetics (+,−, ∗, /). Many of said operators are implemented with help from
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Figure 4.4: Most important concepts for GPU-Datalog.

auxiliary operators including sorting, prefix sums (also called scans), and duplicate

elements elimination. Two main issues had to be addressed in order to parallelise

the RA operators: the variable processing time of strings, which was solved by

transforming said strings to a numeric representation and the unknown size of the

result for many operators, which was addressed by counting the elements in the result

before writing it to memory. Several optimizations were implemented like executing

more than one operator in a single kernel call, an intelligent memory management

that minimizes the number of transfers necessary to ground an MLN, additional

projections to eliminate unnecessary columns earlier in the computation and data

partitioning to process big data and use multiple GPUs. Finally, the Datalog language

has many applications [50] which we believe can be accelerated with GPU-Datalog.
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4.2 GPUSATLIB

Our GPU-based MaxWalkSAT [53] and SampleSAT [119] algorithms compose a

library called GPUSATLIB. This library has around 800 lines of C and CUDA code,

and not only allows to perform the search step of MLN inference (MaxWalkSAT) or

weight learning (SampleSAT), but also includes an interface to allow it to be used for

solving or sampling general weighted MaxSAT problems. Note that it is also possible

for our library to handle unweighted MaxSAT problems (i.e., where all clauses are

equally important) by assigning 1 as weight to each clause.

At code level, the main function of our library is called walkSAT and can be called

normally from CUDA C or through Java using JavaCPP [130]. Said function receives

several arguments including: a flag value to indicate if MaxWalkSAT or SampleSAT

will be used; values for the stopping conditions, which can be a maximum number

of iterations, a minimum number of unsatisfied clauses, and/or a minimum solution

cost (a -1 indicates that the condition will not be used); linear GPU arrays with the

size, weight, and atoms of each clause; linear arrays with the truth value, expected

reduction (or increase) to the solution cost if flipped (if the truth value is changed

from true to false or vice versa), and clauses that include each atom along with their

number; and arrays with the current best solution and the unsatisfied clauses. Note

that both arrays that measure sizes must be transformed with a prefix sum, to set the

right positions where the elements are to be found. At the end, the function returns

the solution cost and the solution itself is found in the argument array with the current

best solution. As an example of how these array are created, consider a problem

with clauses 1: a v b, 2: a, 3:b v c v d with a = f, b = t, c = t, d = f,

the arrays whose first position has index (0) will then be:

CLAUSE ARRAYS

sizes 2, 1, 3 -> 0, 2, 3, 6

weights 1, 2, 3

atoms in clauses 0, 1, 0, 1, 2, 3
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ATOM ARRAYS

truth value f t t f

gain -2, 1, 0, 0

clauses that include the atoms 0, 1, 0, 2, 2, 2

sizes for clauses that include the atoms 2, 2, 1, 1 -> 0, 2, 4, 5, 6

EXTRA ARRAYS

current solution f t t f

unsatisfied clauses 1

To better understand these arrays consider the first clause 1: a v b: its size is

2 and is written as the first element (0) of sizes because it is the first clause (note

that the second part of sizes is the prefix sum); its weight is 1 and is also written at

the first position of weights; and it has two atoms a and b which are represented by

the first two elements of atoms in clauses, 0 which is the first atom and 1 which is

the second one. Now, consider the atoms of said clause (a and b): their truth values

are false and true, and are the first two elements of truth value; the reduction

for flipping a is -2 because it would satisfy the second clause, while the increase for

b is 1 because flipping it would no longer satisfy the first clause; a is included in

the first and second clauses, while b is included in the first and third clauses, thus

clauses that include the atoms has elements (0, 1) for a, followed by (0, 2) for

b; and the prefix sum of sizes for clauses that include the atoms allows to

access the clauses that include said atoms in a straight-forward manner, where the

clauses that include a start at position 0 of clauses that include the atoms and

finish at position 1, while those for b start at position 2 and finish at 3. Finally, the

current solution has the truth values for each atom in order (a,b,c,d) and the

only unsatisfied clause is the second clause (2: a).
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4.2.1 GPU MaxWalkSAT

As mentioned in Section 3.4, we propose two options to parallelise the MaxWalkSAT

algorithm on GPUs: having each thread execute the algorithm and find its own

solution to the satisfiability problem or using all threads together to find a single

solution to the problem. Since MaxWalkSAT is an approximate, stochastic solver, it

may not be able to find the best solution. However, the probability of finding good

solutions increases in the first option as different starting points may lead to different

(and hopefully better) solutions. Unfortunately, we had to implement the second

option, as our analysis of the MaxWalkSAT algorithm revealed that the memory

requirements for the first one would be too high, since each GPU thread has to

store its own truth values, unsatisfied clauses and so on. This complication was

corroborated during the evaluation of the second option (Section 5.3.2), as the single

MaxWalkSAT instance used required around 100-160MB of GPU memory. If we were

to execute one instance per thread in our GPU (Tesla K40c with 12GB of memory and

2880 CUDA Cores), we would require 281-450GB, much more than the total amount

of GPU memory available. We propose an interesting third intermediate solution in

Section 6.2.3.

The problem of overshooting (too many atoms are being flipped, increasing the

number of unsatisfied clauses rather than reducing it) when close to a good solution,

was solved by monitoring how the system performs. As soon as the number of

unsatisfied clauses is less than the number of cores or a certain number of iterations

have elapsed, we transfer the computation to the CPU solver (which flips only one

atom per iteration), starting from the best solution found by the GPU MaxWalkSAT

solver.

The GPU MaxWalkSAT Algorithm 6 is based on the second option and was

implemented as a loop of four GPU kernels running in sequence. Note that the start

of each kernel and of the CPU instructions are tagged and recall that in a kernel all

GPU threads execute the same instructions. The algorithm’s input includes the set

of active atoms AA in the Markov Random Field (MRF) partition, the set of active
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Algorithm 6 MaxWalkSAT algorithm for GPUs using a Host (CPU) thread and
four GPU kernels.
1 Input: active atoms AA, active clauses AC, iteration limit IL,

2 number of GPU cores NC, probability P

3 Output: best truth values for active atoms BTV

4 TV <- Generate random truth values for AA --- Host

5 UC <- Add unsatisfied clauses from AC

6 SC <- Calculate cost of TV

7 BTV <- TV

8 BC <- SC

9 Prepare metadata

10 While size of UC >= NC AND iteration < IL

11 For each GPU thread --- Kernel 1

12 RC <- Select random clause from UC

13 With probability P

14 A <- Select random atom in RC

15 else

16 A <- Select best atom in RC

17 Ensure no other thread has A

18 Flip truth value of A in TV

19 SC <- Add A’s flip cost

20 ADJC <- Add all adjacent clauses of A

21 Remove duplicates from ADJC --- Thrust Library

22 If SC < BC --- Host

23 BTV <- TV

24 BC <- SC

25 For each clause C in ADJC --- Kernel 2

26 Calculate satisfied atoms in C

27 For each clause C in ADJC --- Kernel 3

28 If C is not satisfied

29 UC2 <- Add C

30 For each atom A in C

31 Ensure no other thread has A

32 Update flip cost of A

33 For each clause C in UC --- Kernel 4

34 If C is not satisfied

35 UC2 <- Add C

36 UC <- UC2 --- Host

37 Return BTV
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clauses AC (where each clause also belongs to the MRF partition and is made of one

or more active atoms AA), an iteration limit IL, the number of GPU cores NC, and

a probability P used during atom flipping. The output is an array with the best truth

value (BTV ) found for each active atom AA. Note that, each time a (GPU) kernel

finishes, control is first returned to the Host thread (running in one CPU-core in the

multicore host), which either performs an operation or launches another kernel.

First the Host thread prepares an initial random solution (lines 4-8) by: creating

an initial truth value assignment to all active atoms (AA) which is stored in the truth

values array TV ; adding all unsatisfied clauses from all active clauses (AC) to array

UC; computing the solution cost (SC) of our initial random solution TV by summing

the weights of all unsatisfied clauses; and setting the best cost (BC) and best truth

values (BTV ) found so far as SC and TV respectively. It also creates some metadata

(line 9) including clause adjacency (for each atom, we keep a record of all clauses that

include it), flip cost (each atom has a negative cost if flipping it reduces the number

of unsatisfied clauses and a positive cost if flipping it increases that number), number

of satisfied atoms in each clause, among others.

Kernel 1 (lines 11-20) begins by having each thread select a random clause (RC)

from the array UC of unsatisfied clauses, and then an atom in the clause. The atom

selection has a probability P (usually 0.5) of choosing a random atom A or choosing

the best atom A (i.e., the one with the lowest flip cost). Then we ensure, through

locks and atomic operations, that no other thread has the same atom A. If two or

more threads chose the same atom, all but one stop their execution. Then, for each

atom A, its truth value stored in TV is flipped, its flip cost added to the solution

cost SC and its adjacent clauses are appended to array ADJC. Kernel 1 uses a

fixed number of threads based on the capabilities of the GPU (maximum number

of threads per block times available Streaming Multiprocessors), seeking to use all

available GPU processing capacity.

The Host thread then calls the GPU-based sort and unique functions of the Thrust

Library to remove duplicates from array ADJC (line 21). Said Host thread then
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compares the solution cost SC produced by Kernel 1 to the best solution cost BC

(from a previous loop or the initial one computed by the Host in line 8), storing it as

the new best cost BC if it is smaller and replacing the best truth values BTV with

those in TV (lines 22-24).

Kernel 2 (lines 25-26) calculates the number of satisfied atoms in each clause C

in array ADJC — positive atoms are satisfied if their truth value is true and negative

ones are satisfied if their value is false. Kernel 2 uses one thread for each clause on

array ADJC (thus, its number of threads changes at each iteration).

Kernel 3 (lines 27-32) also uses array ADJC and a thread for each clause in

ADJC. The kernel begins by testing each clause C to determine if C is satisfied or

not, adding unsatisfied clauses to array UC2. Then, the flip cost of each atom A in

clause C is updated based on its new truth value stored in TV (obtained in the first

Kernel) and on the number of satisfied atoms. Since it is possible for an atom A to

be repeated in the clauses of array ADJC, we must once again use atomic operations

to ensure that only one thread updates the flip cost of a single atom A.

Kernel 4 (lines 33-35) tests if the clauses found in array UC are now satisfied

or not, using one thread per clause. Unsatisfied clauses are added to array UC2.

Finally, array UC2 becomes array UC (i.e., the input array of unsatisfied clauses

that is passed to the first Kernel) and a new iteration begins.

This process is repeated until the number of unsatisfied clauses (size of UC) is less

than the number of GPU cores NC or until the iteration limit IL is reached. In either

case, the MRF partition given to the GPU is further processed by the CPU solver,

using the best truth values (in array BTV ) returned by the GPU solver. The idea is

to further improve the solution of the GPU solver, which is very likely to happen if

the GPU solver stopped due to the number of unsatisfied clauses UC and unlikely if

the iteration limit IL was reached.
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4.2.2 GPU SampleSAT

To compute clause weights, we use the Diagonal Newton (DN) [24, p. 49] method,

an iterative method that adapts its parameters at each iteration using MC-SAT.

MC-SAT [94] is an iterative uniform slice sampler that uses SampleSAT [119] to

sample around the solution of a weighted MaxSAT problem. Finally, SampleSAT is a

weighted MaxSAT sampler that combines the MaxWalkSAT algorithm with a search

technique called Simulated Annealing (SA) [52].

MaxWalkSAT and SA work together as follows: at each SampleSAT iteration,

an atom is chosen with probability p according to the MaxWalkSAT algorithm (a

random or the best atom A of an unsatisfied clause UC, as described above) and

with probability (1 − p) the choice is based on SA (which is essentially any atom).

Each SampleSAT iteration starts with random truth values for the active atoms and,

at the end, returns the best found truth values BTV along with the corresponding

solution cost SC. MC-SAT then uses these values to adapt the parameters of the DN

method.

Our MLN platform, called GPU-Tuffy and presented in Section 4.4, attempts to

accelerate weight learning by computing the grounding and the SampleSAT algorithm

in the GPU, as shown in Figure 4.5. The grounding process is the same as the one

described further in Section 4.4 and has been reduced to a single call in Figure 4.5

for clarity. GPU SampleSAT is a modified version of GPU MaxWalkSAT where the

first Kernel includes, for each thread, an extra stochastic condition to determine if it

should select the atom according to MaxWalkSAT or SA. All other kernels are reused

without changes and its input is usually larger as it includes the active atoms AA and

active clauses AC that form the whole MRF (not just a partition of it). The output

is also larger (truth values for all active atoms AA), but the stopping criteria is the

same (few unsatisfied clauses UC or an iteration limit IL) and, once the GPU solver

finishes, the CPU solver is likewise used to improve the solution.
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Figure 4.5: GPU-Tuffy running our GPU SampleSAT algorithm for weight learning.
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4.2.3 State of the Art for Satisfiability on GPUs

The boolean satisfiability problem has been extensively studied and there are

several GPU systems based on different approaches. One of such systems is called

GPU4SAT [21], which is based on the multiplication of two matrices. The first

matrix indicates the problem with each clause representing the rows, each variable

representing two columns (one for the positive truth value of the variable and one

for the negative), and each position has one if the variable satisfies the clause and

zero otherwise. The second matrix represents the possible solutions to the problem,

where each row is a variable or its negation, each column is a possible solution and

each position has one if the variable should be true in the solution and zero otherwise.

Each column of the resulting matrix whose values are all greater than zero indicates

that the possible solution in the same column index of the second matrix is actually a

solution to the problem. As an example consider the following satisfiability problem

solved by multiplying:

Possible solutions

I1 I2 I3 I4

| 1 0 1 0| x1

Satisfiability problem | 1 0 0 1| x2 Solutions

x1 x2 x3 x4 -x1 -x2 -x3 -x4 | 1 0 1 0| x3 I1 I2 I3 I4

x1 v x2 | 1 1 0 0 0 0 0 0| | 1 0 0 0| x4 | 2 0 1 1|

-x2 v -x3| 0 0 0 0 0 1 1 0|*| 0 1 0 1|-x1 = | 0 2 1 1|

x3 v -x4 | 0 0 1 0 0 0 0 1| | 0 1 1 0|-x2 | 1 1 2 1|

| 0 1 0 1|-x3

| 0 1 1 1|-x4

Note how the first row of the first matrix has ones in x1 and x2 because they

are the only variables that can satisfy the clause and that same logic is applied to

all the other clauses. Also, the first column in the second matrix (I1) indicates that

a possible solution would be to make all variables true, I2 indicates that another
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solution could have all variables false, and so forth until all valid combinations are

enumerated. A valid combination cannot have a variable true and false at the same

time, like x1 = 1 and -x1 = 1 (for simplicity, not all valid combinations appear in our

example). Finally, the solution matrix indicates that only I3 and I4 are solutions

to the problem and one can easily see that it is indeed the case, since the second

clause is not satisfied in I1 (-x2 = 0 v -x3 = 0) and the first is not satisfied in I2

(x1 = 0 v x2 = 0), while I3 and I4 satisfy all.

Matrix multiplication in GPUs is a very efficient operation, however, in larger

problems, enumerating the possible combinations for the problem and its solutions

results in matrices of intractable sizes. Fortunately, as shown by the example, not

all combinations need to be specified for the second matrix. GPU4SAT exploits

said property by dividing the processing in two steps: a local search step that

proposes possible solutions to the problem by changing the truth values of variables

in unsatisfied clauses (similar to what MaxWalkSAT does) and a multiplication step

that evaluates the proposed solutions. These steps are iteratively repeated until the

solution is reached or a certain number of iterations have elapsed.

In another work, Fujii and Fujimoto [32] proposed a CPU-GPU hybrid algorithm

based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [19] for 3-SAT,

a variation of the general satisfiability problem where clauses have three literals at

most. The DPLL algorithm considers the satisfiability problem as a large, unknown

valued formula where all clauses are joined by conjunctions and works by iteratively

assigning truth values to the variables one by one, until the formula becomes true

(if the problem is satisfiable) and the problem is solved. If at some point, a value

assignment causes the formula to be false, then the currently assigned values will not

satisfy the problem and the algorithm must backtrack. The algorithm backtracks by

changing the assigned value of the last considered variable and testing whether the

formula is still false, in which case it once again backtracks to a previous variable,

or it is no longer false and the algorithm can continue assigning values to the next

variables. DPLL can be optimized with several techniques including the Boolean
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Constraint Propagation (BCP), which periodically checks if certain variables must

take certain values in order to satisfy the formula.

As an example of this algorithm, consider a problem with clauses x1 v ¬x2 v x3,

¬x1, and x2, which is equivalent to the formula x1 v ¬x2 v x3 ∧ ¬x1 ∧ x2. The

algorithm starts from a variable say x1 and sets its value to true, then evaluates the

formula and concludes that it is false (because ¬x1 is false). As the formula is now

false, the algorithm backtracks and now tries x1 = false, which is an acceptable

value for the formula (whose value is still unknown but not false). Finally, suppose

that the algorithm sets x2 = true, which is an acceptable value and BCP determines

that x3 has to be true, otherwise the clause x1 v ¬x2 v x3 would not be satisfied.

