
Centro de Investigación y de Estudios Avanzados
del Instituto Politécnico Nacional

Unidad Zacatenco

Departamento de Ingenieŕıa Eléctrica
Sección de Computación

Implementación Eficiente de Algoritmos Criptográficos
en Dispositivos de Hardware Reconfigurable †

Tesis que presenta:
Nazar Abbas Saqib

Para obtener el grado de:
Doctor en Ciencias

En la especialidad de:
Ingenieŕıa Eléctrica

Opción:
Computación

Directores de tesis:
Dr. Arturo D́ıaz-Pérez

Dr. Francisco Rodŕıguez-Henriquez

Ciudad de México, México. 3 de Septiembre de 2004.

† Este trabajo fue parcialmente financiado mediante el proyecto CONACyT 31892-A: Al-
goritmos y arquitecturas de computadoras con dispositivos reconfigurables.

Centro de Investigación y de Estudios Avanzados
del Instituto Politécnico Nacional

Campus Zacatenco

Computer Science Section
Electrical Engineering Department

Efficient Implementation of Cryptographic Algorithms
on Reconfigurable Hardware Devices †

By
Nazar Abbas Saqib

in partial fulfillment of the
requirements for the degree of

Doctor of Science

Specialization in
Electrical Engineering

Option
Computer Sciences

Advisors:
Dr. Arturo D́ıaz-Pérez

Dr. Francisco Rodŕıguez-Henriquez

Mexico City, Mexico. September 3, 2004.

† This work was partially supported by CONACyT, project No. 31892-A: Computer algo-
rithms and architectures with reconfigurable devices.

To my wife, Afshan,
for her devotions, sincerity, and solidarity for me.

To my daughter, Fizza (7 years) and Ahmer (5 years),
whose only presence give me a new sense to my existence.

To my parents, brothers and sister,
for their moral, financial, and everlasting support.

iii

Acknowledgements

I thank to Ministry of Education, Islamabad, Pakistan for the award of Cultural
Scholarship for pursuing doctorate in computer sciences at Mexico, a beautiful coun-
try in North America.

I thank to Mexican Government for a warm welcome and a regular financing
during my doctorate. I would wish to thank all officials of Foreign Office Secretariat,
Ministry of Foreign Affairs for their kind treatment and cooperation during my stay
in Mexico.

I would acknowledge my advisor, Dr. Arturo D́ıaz-Pérez for his knowledge, his
experience, and his guidance for this thesis work. I am thankful to him for arranging
financial support in last months of my studies.

I would acknowledge my advisor, Dr. Francisco Rodŕıguez-Henriquez for his hard
work and useful ideas for improving this dissertation work. I shall ever remember
long discussions with him during days and nights for the clear conception and pre-
sentation of ideas.

I am personally thankful to my examiners for the revision of my thesis and
for their valuable suggestions. I would like to thank Prof. Dr. Çetin Kaya Koç
(Oregon State University, USA), Dr. Claudia Feregrino Uribe (INAOE, Mexcio),
Dr. Guillermo Morales-Luna (CINVESTAV-IPN), Dr. Adriano de Luca Pennacchia
(CINVESTAV-IPN) and my advisors who are also member of my examination com-
mittee.

I would like to thank all professors, officials, and colleagues of my department
for their kind cooperation. I cannot forget Sofia Reza and Flor Córdova for their
friendly talks and guidance for academic matters. I thank all officials in academic
services and library officials for their nice treatment.

v

RESUMEN

Conforme nos movemos hacia una sociedad de información, la seguridad se ha
convertido en un asunto crucial en áreas como la industria, los negocios y la ad-
ministración. Las técnicas básicas que se requieren para proteger la información
pertenecen al campo de la criptograf́ıa. La criptograf́ıa aplicada a la seguridad es
una herramienta importante para asegurar confidencialidad (en la transmisión y al-
macenamiento de la información), integridad (no hay cambio que pueda no ser detec-
tado), identificación de fuente (el que env́ıa puede ser identificado), y no repudiación
(el que env́ıa no puede negar que envió un mensaje).

Los algoritmos criptográficos están clasificados en dos categoŕıas: algoritmos de
llave secreta y algoritmos de llave pública. Los algoritmos de llave secreta o simétrica
utilizan una llave secreta para cifrar o descifrar los mensajes. Algunos ejemplos de
este tipo de algoritmos son: DES, AES, Serpent, MARS y IDEA. En los algorit-
mos de llave pública o asimétrica, las llaves se organizan en pares: llave pública
y llave privada. Cualquiera puede utilizar la llave pública para cifrar un mensaje,
sin embargo, solo quien posee la llave privada puede descifrar este mensaje. RSA y
Criptograf́ıa de Curvas Eĺıpticas (ECC por sus siglas en inglés) son esquemas crip-
tográficos populares de llave pública. Los algoritmos de llave secreta son rápidos
y pueden ser usados para cifrar grandes cantidades de datos. Por otra parte, los
algoritmos de llave pública son computacionalmente más demandantes que los algo-
ritmos simétricos pero evitan la necesidad que exista previamente un secreto entre
dos objetos que quieren comunicarse.