The found values for the variables make the formula true and satisfy the problem.

DPLL was parallelised by having the CPU assign the values to the variables and

perform backtracking if necessary. The GPU receives the clauses of the problem in

groups and maps each group to a thread block. Each thread block then checks if a

clause is conflicting (i.e., all its literals evaluate to false, causing the whole problem to

be unsatisfiable for the current truth values) and performs BCP. The performance of

their parallel algorithm was compared against a sequential version in the CPU, with

both randomly generated and competition problems. The results show an speed-up

of up to 6.7 for problems of more than 1000 variables.

Also relevant is the work by McDonald [77], who parallelised the WalkSAT

algorithm, which is similar to the MaxWalkSAT algorithm except that clauses are

not weighted, all are equally important. His approach (which was implemented for

multicores but only outlined for GPUs) is based on having each thread compute the

WalkSAT algorithm, starting from a different point in the search space. To prevent

threads from visiting less promising regions of the search space, an optimization

technique for the DPLL algorithm called conflict driven clause learning (not to be

confused with clause learning in MLNs, they are two unrelated concepts) was adapted

into WalkSAT. The idea is to create a shared database of clauses that indicate the

dependencies among the variables. Said database is incrementally constructed by all

Cinvestav Departamento de Computación



112 Chapter 4

threads when working with multicores and by a single CPU thread when using the

GPU.

The basis of this clause learning is to construct conflict graphs at certain iterations

of the algorithm. Said graph construction starts from two clauses with a common

conflicting variable (i.e., a variable who has positive instances in some clauses and

negative instances in others) and then adds the positive and negative instances of the

variable as leaf nodes. Next, all other variables in the clauses are added as parent

nodes with the opposite sign and another clause that includes any of the variables

already in the graph is chosen to add its variables as parents of the parent nodes.

This process is repeated until an arbitrary stop criterion is reached, like the depth of

the graph. Once the graph is finished, clauses are learnt by “cutting” the graph at

certain intervals and joining the negation of all variables in the cut with disjunctions.

These clauses represent dependencies among the variables.

As an example of said learning, consider the clauses and their conflict graph

presented in Figure 4.6. Construction begins from the first two clauses using variables

a and ¬a as leafs and then adding the negation of b from the first clause and the

negation of c from the second. From there, since ¬c has no other occurrence, it

becomes a root node and the construction continues with ¬b, which adds d and f

to the graph. Finally, these last two variables add g to the graph and the graph is

complete. Then, the graph is cut wherever new variables appear and the negation of

the variables in the cut are joined with disjunctions, forming the learnt clauses. These

learnt clauses indicate dependencies like: if c = false, then g must be false, b must

be true and ¬d v ¬f must be satisfied. It can easily be seen that it is indeed the case,

since c = false forces a = false in order to satisfy the second clause, a = false in

turn forces b = true to satisfy the first clause, and that forces g = false to satisfy

the last two clauses.
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Figure 4.6: Conflict graph created from the first two problem clauses using conflicting variable a.

4.3 GPU parallel ILP

In order to understand how to better parallelise clause learning in MLN, we started by

creating a parallel platform for general, FOL clause learning based on Inductive Logic

Programming (ILP). Recall that ILP is usually based on Algorithm 1 of Section 2.5.2,

which searches for rules that, when applied to some training data, their results must

cover a set of given positive examples and must not cover any example found in a set

of negative ones. The main components of our platform are: the YAP Prolog system,

the Aleph ILP system [139], written in Prolog, and GPU-Datalog. Coordinating all

these systems and setting GPU-Datalog to compute coverage required roughly 200

lines of C and Prolog code.

Figure 4.7 shows our GPU-based platform for relational learning from a high level

perspective. The left block runs in a single host CPU core. First, the YAP Prolog

system reads/compiles the ILP program and translates its strings into a numeric

representation (NR), in a similar process to the one described in Section 4.1. Aleph

then performs Algorithm 1 by simply calling its internal predicate induce. For each

new candidate rule found, YAP compiles the candidate rule into a Datalog coverage

computing rule by modifying the head, adding an extra predicate and translating it

to GPU-Datalog’s NR. The extra predicate includes, for each example, an identifier,

if its positive or negative (polarity), and its variables. The modified head generates
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Figure 4.7: Our GPU-based ILP platform organization.

a result that includes only the identifier and the polarity of each example, as shown

in the following Aleph sample rule (the last rule from the example presented in

Section 2.5.2):

grandfather(Y, X) :-

father(Y, Z),

father(Z, X).

which is compiled into the coverage computing rule:

covers(Id, Pol) :-

example(Id, Pol, Y, X),

father(Y, Z),

father(Z, X).

Evaluating this rule using GPU-Datalog materializes the covers table with the

set of covered example identifiers and their respective polarities, and we simply have

to count using the polarity to obtain the number of positive and negative examples (P
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and N respectively in Figure 4.7). The process continues searching and evaluating

rules until it finds a high-quality rule (one which covers all positive examples and

no negative ones), all possible rule combinations are tried, or a certain number of

iterations is reached. As an example, consider the sample coverage computing rule

with tables containing the following elements:

example(1, positive, Bob, John).

example(2, positive, David, Harry).

example(3, negative, Gary, Ana).

example(4, negative, Frank, Helen).

father(Bob, Sam).

father(Sam, John).

father(David, Greg).

father(Greg, Harry).

father(Ana, Gary).

father(Helen, Frank).

joining and projecting father(Y, Z) and father(Z, X) would set the variables

(Y,X) with (Bob, John) and (David, Harry). The next join and projection

between (Y,X) and example(Id, Pol, Y, X) would materialize the covers table

with covers(1, positive) and covers(2, positive). Finally, we count the

number of positive (P = 2) and negative (N = 0) examples covered and since we

found a high-quality rule, the computation finishes.

Using the same approach, we also created a multicore ILP implementation based

on the OpenMP version of GPU-Datalog (described in Section 4.1.3). While these

implementations proved to be very effective for general clause learning (as shown

in [75]), for MLN clause learning, instead of using the coverage of the examples, a

different evaluation function like Equation 3.11 found on Section 3.5.1 has to be used.
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4.3.1 State of the Art for parallel ILP

With respect to running ILP algorithms in GPUs, to the best of our knowledge, this

work presents the first attempt. Regarding parallelisation of the coverage algorithm

using a multicore implementation and top-down evaluation, Côrte-Real et al. [14]

managed to achieve linear speed-ups using a multi-threaded implementation based on

Prolog and Aleph parallelised with MapReduce [20]. MapReduce is a programming

model based on two key operations: map which applies a mapping function like

sorting or classification to some given data, producing an equally large set of mapped

values; and reduce which, given the mapped values, applies a reducing function like

summation or aggregation. The most commonly used implementation of MapReduce

is on a cluster of master-slave nodes, where the master node partitions the data,

distributes it among the slave nodes which execute the map and reduce operations,

and collects the results. Note that the execution times reported in [14] are only for

the coverage step and ignore all other Aleph operations. In contrast, we report the

full execution time in the experiments with our system in Section 5.2.

A. Srinivasan et al. also parallelised ILP with Aleph and MapReduce [112]. The

authors investigated task parallelism, where each mapper node proposes a clause that

should cover at least one positive example and the reducer nodes determine the best

clause proposed. They also investigated data parallelism, where the mapper nodes

compute a partial clause coverage given a subset of the examples and the reducer

nodes calculate the total coverage of the clause. Their experiments show that data

parallelism is better for their ILP configuration, but only if the data size is above a

certain threshold (around 500,000 tuples), otherwise slowdowns are incurred due to

the MapReduce overhead.

Finally, Fonseca et al. [29] evaluated several parallel ILP implementations using

LAM MPI [111]. They considered 4 strategies: a search strategy where all nodes

cooperate to generate a clause; a data strategy where each node is given a subset of

the examples and computes the best clause for them; another data strategy where

the nodes are also given a subset of the examples, but propose a set of good clauses
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that are reevaluated at the end to obtain the best; and an evaluation strategy where

coverage is computed using all nodes (similar to our implementation). Their results

show that the search strategy is better, followed by the data strategies. However, the

author’s suggest that data and evaluation strategies might be better when working

with a large background knowledge, as computing the coverage becomes much more

time consuming. This is indeed the case in our experiments, were about 91% of the

total execution time is spent on coverage.

4.4 GPU-Tuffy

Our first design to accelerate MLN performance is based on the Tuffy system and it is

called GPU-Tuffy [73]. The UML diagram in Figure 4.8 shows the interaction between

the main modules of GPU-Tuffy running MAP inference on an MLN, including the

grounding and search steps. Coordinating these modules and translating the clauses

to Datalog required the addition of about 600 lines of Java and C code. During the

inference process, Tuffy runs first (top-left side of Figure 4.8), receiving three input

files: i) the evidence (facts) file; ii) the MLN program; and iii) the queries file. Tuffy

continues by creating a temporary database in PostgreSQL to store the evidence data

and partial results. It then parses the program and query files in order to determine

predicates and to create a (relational) table for each predicate found. Tables are then

loaded with the evidence data.

The grounding phase then starts. Grounding performs two steps: Computing

Atoms (CA) and Computing Clauses (CC). CA computes the closure of the active

atoms: atoms whose truth value might change from true to false or vice versa during

search. CC computes the active clauses: clauses that can be violated (i.e., their truth

value becomes false) by flipping zero or more active atoms. While CC uses all clauses,

CA tends to use a smaller subset.

CA and CC are run by GPU-Datalog on the GPU after some preprocessing, as

shown in Figure 4.8 and described next. For CA (top box in Figure 4.8), as Tuffy
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Figure 4.8: GPU-Tuffy modules running an MLN.
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uses disjunctions to specify the MLN clauses, these clauses are first translated to

Datalog’s conjunctions (first translate clauses in Figure 4.8). The Datalog clauses

are then sent to YAP (using a Java-Prolog interface) which compiles them into a

numerical representation (NR) where each unique string is assigned a unique integer

Id (as mentioned in Section 4.1 and represented in the second translate clauses in

Figure 4.8). YAP then sends the clauses’ NR to GPU-Datalog to process the actual

grounding of active atoms. Tuffy also uses this NR for evidence loaded in the database;

this simplified extending it with GPU processing.

For CC (second box in Figure 4.8), a similar preprocessing is carried out (third

and fourth translate clauses in Figure 4.8). However, this time the clauses translated

into Datalog are not the MLN disjunctions, but the SQL queries generated by Tuffy

based on such disjunctions. This is because the output (one active clause per row

and each clause represented by a set of active atoms along with its weight) is easier

to generate.

Both CA and CC follow the same steps: read from the database to retrieve the

evidence, compute the closure of the clauses using its relational algebra kernels, and

write the results back to the database.

Once the active atoms and active clauses are computed, the search step begins

by creating and partitioning the corresponding MRF. The large partitions are then

processed in the GPU using our GPUSATLIB and, at the same time, the smaller

partitions are processed in parallel (with one partition per thread) using Tuffy’s CPU

MaxWalkSAT solver. Once all partitions of the MRF are processed, Tuffy displays

the final result based on the found truth values of the atoms in the MRF.

4.5 GPU-RockIt

Our next design is based on RockIt [90] which (as mentioned in Section 3.4.1) uses a

different approach to MLN MAP inference based on integer linear programming and

Cutting Plane Inference (CPI), which partitions the linear programming problem into
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smaller problems. Since the search phase in RockIt is already quite efficient, only the

grounding process is parallelised in the GPU by the addition of of approximately 500

lines of Java code into RockIt (for clause translations into Datalog and coordination

between modules).

As grounding in RockIt is similar to that of Tuffy, in this section we present the

design of GPU-based grounding for, and its integration into, RockIt. The resulting

system, GPU-RockIt, consists of RockIt, YAP Prolog, and GPU-Datalog. Figure 4.9

shows the components of GPU-RockIt and their interactions. RockIt begins by

reading the input files and storing the evidence using MySQL (instead of Tuffy’s

PostgreSQL). Strings are translated and stored in the DB as key, value pairs. We

modified this translation to allow only numbers in the key, as required by GPU-

Datalog. RockIt then calls our translation functions to create the Datalog clauses

(first and only translate clauses in RockIt’s timeline) needed to perform the grounding.

These clauses are translated from RockIt SQL clauses which are, in turn, a translation

of the MLN clauses. Note that all clauses are translated in this single step (which

should not be confused with YAP’s numerical translations shown later in Figure 4.9),

while GPU-Tuffy uses two steps.

The translated clauses are divided into two groups: before-CPI and during-CPI.

The first group includes the evidence and those clauses with a single atom and weight

greater than zero. The second group includes all remaining clauses.

The before-CPI clauses are then grounded (top box in Figure 4.9). The grounding

process in GPU-RockIt follows that of GPU-Tuffy (the only relevant difference is

the organisation they use of input and output database tables). RockIt sends the

Datalog clauses to YAP in order to transform them to the GPU-friendly numeric

representation (NR), which will be the input for GPU-Datalog to compute the

grounding. Then GPU-Datalog retrieves the evidence from the database, grounds

each clause, and writes back the result. The results of this first grounding will be

used as the constraints of the first optimization problem, after being compacted by the

Cutting Plane Aggregation (CPA) algorithm, which groups similar clause groundings
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Figure 4.9: Main components of the GPU-RockIt system and their interactions.
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into a single constraint.

With the constraints in place, the core part of CPI begins (bottom box in

Figure 4.9): a loop that solves the current optimization problem, generating new

evidence; computes new groundings using the during-CPI clauses and the new

evidence; and then, with the newly generated groundings compacted by CPA, posts

constraints to the next optimization problem. This process is repeated until it is not

possible to find constraints for another optimization problem. At the end of the loop,

RockIt displays the final result. The optimization problems are solved by the Gurobi

multicore optimizer [149], which controls its execution through a bound on the error

between the current and expected solutions called gap. Users can define this gap

value or use RockIt’s default gap. The optimizer will continue to search for a better

solution to the problem until the error is lower than the gap.

In order to speed-up the grounding, GPU-Datalog preserves RockIt’s duplicate

removal procedure: keeping the results of each clause in a table and through a left

join with such table, ensuring that any new row does not appear in older results.

We take this idea further by maintaining the results in GPU memory for as long as

possible with the help of GPU-Datalog’s memory management module (described in

Section 4.1).

4.6 Validation of our Platforms with Running

Examples

To validate the proper functioning of our platforms and the correctness of their

results, we executed several tests aimed at each platform as a whole and at the

most important components: grounding with GPU-Datalog and SAT solving with

GPU MaxWalkSAT. Note that performance gains were not measured in these tests

(they can be found in the next chapter).
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4.6.1 Validation of GPU-Datalog

The first validation of the current version of GPU-Datalog was performed against

its first version presented in [74] and against YAP. The idea is to ensure that the

new additions and modifications did not change the correctness achieved by the first

version. The two applications used were the first two presented in [74]: a join over

four big tables, where four tables, all with the same number of rows filled with random

numbers, are joined together and the transitive closure of a graph, which is a recursive

query based on a table with two columns filled with random numbers that represent

the edges of a graph and the task is to find all the nodes that can be reached if we

start from a particular node. The results where exactly the same in both applications

for all 3 systems (YAP’s results were in a different order, but that does not affect

the tests), thus the latest version of GPU-Datalog maintained the correctness of the

original version.

The second validation tested the whole operations of GPU-Datalog, including the

new operation in the latest version like negation and comparisons, and was performed

against the SQL grounding queries of PostgreSQL and MySQL. This validation

warrants that the results of the groundings created by GPU-Datalog (for GPU-

Tuffy and GPU-RockIt) were equal to those created by PostgreSQL (for Tuffy) and

MySQL (for RockIt). The two applications used were smokers presented in Section 2.3

and relational classification, which classifies papers into categories based on several

attributes. Both were set to their original configurations as shown in Section 5.3.1.

For PostgreSQL, the test involved creating a barrier to pause the computation in

both Tuffy’s and GPU-Tuffy’s code right after the second grounding is finished (CC,

described in Section 4.4). Once the systems reached the barrier, we would manually

access the database and dump all tables involved in the computation (ordered by

the first column) to text files using the COPY command. The text files obtained from

GPU-Datalog’s groundings were then compared against those of PostgreSQL in a

terminal using the diff command and, since not a single difference was found, we

can be certain that GPU-Datalog is grounding correctly in GPU-Tuffy. For MySQL,
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a similar process was performed except that, since RockIt and GPU-RockIt ground

at each iteration (see Section 4.5 for details), the execution had to be paused, the

tables dumped, and the files compared at each iteration. Similar to PostgreSQL, no

differences in the groundings where found between GPU-Datalog and MySQL.