Los algoritmos criptográficos pueden ser implementados en plataformas de soft-
ware y hardware. Las soluciones criptográficas basadas en software, pueden ser
usadas para aplicaciones de seguridad donde el tráfico no es muy demandante y la
velocidad de encriptación no es muy alta. Por otro lado, los métodos por hardware
ofrecen soluciones veloces para aplicaciones donde el tráfico de datos es más intenso
y la gran cantidad de datos requiere una encriptación en tiempo real. Los circuitos
VLSI, y los dispositivos FPGAs (Field Programmable Gate Arrays) son dos alterna-
tivas para implementar algoritmos criptográficos en hardware. Los FPGAs ofrecen

vii

grandes beneficios para la implementación de algoritmos criptográficos al compara-
rlos con las soluciones VLSI por su alta flexibilidad. Debido a que los FPGAs tienen
la propiedad de ser reconfigurables, las llaves se pueden cambiar rápidamente. Más
aún, las primitivas básicas de la mayoŕıa de algoritmos criptográficos pueden ser
eficientemente implementadas en FPGAs.

El objetivo principal de esta tesis, es obtener implementaciones de algoritmos
criptográficos basadas en dispositivos reconfigurables como los FPGAs que tengan
un alto desempeño sin tener que utilizar altos requerimientos de hardware. Esto
es, el objetivo es encontrar un balance adecuado entre el espacio requerido por los
circuitos y la rapidez con que se pueden realizar las operaciones de ciframiento y
desciframiento. Para cumplir el objetivo de esta tesis se han elegido tres algoritmos
de acuerdo a su importancia en aplicaciones de seguridad: Data Encryption Standard
(DES) y Advanced Encryption Standard (AES) como algoritmos de llave simétrica,
y Criptograf́ıa de Curva Eĺıptica como algoritmo de llave asimétrica.

En primer lugar, se presenta la aritmética sobre campos finitos GF(2m) dado que
constituye la base teórica para el desarrollo de los algoritmos criptográficos elegidos
en este trabajo de tesis. Más adelante, se abordaron metas espećıficas para cada
algoritmo.

Se desarrollaron gúıas generales para implementar cifradores de bloque de llave
simétrica en plataformas reconfigurables. Se presenta la estructura general y los
principios del diseño para cifradores de bloque y se identifican las primitivas básicas
en este tipo de algoritmos. Se presentan algunas técnicas útiles de diseño para
obtener implementaciones eficientes en dispositivos reconfigurables. Para aplicar
tales gúıas y técnicas se utilizó a DES como caso de estudio y se obtuvo una imple-
mentación rápida y compacta para este algoritmo.

Por otra parte, se exploraron varias alternativas arquitecturales para la im-
plementación de AES en dispositivos reconfigurables. Tales alternativas se pre-
sentan como opciones convenientes para diversas aplicaciones de seguridad. Las
arquitecturas diversas desarrolladas para AES fueron optimizadas para obtener alto
desempeño, bajo costo o soluciones altamente portables. La eficiencia de los diseños
se obtuvo mediante la aplicación de técnicas optimizadas de diseño y aplicando
algunas transformaciones a los algoritmos originalmente planteados.

Finalmente, se presenta una arquitectura genérica para realizar la multiplicación
escalar en curvas eĺıpticas, la operación más importante de ECC. Tal arquitectura fue
optimizada para dispositivos reconfigurables (FPGAs) tomando ventaja del máximo
nivel de paralelismo que se puede explotar en la multiplicación escalar y mediante
un uso eficiente de loa recursos de hardware. Combinando las operaciones de la
aritmética de campos finitos en GF(2m) y de la aritmética de curvas eĺıpticas, se
formaron bloques básicos para realizar la multiplicación escalar en curvas eĺıpticas.

La caracteŕıstica principal entre todos los diseños desarrollados para hardware
reconfigurable es el uso de técnicas paralelas para realizar las operaciones básicas
de los algoritmos y, de esta manera, reducir el retraso de la ruta cŕıtica del circuito.
El consumo bajo de recursos se obtuvo identificando las operaciones comunes en

diferentes pasos y reutilizando los bloques básicos. Por otra parte, se buscó hacer
un mapeo adecuado a la estructura del dispositivo reconfigurable seleccionado para
obtener diseños optimizados para FPGAs. Los resultados mostraron que se obtu-
vieron diseños para algoritmos criptográficos con un alto desempeño mediante un
uso eficiente de los recursos de hardware los cuales son comparables con implementa-
ciones reconfigurables similares que están reportadas en la literatura a la fecha.

ABSTRACT

As we move into an information society, information security has become a crucial
issue in industry, business, and administration. The techniques needed to protect
information data belong to the field of cryptography. It is an important tool in
assuring confidentiality (in transmission or storage of information), integrity (no
change can be made undetectably), source identification (the sender can be identified
and all other than that sender can be excluded), and non-repudiation (the sender
should not be able to deny sending the message).

Cryptographic algorithms fall into two categories: secret and public key algo-
rithms. Secret or symmetric key algorithms use a secret key for encrypting or de-
crypting a message. DES, AES, Serpent, MARS, and IDEA are few examples of
symmetric algorithms. Public or symmetric key algorithms involve a pair of keys:
a public key and a private key. Anyone can use a public-key to encrypt a message,
however, only a private key holder can decrypt that message. RSA and Elliptic
Curve Cryptography (ECC) are popular public key cryptographic schemes. Secret
key algorithms are computationally faster and can be used for encrypting large
data. Public-key algorithms are computationally more intensive than symmetric al-
gorithms.

Cryptographic algorithms can be implemented in software and hardware plat-
forms. Cryptographic solutions using software methods can be used for those se-
curity applications where data traffic is not too large and low encryption rate is
tolerable. On the other hand, hardware methods offer high-speed solutions making
them highly suitable for applications where data traffic is fast and large data is re-
quired to be encrypted in real time. VLSI (also known as ASIC), and FPGAs (Field
Programmable Gate Arrays) are two alternatives for implementing cryptographic
algorithms in hardware. FPGAs offer several benefits for cryptographic algorithm
implementations over VLSI as they offer high flexibility. Due to its reconfigurable
property, keys can be changed rapidly. Moreover, basic primitives in most crypto-
graphic algorithms can efficiently be implemented in FPGAs.

The main goal of this thesis is to achieve high-speed implementations of cryp-
tographic algorithms on reconfigurable hardware devices without posing high re-

xi

quirements for hardware resources. That is, to achieve a right balance between
required space (hardware area) for circuits and high-speed for performing encryp-
tion/decryption operations. To complete this goal, three algorithms were chosen for
their importance in security applications: Data Encryption Standard (DES), Ad-
vanced Encryption Standard (AES) from symmetric key and Elliptic Curve Cryp-
tography from public key cryptography.

First, basic concepts of finite field arithmetic in GF(2m) are presented construct-
ing a theoretical base for understanding of selected cryptographic algorithms in this
thesis work. Then, specific goals have been set for each algorithm.

A general guideline for implementing block ciphers in reconfigurable platform is
provided. General structure and design principles for block ciphers are discussed.
Basic primitives in block ciphers are identified and some useful design techniques
were devised for efficient implementations on reconfigurable devices. For applying
said guideline and techniques, DES was taken as a case of study producing a fast
and compact reconfigurable architecture for this algorithm.

On the other side, multiple architectural options for AES reconfigurable imple-
mentations are explored as an effort to determine the suitable candidate for diverse
security applications. Distinct AES architectures are optimized for high speed, low
cost and highly portable solutions to cryptographic applications. High design per-
formances were achieved by applying optimizing techniques for designing and by
modifying standard transformations of the algorithms.

Finally, a generic architecture for implementation of elliptic curve scalar multipli-
cation (a most important operation in ECC) is presented which is further optimized
for reconfigurable hardware devices. Key feature in ECC implementation is to exploit
maximum parallelism making an efficient use of hardware resources. This approach
is adopted for finite field arithmetic in GF(2m) and elliptic curve arithmetic, which
form basic building blocks for elliptic curve scalar multiplication.

The key feature among all reconfigurable architectures is the use of parallel
techniques for performing basic operations in cryptographic algorithms and in this
way, reducing delays occurred in critical path of the circuit. Low hardware area
utilization was obtained by identifying common operation in different steps and by
reusing basic building blocks. On the other hand, an accurate matching to the struc-
ture of the selected device was made producing optimized designs for FPGAs. Our
results show high performance architectures for cryptographic algorithms through
an efficient use of hardware resources as compared to existing similar reconfigurable
implementations reported in the literature to-date.

Table of Contents

I Introduction 1
I.1 Introduction . 1

I.1.1 Secret key cryptography . 2
I.1.2 Public key cryptography . 3

I.2 Fundamental operations for cryptographic algorithms 4
I.3 Potential cryptographic applications 5
I.4 Alternatives for implementing cryptographic algorithms 7

I.4.1 Reconfigurable computing . 8
I.4.2 Advantages/disadvantages of reconfigurable computing 10

I.5 Research goals . 11
I.6 Methodology . 12

I.6.1 Parallelism at algorithm level 13
I.6.2 Parallelism at design level 13
I.6.3 Design strategies . 13
I.6.4 Design tools . 15

I.7 Design statistics of an FPGA architecture 15
I.7.1 Architectural description of the target device 15
I.7.2 Metrics to measure performance 17