4.6.2 Validation of GPU MaxWalkSAT

GPU MaxWalkSAT was validated against the results of several CPU-based SAT

solvers, both complete (i.e., those based on exhaustive searching) and incomplete

(i.e., those based on local, stochastic search). This comparison is possible thanks to

the SAT problems and their results published in the seventh evaluation of Max-SAT

solvers (Max-SAT-2012) [133]. We chose the following problems based on their large

size (compared to the rest of the problems in the set) and based on the fact that most

of the solvers managed to find the best solution for them: s2v140c1600_3.wcnf (with

140 variables and 1600 clauses) and file_rwms_wcnf_L3_V70_C900_7.wcnf (70, 900)

from the random set and frb20-11-5.wcnf (220, 5821) and ram_k3_n12.ra1.wcnf

(66, 715) from the crafted set. The test consisted in creating a simple interface

for GPU-Tuffy to directly feed the SAT problem to GPU MaxWalkSAT, skipping the

grounding and other unnecessary tasks. Also, we had to reduce the number of threads

per block used for the GPU kernels, as the number of variables in each problem is

less than the number of cores in the GPU where the tests were made (a GeForce

GTX 765M with 768 cores). However, this change did not affect the results of our

algorithm and the best result for all four problems was found.

4.6.3 Validation of our MLN Platforms

Having validated all critical components, we sought to validate our whole platforms,

GPU-Tuffy and GPU-RockIt. The validating comparison was made against Tuffy

and RockIt using the smokers application, as it is rather simple to create a large

amount of random evidence which has a unique, zero-cost solution (i.e., a solution
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where all clauses are satisfied). The tests were carried out with 3 different sizes for

the applications: 5000, 10000, and 20000 friend relationships, along with 500, 1000,

and 2000 smokers. For each size, the application was executed 10 times in all four

systems, ordering and comparing the results of every system in each execution. In

the end, all systems managed to find the same, zero-cost solutions at each execution.

Since all tests presented in this section generated the same results in both our

systems and in the state of the art systems, and since no execution errors where

found in neither these tests nor the ones presented in the following chapter, we believe

that our systems have been successfully validated and can be used for any Datalog,

MaxSAT, or MLN application.

4.7 Summary

We have presented our experimental platforms to process MLNs using GPUs, GPU-

Tuffy [73] and GPU-RockIt, their core components, and our parallel ILP system.

GPU-Datalog [74], the FOL infrastructure of our MLN platforms and our ILP

system, was greatly extended from its original version with several new operators

and optimizations in order to handle MLN grounding and FOL clause learning. To

handle large amounts of data that exceed the memory capacity of the GPU and to

allow multiple GPU to process an application simultaneously, GPU-Datalog was also

extended with a data partitioning scheme.

The other core component is a novel GPU-based library to solve and

sample MaxSAT problems called GPUSATLIB, which is based on the efficient

MaxWalkSAT [53] and SampleSAT [119] algorithms. The idea is to try to satisfy as

many clauses as possible (prioritising those with higher weights) by changing (flipping)

the truth value from true to false or vice versa of an atom in the unsatisfied clauses for

a certain number of iterations or until no unsatisfied clauses remain. Sampling follows

a similar process but allows any atom (not just those from unsatisfied clauses) to be

flipped. Similar to this library, there are other satisfiability solvers for GPUs based
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on other algorithms [21, 77]. Also, it is important to mention that both of these core

components are stand-alone and can be used in several applications beyond MLNs.

Our ILP system parallelises clause learning in FOL using GPUs. This system is

based on YAP Prolog which translates strings to numbers for easier processing and

serves as a bridge between Aleph [139], which is in charge of proposing new clauses,

and GPU-Datalog, whose job is to compute the coverage of each clause to determine

its worth (i.e., based on some positive and negative examples, determine how many of

each are represented by the clause, with the best clauses representing all positive and

none of the negative). The idea of parallelising ILP in GPUs comes from the fact that

several systems have parallelised it in distributed systems with good results [14, 29].

GPU-Tuffy, our first MLN platform, solves the MAP inference problem as a

weighted MaxSAT problem. Its main components are: the Tuffy MLN system,

which performs all preprocessing (data loading, MRF partitioning, among others)

and displays the final results; GPU-Datalog which is used to compute the clause

groundings; YAP which serves as the bridge between GPU-Datalog and Tuffy;

PostgreSQL which stores the initial evidence and grounding results; and our

GPUSATLIB which solves the weighted MaxSAT problem of the search step.

GPU-RockIt is our second MLN platform based on formulating the MAP inference

process as an integer linear programming problem (i.e., an optimization problem).

Its main components are: the RockIt MLN system, which performs all preprocessing,

solves the optimization problem and displays the final results; GPU-Datalog and YAP

Prolog which are used to compute the groundings similar to GPU-Tuffy; and MySQL

(instead of PostgreSQL) to handle data I/O.

Finally, both platforms and their critical components were properly validated

for correctness (performance is discussed in the next Chapter) in their results using

several tests. All these tests were successfully completed by all our systems and the

results were equal to those of the state of the art systems currently in use.
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Performance Evaluation

This chapter presents a detailed performance evaluation of our MLN plat-

forms (GPU-Tuffy and GPU-RockIt), their core components (GPU-Datalog and

GPUSATLIB), and our parallel Inductive Logic Programming (ILP) system.

First, we introduce an evaluation of the performance of GPU-Datalog (Sec-

tion 5.1), the logic component of our MLN platforms, against Red Fox [150], cur-

rently the best state of the art system, showing that GPU-Datalog has good, com-

petitive performance. Then, we present the evaluation of our ILP system based on

Aleph [139] and GPU-Datalog (Section 5.2) using general first-order logic applica-

tions, which show the potential of our system as the basis of future MLN clause

learning systems. Next, we present the general performance evaluation of our GPU

platforms and of our GPU designs (Section 5.3) for: 1) the MaxWalkSAT algorithm

part of GPUSATLIB for the search step on Tuffy, which concludes that the search as a

satisfiability problem can also benefit from GPU parallelisation; 2) the grounding also

based on GPU-Datalog for the RockIt MLN system (which forms our GPU-RockIt

platform), which proves the flexibility our grounding design; and 3) the MC-SAT algo-

rithm based on parallel SampleSAT provided by GPUSATLIB under weight learning

(part of GPU-Tuffy), which indicates that parallelism can also improve weight learn-

ing.

In each section, we present our methodology, experimental setting, and the
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obtained results. At the end, we conclude with an exhaustive discussion of the

results obtained by our MLN platforms (Section 5.4) and a summary of the Chapter

(Section 5.5).

5.1 GPU-Datalog Base Performance

Our first version of GPU-Datalog was presented in [74], showing great results when

performing relational algebra (RA) operations (especially joins), easily outperforming

non-GPU based systems. As mention in Section 4.1.4, Diamos et al. also developed

a GPU platform for RA called Red Fox [150], which is based on an extended version

of Datalog. Their experiments show that Red Fox is currently the best performing

GPU system for RA and thus, we decided to compare our system with theirs.

5.1.1 Applications

We used 8 of the 22 TPC-H [152] queries (a famous decision support benchmark with

scalable queries presented in Appendix B) to evaluate the performance of our system:

1, 3, 4, 5, 10, 18, 19, and 21. Since these queries are written in SQL, first we had to

manually translate them from SQL to Datalog. Queries 2, 7, 9, 13, 14, 16, 20, and 22

were not used as they had sub-string operators (like, extract, substring). Since our

system transforms whole strings into numbers, it was not possible for us to use these

operators. Queries 6 and 17 had floating-point constants and were not of interest to

our work. Queries 8, 11, 12, and 15 had operators that are hard to directly translate

from SQL to Datalog (case, having, views). The evaluation used the same scale factor

of 1 for TPC-H data which is roughly 1 GB. The tables were populated with random

data using the TPC-H data generator, and that same scale factor.

Hardware-software Platform

The evaluation was performed in the same architecture described in [125], which

includes the following components:
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Figure 5.1: Comparison between GPU-Datalog and Red Fox using 8 TPC-H queries.

Host hardware: Intel i7-4771 with 4 cores at 3.5GHz, 4x32KB L1 instruction

caches, 4x32KB L1 data caches, 4x256KB L2 associative caches, 8MB L3 cache, and

32GB of RAM. Host software: Ubuntu 12.04 and G++ 4.6.3.

GPU hardware: GeForce GTX Titan with 6GB of memory and 288.4 GB/s

memory bandwidth, connected to a PCIe 3.0 x16. GPU software: NVCC 5.5 and

Thrust library 1.7.

5.1.2 Results

Figure 5.1 shows the results of our system against the latest Red Fox results

(2014/03/11) [150] with PCIe (GPU-bus) transfer time (i.e., time taken by memory

transfers between the GPU and the host) — time spent on loading tables from disk

to main memory is not included. Q1 shows roughly the same execution time for

both Red Fox and our Datalog engine. Our engine is faster for Q3 and Q19 and

Red Fox is faster for the remaining five queries. Red Fox uses primitives of the

ModernGPU library [144], which are well-tuned for coalesced memory accesses, while

we used the Thrust library [151] implementations. ModernGPU also uses the Merge-
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Path framework [43, 91], which partitions the data and balances the workload among

groups of threads. Still, we chose to keep Thrust instead of moving to ModernGPU as

Thrust is a core part of the CUDA standard that is constantly evolving and because

the latest performance comparisons between these libraries and other similar ones [79]

show that no library is better for everything and that a new library called CUB [132]

actually outperforms both Thrust and ModernGPU in several tasks.

Added to the library question, our system was optimized for logical queries, not

SQL and our manual query translation from SQL to logic queries may also be sup-

optimal. We believe that the main factor that affected the performance of our engine

was query rewriting, particularly the use of auxiliary rules. For example, Q21 required

two additional rules to represent two SQL EXISTS operators (boolean operator that

return true if a subquery returns at least one record), which are not implemented per-

se in our system. When these additional rules are evaluated, all possible solutions

are returned (instead of true or false as EXISTS does in SQL), thus creating large

intermediate tables which need to be joined to the main rule, increasing execution

time.

Finally, the following factors adversely contributed to the performance results of

our system:

• Comparison predicates. These predicates were performed after all join

operations were finished in order to ensure that their variables are assigned to a

value. By correctly rearranging these predicates, their evaluation is performed

sooner, thus eliminating many unnecessary tuples earlier in the computation.

For example, consider rule a(X) :- b(X,Y), c(X,Z), Y < 3., where b and

c have 100 elements each and only 5 of the elements in b comply with the

conditional Y < 3. If the join is performed first, then 100*100 elements will be

generated in the worst case and then reduced to 500 by the conditional. On

the other hand, by doing the conditional first, the size of b becomes 5 and the

worst case for the join becomes 5*100.
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• Join algorithm. We based our join algorithm on the Indexed Nested Loop

Join of the GDB system [47]. Red Fox’s join algorithm was compared against

GDB, report a 1.69 performance improvement over it [22]. We believe a similar

difference exists between our algorithm and Red Fox’s.

Note that this evaluation was performed with an earlier version of GPU-Datalog

than the one described in Section 4.1. Some optimizations like faster comparisons and

partitioning were missing from this early version. Furthermore, ModernGPU, Thrust,

and Red Fox have also suffered changes. Nevertheless, we consider this evaluation as

a good measure of the base performance of our system.

5.2 ILP with GPU-Datalog

As mentioned in Section 4.3, we combined GPU-Datalog with the ILP system called

Aleph in order to speed-up the most compute intensive task, rule coverage. To

evaluate its performance, we experimented with three different versions of Aleph:

1) the original Prolog code that runs relational learning applications in YAP [15],

where coverage-lists are used to minimize the number of examples to be tested against

a new rule (Aleph-cov), 2) a modified version of the original Aleph, where the whole

set of examples is always passed to the coverage procedure (Aleph-all), and 3) our

modified version of Aleph that calls GPU-Datalog to execute the coverage step, also

using the whole set of examples. Our version uses two different libraries: 3.1) that runs

the coverage step on the GPU (Aleph-cuda) and 3.2) that runs the coverage step

on the host multicore with several threads using GPU-Datalog’s multicore support

presented in Section 4.1.3 (Aleph-multi). The two first versions Aleph-cov and

Aleph-all use a top-down approach to evaluate the queries. The other two, Aleph-

cuda and Aleph-multi use a bottom-up approach based on Datalog where rules are

modified to return the identifier of each example and its polarity (i.e., its truth value)

as result, which are then counted to compute the coverage (details of this process can

be found in Section 4.3).
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The first order models generated by all versions are the same as well as the counters

of positive and negative examples. Each run was performed ten times. The reported

execution times are averages of ten runs and are expressed in seconds.

5.2.1 Applications

• carcino: this is a well-known application that focuses on whether drugs may

be carcinogenic in rodents. The ILP system has information on the drug’s 2-

D structure (atoms and bonds) and on major chemical properties such as the

structural group (methyl groups, benzene rings, etc.), the genotoxicity (i.e.,

agents that damage the genetic information), and mutagenicity (i.e., an agent

that changes the genetic material increasing the frequency of mutations) [113].

• hiv: this dataset is based on the DTP AIDS anti-viral screen, that checks tens

of thousands of compounds for evidence of anti-HIV activity. The ILP system

has information on the drug compound’s 2-D structure [148, 120].

• omop: this dataset consists of simulated medical records, namely diagnosis and

prescription data. The task is to find drugs that can cause adverse side-effects,

and it relies on temporal relationships between prescriptions and diagnosis [101].

• blog: this is an application that contains collected blog postings about solar

energy solutions taken from two Italian blog’s discussions/threads. blogs

are stored as a collection of Part-Of-Speech (POS) tokens. Further data on

authorship, threading, and title is also included in the analysis. The ILP task

is to model blog’s author’s opinions [33].

These applications are characterized according to Table 5.1. Notice that carcino

is the smallest dataset. The other three applications have data bases with similar

sizes, millions of tuples and tens of thousands of examples.
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Table 5.1: Applications Characteristics. Background Knowledge is given as number of facts (tuples)
in the database.

Application Background knowledge Number of examples
carcino 21,303 297
hiv 2,310,575 48,766
omop 4,802,317 125,000
blog 5,124,092 50,000

Hardware-software Platform

We used the following platform to run our experiments:

Hardware: Core 2 Quad Processor Q9400 (4 cores in total) at 2.66GHz, with 4

x 32KB L1 instruction caches, 4 x 32KB L1 data caches, 2 x 3MB L2 caches (each

cache shared between 2 cores), 6 GB DRAM, and a GeForce GTX 580, 1.54 GHz

512 CUDA Cores (16 Multiprocessors x 32 CUDA Cores/MPK), 1535 MB GDDR5

memory, 768KB L2 cache, CUDA Capability Major/Minor version number: 2.0.

Software: Ubuntu 12.04.1 LTS, gcc version 4.6.3, NVIDIA Corporation Cuda

compilation tools, release 5.0, V0.2.1221, CUDA Driver Version/Runtime Version

5.0/5.0.

5.2.2 Results

In discussing our experimental results below, Aleph-cov is used as a baseline

comparison algorithm, because it is the sequential version that is normally used for

relational learning tasks. Also, Aleph-all shows the great labour that is covering the

whole search space (which Aleph-cuda also does) and the benefit of using coverage-

lists to guide said search (like Aleph-cov does).

First we compare the versions that run entirely on the host, in order to evaluate

how the top-down and bottom-up evaluation behave on our relational learning

applications. Thus, Aleph-cov and Aleph-all, both of which use the top-down

approach, along with Aleph-multi(1) (i.e., Aleph-multi executed with only one

thread) which is based on the bottom-up approach are presented first. Next, we
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Table 5.2: Execution times for Aleph-cov, Aleph-all and Aleph-multi (1 thread), in seconds.

Application Aleph-cov Aleph-all Aleph-multi(1)

carcino 14.02 139.50 238.81
hiv 211.79 272.99 391.77
blog 3201.76 13343.27 7177.20
omop 656.55 4528.78 1514.50

compare the results of our Aleph-cuda implementation with Aleph-cov, Aleph-

all, and the best results obtained with Aleph-multi. We then evaluate the scalability

of the Aleph-multi version with varying number of threads.

5.2.3 Aleph-cov, Aleph-all and Aleph-multi(1)

Table 5.2 shows the average execution times (in seconds) of all applications using

three versions of Aleph (-cov, -all, -multi(1)). As expected, the execution times vary

hugely from one application to another, since they present different characteristics

(use of constants or built-in comparison predicates, compound terms, etc.) and stress

different parts of YAP and Datalog.

Since Aleph-cov does not use the whole set of examples to perform the coverage,

its execution time is much lower than Aleph-all and Aleph-multi with 1 thread, but

the difference in times vary according to the characteristics of each application. For

example, carcino, omop and blog benefit greatly from the coverage list optimization

used by Aleph-cov.

5.2.4 Aleph-cuda, Aleph-all, Aleph-cov and Aleph-multi(best)

Figure 5.2 shows the execution times of all applications using the four versions of

Aleph, Aleph-cuda, Aleph-all, Aleph-cov and Aleph-multi. Results shown for Aleph-

multi are the best for each application, being carcino’s best time obtained with 1

thread, hiv ’s best time obtained with 8 threads, and omop’s and blog ’s best times

obtained with 4 threads.

From the four applications, three of them greatly benefit from the CUDA
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Figure 5.2: Total execution time for each application using all Aleph versions. Notice that the best
times in the three larger applications are obtained by our version based on GPU-Datalog (Aleph-
cuda).

implementation with speedups varying from 5 (blog) to 8.36 (omop), when comparing

Aleph-cuda with Aleph-cov, the best CPU version. The application carcino was the

only one that did not benefit from the CUDA implementation. Its small size caused

the cost of memory transfers to dominate the total execution time.

One interesting observation is that Aleph-all, which imitates the same coverage

behaviour of Aleph-cuda, by not using the coverage-list, is still much slower than

the CUDA and multicore versions. Note that the plots use logarithmic scale. Also,

we instrumented our code to report the total amount of time spent in the different

operations of the ILP process. Our results show that coverage is indeed the most

compute intensive task, with an average of 91% of the total running time in all

applications spent on it.

Figure 5.3 shows the time taken by Aleph-cuda in each GPU-Datalog operation.

There are six different steps. The first two perform all selections and self-joins required

by the two sub-goals involved in each join. Next, an array is sorted to prepare for

the join operation, then the join is performed. Finally, built-in comparison predicates
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Figure 5.3: GPU-Datalog execution time breakdown.

are evaluated (if any), followed by duplicate removal (both operations detailed in

Section 4.1.1).

Each application has rather different characteristics that affected its execution

time. The carcino dataset, which did not benefit from the CUDA implementation

spent most of its time in the join operation. In fact, join is one of the dominant

operations for all applications together with selection. This is expected, since join

is usually the most expensive operation in database processing. The hiv application

is from a similar domain, chemo-informatics, but it is much less about joins: in fact

the main operation is duplicate removal. A detailed analysis shows that the two

applications use different representations for a molecule, with hiv fusing bonds and

atoms into a single table. This technique was developed to take advantage of Prolog

indexing, but seems to also result in smaller intermediate tables over which the joins

are applied.

The blog and omop applications have the most well-balanced execution. Both

datasets use many constants in the rules which imply selections, and also include

self-joins. The joins themselves are noticeably fast, as they do not take much more
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time than sorting or duplicate removal. This is probably because the main tables

have strong functional dependencies in both cases. Last, omop uses comparisons to

establish temporal precedence and is thus the only dataset where built-in comparisons

play a significant role.

5.2.5 Aleph-multi(all)

Finally, we present a detailed measure of the performance of Aleph-multi. Table 5.3

shows the average execution times of Aleph-multi for a varying number of threads in

the four applications. Speed-ups (if the number is above 1.00) or slowdowns (below

1.00) related to the Aleph-all (right) and Aleph-cov (left) versions, respectively, are

between parentheses.

Table 5.3: Aleph-multi execution time with speed-ups (> 1.00) and slowdowns (< 1.00) for 2, 4 and
8 threads. The first number in the parentheses represents the speedup/slowdown of Aleph-multi
when compared to Aleph-all. The second number represents the comparison against Aleph-cov.

Application 2 4 8
carcino 252.26 (0.55, 0.05) 264.36 (0.53, 0.05) 301.83 (0.46, 0.05)
hiv 271.51 (1.00, 0.78) 233.21 (1.17, 0.91) 215.10 (1.27, 0.98)
blog 5452.07 (2.45, 0.59) 4827.10 (2.76, 0.66) 4854.19 (2.75, 0.66)
omop 1109.33 (4.08, 0.59) 982.27 (4.61, 0.67) 1013.02 (4.47, 0.65)

Comparing the results of Table 5.3 with the results shown in Table 5.2, we can

observe that the Prolog top-down execution with coverage lists (Aleph-cov) is the

best for all applications. Bottom-up multicore Datalog (Aleph-multi) outperforms

normal Prolog (Aleph-all) in all applications except carcino, where it also suffers from

carcino’s small size. These results show that coverage lists are more important than

the language (Datalog vs Prolog) or the evaluation method (top-down vs. bottom-

up).

Also, despite both being based on the same Datalog engine, Aleph-cuda performs

much better than Aleph-multi because our engine is finely tuned for GPUs. Thus,

Aleph-cuda exploits more efficiently the GPU resources than Aleph-multi exploits

the multicore resources. Moreover, because the coverage step presents a tendency
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Table 5.4: Applications Characteristics.

Inference Evidence Tuples in
Application formulas relations relations

SM 3 3 310,000
RC 15 4 156,998
CS 6 13 2,458,317
HL 11 18 7,206,390
LP 24 21 2,924
ER 1265 10 12,304

to produce finer-grained tasks, the results are clearly better on the GPU, with

a maximum speed-up of 8 compared to all other versions, while our multicore

implementation has a maximum speed-up of 4 compared to Aleph-all.

Note that this evaluation was also performed with an earlier version of GPU-

Datalog (similar to the one used in Section 5.1). We believe that the optimizations

in the latest version of GPU-Datalog and in the Thrust library should lead to

greater speed-ups for Aleph-cuda, especially since Aleph has not received significant

optimizations to its code.

5.3 GPU-Tuffy and GPU-RockIt

This section presents the performance evaluation of our GPU-Tuffy platform with

parallel grounding and search, of our RockIt-based platform with parallel grounding

(GPU-RockIt), and of our parallel MC-SAT algorithm used during weight learning

(included as part of GPU-Tuffy).

5.3.1 Applications

Our performance evaluation used four applications included in Tuffy’s installa-

tion [136] and two of our own creation. Some applications were extended with addi-

tional, randomly generated data. Table 5.4 shows their general characteristics.
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Smokers (SM) is a recursive MLN to determine if a person has cancer based on

who his/her friends are and their smoking habits (this is an example from [98]). The

original number of tuples for SM is only eight. We created another dataset with a

larger number of tuples, 310, 000, with randomly generated data: creating a fixed

number of people, assigning a small random number of friends to each person, and

labelling a fixed number of people as smokers.

Relational Classification (RC) classifies papers into 10 categories based on

authorship and on the categories of other papers it references (Cora dataset [76]).

The randomly generated dataset uses a fixed number of papers and authors, the

same categories found in the original data and constructs the dataset as follows: each

author has a small random number of written papers, each paper is referred to by a

small random number of other papers, and a small fixed number of papers are already

labelled as belonging to a particular category.

Census (CS) was created by us and determines, given a 1% random sample of

the 1999 US census available at [142], if a certain person would be drafted in case of

war (the US ended conscription in 1973 but the “Selective Service System” remains

as a contingency plan) based on ancestry (Hispanic, Korean or other immigrant);

income (occupation, scholarship and work hours); family members (brothers, spouse

and children) and physical attributes (women, young, elderly and disabled would not

be drafted). The distinctive characteristic of this application is that most of its data

is stored in a single, very large table with several attributes.

Hospitals (HL), is another application created by us using the US hospitals

database found in [141]. The task is to find the best hospitals based on the rate

of complications, readmissions and infections; an overall score given to each hospital

by its patients; if care was timely and effective; and if the payment correspond to the

value of the care received. Furthermore, in order to create a recursive application, each

hospital has a certain number of nearby clinics and pharmacies that are considered

good if the hospital is good, and if a hospital is near good clinics or pharmacies,

then it is also considered good. The size of the HL database was increased through
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adding additional hospitals with random attributes and all clinics and pharmacies.

The clinics and pharmacies have only two attributes: an Id and the Id of the hospital

near them.

Link Prediction (LP) determines student-advisor relationship from a database

of several university departments [98]. The database includes information such

as taught courses (for professors), attended courses (for students), publica-

tions (for both), among others. The size of the original database was qua-

druplicated by appending numbers to each element of the database (e.g., for

each publication (Title,Person), we created publication(Title1,Person1),

publication(Title2, Person2) and so forth), seeking to preserve the structure

of the data.

Entity Resolution (ER) removes duplicates from citation records (title, author,

venue, etc.) based on similar words [108]. The original size of the data was unaltered

as its large number of formulas proves to be quite challenging.

Hardware-software Platform

We ran our experiments in the following hardware and software:

Host hardware. AMD Opteron 6344, 12 cores CPU, with 64 GBs of RAM.

Host software. CentOS 7, MySQL 5.6, PostgreSQL 9.5, YAP Prolog 6.3.

GPU hardware. Tesla K40c, 2880 CUDA Cores, with 12 GB GDDR5 memory and

CUDA Capability 3.5.

GPU software. CUDA Toolkit 7.0.

5.3.2 Results

Next we present the results of the evaluation of our GPU-based designs. Note that

all graphs (except Figure 5.15 and Figure 5.16 left) are in logarithmic scale.
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Figure 5.4: Performance of the GPU and CPU platforms on six applications.

5.3.3 General Performance Evaluation

Figure 5.4 shows the performance of our GPU platforms against their base systems,

all of them using their default configurations except for RockIt and GPU-RockIt in

LP and ER, where their default error bound had to be increased (thus lowering the

expected quality of the solution), otherwise their execution would not finish after

more than 5 hours. Also, note that Tuffy is not present in all applications as it could

not finish grounding after more than 5 hours.

In general, our platforms performed very well, with either or both of them

outperforming the CPU-based platforms in all applications. In RC, their best

performing application, GPU-Tuffy is 15 times and GPU-RockIt is more than 4 times

faster than the fastest CPU platform (RockIt). Overall these results are promising

since they mean that the benefit of performing the grounding phase on the GPU

outweighs the overhead associated with the database and GPU I/O, even for rather

small datasets like LP and ER.

The results also confirm that no single approach is best for all applications, as

GPU-Tuffy which is based on two large groundings and satisfiability performed better
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in SM, RC, LP, and ER, while GPU-RockIt which is based on several small groundings

and optimization did better in CS and HL. However, how to determine which approach

is better for a certain application beforehand is not an easy task that might require a

careful analysis of the characteristics of said application like the depth of its recursive

clauses and the amount of contradicting evidence.

5.3.4 Performance of GPU Search with MaxWalkSAT

To evaluate the performance of our GPU MaxWalkSAT algorithm in context, we

integrated said algorithm into our previous version of Tuffy with GPU grounding

only, G/GPU-Tuffy. To the new version with the GPU MaxWalkSAT algorithm used

during search, we refer to as GS/GPU-Tuffy. Figure 5.5 shows the performance of

G/GPU-Tuffy and GS/GPU-Tuffy with all applications described above in minutes.

GS/GPU-Tuffy is always faster (up to 35 times faster for LP) than G/GPU-Tuffy

for all applications, with a large enough Markov Random Field (MRF) partition

(recall that Tuffy partitions the MRF to process it in parallel, but such a process

usually leaves a partition that is several orders of magnitude bigger than the rest).

In general, GS/GPU-Tuffy provides great speed-ups in those applications that have

large, recursive groundings (like SM and RC) and/or a large MRF partition with

thousands or millions of active clauses and active atoms (like SM, RC and LP).

A comparison on those applications with a large MRF partition between our GPU

MaxWalkSAT solver and Tuffy’s default MaxWalkSAT solver is shown in Table 5.5.

For each application, Table 5.5 shows the number of atoms and clauses of that large

partition, the time to process it, and its solution cost. The solution cost is computed

as the sum of the weights of all unsatisfied clauses, which means that the lower the

cost, the better a solution will be. Also, depending on the problem, it is not possible

to know what the lowest solution cost is because satisfying some clauses may require

breaking others. Nevertheless, our solver provides better or similar solutions in a

lower amount of time.

About the performance of our GPU algorithm, the frequent, random memory
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Figure 5.5: Total running time in minutes of G/GPU-Tuffy and GS/GPU-Tuffy in six applications.

Table 5.5: Time and cost comparison between the GPU and the CPU based MaxWalkSAT solvers
for SM, HL and LP. The lower the cost the better the solution is.

Largest partition GPU solver CPU solver
Application Atoms Clauses Time Cost Time Cost

SM 451,888 774,038 1.21 0.80 14.33 6387.30
HL 662,101 1,337,439 2.02 0.0 17.21 0.0
LP 68,905 9,236,664 24.23 49224.80 1198.5 49160.72
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accesses of the original MaxWalkSAT coupled with the multiple atom flipping of

our algorithm, made it very difficult to adapt for GPUs: poorly coalesced memory

accesses, atomic operations, and conditional statements which cause great divergence

amongst threads, are some of the issues adversely affecting performance. However,

we found that flipping multiple atoms at the same time has several benefits like

reducing the number of times the flip effect is computed (i.e., determining which

clauses are still unsatisfied and recalculating the flip cost metadata), as it is done

once for many atoms, rather than once for each atom. Also, when the solver is far

from the solution (i.e. there are many unsatisfied clauses), multiple flips force the

number of unsatisfied clauses to decrease faster as many poor, intermediate solutions

are skipped. The algorithm could also benefit from a better heuristic to pick multiple

atoms for flipping, based perhaps on the number of times an atom appears in the

clauses.

5.3.5 Performance of GPU Grounding for RockIt

To test the flexibility of our GPU-based grounding, we integrated it into the RockIt

system, creating GPU-RockIt. The performance of GPU-RockIt was evaluated and

compared against RockIt using six applications. Figure 5.6 shows the total running

time of both systems on said applications in minutes. GPU-RockIt performs well

in the first three applications (particularly RC) but does not provide a significant

speed-up in the other three.

To understand these results, recall that RockIt’s inference is composed of several

iterations and each iteration requires grounding over different evidence. While some

of these groundings (specially the first one) are performed over a large amount of

evidence and greatly benefit from GPU processing, others are performed over such a

small amount of evidence that the database and GPU I/O times greatly reduce any

benefit of GPU processing.
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Figure 5.6: Total running time in minutes of RockIt and GPU-RockIt in six applications.

5.3.6 Performance of GPU MC-SAT under Weight Learning

Our next contribution is the integration of a GPU-based MC-SAT solver for weight

learning into GS/GPU-Tuffy. As weight learning also involves grounding, to have a

fair comparison where the grounding time is the same, we compared our GPU solver

against G/GPU-Tuffy using Tuffy’s default CPU MC-SAT solver. The total running

time for five applications using 10 MC-SAT iterations, each one calling SampleSAT

10 times, is shown in Figure 5.7. Our GPU MC-SAT solver is faster in the first three

applications but lags behind in the other two. Note that CS was not considered as

its MRF is too small to benefit from GPU processing.

To understand these results, we measured the number of active atoms and active

clauses found in the MRF, along with the average time and solution cost of the

SampleSAT iterations. As shown in Table 5.6, our GPU SampleSAT solver is the

reason the overall GPU MC-SAT algorithm is faster in the first three applications

and also produce much better results when no zero cost solution can be found.

However, for the last two applications, GPU SampleSAT performance is severely

affected by the relatively low number of atoms and the Simulated Annealing (SA)
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Figure 5.7: Total running time in minutes of G/GPU-Tuffy using Tuffy’s default CPU MC-SAT and
GS/GPU-Tuffy using our GPU MC-SAT for weight learning in five applications.

on multiple flips, which is performed during each iteration. This happens because,

when the number of unsatisfied clauses is greatly reduced, but it is not enough to stop

the GPU SampleSAT solver and transfer the computation to the CPU SampleSAT

solver, the GPU solver slows down on a series of “halfway solutions” still far from

the solution. These halfway solutions occur more often on applications with a low

number of atoms because, while some threads (those using MaxWalkSAT steps) push

to a better solution, others (those using SA steps) have a greater probability of

incorrectly flipping a critical atom that may worsen the solution (recall that SA can

flip any atom), thus leaving SA in a halfway point. Possible solutions to this problem

include changing the computation to the CPU at an earlier point or having all threads

perform either a MaxWalkSAT step or a SA step at each iteration.

5.4 Discussion

In order to gain a deeper understanding of our systems, we measured the time spent

at each phase: loading, grounding and searching by each system. Loading refers to
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Table 5.6: Time and cost comparison between the GPU and the CPU based SampleSAT solvers for
all applications except CS. The lower the cost the better the solution is.

MRF size GPU solver CPU solver
Application Atoms Clauses Time Cost Time Cost

SM 473,613 816,859 1.46 18463.61 7.44 26567.36
RC 500,000 4,633,040 4.51 106370.70 5.43 278220.63
HL 735,923 1,411,261 0.59 0.0 1.33 0.0
LP 72,361 9,877,479 3.33 0.0 2.36 0.0
ER 68,286 357,374 0.41 0.0 0.32 0.0

the time spent reading the evidence and MLN files, creating and filling the tables in

the RDBMS and translating the MLN to Datalog. Figure 5.8 shows the execution

time of each phase for each system under each application. Note that GT stands for

GPU-Tuffy, GR for GPU-RockIt and RIT for RockIt.