I.8 Summary of contributions . 17
I.9 Dissertation organization . 21

II Mathematical Background 23
II.1 Finite fields . 23

II.1.1 Rings . 23
II.1.2 Fields . 24
II.1.3 Finite fields . 24
II.1.4 Polynomials over a field . 24
II.1.5 Operations on polynomials 25
II.1.6 Polynomials and bytes . 25

II.2 Elliptic curves . 26
II.2.1 Definition . 27
II.2.2 Elliptic curve operations . 27
II.2.3 Elliptic curve scalar multiplication 30

xiii

II.3 Elliptic curves over F2m . 31
II.3.1 Point addition . 31
II.3.2 Point doubling . 32
II.3.3 Order of an elliptic curve . 32
II.3.4 Elliptic curve groups and the discrete logarithm problem . . 32
II.3.5 An Example . 33

II.4 Elliptic curve cryptography . 35
II.4.1 Elliptic curve cryptosystem parameters 35
II.4.2 Key pair generation . 36
II.4.3 Key exchange . 36
II.4.4 Digital signature scheme . 37

II.5 Symmetric vs asymmetric cryptography 39

IIIGeneral Guidelines for Implementing Block Ciphers in FPGAs 41
III.1 Introduction . 41
III.2 Block ciphers . 42

III.2.1 General structure of a block cipher 43
III.2.2 Design principles for a block cipher 44
III.2.3 Useful properties for implementing block ciphers in FPGAs . 46

III.3 Data Encryption Standard . 50
III.3.1 The initial permutation (IP−1) 51
III.3.2 Structure of the function fk 52
III.3.3 Key schedule . 54

III.4 FPGA implementation of DES algorithm 55
III.4.1 Design steps . 55
III.4.2 Design techniques . 57
III.4.3 DES implementation on FPGAs 59
III.4.4 Design testing and verification 60
III.4.5 Performance results and comparison 62

III.5 Conclusions . 63

IVArchitectural Designs For Advanced Encryption Standard 65
IV.1 Introduction . 65
IV.2 The Rijndael algorithm . 66

IV.2.1 Difference between AES and Rijndael 66
IV.2.2 Structure of the AES algorithm 67
IV.2.3 The round transformation . 68
IV.2.4 Key schedule . 71

IV.3 Novel techniques for efficient implementation of AES round transfor-
mation on FPGAs . 72
IV.3.1 S-Box/inverse S-Box implementations on FPGAs 73
IV.3.2 MC/IMC implementations on FPGA 75
IV.3.3 Key schedule optimization . 77

IV.4 AES implementations on FPGAs . 78

IV.4.1 Key schedule algorithm implementations 80
IV.4.2 AES encryptor cores - iterative and pipeline approaches . . . 83
IV.4.3 AES encryptor/decryptor cores- using look-up table and com-

posite field approaches for S-Box 85
IV.4.4 AES encryptor/decryptor, encryptor, and decryptor cores based

on modified MC/IMC . 88
IV.5 Performance comparison . 90

IV.5.1 Previous work . 90
IV.5.2 Results comparison . 91

IV.6 Conclusions . 92

V Elliptic Curve Cryptography 95
V.1 Introduction . 95
V.2 GF (2m) Finite field arithmetic . 96

V.2.1 Binary Karatsuba-Ofman multipliers 97
V.2.2 Squaring . 103
V.2.3 Reduction . 103
V.2.4 Inversion . 105

V.3 Elliptic curve scalar multiplication 109
V.3.1 Hessian form . 109
V.3.2 Weierstrass Non-Singular form and Montgomery Point Multi-

plication Algorithm . 111
V.3.3 Parallel strategies for scalar point multiplication 114

V.4 Generic architecture for scalar point multiplication 116
V.5 Implementing scalar multiplication on reconfigurable hardware . . . 116

V.5.1 Scalar multiplication in Hessian form 118
V.5.2 Montgomery point multiplication 119
V.5.3 Implementation summary . 119

V.6 Performance comparison . 121
V.7 Conclusions . 122

VIConclusions 125

Index 137

List of Tables

I.1 Primitives of cryptographic algorithms (symmetric ciphers) 5
I.2 A few potential cryptographic applications 6
I.3 Comparison between Software, VLSI, and FPGA platforms. 8

II.1 Elements of the field F24 using irreducible polynomial p(x) = x4 +
x + 1 . 34

II.2 Scalar multiplication for the point P of Equation II.13 35

III.1 Key features for some famous block ciphers 45
III.2 Initial Permutation for 64-bit input block 52
III.3 E-bit selection . 52
III.4 DES S-boxes . 53
III.5 Permutation P . 54
III.6 Inverse permutation . 54
III.7 Permuted Choice One PC-1 . 55
III.8 Number of key bits shifted per round 55
III.9 Permutated Choice Two (PC-2) . 55
III.10 Test vectors . 60
III.11 Recent DES reconfigurable hardware implementations 62

IV.1 Selection of Rijndael rounds . 67
IV.2 A roadmap to implemented AES designs. 80
IV.3 Specifications of AES FPGA implementations. 92