For SM, grounding times for all systems are similarly small compared to the

inference time. However, inference is faster in GPU-Tuffy thanks to the GPU

MaxWalkSAT implementation. In RC, its recursive grounding is far more time

consuming, with RockIt’s time suffering greatly as a result and GPU-RockIt proving

to be very effective. In CS, while grounding time is similar for both GPU-based

systems, inference in GPU-Tuffy takes longer as it runs over a large number of small

partitions that do not benefit from GPU acceleration. For HL, the RockIt-based

systems beat GPU-Tuffy in both grounding and inference times.

The last two applications, LP and ER, are characterized by their relatively small

groundings and complex clauses with several contradictions. These contradictions

adversely affect the stopping criteria (number of unsatisfied clauses in GPU-Tuffy

and the gap between expected and obtained solutions in both RockIt-based systems)

of the search algorithms, causing the search time to dominate the execution time

(particularly in ER). Furthermore, while GPU-Tuffy can automatically stop after

an iteration limit based (by default) on the size of the application, the RockIt-

based systems require manual adjustments to the gap, else the search may take an

exceedingly high amount of time. To have a fair evaluation, we picked the lowest
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Figure 5.8: Time spent in loading, grounding and searching by each application in each system:
GPU-Tuffy (GT), GPU-RockIt (GR) and RockIt (RIT). Note that RockIt and GPU-RockIt times
for loading and inference are equal, only the grounding is different.
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Figure 5.9: Nsight profile for SM.

Figure 5.10: Nsight profile for RC.

possible gap that would not cause RockIt to get stuck searching. Otherwise RockIt’s

and GPU-RockIt’s times for these applications would have been much higher.

5.4.1 GPU Kernel Profiling

To determine the performance of our GPU kernels, we obtained the GPU usage for

each kernel with the CUDA profiler tool for the grounding on GPU-Tuffy, part of

which is presented in Figures 5.9 to 5.14. The first part of the figures shows memory

transfers from the host to the GPU (HtoD), from the GPU to the host (DtoH), and

within the GPU (DtoD). The next part is the timeline of all kernel calls and the

percentage of GPU time each of them occupied. Kernels starting with thrust belong
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Figure 5.11: Nsight profile for CS.

Figure 5.12: Nsight profile for HL.

Figure 5.13: Nsight profile for LP.

Cinvestav Departamento de Computación



Performance Evaluation 151

Figure 5.14: Nsight profile for ER.

to the Thrust library and include sorting, prefix sums and duplicate removal, the

other kernels are RA operations (especially joins) or auxiliary kernels. Note that the

graph indicates the relative size of the kernels where each bar represents a kernel call

and most of the kernels have a relatively small size compared to the compute intensive

join kernels.

The full GPU usage of all inference kernels in both platforms (including GPU-

RockIt’s grounding and GPU-Tuffy’s MaxWalkSAT, whose profile graphs are not

presented for brevity) is resumed in Figure 5.15 by dividing them in three categories:

Joins including single, multiple, and negative joins along with their auxiliary kernels;

Thrust which includes all operations of the Thrust library; and Other kernels used for

selections, comparisons, etc. As shown in Figure 5.15, for most of the applications

the GPU is mainly used by the Join kernels. While these results are not surprising

as joins are costly operations [2, p. 105], we decided to further analyse the most

compute intensive join among them.

The single most compute intensive join kernel in our systems writes and projects a

multiple join (a join over more than one column that projects the result by eliminating

unnecessary columns, as described in Section 4.1.1), taking around 60% of the total

GPU usage. Table 5.7 shows the most important performance aspects of this kernel.

The low compute and load/store throughput (recommended values are around 60%),
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Figure 5.15: GPU usage of all kernels grouped into three categories for each application.

suggests possible improvement by increasing occupancy and/or reducing instruction

stalls. Occupancy is measured as the number of active warps (groups of threads)

through the kernel lifetime and is not limiting our kernel performance since it is

close to the theoretical maximum. The global memory bandwidth is also not a

limiting factor as it is not being overused. While warp efficiency is reduced due to

divergent operations (i.e., loops, conditions, etc.) and slightly impacts performance,

the most important improvement would be to reduce instruction stalls caused mainly

by memory throttle (i.e., too many memory transactions that cannot be executed in

a timely manner). Unfortunately, we believe it would be hard to reduce this memory

throttle as the kernel’s main function is to read and write memory locations, and the

compute throughput is simply low because few arithmetic and control operations are

required.

5.4.2 GPU Memory Usage

We also measured the maximum amount of GPU and CPU memory required in

our experiments, as we are interested in allowing our systems to run on commodity

hardware which typically has 2GB of GPU memory. Figure 5.16, left, shows maximum

GPU memory usage by each system for each application, including grounding (GPU-
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Table 5.7: Performance results of the multi-join kernel, the most demanding kernel in our systems.
Note that memory throttle is a cause for instruction stall and a lower percentage is better for the
overall performance of the kernel.

Variable Achieved Maximum
Compute throughput 18% 100%

Load/store throughput 55% 100%
Active warps 62.93 64
Occupancy 98.3% 100%

Memory bandwidth 86.853GB/s 288.384GB/s
Warp efficiency 78.9% 96.1%

Memory throttle (stall) 75% -
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Figure 5.16: GPU and CPU memory used by each system for each application.

Datalog) and search (GPU MaxWalkSAT). Memory usage is higher for GPU-Tuffy

except for CS, but neither system requires more than 1GB. Thus it is possible to use

even low-end GPUs from the 600 series and up.

Figure 5.16, on the right, also shows CPU memory usage by each system under

each application. GPU-Tuffy requires the least CPU memory for all applications

except RC, for which it needs about 5GB. GPU-RockIt and RockIt have similar CPU

memory usage, meaning that our GPU-based grounding does not affect much RockIt’s

CPU memory requirements. Overall, our systems can be used in CPU commodity

hardware with 8GB, although RockIt and GPU-RockIt may need more memory for

the larger applications.
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5.4.3 Scalability

The memory results shown above suggest that our systems should be able to handle

applications with larger amounts of data. However, GPU memory is the limiting

factor for the scalability of our systems, as once an application runs out of GPU

memory, it simply fails (there is no virtual memory or anything similar for GPUs).

Possible solutions to this problem include: using CUDA’s mapped memory which

maps CPU memory as an extension of GPU memory or partitioning the data before

transferring it to the GPU. Since mapped memory usually incurs large performance

penalties, we believe data partitioning is the way to go.

Also, regarding the execution of our platforms in other GPUs, the main limiting

factor besides the amount of GPU memory is the compute capability. The compute

capability (explained in Section A.1) is a number that currently goes from 1 to

6 and determines some important characteristics of the GPU like the amount of

shared memory and the operations it can perform (e.g., some atomic operations are

only available for devices with high compute capabilities). Our platforms cannot be

executed on GPUs with compute capability 1, as it corresponds to very old GPUs that

are no longer supported by the latest CUDA toolkit. Initial version of our platforms

where tested on a GPU with compute capability 2, but we recommend the use of

GPUs with compute capabilities 3 and up.

5.5 Summary

We evaluated the performance of our GPU platforms, GPU-Tuffy and GPU-RockIt,

and their core components: GPU-Datalog for grounding, GPU MaxWalkSAT for

search, and GPU MC-SAT for weight learning (the last two are part of our

GPUSATLIB). We also evaluated our parallel ILP system based on Aleph and GPU-

Datalog. Our evaluations were performed over a wide variety of hardware and used

several applications both from literature and real-life. For most of these applications,

their original data was extended with additional random tuples.
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GPU-Datalog was evaluated against a similar system called Red Fox, providing

mixed results. However, we note some problems in the evaluation, while also providing

possible performance improvements to our system. Our ILP system performed much

better, improving upon its highly optimized CPU counterparts by providing a speed-

up of up to 8 times.

Our parallel MaxWalkSAT solver used in GPU-Tuffy performed very well,

providing a speed-up of up to 35 times compared to the CPU version and finding

equal or better results. Parallel grounding in GPU-RockIt provides good speed-ups

in three applications, but fails to provide a significant performance gain in the other

three. The reason is the different sizes of the groundings performed at each iteration

of the inference algorithm, with small groundings adversely affecting performance due

to database and GPU I/O overheads. Finally, our parallel SampleSAT algorithm used

during weight learning in GPU-Tuffy provided great speed-ups in three applications,

but lagged behind in the other two (the CS application was not used). The problem

with these two applications lies in their small number of active atoms and the

parallelisation of the SampleSAT algorithm. We get stuck in “halfway solutions”

as some threads try to push to a better solution while other try to sample around the

current solution.

In order to gain a deeper understanding of our systems, we measured the time

spent in each phase: loading, grounding and searching by each system. While loading

never dominates the total execution time, either grounding or search can dominate

depending on the application and the system that executed it. Also, to determine

the performance of our GPU kernels, we obtained the GPU usage for each kernel

with the CUDA profiler tool. Profiling shows that joins are the most compute

intensive operations, taking up to 90% of the total GPU processing time, however,

their conditional and memory operations make it difficult to improve them. Our last

considerations were the amount of CPU and GPU memory used by our systems and

their scalability. While GPU memory is the main limiting factor for scalability, in the

tested applications none of our system requires more than 1GB of GPU memory and
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only some applications require more than 8GB of CPU memory, thus our systems are

well suited to be executed in commodity hardware.
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Conclusions and Future Work

This chapter presents our conclusions on our designs and their performance

(Section 6.1), followed by our contributions and what we consider the most promising

future work along with possible implementations for MLNs in general, the core

components of our MLN platforms, and our MLN platforms themselves (Section 6.2).

In order to better understand this chapter, recall that MLNs are a powerful

framework but their processing time is unacceptably high and the solution quality is

very poor on larger applications. Our proposed solution was to accelerate in GPUs

the most compute intensive tasks of the MLN process: grounding which involves

assigning values to all variables in the formulas given some evidence data; search which

finds, for each ground formula, if said formula is true or false by solving a weighted

satisfiability problem or an integer linear programming problem; weight learning

where the formulas are first grounded and then the optimum value of the weights

is determined by solving an optimization problem whose parameters are adapted

through sampling; and finally, clause learning uses Inductive Logic Programming

(ILP) were the worth of candidate formulas is determined in a process similar to

grounding.
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6.1 Conclusions

We achieved the main objective of this work, which was the design, implementation

and evaluation of two MLN platforms (GPU-Tuffy and GPU-RockIt) and their core

components based on GPUs. Results (Section 5.3.2) have showed that inference

in some applications (like those with deep recursive clauses) is better formulated

as a satisfiability problem, while other are better formulated as mathematical

optimization problems. The designs for each platform and their core components

are defined with several algorithms and examples, ample insight on the issues

faced (particularly those related to parallel processing on GPUs), and our proposed

solutions. The implementation of said designs was performed following important

practices including: modularity, which the various interchangeable components

preserve; portability, provided by the use of common languages and libraries that

can be easily compiled; validity, that was demonstrated through rigorous testing; and

usability, by maintaining the same interfaces of the base platforms and components.

The performance of our platforms is on par or significantly better than that of

RockIt, currently the fastest CPU-based MLN system. The results in Section 5.3

show that the benefit of performing the grounding phase on the GPU outweighs the

overhead of GPU and database I/O, even for rather small datasets. Said results also

show that for large weighted SAT problems, GPU processing delivers better results

in less time. Furthermore, the analysis of said results, along with some additional

testing, proved to be useful as they: confirmed that grounding and search are the

most time consuming tasks of the MLN process; assured us that our platforms can

run on commodity hardware; provided insight on the scalability of our platforms; and

prompted us to formulate various possible improvements to our platforms and their

components, which are discussed in detail in the following section.

The designs of our platforms and the platforms themselves constitute, to the

best of our knowledge, the first GPU-based MLN processing infrastructure. Their

core components are also a first GPU-based solution for their specific applications.
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Moreover, these core components can be used as stand-alone systems for other

applications besides MLNs.

Finally, GPUs are nowadays widely used for traditional machine learning

algorithms [7]. Our results show that GPUs are also a natural fit for Statistical

Relational Learning (SRL) tasks, and should be considered for other SRL

computationally intensive tasks.

6.2 Contributions and Future work

To better explain our contributions, we present in Figure 6.1 (similar to Figure 1.1) the

phases of MLN processing and their steps, with our used solutions and the hardware

that executes them. We believe these contributions have advanced the state of the

art of MLNs, Datalog, ILP, satisfiability, and GPUs, and will be useful for current

and future real-world applications.

6.2.1 MLNs

Contributions

Our contributions to MLNs include GPU designs for the most time consuming parts

of MLN processing:

• grounding based on the Datalog language (a language similar to Prolog) which

was extended with comparisons, negations, arithmetics, and aggregations (a)

and d) in Figure 6.1).

• search as a partitioned, weighted MaxSAT problem where the smaller partitions

are solved by the MaxWalkSAT algorithm on the CPU cores and, at the same

time, the larger partitions are solved on the GPU by a modified version of the

MaxWalkSAT algorithm where several atoms are flipped (their truth values

changed from true to false or vice versa) at the same time (b) in Figure 6.1).

Cinvestav Departamento de Computación



160 Chapter 6

Figure 6.1: Phases and steps of MLN processing with our solutions and hardware used.
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• weight learning using the Diagonal Newton optimization method with MC-SAT

sampling which is based on MaxWalkSAT with Simulated Annealing (e) in

Figure 6.1).

• FOL clause learning with Inductive Logic Programming (ILP) where coverage

(the number of right and wrong examples that a proposed clause outputs as its

result) is computed with Datalog (c) in Figure 6.1) and could be extended to

MLNs by changing the clause evaluation function.

Future Work

The current test suite available for MLNs is adequate to show their potential and

to evaluate new ideas and platforms. However, we consider that, as more and more

high-quality data becomes available, the current suite may appear outdated. Thus,

we propose the creation of a larger collection of test applications including big data

applications. Some of such applications should represent real-work problems, while

others should stress particular aspects of the MLN process like using lots of clauses

with infinite weights to test the satisfiability solver, or clauses with lots of predicates

to test the grounder. There are several different domains that could be considered for

said applications like natural language processing, e-commerce, and social networks.

As an example of this task, consider the datasets in [131] which could be used

to generate MLNs that predict if a person would like a certain restaurant or the

nationality of the person who posted a certain comment. The rules for these datasets

should be hand-crafted first, and then refined using weight and clause learning.

MLNs are related to many other logic and probabilistic approaches [24, p.19]

like the Knowledge-based model construction (a combination of logic programming

and Bayesian networks) and Stochastic logic programs (logic programming with log-

linear models). The program representations used by some of these approaches can

be easily translated into MLNs. Furthermore, the applications of said approaches are

quite useful and would nicely extend the MLN repository. For these reasons, it would

be convenient to create a tool to automatically translate their programs and data into
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MLNs. Said tool would also allow interesting combinations between approaches, as

different parts of an application could be performed by different approaches. Since

an MLN is essentially a weighted Conjunctive Normal Form (CNF, a conjunction of

one or more clauses, where a clause is a disjunction of literals), the work on Problog

(a probabilistic logic programming language similar to MLNs) by Daan Fierens et

al. [26, 25] could be used as starting point for the translation tool, as the author

describes the Problog to CNF conversion and inference, while also suggesting that

said conversion can be used for MLNs and other similar languages.

6.2.2 GPU-Datalog

Contributions

GPU-Datalog (Section 4.1) is our parallel Datalog engine based on bottom-up

relational algebra (RA) operators. It was extended with additional operators like

negation and comparison in order to accelerate the grounding on MLNs (a) and d)

in Figure 6.1) and the evaluation on clauses in ILP (c) in Figure 6.1). It can also be

used for general and extended Datalog programs.

Future Work

GPU-Datalog could benefit from the magic sets [6] and counting [102] transformations.

Said transformations rewrite any Datalog program with additional rules that

eliminate the computation of unnecessary rows by considering the query at all times,

similar to the top-down approach (in contrast, GPU-Datalog only considers the query

at the end) while maintaining the benefit of bulk operations from the bottom-up

approach. In GPU-Datalog, these transformations could be implemented as described

in the papers and incorporated into the Preprocessor of the Preparation Stage (see

Section 4.1). These transformations would not require modifications to the GPU

kernels as they only add rules or rewrite them with additional variables and/or

predicates.
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About the RA operators, most of them would greatly benefit from good algorithms

for sorting, prefix sums, and duplicate elimination. Currently, several open libraries

provide these algorithms, being Thrust [151], CUB [132], and ModernGPU [144] the

most prominent. The latest comparisons between these libraries [79] show that no

library is better for all cases (although CUB’s performance seem to be the overall

best). Thus, we propose a new comparison between these libraries by integrating

them into GPU-Datalog and checking which one is better for each operation, as it

might be possible that one library is better than the other in some operations and

vice versa. Such integration might require compiling the libraries, linking them to

GPU-Datalog, and modifying GPU-Datalog’s code to use their functions.

Another possible improvement to RA would be the removal of duplicates earlier in

the computation, as they generate many unnecessary tuples and increase processing

time. Said removal could be performed after each join operation by calling our already

implemented duplicate elimination function. However, duplicate elimination is a

costly operation and thus, better results might be obtained with a heuristic that

decides when to apply duplicate removal based perhaps on sampling the results of

the join.

Since bottom-up processing allows GPU-Datalog to process rules independently

and in any order, another performance improvement could be the mixed processing

of rules by both the CPU and GPU (e.g., have the CPU process rule 1 in a program

while the GPU is processing rule 2 at the same time). Currently, we have an outdated

version of GPU-Datalog for multicores (described in Section 4.1.3) that only includes

the basic operations (joins, selections, and comparison predicates). This multicore

version should be updated with negations and arithmetic predicates, and should

be integrated into the GPU version though an algorithm that determines which

hardware should evaluate a certain rule, based perhaps on the size of the input,

an approximation of the size of the output and whether the rule is recursive or not.

Large, recursive rules are to be assigned to the GPU and it should be possible to

reassign rules to the opposite hardware (i.e., from the CPU to the GPU and vice
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versa) if necessary, always considering that such reassignment is convenient in some

cases: when a rule in the CPU is taking too long (in which case it should be moved

to the GPU) or when a small recursive rule is not fully utilising the GPU and should

be moved to the CPU. However, note that reassignment is a costly operation that

requires moving all data (facts) related to the rule from the memory of one hardware

to the other.

Also, the implementation of our partitioning scheme has been completed, but

needs to be extensively tested to eliminate any possible bugs, ensure the validity

of its results, and quantify its performance increase. Further improvements to this

scheme should be based around estimating the right size of the partition for each

operation. Such estimation could consider the result of performing the operation

over a small subset of the data, reducing the size if the result is large and increasing

it otherwise. For recursive applications, the results of earlier iterations of the same

rule could also improve the estimation as the same operations are always performed

each time the rule is iterated (only the data over which said operations are performed

changes).

6.2.3 GPUSATLIB

Contributions

GPUSATLIB is our GPU library for satisfiability based on the MaxWalkSAT

algorithm (Section 4.2.1) and sampling based on SampleSAT (Section 4.2.2). These

algorithms improve both the processing time and the solution quality of inference and

weight learning in MLNs (b) and e) in Figure 6.1). They can also be used for general

satisfiability and sampling problems.

Future Work

GPUSATLIB could benefit from the work of McDonald [77] (described in more detail

in Section 4.2.3 and described in the context of SAT solvers in [38]). The idea is
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to incorporate a technique called conflict driven clause learning that constructs a

shared database of clauses, which is used to learn dependencies among the variables.

The knowledge of such dependencies would allow our algorithms to set the correct

truth values for certain variables at each iteration, thus reducing the search space for

the remaining ones. One important aspect to consider in order to incorporate this

technique is the handling of the clause weights, as McDonald’s work does not consider

them. We believe that the truth value of a variable would have to be set based on

said clause weights.

Also, we considered two approaches for parallelising our algorithms (presented in

Sections 3.4 and 4.2.1): 1) to have all threads work together towards a single solution

or 2) have each thread work on its own to find a solution and then use the best one.

Our algorithms are based on the first approach because the second one has almost

impossible memory requirements (as each thread needs a large memory space), but it

should have a better coverage of the search space. Thus, we propose an intermediate

solution: have groups of threads work together on a solution and then take the best

solution. Furthermore, the solution of a thread group could be used to direct the

search by warning other groups about regions of poor solutions. How many threads

each group should be composed of would depend on the number of cores on the GPU

and the amount of memory, as each thread group must have its own memory space.

Ideally, there should be enough groups to fully utilize the memory and enough threads

to fully utilize all cores, with said threads evenly divided among the groups. This

new approach would require the use of GPU streams (CUDA functions that allow

the programmer to control simultaneous kernel launches and/or memory transfers)

as each thread group should have its own kernels and groups should communicate

between each other every few iterations.

Finally, regarding our GPU MC-SAT algorithm for sampling based on Simulated

Annealing (SA) over MaxWalkSAT (presented in Section 4.2.2), the results in

Section 5.3.2 show that SA might not be the best technique for GPUs, as it got

“stuck” in middle solutions. Fortunately, many related methods exist in literature
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like Tabu search [37], which could be used to mark certain good and bad solutions

to avoid visiting them again, or genetic algorithms [96] where a neighbourhood or

population could be used to decide which atom should be flipped. One of these

techniques is sure to be better for GPUs, but it must be carefully studied and adapted,

considering the problems our current algorithm shows and that the solution marks or

the neighbourhoods will increase the GPU memory requirements.

6.2.4 GPU parallel ILP

Contributions

Our ILP system (Section 4.3) performs clause learning in FOL by proposing and

evaluating possible clauses. Since the evaluation process (called coverage and

described in detail in Section 2.5.2) is a time-consuming task that can be seen as

a Datalog program, we parallelised it using GPU-Datalog. Our results of testing

said system show a performance improvement for three of the four relational learning

applications, varying between 5 and almost 8.5 times.

Future Work

The general performance of our ILP system would improve with the addition

of coverage lists or other techniques [28] that keep track of clause coverage.

These techniques reduce the processing time by avoiding the recomputation of

certain clause results when proposing a new, similar clause. For example, if

the result of clause h(X) :- p1(X,Y), p2(Y,Z). has already been computed

and a new clause h(X) :- p1(X,Y), p2(Y,Z), p3(Z,W). is proposed, then it

is not necessary to compute again the join p1(X,Y), p2(Y,Z), its result is

simply used and only one join and a projection (which are represented as

h(X) :- know_result(X,Y,Z), p3(Z,W)), are necessary to obtain the result of the

new clause. How to adapt the data structures used by these techniques into GPU-

Datalog and how to deal with the limited amount of GPU memory (a GPU-CPU-GPU
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swamping algorithm might be necessary), are the two main aspects to consider for

their successful implementation on GPUs.

From the work of Fonseca et al. [29] (resumed in Section 4.3.1), some of their

described strategies could be adapted to GPUs. In particular, we believe that the data

strategies could work well on the GPU (the search strategy might require too much

control or communication amongst threads), as groups of threads could work together

on subsets of examples, in order to generate the best clause for them. Said data

strategies could be better than our system’s current strategy when the background

knowledge is small (and thus coverage computation is fast), and it is necessary to

generate many clauses and/or clauses with lots of predicates. Implementing these

strategies in our system might require the use of streams to launch a kernel for each

subset of examples and then communication between these kernels would be necessary.

Our ILP system could also be used for MLN clause learning, since it follows an

ILP-like process as shown by Alchemy system (currently, the only system capable of

clause learning and whose algorithms are presented in Section 3.5.1). We consider

that the most significant change required is to replace the traditional ILP coverage

function with an MLN specific evaluation function, like the weighted pseudolog-

likelihood (WPLL, Equation 3.11). Moreover, while Alchemy and our system propose

new clauses using different approaches, with the former’s approach being better for

MLNs [18], the parallel processing of our system should make-up for the suboptimal

clause proposition. However, it may also be interesting to parallelise Alchemy’s

approach instead. In this case, GPU-Datalog could be adapted into Alchemy (like

it was adapted into Tuffy and RockIt) in order to compute the groundings of the

proposed clauses.
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6.2.5 GPU-Tuffy

Contributions

Our first platform, called GPU-Tuffy (Section 4.4), performs inference by integrating

the Tuffy MLN system with GPU-Datalog, in order to compute the grounding step

(a) in Figure 6.1), and our parallel version of the MaxWalkSAT algorithm, in order to

solve the satisfiability problem of the search step (b) in Figure 6.1). GPU-Tuffy is also

capable of learning clause weights by grounding (d) in Figure 6.1) with GPU-Datalog

and sampling (e) in Figure 6.1) with our MC-SAT algorithm for GPUs.

Future Work

The overall performance of GPU-Tuffy might benefit from the removal of its

Relational Database Management System (RDBMS), PostgreSQL. In normal Tuffy,

PostgreSQL was an important component in charge of the grounding process.

In GPU-Tuffy, PostgreSQL is mostly used to store data and as a bridge to

communicate between GPU-Datalog and Tuffy (as shown in Figure 4.8 of Section 4.4).

Removing the RDBMS would eliminate the overhead of interacting with an additional

component, but would also require the implementation of directives for data storage

and communication between the remaining components. These directives could be

implemented in Java (as part of Tuffy, which is also written in Java) to benefit from

its extensive libraries or in C (as part of GPU-Datalog) to benefit from its speed.

Improving the Markov random field (MRF) partitioning (presented in Section 4.4)

might also be favourable, as our results in Section 5.3.2 show it tends to produce a

very large partition and many smaller ones. Such behaviour might be related to

the applications and/or the algorithm, so the first task would be to perform a careful

analysis of the algorithm using several applications. Ideally, partitions should be more

balanced in order to have a similar execution time, as the overall execution time would

be based on the time it takes to process the slowest partition. Another improvement

(specially for big data applications) would be to accelerate the partitioning using the
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GPU, as it is a rather hard problem with no polynomial-time approximation [88,

p.11]. Graph partitioning on GPUs (recall that the MRF is a graph) seems to be a

new area of research, but some of the existing algorithms [39] could be adapted for

this task.

While we consider that the MaxWalkSAT algorithm used in the search step (b)

in Figure 6.1) works well, the processing of smaller partitions on the CPU could

be solved by an exact algorithm like branch and bound, instead of a stochastic one

like MaxWalkSAT. While such approach might not improve processing time, it may

increase the quality of the solutions, as we would warranty that the smaller partitions

have the lowest possible solution cost (the lower the solution cost the better). There

are many exact solvers in literature like ahmaxsat [3], that can be adapted into Tuffy

for this task by passing the satisfiability problem to the solver using the DIMACS

CNF format [129], which indicates the number of variables and clauses, along with

the clauses themselves with positive variables represented by a positive number and

their negation with the same number negated.

Some applications may greatly benefit from lifted inference (detailed in

Section 3.4.1), which Tuffy and GPU-Tuffy currently lack. Lifted inference is based

on belief propagation (BP) and thus, two aspects are critical for its successful parallel

implementation: a good BP algorithm for GPUs and adequate data structures for

supernodes and superfeatures. Fortunately, BP parallelism has been well studied [42]

and one of the existing algorithms for GPUs could be adapted into GPU-Tuffy.

However, the data structures are a more complex problem, as the best structure

for sequential lifted inference is still a topic of active research [24, p.37], and the best

parallel data structure has not been studied yet.

Weight learning could be improved by changing the Diagonal Newton (DN)

method for the Scaled Conjugate Gradient method (both described in Section 2.2.1),

which is known to be more efficient [70]. Such change would require modifying

the code that deals with the mathematical computations of the method and the

sampling would still be performed by the GPU with no changes. Furthermore, the
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mathematical computations on either of these methods could also be parallelised

using GPUs by adapting an existing algorithm like those presented in [115] and [49].

Unsupervised weight learning (i.e., learning with predicates which have some unknown

groundings in the training data) could also be added to GPU-Tuffy, following

Alchemy’s approach based on a different function to optimize (shown in Section 3.5.1).

Sampling to compute the gradient and the Hessian matrix of said function would still

be performed in the GPU and the DN method would perform the mathematical

optimization. The only additional aspect to consider would be the handling of

unknown atoms caused by the missing data.

6.2.6 GPU-RockIt

Contributions

Our second platform, GPU-RockIt (Section 4.5) is based on the RockIt MLN system

and shows the flexibility of our grounding design with GPU-Datalog (a) in Figure 6.1),

as it was originally planned for Tuffy, but was easily adapted into RockIt and produces

great performance gains. Search is performed as an integer linear programming

problem using the efficient Gurobi solver.

Future Work

The results of the grounding on GPU-RockIt 5.3.2, where applications with several

small groundings (like LP) adversely affected the performance, suggest that a hybrid

approach might be a better alternative. In said hybrid approach, the grounding of

simpler clauses (e.g., a single join between two predicates with 10 elements each)

would be left to the RDBMS (MySQL), while more complex clauses (e.g., a single

join between two predicates with 10,000 elements each whose result is expected to

be close to the Cartesian product, approximately 100,000,000 elements) would be

processed by the GPU. Determining if a clause is simple or complex is no trivial task,

but it could be performed using a heuristic based on the size of the input, the number
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of predicates, and perhaps a sampling of its operations (e.g., a join between two tables

could be sampled by joining 10 random elements from both tables and if the result

is close to 100, then the clause might be complex, if it is close to zero, then it might

be simple).

About solving the integer linear programming problem, the current solver Gurobi

is quite efficient, perhaps the best alternative for multicores. However, it is not

open source (although academic licenses are provided) and new, efficient optimization

algorithms for GPUs are constantly being proposed, as GPUs work very well in

mathematical applications. Thus, we consider an important improvement in both

processing time and solution quality may result from changing the Gurobi solver to

a GPU solver. Such GPU solver could be adapted from an existing one based on the

same methods that Gurobi uses (explained in Section 2.2.1): the simplex method [64]

and the barrier method [110] (part of the interior point methods). Adapting these

GPU solvers into RockIt requires changing the data structures of RockIt or of the

solvers (whichever is most efficient) into a common data structure that allows RockIt

to give the optimization problem to the solver and retrieve the result. Also, the

proposed solvers work on general linear programming problems while RockIt problems

are restricted to integers, thus the solvers should be modified to benefit from integer

GPU computations which are faster and exact (unlike those performed on doubles).

Another interesting option for solving the integer linear programming problem

would be to change the exact methods currently in use for metaheuristics like genetic

algorithms [46] (GAs). While metaheuristics have no guaranty of finding a result,

in practice they often do with good solution quality and processing time. In the

particular case of GAs, a GA could be created from scratch for multicores, GPUs, or

even a hybrid solution, using the traditional process of generating an initial population

(solution) and iteratively crossing, mutating, and selecting the best individuals until

a good population is found. Possible specific optimizations for MLNs could be

investigated, exploiting information like the sparse connections between atoms in

the MRF to partition the population.
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Appendix A

GPUs

This Appendix is an updated version from Chapter 2 of [72] and presents an overview
of the GPU architecture, its programming model and interface, and programming
guidelines for good performance.

Graphics Processing Units (GPUs) are high-performance many-core processors
capable of very high computation and data throughput [154]. They were designed
for computer graphics and could only be programmed through relatively complex
APIs like DirectX and OpenGL. Nowadays, GPUs are general-purpose processors
with specially designed APIs like CUDA and OpenCL. Applications may obtain great
speed-ups even when compared against finely tuned CPU implementations.

GPUs are now used in a wide array of applications [153], including gaming, data
mining, bioinformatics, chemistry, finance, numerical analysis, imaging, weather, etc.
Such applications are usually accelerated by at least an order of magnitude, but
accelerations of 10x or more are common.

Numerical applications are typical of science and engineering, wherein vast
amounts of integer and floating point operations are carried out in order to simulate
physical phenomena as close to reality as possible. It was for numerical applications
that GPUs were originally targeted, as the game industry has been pushing for
games to look the most real possible. Numerical applications are typically developed
in the high-level languages Fortran and C. In clusters composed of multicore-GPU
nodes, numerical applications use both OpenMP code and MPI (Message Passing
Interface) code in order to capitalise from both intra-node and inter-node parallelism
respectively.

Symbolic applications are typical of artificial intelligence, which itself includes
the following areas: expert systems, automated reasoning, knowledge representation,
natural language processing, problem solving, planning, machine learning and data
mining. The main characteristic of these applications is that they perform vast
amounts of search and pattern matching operations. Work to use GPUs for these
applications is just beginning.

The GPUs used in this thesis work were Nvidia GPUs [146], so all future mention
of GPUs refer to those of this particular brand. The examples and images used in
this Appendix were taken from [147].
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Figure A.1: Elements of a CUDA Core.

A.1 GPU Architecture

GPUs are akin to SIMD machines: they consist of many processing elements that
run all a same program but on distinct data items. This same program, referred to
as the kernel, can be quite complex including control statements such as if and while
statements. However, a kernel is synchronised by hardware, i.e.: each instruction
within the kernel is executed across all the active processing elements running the
kernel. Thus, if the kernel involves comparing strings, the processing elements that
compare longer strings will take longer, making other processing elements to wait for
them.

GPUs usually have hundreds of processing units called CUDA cores, as shown in
Figure A.1, which execute one thread each. A CUDA core has the following elements:

• Floating point unit compliant with IEEE floating-point standard.

• Integer unit.

• Logic unit.

• Move, compare unit.

• Branch unit.

CUDA cores are arranged in special hardware units called Streaming Multiproces-
sors (SM), each with several CUDA cores. An SM schedules threads to be executed
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Figure A.2: Elements of a Streaming Multiprocessor.

in warps of size equal to the number of CUDA cores it has (warp size). As shown in
Figure A.2, each SM has the following components:

• Warp schedulers to handle thread concurrency.

• Instruction dispatchers that, ideally, issue the same instruction to all threads.

• Registers to store thread level variables and arrays.