V.1 Space and time complexities for several m = 2k-bit hybrid Karatsuba-
Ofman multipliers. 100

V.2 Algorithm of Fig. V.8: βi Coefficient Generation 107
V.3 GF (2m) Elliptic Curve Point Multiplication Computational Costs . 114
V.4 Point addition in Hessian form . 118
V.5 Point doubling in Hessian form . 118
V.6 kP computation, if test-bit is ‘1’ . 119
V.7 kP computation, if test-bit is ‘0’ . 120
V.8 Design Implementation Summary 120
V.9 GF(2m) Elliptic Curve Point Multiplication Hardware Performance

Comparison . 122

xvii

List of Figures

I.1 Secret key cryptography . 3
I.2 Public key cryptography . 4
I.3 Basic architecture of an FPGA . 9
I.4 CLB configuration modes . 9
I.5 Basic architectures for (a) iterative looping (b) loop unrolling . . . 14
I.6 Round-pipelining for (a) one round (b) n rounds 14
I.7 VirtexE architecture overview. 15
I.8 VirtexE Logic Cell (LC). 16
I.9 2-Slices VirtexE Configuration Logic Block (CLB). 16

II.1 Elliptic curve equation y2 = x3 + ax + b for different a and b 27
II.2 Adding two distinct points on an Elliptic curve (Q �= −P). 28
II.3 Adding two points P and Q when Q = −P 28
II.4 Doubling a point P on an Elliptic curve. 29
II.5 Doubling P (x, y) when y = 0 . 29
II.6 Elliptic curve scalar multiplication kP , for k = 6 and for the elliptic

curve y2 = x3 − 3x + 3 . 30
II.7 Points for the elliptic curve y2 + xy = x3 + g4x2 + 1 over GF(24) . 34
II.8 Diffie-Hellman protocol for key exchange 37
II.9 Variant of Diffie-Hellamn for Elliptic Curves. 37
II.10 A general digital signature scheme 38

III.1 General structure for a block cipher 43
III.2 Same resources for 2,3,4-in/1-out Boolean logic in FPGAs 46
III.3 3 approaches for the implementation of S-Box in FPGAs. 47
III.4 Permutation operation in FPGAs. 47
III.5 Shift operation in FPGAs. 48
III.6 Iterative design strategy. 48
III.7 Pipeline design strategy. 49
III.8 Sub-pipeline design strategy. 49
III.9 DES Algorithm . 51
III.10 Design flow . 56
III.11 2-bit multiplixer using (a) Tristate Buffer. (b) LUT 58
III.12 DES implementation on FPGA . 60

xix

III.13 Functional simulation . 61
III.14 Timing verification . 61

IV.1 Basic structure of Rijndael algorithm. 67
IV.2 Basic algorithm flow. 67
IV.3 BS operates at each individual byte of the state matrix 68
IV.4 ShiftRows operates at rows of the state matrix 70
IV.5 MixColumns operates at columns of the state matrix 70
IV.6 ARK operates at bits of the state matrix 71
IV.7 S-Box and Inv. S-Box using same look-up table 73
IV.8 Basic organization of a block cipher 79
IV.9 KGEN architecture . 81
IV.10 Key schedule for an encryptor core in iterative mode 81
IV.11 Key schedule for a fully pipeline encryptor core 82
IV.12 Key schedule for a fully pipeline encryptor/decryptor core 82
IV.13 Key schedule for a fully pipeline encryptor/decryptor core with

modified IMC . 83
IV.14 Iterative approach for AES encryptor core 83
IV.15 Fully pipeline AES encryptor core 84
IV.16 S-Box and Inv S-Box using (a) different MI (b) same MI 85
IV.17 Data path for encryption/decryption 86
IV.18 Block diagrm for 3-stage MI manipulation 87
IV.19 Three-stage to compute multiplicative inverse in composite fields. . 87
IV.20 GF (22)2 and GF (22) multipliers. 87
IV.21 Gate level implementation for x2 and λx. 87
IV.22 AES algorithm encryptor/decryptor implementation 88
IV.23 The data path for encryptor core implementation 89
IV.24 The data path for decryptor core implementation 89

V.1 Hierarchical Model for Elliptic Curve Cryptography 96
V.2 m = 2kn-bit Karatsuba-Ofman multiplier. 99
V.3 Binary Karatsuba-Ofman strategy 101
V.4 m-bit binary Karatsuba-Ofman multiplier. 101
V.5 Karatsuba Multiplier GF (2191) . 102
V.6 Squaring Circuit . 103
V.7 Reduction Diagram . 105
V.8 An Algorithm for multiplicative inversion using addition chains . . 107
V.9 Squarer GF(2193) (a) for x21

(b) for x2n
implementation 108

V.10 Doubling & Add algorithm for Scalar Multiplication: MSB-First . . 110
V.11 Doubling & Add algorithm for Scalar Multiplication: LSB-First . . 110
V.12 Montgomery point doubling . 112
V.13 Montgomery point addition . 113
V.14 Montgomery point multiplication 114
V.15 Standard Projective to affine coordinate 115