• Load/Store units to handle memory reads/writes.

• Special-function units designed for high speed execution of transcendental
instructions such as sin, cosine, square root, etc.

• L1 cache/shared memory whose size can be changed by the programmer to
adapt to his needs.

The compute capability of a GPU determines various characteristics like maximum
number of threads, amount of shared memory, etc. It is defined by a major revision
number and a minor revision number. The architectures corresponding to the major
revision numbers are:

• Pascal. The latest architecture; major revision number is 6.

• Maxwell. Still in use for many applications as Pascal is fairly recent; major
revision number is 5.
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• Kepler. The most widespread architecture; major revision number is 3.

• Fermi. An aging architecture that may not be supported in future version of
CUDA; major revision number is 2.

• Tesla. Though no longer supported, it was the first architecture to support
CUDA; major revision number is 1.

The minor revision number is a small improvement over the architecture, like
increasing the number of processing cores or the number of registers.

A.1.1 CUDA

CUDA (Compute Unified Device Architecture) is a software platform and
programming model created by Nvidia [147]. With CUDA, the GPU becomes a
highly parallel general-purpose machine.

CUDA is an extension to the programming languages C, C++ and Fortran (other
languages are supported but are not part of the standard). It also includes highly
tuned libraries for a wide variety of applications like Thrust [151], a library of
parallel algorithms and data structures based on the Standard Template Library
(STL) library [86].

The current version of the CUDA SDK (8.0) is available for Microsoft Windows,
Linux and Mac OS through the NVIDIA website [146]. CUDA works with all modern
Nvidia GPUs. Programs developed for a particular GPU should also work on all GPUs
of the same or better architectures without modifying the source code.

A.2 Programming model

This section describes the CUDA programming model for C, known as CUDA C. The
models for other languages are similar. We will refer to CUDA C as CUDA from now
on.

Figure A.3 shows that CUDA threads are executed on a different device (GPU)
that serves as a coprocessor to the host (CPU). A host thread executes all serial
code (in the host), including memory management and work scheduling functions,
while the device executes parallel work using the most appropriate configuration of
threads. Both host and device maintain their own memory, called host memory and
device memory. GPUs usually have their own high speed on-chip memory, however,
low-end GPUs use a reserved portion of the host’s RAM.

A.2.1 Kernels

CUDA extends C with its own functions and reserved words. It also allows the
definition of user functions, called kernels, that are executed in parallel by CUDA
threads.
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Figure A.3: The heterogeneous programming model.
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Kernels are defined using the __global__ identifier before the return type of a
function. For example, consider the following sample code adds two vectors, A and
B, and stores the result into vector C:

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

The host thread invokes a kernel specifying the number of CUDA threads that
will execute the kernel using <<< ... >>>. For example, to call the kernel VecAdd
we do the following:

int main()

{

...

// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C);

...

}

In this example, we invoke N threads with global identifiers from 0 to N-1. The
number 1 inside the <<< ... >>> refers to the number of blocks that will be invoked
to process the kernel. The following subsection explains more about thread identifiers
and blocks.

A.2.2 Thread Hierarchy

Threads are organized into blocks, and blocks into a grid as shown in Figure A.4.
To assign work to each thread and control their execution, threads are identified

with indexes that determine their position in a block. A thread may have the following
indexes depending on the “shape” of the block:

• Vector. The block has only one dimension and the thread is identified by one
index (x).

• Matrix. The block has two dimensions and the thread is identified by two
indexes (x, y).

• Volume. The block has three dimensions and the thread is identified by three
indexes (x, y, z).
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Figure A.4: Thread hierarchy.

Blocks also have their own indexes to identify them inside a grid. Grids, like
blocks, may have up to three dimensions, and thus, block indexes may have up to
three values (x, y, z). To identify each of the threads and blocks running a kernel,
CUDA provides the programmer with the following reserved words as identifiers, each
with three components (x, y and z):

• threadIdx is the index of the thread in his block.

• blockIdx is the index of the block in the grid.

• blockDim is the size, in number of threads, of the block.

• gridDim is the size, in number of blocks, of the grid.

Using these identifiers, new identifiers can be derived with simple arithmetic
operations. For example, the global identifier of a thread in a three-dimensional
block would be:

unsigned int ID = threadIdx.x + threadIdx.y * blockDim.x +

threadIdx.z * blockDim.x * blockDim.z;

The number of threads per block and the number of blocks per grid are specified
using int or dim3 types. dim3 is a structure of three unsigned integers with
components x, y and z. An important characteristic of this structure is that any
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unspecified component is initialized to one. Using the <<< ... >>> syntax, the
number of threads is specified as follows:

dim3 numBlocks(A, B, C);

dim3 threadsPerBlock(X, Y, Z);

kernel<<<numBlocks, threadsPerBlock>>>();

The total number of threads to be executed is equal to the number of threads
per block times the number of blocks. Because of that, there are many possible
combinations that yield the same total number of threads, for example, 32 blocks of
10 threads each would yield 320 threads in total and, apparently, it would be the
same as having 10 blocks of 32 threads each.

However, recall that each Streaming Multiprocessor has a certain number of
CUDA cores, and schedules threads to be executed in warps of size equal to this
number of cores (warp size). Hence, if a block has less threads than the warp size,
some cores will be idle. On the other hand, if the block has more threads than the
warp size, some threads will have to wait their turn. This means that, for each block,
we should try to avoid using less threads than the warp size. However, it does not
mean that we should always use a number of threads equal to the warp size because
switching threads in a block is faster than switching entire blocks. There is also a
limit to the number of threads that can be specified for a block (1024 for current
GPUs, less for others), since all threads of a block are scheduled to the same SM and
must share registers and shared memory.

As shown in Figure A.5, at hardware level, the GPU automatically assigns thread
blocks to SMs depending on the number of available SMs. This allows GPUs to
execute kernels according to their capabilities. This scheduling policy should be
considered when determining the number of blocks. If this number is less than the
number of available SMs, the computational power will not be fully exploited.

To coordinate threads in the same block, the function synchthreads can be used
as a barrier. This function makes all the threads in a block to wait until all of them
have reached the function. Example:

if(threadIdx.x == 0)

a[0] = 5;

__syncthreads();

In this example, all the threads in the block will wait until thread 0 finishes writing
to memory and only then will they continue.

A.2.3 Memory Hierarchy

CUDA threads have access to different memory types as shown in Figure A.6. Each
thread has a private local memory (registers) for stack and variables. Each thread
block has shared memory visible to all threads in the block. All threads have access
to the same global memory.
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Figure A.5: Automatic scalability based on the characteristics of the GPU.

Figure A.6: Memory hierarchy.
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Global memory

Global memory is the medium of communication between host and device. Usually,
the host transfers to this memory the elements to be processed in the device and
obtains the result from this same memory.

Global memory is allocated with cudaMalloc which requires the address of a
pointer and the number of bytes to allocate. Example:

int *ptr;

/*Allocate memory for ten integers*/

cudaMalloc(&ptr, 10 * sizeof(int));

Once memory has been allocated, data can be transferred with cudaMemcpy which
requires a destination address, a source address, the number of bytes to transfer and
the “direction” of the transfer. For example:

int *ptr, i = 5;

cudaMalloc(&ptr, sizeof(int));

/*Copy one integer from host to device*/

cudaMemcpy(ptr, &i, sizeof(int), cudaMemcpyHostToDevice);

There are four possible directions which indicate from where to where the data
transfer is to be made:

• cudaMemcpyHostToDevice. From the CPU to the GPU.

• cudaMemcpyDeviceToHost.: From the GPU to the CPU.

• cudaMemcpyHostToHost. Between two CPU addresses.

• cudaMemcpyDeviceToDevice. Between two GPU addresses. No CPU
interaction is required.

Memory can be freed with cudaFree which requires the address to be freed.
Example:

int *ptr;

cudaMalloc(&ptr, sizeof(int));

cudaFree(ptr);

Shared Memory

Shared memory is declared in kernels by using the __shared__ reserved word before
the type of the desired memory. It is usually initialized by the first threads of each
block. Example:
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__shared__ int a;

if(threadIdx.x == 0)

a = 5;

A variable sized array of shared memory can be allocated by creating a shared
pointer in the kernel and using the third argument of the kernel call to specify the
size in bytes. Example:

//Host code to create an array of ten integers in shared memory

kernel<<<numBlocks, threadsPerBlock, 10 * sizeof(int)>>>();

/*Device code to have the first ten threads of each block initialize

the array with their thread ID*/

__shared__ int array[];

if(threadIdx.x < 10)

array[threadIdx.x] = threadIdx.x;

Shared memory is much faster than global memory. If an element in global
memory has to be read or written more than once, it is a good idea to transfer
it to registers or shared memory if possible.

A.3 Programming Interface

CUDA provides functions that execute on the host to perform tasks like timing, error
checking, device handling, etc. To compile CUDA programs, a compiler tool called
nvcc is also provided.

A.3.1 Compilation with nvcc

Nvcc is a compiler that simplifies the process of compiling CUDA code. It uses
command line options similar to those of GCC [145] and automatically calls the
necessary programs for each compilation stage.

CUDA programs usually include kernels and C code for input/output and memory
management operations. The compilation stages for these programs are as follows:

1. Kernels (device code) are separated from the C host code.

2. Device code is compiled by nvcc into the assembly language for GPUs called
PTX.

3. Device code can then be left in assembly form or compiled into binary form by
the graphics driver.

4. Host code is modified by changing kernel calls into the appropriate CUDA
functions that prepare and launch kernels.
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5. Host code is then compiled into object code by the designated C compiler
(usually gcc).

6. Both codes are linked to produce the executable program

A.3.2 Concurrent Execution between Host and Device

Some CUDA function calls are asynchronous. It means that the host thread calls
one such function and then continues its work, instead of waiting for the function to
return. The following functions are asynchronous:

• Kernel launches.

• Memory copies between two addresses in device memory.

• Memory copies of 64 KB or less from host to device.

• All functions whose name starts with async.

• Memory set functions (this function is equivalent to Unix function memset which
sets the bytes of a block of memory to an specific value).

These functions are asynchronous to the host because they are performed by the
device. However, their execution in the device is serialized. For example:

int *ptr, var;

//Allocate memory for ptr

cudaMalloc(&ptr, sizeof(int));

//Call of a kernel that will store its result in ptr

kernel<<<numBlocks, threadsPerBlock>>>(ptr);

//Copy the result to var in host memory from device memory

cudaMemcpy(&var, ptr, sizeof(int), cudaMemcpyDeviceToHost);

//Print the result

printf("%d", var);

Here the call to the kernel will immediately return control to the host and the
host will execute a synchronous cudaMemcpy — the host will block waiting for the
result of the copy. The device will execute the kernel and, once finished, will execute
the memory copy the host is waiting for.

A.3.3 Events

Events allow programmers to monitor the device and perform accurate timing. Events
can be asynchronously started and ended at any point in the host code. An event is
completed when all host and device tasks between its starting and ending positions
are completed. At this point, it is possible to check the elapsed time. The following
code sample shows how to measure the elapsed time of a code section using events:
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//Event creation

cudaEvent_t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

//Start timer

cudaEventRecord(start, 0);

...

//Code to measure

...

//Stop timer

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

//Show elapsed time

float elapsedTime;

cudaEventElapsedTime(&elapsedTime, start, stop);

printf("%f", elapsedTime);

//Event destruction

cudaEventDestroy(start);

cudaEventDestroy(stop);

A.3.4 Device handling

A host system can have more than one GPU. Host threads can set the current device
at any time by using cudaSetDevice. Any device memory management functions,
kernel launches and events are executed only for the current device. By default, the
current device is always device 0. The following code sample shows how to enumerate
these devices, query their compute capability, and change the current device:

//Get the number of devices

int deviceCount;

cudaGetDeviceCount(&deviceCount);

//For each device

int device;

for(device = 0; device < deviceCount; device++)

{

//Show the device properties

cudaDeviceProp deviceProp;

cudaGetDeviceProperties(&deviceProp, device);

printf("Device %d has compute capability %d.%d.\n",

device, deviceProp.major, deviceProp.minor);

}

//Set device 0 as current

cudaSetDevice(0);
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A.3.5 Error Checking

All runtime functions return an error code. However, for asynchronous functions, this
error cannot be retrieved by the return value of the function (as control is returned to
the host before the device finishes executing the function). When an error happens
in an asynchronous function, the next runtime function, asynchronous or not, will
return this error.

When it is necessary to immediately check for errors in an asynchronous function,
the host must be blocked until the device finishes executing the function. The
function cudaDeviceSynchronize blocks the host until the device finishes executing
the last function invoked; its return value has any error associated with the last
CUDA function execution.

Since kernels do not return anything, the runtime environment has an error
variable initialized to cudaSuccess which is overwritten with an error code when
an error occurs. CudaPeekAtLastError and cudaGetLastError return this variable.
Then, to get kernel errors, the kernel has to be launched, the host has to be blocked
with cudaDeviceSynchronize, and cudaPeekAtLastError or cudaGetLastError have to
be called to obtain any kernel errors.

A.3.6 Compatibility

While newer GPUs support all the instructions of older GPUs, instructions introduced
for newer architectures cannot possibly be supported by older architectures. For
example, double-precision is only available on devices of compute capability 1.3 and
above. To compile CUDA code for a certain compute capability, the -arch compiler
flag can be used. This option can be specified regardless of the current hardware in the
machine doing the compiling (it can even be a machine with no GPUs). For example,
code with double-precision instructions must be compiled with -arch=sm 13 (or
higher), otherwise any double-precision instructions will automatically be transformed
into single-precision instructions by the compiler.

There are two versions of the nvcc compiler, for 64-bit and 32-bit host
architectures. Any version can be installed, regardless of the host architecture.
However, device code compiled for 64-bit can only work with 64-bit host code, and
32-bit device code can only works with 32-bit host code. By default, nvcc compiles
code for 64-bit if the 64-bit version is installed, but it can also compile in 32-bit mode
with the -m32 compiler flag if the 32-bit CUDA libraries are installed. The 32-bit
version can compile to 64-bit mode with the -m64 flag if the necessary libraries are
installed.

A.4 Performance Guidelines

To maximize GPU performance, the CUDA Best Practices Guide [147] suggests the
following strategies:
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• Maximize parallel execution to achieve maximum device utilization.

• Optimize memory usage to achieve maximum memory throughput.

• Optimize instruction usage to achieve maximum instruction throughput.

It is important to correctly choose which strategies to pursue depending on how
much they improve the code. For example, optimizing instruction usage for a kernel
with memory access problems will not show great performance increase.

A.4.1 Maximize Utilization

To maximize utilization, programmers must be familiar with the massive parallelism
the GPUs provide and try to make full use of it.

Application Level

Thanks to the asynchronous nature of kernels calls, programmers should try not to
leave the host idle while it waits for the result of a kernel. Simple or non-parallelizable
tasks should be executed by the host, while highly parallel tasks should be sent to
the device.

Device Level

Kernels should be executed with at least as many threads per block as there are cores
in each SM. The number of blocks should at least be equal to the number of SMs in
the GPU. If a kernel requires less blocks than the number of available SMs, two or
more small kernels should be run at the same time (using streams), thus fully utilizing
the GPUs capabilities.

A.4.2 Maximize Memory Throughput

One of the most important optimizations to any CUDA program is to minimize data
transfers between the host and the device. These transfers are done through the PCIe
bridge and have the lowest bandwidth when compared to other types of transfers.
Excessive use of these transfers may even cause applications to be slower than their
CPU-only counterpart versions.

Minimizing access (reads and writes) to global memory by kernels with the help
of shared memory and registers also improves performance — although it tends to
complicate programming. To use shared memory for this purpose, each thread in a
block has to do the following:

• Move its corresponding data from global memory to shared memory.

• If this data is to be accessed by other threads, then we must synchronize with
all the other threads of the block using the function synchthreads.
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Figure A.7: Coalesced memory access.

• Process the data in shared memory.

• Synchronize again if data was used by other threads to allow them to finish
processing.

• Write the results back to global memory.

Data Transfer between Host and Device

To minimize data transfers between host and device, code that is executed in the
host could be executed in the device. Even if such code is not very parallelizable,
performance may increase due to the reduced number of memory transfers. Joining
small data transfers into a single, large transfer also increases performance.

Device Memory Accesses

When all threads in a warp execute a load instruction, the best global memory access
occurs when all threads in a warp accesses consecutive global memory locations.
When this happens, the hardware coalesces (combines) all memory accesses into a
single access to consecutive locations. For example:

If thread 0 accesses location n, thread 1 accesses location n + 1, ..., thread 31
accesses location n + 31, then all these accesses are coalesced. Figure A.7 shows an
example of coalesced access.

Global Memory

When global memory is accessed by an instruction in a warp, one or more memory
transactions are issued. This depends on which memory locations are to be accessed
by each thread. More transactions means less performance. The worst case would be
a number of transactions equal to the warp size.

For devices of compute capability 1.0 and 1.1, access has to be completely
coalesced, else the number of transactions will be equal to the warp size (the worst case
scenario). For devices of higher compute capability, memory transactions are cached
(using L1 or L2 cache), so a single transaction might be issued even if accessing
non-contiguous memory locations.
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Size and Alignment Requirement

Global memory instructions read or write words of 1, 2, 4, 8, or 16 bytes. Coalesced
access to global memory also requires the data to have one of these sizes and to
be naturally aligned (i.e., its address is a multiple of its size). The alignment is
automatically fulfilled for most built-in types.

Local Memory

Local memory is a section of global memory automatically reserved by the compiler.
It is used to store the following variables found inside a kernel:

• Large structures or arrays that would consume too much register space.

• Any variable if the kernel uses more registers than available (known as register
spilling).

Since local memory resides in global memory, it has the same disadvantages (i.e.
slow reads and writes, slow transfers, etc.). Use of this memory should be avoided by
splitting structures or arrays into smaller ones and by using less registers or launching
fewer threads per block.

A.4.3 Maximize Instruction Throughput

To maximize instruction throughput the following strategies are suggested:

• Use single-precision instead of double-precision if this change does not affect
the required result.

• Avoid any control flow instructions.

• Remove synchronization points wherever possible.

Control Flow Instructions

Control flow instructions (if, switch, do, for, while) tend to make threads of the same
warp to diverge (i.e., to follow different execution paths). The different executions
paths are serialized and instructions for each of them have to be issued, thus increasing
the total number of instructions. When all execution paths are completed, threads
converge back to the same execution path.
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Appendix B

The Transaction Processing
Performance Council Benchmark H

The Transaction Processing Performance Council Benchmark H (TCP-H) [152] is a
famous decision support benchmark based on SQL that was used to compare the
performance of the logical component of our MLN platforms, namely GPU-Datalog
(described in Section 4.1), against the state of the art system Red Fox [150]. This
appendix is an adapted version of the 2.17.2 specification of the benchmark and
presents an explanation of TCP-H, the structure of its tables, and the queries used
in our comparison.

TPC-H is comprised of a set of business queries designed to exercise system
functionalities in a manner representative of complex business analysis applications.
These queries have been given a realistic context, portraying the activity of a wholesale
supplier to help the reader relate intuitively to the components of the benchmark.
TPC-H does not represent the activity of any particular business segment, but rather
any industry which must manage sell, or distribute a product worldwide (e.g., car
rental, food distribution, parts, suppliers, etc.). The queries that have been selected
for this benchmark exhibit the following characteristics:

• They have a high degree of complexity.

• They use a variety of access methods.

• They are of an ad hoc nature.

• They examine a large percentage of the available data.

• They all differ from each other.

• They contain query parameters that change across query executions.
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Table B.1: PART Table Layout.

Column Name Datatype Requirements Comment
P PARTKEY identifier Primary Key
P NAME text, size 55
P MFGR text, size 25
P BRAND text, size 10
P TYPE text, size 25
P SIZE integer
P CONTAINER text, size 10
P RETAILPRICE text, size 55
P RETAILPRICE text, size 55

Table B.2: SUPPLIER Table Layout.

Column Name Datatype Requirements Comment
S SUPPKEY identifier Primary Key
S NAME text, size 25
S ADDRESS text, size 40
S NATIONKEY identifier Foreign Key to N NATIONKEY
S PHONE text, size 15
S ACCTBAL decimal
S COMMENT text, size 101

B.1 Database structure

The components of the TPC-H database are defined to consist of eight separate and
individual tables. These tables can be generated and filled with random data using the
TPC-H tools [152]. The relationships between columns of these tables are illustrated
in Figure B.1 where the parentheses following each table name contain the prefix
of the column names for that table, the arrows point in the direction of the one to
many relationships between tables, and the number/formula below each table name
represents the cardinality (number of rows) of the table.

Some tables are factored by a Scale Factor (SF), to obtain the chosen database
size (in our comparison against Red Fox, SF is equal to 1). The cardinality for the
LINEITEM table is approximate since the number of LINEITEMs in an ORDER
is chosen at random with an average of four. Also, orders are not present for all
customers. In fact, one-third of the customers do not have any order in the database.
The orders are assigned at random to two-thirds of the customers. The purpose of
this is to exercise the capabilities of the DBMS to handle “dead data” when joining
two or more tables.
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Figure B.1: The TPC-H database schema.

Table B.3: PARTSUPP Table Layout.

Column Name Datatype Requirements Comment

PS PARTKEY identifier
Primary Key

Foreign Key to P PARTKEY

PS SUPPKEY identifier
Primary Key

Foreign Key to S SUPPKEY
PS AVAILQTY integer
PS SUPPLYCOST decimal
PS COMMENT text, size 199
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Table B.4: CUSTOMER Table Layout.

Column Name Datatype Requirements Comment
C CUSTKEY identifier Primary Key
C NAME text, size 25
C ADDRESS text, size 40
C NATIONKEY identifier Foreign Key to N NATIONKEY
C PHONE text, size 15
C ACCTBAL decimal
C MKTSEGMENT text, size 10
C COMMENT text, size 117

Table B.5: ORDERS Table Layout.

Column Name Datatype Requirements Comment
O ORDERKEY identifier Primary Key
O CUSTKEY identifier Foreign Key to C CUSTKEY
O ORDERSTATUS text, size 1
O TOTALPRICE decimal
O ORDERDATE date
O ORDERPRIORITY text, size 15
O CLERK text, size 15
O SHIPPRIORITY integer
O COMMENT text, size 79

Table B.6: LINEITEM Table Layout.

Column Name Datatype Requirements Comment

L ORDERKEY identifier
Primary Key

Foreign Key to O ORDERKEY
L PARTKEY identifier Foreign key to P PARTKEY
L SUPPKEY identifier Foreign key to S SUPPKEY
L LINENUMBER integer Primary Key
L QUANTITY decimal
L EXTENDEDPRICE decimal
L DISCOUNT decimal
L TAX decimal
L RETURNFLAG text, size 1
L LINESTATUS text, size 1
L SHIPDATE date
L COMMITDATE date
L RECEIPTDATE date
L SHIPMODE text, size 10
L COMMENT text size 44
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Table B.7: NATION Table Layout.

Column Name Datatype Requirements Comment
N NATIONKEY identifier Primary Key
N NAME text, size 25
N REGIONKEY identifier Foreign Key to R REGIONKEY
N COMMENT text, size 152

Table B.8: REGION Table Layout.

Column Name Datatype Requirements Comment
R REGIONKEY identifier Primary Key
R NAME text, size 25
R COMMENT text, size 152

B.2 Query Definitions

Pricing Summary Report Query (Q1)

The Pricing Summary Report Query provides a summary pricing report for all
lineitems shipped as of a given date. The date is within 60 - 120 days of the
greatest ship date contained in the database. The query lists totals for extended
price, discounted extended price, discounted extended price plus tax, average quantity,
average extended price, and average discount. These aggregates are grouped by
RETURNFLAG and LINESTATUS, and listed in ascending order of RETURNFLAG
and LINESTATUS. A count of the number of lineitems in each group is included.

select

l_returnflag,

l_linestatus,

sum(l_quantity) as sum_qty,

sum(l_extendedprice) as sum_base_price,

sum(l_extendedprice*(1-l_discount)) as sum_disc_price,

sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,

avg(l_quantity) as avg_qty,

avg(l_extendedprice) as avg_price,

avg(l_discount) as avg_disc,

count(*) as count_order

from

lineitem

where

l_shipdate <= date ’1998-12-01’ - interval ’[DELTA]’ day (3)

group by

l_returnflag,

l_linestatus
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order by

l_returnflag,

l_linestatus;

For validation against the qualification database the query must be executed using
the following values for substitution parameters: DELTA = 90. It must produce the
following sample output data:

L_RETURNFLAG L_LINESTATUS SUM_QTY SUM_BASE_PRICE SUM_DISC_PRICE

A F 37734107.00 56586554400.73 53758257134.87

SUM_CHARGE AVG_QTY AVG_PRICE AVG_DISC COUNT_ORDER

55909065222.83 25.52 38273.13 .05 1478493

Shipping Priority Query (Q3)

The Shipping Priority Query retrieves the shipping priority and potential revenue,
defined as the sum of l extendedprice * (1-l discount), of the orders having the largest
revenue among those that had not been shipped as of a given date. Orders are listed
in decreasing order of revenue. If more than 10 unshipped orders exist, only the 10
orders with the largest revenue are listed.

Return the first 10 selected rows

select

l_orderkey,

sum(l_extendedprice*(1-l_discount)) as revenue,

o_orderdate,

o_shippriority

from

customer,

orders,

lineitem

where

c_mktsegment = ’[SEGMENT]’

and c_custkey = o_custkey

and l_orderkey = o_orderkey

and o_orderdate < date ’[DATE]’

and l_shipdate > date ’[DATE]’

group by

l_orderkey,

o_orderdate,

o_shippriority

order by

revenue desc,

o_orderdate;
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For validation against the qualification database the query must be executed using
the following values for substitution parameters: SEGMENT = BUILDING; DATE
= 1995-03-15. It must produce the following sample output data:

L_ORDERKEY REVENUE O_ORDERDATE O_SHIPPRIORITY

2456423 406181.01 1995-03-05 0

Order Priority Checking Query (Q4)

The Order Priority Checking Query counts the number of orders ordered in a given
quarter of a given year in which at least one lineitem was received by the customer
later than its committed date. The query lists the count of such orders for each order
priority sorted in ascending priority order.

select

o_orderpriority,

count(*) as order_count

from

orders

where

o_orderdate >= date ’[DATE]’

and o_orderdate < date ’[DATE]’ + interval ’3’ month

and exists (

select

*

from

lineitem

where

l_orderkey = o_orderkey

and l_commitdate < l_receiptdate

)

group by

o_orderpriority

order by

o_orderpriority;

For validation against the qualification database the query must be executed
using the following values for substitution parameters: DATE = 1993-07-01. It must
produce the following sample output data:

O_ORDERPRIORITY ORDER_COUNT

1-URGENT 10594
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Local Supplier Volume Query (Q5)

The Local Supplier Volume Query lists for each nation in a region the revenue volume
that resulted from lineitem transactions in which the customer ordering parts and
the supplier filling them were both within that nation. The query is run in order to
determine whether to institute local distribution centers in a given region. The query
considers only parts ordered in a given year. The query displays the nations and
revenue volume in descending order by revenue. Revenue volume for all qualifying
lineitems in a particular nation is defined as sum(l extendedprice * (1 - l discount)).

select

n_name,

sum(l_extendedprice * (1 - l_discount)) as revenue

from

customer,

orders,

lineitem,

supplier,

nation,

region

where

c_custkey = o_custkey

and l_orderkey = o_orderkey

and l_suppkey = s_suppkey

and c_nationkey = s_nationkey

and s_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r_name = ’[REGION]’

and o_orderdate >= date ’[DATE]’

and o_orderdate < date ’[DATE]’ + interval ’1’ year

group by

n_name

order by

revenue desc;

For validation against the qualification database the query must be executed using
the following values for substitution parameters: REGION = ASIA; DATE = 1994-
01-01. It must produce the following sample output data:

N_NAME REVENUE

INDONESIA 55502041.17

Returned Item Reporting Query (Q10)

The Returned Item Reporting Query finds the top 20 customers, in terms of their
effect on lost revenue for a given quarter, who have returned parts. The query
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considers only parts that were ordered in the specified quarter. The query lists
the customer’s name, address, nation, phone number, account balance, comment
information and revenue lost. The customers are listed in descending order of
lost revenue. Revenue lost is defined as sum(l extendedprice*(1-l discount)) for all
qualifying lineitems.

Return the first 20 selected rows

select

c_custkey,

c_name,

sum(l_extendedprice * (1 - l_discount)) as revenue,

c_acctbal,

n_name,

c_address,

c_phone,

c_comment

from

customer,

orders,

lineitem,

nation

where

c_custkey = o_custkey

and l_orderkey = o_orderkey

and o_orderdate >= date ’[DATE]’

and o_orderdate < date ’[DATE]’ + interval ’3’ month

and l_returnflag = ’R’

and c_nationkey = n_nationkey

group by

c_custkey,

c_name,

c_acctbal,

c_phone,

n_name,

c_address,

c_comment

order by

revenue desc;

For validation against the qualification database the query must be executed
using the following values for substitution parameters: DATE = 1993-10-01. It must
produce the following sample output data:

C_CUSTKEY C_NAME REVENUE C_ACCTBAL N_NAME
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57040 Customer#000057040 734235.24 632.87 JAPAN

C_ADDRESS C_PHONE

Eioyzjf4pp 22-895-641-3466

C_COMMENT

sits. slyly regular requests sleep alongside of the regular inst

Large Volume Customer Query (Q18)

The Large Volume Customer Query finds a list of the top 100 customers who have
ever placed large quantity orders. The query lists the customer name, customer key,
the order key, date and total price and the quantity for the order.

Return the first 100 selected rows

select

c_name,

c_custkey,

o_orderkey,

o_orderdate,

o_totalprice,

sum(l_quantity)

from

customer,

orders,

lineitem

where

o_orderkey in (

select

l_orderkey

from

lineitem

group by

l_orderkey having

sum(l_quantity) > [QUANTITY]

)

and c_custkey = o_custkey

and o_orderkey = l_orderkey

group by

c_name,

c_custkey,

o_orderkey,

o_orderdate,

o_totalprice

order by

o_totalprice desc,
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o_orderdate;

For validation against the qualification database the query must be executed using
the following values for substitution parameters: QUANTITY = 300. It must produce
the following sample output data:

C_NAME C_CUSTKEY O_ORDERKEY O_ORDERDATE

Customer#000128120 128120 4722021 1994-04-07

O_TOTALPRICE Sum(L_QUANTITY)

544089.09 323.00

Discounted Revenue Query (Q19)

The Discounted Revenue query finds the gross discounted revenue for all orders for
three different types of parts that were shipped by air and delivered in person. Parts
are selected based on the combination of specific brands, a list of containers, and a
range of sizes.

select

sum(l_extendedprice * (1 - l_discount) ) as revenue

from

lineitem,

part

where

(

p_partkey = l_partkey

and p_brand = ’[BRAND1]’

and p_container in ( ’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM PKG’)

and l_quantity >= [QUANTITY1] and l_quantity <= [QUANTITY1] + 10

and p_size between 1 and 5

and l_shipmode in (’AIR’, ’AIR REG’)

and l_shipinstruct = ’DELIVER IN PERSON’

)

or

(

p_partkey = l_partkey

and p_brand = ’[BRAND2]’

and p_container in (’MED BAG’, ’MED BOX’, ’MED PKG’, ’MED PACK’)

and l_quantity >= [QUANTITY2] and l_quantity <= [QUANTITY2] + 10

and p_size between 1 and 10

and l_shipmode in (’AIR’, ’AIR REG’)

and l_shipinstruct = ’DELIVER IN PERSON’

)

or
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(

p_partkey = l_partkey

and p_brand = ’[BRAND3]’

and p_container in ( ’LG CASE’, ’LG BOX’, ’LG PACK’, ’LG PKG’)

and l_quantity >= [QUANTITY3] and l_quantity <= [QUANTITY3] + 10

and p_size between 1 and 15

and l_shipmode in (’AIR’, ’AIR REG’)

and l_shipinstruct = ’DELIVER IN PERSON’

);

For validation against the qualification database the query must be executed using
the following values for substitution parameters: QUANTITY1 = 1; QUANTITY2 =
10; QUANTITY3 = 20; BRAND1 = Brand#12; BRAND2 = Brand#23; BRAND3
= Brand#34. It must produce the following sample output data:

REVENUE

3083843.05

Suppliers Who Kept Orders Waiting Query (Q21)

The Suppliers Who Kept Orders Waiting query identifies suppliers, for a given nation,
whose product was part of a multi-supplier order (with current status of ’F’) where
they were the only supplier who failed to meet the committed delivery date.

Return the first 100 selected rows

select

s_name,

count(*) as numwait

from

supplier,

lineitem l1,

orders,

nation

where

s_suppkey = l1.l_suppkey

and o_orderkey = l1.l_orderkey

and o_orderstatus = ’F’

and l1.l_receiptdate > l1.l_commitdate

and exists (

select

*

from

lineitem l2

where
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l2.l_orderkey = l1.l_orderkey

and l2.l_suppkey <> l1.l_suppkey

)

and not exists (

select

*

from

lineitem l3

where

l3.l_orderkey = l1.l_orderkey

and l3.l_suppkey <> l1.l_suppkey

and l3.l_receiptdate > l3.l_commitdate

)

and s_nationkey = n_nationkey

and n_name = ’[NATION]’

group by

s_name

order by

numwait desc,

s_name;

For validation against the qualification database the query must be executed using
the following values for substitution parameters: NATION = SAUDI ARABIA. It
must produce the following sample output data:

S_NAME NUMWAIT

Supplier#000002829 20
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