V.16 Basic organization of elliptic curve scalar implementation 116
V.17 Implementation of Scalar Multiplication on FPGA platforms 117

Acronyms

AES Advanced Encryption Standard
AF Affine Transformation
ANSI American National Standard Institute
API Application Programming Interface
ARK Add Round Key
ASIC Application Specific Integrated Circuit
ATM Automated Teller Machine
BRAMs Block Rams
BS Byte Substitution
CLB Configurable Logic Block
CPU Central Processing Unit
DES Data Encryption Standard
DSP Digital Signal Processing
ECC Elliptic Curve Cryptography
ECDSA Elliptic Curve Digital Signature Algorithm
ECDLP Elliptic Curve Discrete Logarithmic Problem
ETSI European Telecommunications Standards Institute
FLT Fermat’s Little Theorem
FPGAs Field Programmable Gate Arrays
GSM Global System for Mobile Communications
HDLs Hardware Description Languages
IAF Inverse Affine Transformation
IARK Inverse Add Round Key
IBS Inverse Byte Substitution
IL Iterative Looping
IMC Inverse Mix Column
IOBs Input/Output Blocks
IPSec Internet Protocol Security
ISO International Organization for Standardization
ISR Inverse ShiftRow
ITMIA Itoh-Tsujii Multiplicative Inverse Algorithm
ITU International Telecommunication Union
LAN Local Area Network
LC Logic Cell

xxiii

LUT Look-Up Table
MAN Metropolitan Area Network
MC MixColumn
MI Multiplicative Inverse
ModM Modification for MixColumn
NIST National Institute of Standard Technology
PDAs Personal Digital Assistants
Soc System-on-Chip
SR Shift Row
VDSL Very high speed Digital Scriber Lines
VHDL Very high speed integrated circuit Hardware Description Language
VLSI Very Large Scale Integrated circuits
WAP Wireless Application Protocol

Chapter I

Introduction

This chapter presents a complete outline for this thesis. It introduces the basic
concepts of cryptography, fundamental operations in cryptographic algorithms and
some important cryptographic applications in the industry. Alternatives for the im-
plementation of cryptographic algorithms on various software and hardware plat-
forms are discussed. This chapter explains also the research goals for this thesis, the
chosen methodology to achieve those goals, and a summary of our contributions on
this thesis work. The dissertation presentation is provided at the end.

I.1 Introduction

In this information age, the need for protecting information is more pronounced
than ever. Secure communication for the sensitive information is not only compelled
to military or government institutions but also to the business sector and private
individuals. Already the exchange of sensitive information, such as bank transac-
tions, credit card numbers over the Internet and telecommunication services are now
common practices. As the world becomes more connected, the dependency on the
electronic services has been amplified. For protecting data in computer and commu-
nication systems from unauthorized disclosure and modification, non-interceptable
means for data storage and transmission must be adopted. A cryptographic cipher
system is one such possible system, which can hide the actual contents of every mes-
sage by transforming (enciphering) it before transmission or storage. The techniques
needed to protect data belong to the field of cryptography.

Cryptography is the study of mathematical techniques related to aspects of in-
formation security such as confidentiality, data integrity, entity authentication, and
data origin authentication [56], which can be defined as follows:

• Confidentiality: It is a service used to keep the content of information from
all but those authorized to have it. When two or more parties are involved

1

I. Introduction

in a communication, the purpose of confidentiality is to guarantee that only
those parties can understand the data exchanged. Confidentiality is enforced
by encryption.

• Data integrity: It is a service which addresses the unauthorized alteration
of data. This property refers to data that has not been changed, destroyed, or
lost in an unauthorized or accidental manner.

• Authentication: It is a service related to identification. This function applies
to both entities and information itself. Two parties entering into a communi-
cation should identify each other. Information delivered over a channel should
be authenticated as to origin, date of origin, data content, time sent, etc. For
these reasons this aspect of cryptography is usually subdivided into two ma-
jor classes: entity authentication and data origin authentication. Data origin
authentication implicitly provides data integrity.

• Non-repudiation: It is a service which prevents an entity from denying pre-
vious commitments or actions. For example, one entity may authorize the
purchase of property by another entity and later deny such authorization was
granted. A procedure involving a trusted third party is needed to resolve the
dispute.

In cryptographic terminology, the message is called plaintext. Encoding the con-
tents of the message in such a way that hides its contents from outsiders is called
encryption. The encrypted message is called the ciphertext. The process of retrieving
the plaintext from the ciphertext is called decryption. Encryption and decryption
usually make use of a key, and the coding method use this key for both encryption
and decryption. Once the plaintext is coded using that key then the decryption can
be performed only by knowing the proper key.

Cryptography falls into two important categories: secret and public key cryp-
tography. Both categories play their vital role in recent cryptographic applications.
For several crucial applications, a combination of both the secret and public key
methods is indispensable.

I.1.1 Secret key cryptography

Secret or symmetric key cryptography makes use of the same key for encryption
and decryption (or the decryption key is easily derived from the encryption key) as
shown in Figure I.1.

Both encryption and decryption keys (or sometimes same keys) are kept secret
and must be known at both ends to perform encryption or decryption. Symmetric
algorithms are fast and are used for encrypting/decrypting high volume data. All of
the classical (pre-1970) cryptosystems are symmetric. The most popular symmetric
cryptosystem is DES (Data Encryption Standard) which is widely used as TripleDES
(a variation of DES) in the world. On October 2000, a new symmetric cryptographic

2

I.1. INTRODUCTION

Figure I.1. Secret key cryptography

algorithm ‘Rijndael’ was chosen as a new Advanced Encryption Standard (AES) [24]
by NIST (National Institute of Standards and Technology) [65]. Due to its enhanced
security level, it is replacing DES and TripleDES in a wide range of applications.
Symmetric algorithms can be divided into stream ciphers and block ciphers.

• Stream ciphers: A stream cipher is a type of symmetric encryption algo-
rithms in which the input data is encrypted one bit (sometimes one byte) at a
time. They are sometimes called state ciphers since the encryption of a bit is
dependent on the current state. Some examples of stream ciphers are SEAL,
TWOPRIME, WAKE, RC4, A5 etc.

• Block ciphers: A block cipher takes as an input a fixed-length block (plain-
text) and transform it into another block of the same length (ciphertext) under
the action of a user-provided secret key. Decryption is performed by apply-
ing the reverse transformation to the ciphertext block using the same secret
key. Modern block ciphers typically use a block length of 128 bits. The official
block length for Rijndael is 128 bits however the algorithm can process block
sizes 192 and 256 bits. Other famous block ciphers are Serpent, RC6, MARS,
IDEA, Twofish etc.

I.1.2 Public key cryptography

Asymmetric algorithms use a different key for encryption and decryption, and the
decryption key cannot be easily derived from the encryption key. Asymmetric algo-
rithms use two keys known as public and private keys as shown in the Figure I.2.

The public key is available to everyone at the sending end. However a private
or secret key is known only to the recipient of the message. An important element
to the public key system is that the public and private keys are related in such
a way that only the public key can be used to encrypt messages and only the
corresponding private key can be used to decrypt them. The most popular public-
key algorithms are RSA (based on factoring large numbers), ElGamal (based on

3

I. Introduction

Figure I.2. Public key cryptography

discrete log problem) and McEliece (based on error correcting codes). Elliptic curve
cryptography is now popular due to the fact that it offers the same security level
as offered by other contemporary algorithms at a shorter key length. It is based on
elliptic curve addition operation.

I.2 Fundamental operations for cryptographic algorithms

Symmetric or secret key cryptographic algorithms are based on well-understood
mathematical and cryptographic principles. The most common primitives encoun-
tered in various cryptographic algorithms are permutation, substitution, rotation,
bit-wise XOR, circular shift etc. This is one of the reasons for their fast encryption
speed. On the other hand, asymmetric or public key cryptographic algorithms are
based on mathematical problems difficult to solve. The most common primitives
in various such type of algorithms include modular addition/subtraction, modu-
lar multiplication, variable length rotations etc. Those primitives give algorithmic
strength but they are hard to implement: occupy more space and consume more
time. Therefore those algorithms are not used to encrypt large data files and are
applied to other important cryptographic applications like key exchange, signature,
verification etc. A detail survey has been conducted by [21] to identify the basic op-
erations involved in several cryptographic algorithms. That survey has been slightly
updated as shown in Table I.1.

From Table I.1, it is clear that most cryptographic algorithms mainly include
bit-wise operations like XOR, AND/OR etc. These operations provide simple logic
in general on all the platforms. However they are well suited for their implementa-
tion on hardware platforms. Long word length for the cryptographic algorithms is
another characteristic, which is recommended by various international standards to
attain sufficient security against brute force attacks. Brute force attacks are based on
exhaustive search for all possible key combinations to determine the original key. As
a simple example, a 4-bit word can provide a maximum of 24 = 16 combinations. The

4

I.3. POTENTIAL CRYPTOGRAPHIC APPLICATIONS

Modular addition or Blowfish, CAST, FEAL,GOST, IDEA, WAKE
subtraction RC5, RC6, TEA, SAFER K-64, Twofish, RC4

SEAL, TWOPRIME
Bitwise XOR Blowfish, CAST, DEAL, TWOPRIME, FEAL, A5

IDEA, GOST, RC4, RC5, SAFER, SEAL, Twofish
DES, WAKE, LOKI97, LOKI91, Rijndael, MISTY
TEA, MMB, RC6, K-64

Bitwise AND/OR MISTY
Variable-length rotations CAST, Madryga, RC5, RC6
Fixed-length rotations DEAL, DES, CAST, FEAL, GOST, Serpent, RC6

Twofish
Modular multiplication CAST, IDEA, RC6, MMB, Rijndael,
Substitution Blowfish, DEAL, DES, LOKI91, LOKI97, Twofish

Rijndael
Permutation DEAL, DES, ICE, LOKI91, LOKI97
Non-circular shifts Serpent, TEA

Table I.1. Primitives of cryptographic algorithms (symmetric ciphers)

recommended word length for the modern block ciphers is no less than 80-bits [65].
The new Advance Encryption Standard (Rijndael) can support a word length of
128, 192 and 256 bits. For public key cryptographic algorithms like Elliptic curve
cryptography, the minimum key length is 160 bits according to the recommendation
by the international standards [14, 73]. For RSA a 1024-bit key length is normally
used. The long key/world length of cryptographic algorithms restrict parallel flow
of the data on 8, 16, 32-bit general-purpose processors resulting on high time delays
for the execution of crypto algorithms. This is not the case for hardware implemen-
tations. For example, in FPGAs, more than 1000 input/output pins are available
for their use either input or output allowing high parallelism of data. To confuse the
relationship between input and output, cryptographic algorithms perform a number
of iterations on the same input data block for one encryption. DES performs 16
iterations or rounds and AES support 10, 12, and 14 rounds depending on the word
length. In software, all iterations are performed sequentially while in hardware, all
rounds can be implemented in a parallel way ensuing significant improvements in
timings. Those features in cryptographic algorithms well suit for their implementa-
tions on hardware platform resulting high-speed architectures for them.

I.3 Potential cryptographic applications

Many multinational firms now sell security products using cryptographic algorithms.
Those products are in use by military or government organizations and they play
a vital role in secure communications between individuals, small and large busi-

5

I. Introduction

ness groups. A wide range of applications including networking, e-commerce, and
telecommunication, must be protected against security risks due to heavy losses
of useful information. It is a great risk now to send valuable information on inse-
cure/open channels. Big industrial organizations including Microsoft, IBM, Motorola
and Hewlett Packard have been integrating security modules in their products. A few
examples of the security products in use by the public sector are Secure telephones:
CipherTAC 2000 by Motorola [63], CSD 4100 by TCC [96], Video conferencing:
Sony PCS-1, INTROFIGC-II [93], Polycom VSX 3000, V500 [1], Cellular phone:
Nokia 6225, 6600 [2], Ericcson T310, T230, T610 [3]. Various international orga-
nizations have been working in developing standards for determining security and
speed of those products. Examples include standards for video conferencing: H310,
H323, H324 by ITU [4], for mobile communications: GSM by ETSI [5], for wireless
LANs: 802.11a, 802.11b by IEEE LAN/MAN Committee [6]. Numerous useful ac-
tivities for the strength of security using cryptographic algorithms can be observed
in the world. Fast and strong cryptographic algorithms have been developed. The
selection of the new Advance Encryption Standard (AES) ‘Rijndael’ and the inclu-
sion of Elliptic curve cryptography (ECC) in international standards provide such
examples.

Potential applications for cryptographic algorithms can be classified into two
categories [64].

1. Processing of large amount of data at real time potentially in a high speed
network. Examples include telephone conversation, telemetry data, video con-
ferencing, streaming audio or encoded video transmissions and so forth.

2. Processing of very small amount of data at real time in a moderately high-
speed network transmitted unpredictably. Examples include e-commerce or
m-commerce transactions, credit card number transmission, choice of spe-
cific item to order, order placement with signature, bank account information
extraction, making e-payment, and micro-browser-based (WAP-style) HTML
page browsing and so forth.

A short list of the candidate applications corresponding to category 1 are pre-
sented in Table I.2. These are so called ‘highly efficient’ application requiring high
data rates. Table I.2 presents both the downstream and upstream data transfer
ranges on VDSL (Very high speed Digital Subscriber Line) [7, 12]. The downstream
defines transmission of line terminal toward network terminal (from customer to net-
work premise) and upstream in the reverse direction, that is, from network terminal
to line terminal (from network to customer premise).

Table I.2 can help to mark a line between high speed (highly efficient) and
low speed (slow or relatively less speed) applications. The data rates for highly
efficient applications ranges from 384Kbps to 24Mbits for upstream and 64Kbps
to 3Mbps for the downstream traffic. From Table I.2, the applications requiring a
speed factor of less than 400Kbps can be grouped as low speed applications. Those
applications require either stand-alone software implementations of cryptographic

6

I.4. ALTERNATIVES FOR IMPLEMENTING CRYPTOGRAPHIC
ALGORITHMS

Application Upstream Downstream
Distance learning 384Kbps-1.5Mbps 384Kbps-1.5Mbps
Telecommuting 1.5Mbps-3.0Mbps 1.5Mbps-3Mbps
Multiple digital TV 6.0Mbps-24.0Mbps 64Kbps-640Kbps
Internet Access 400Kbps-1.4Mbps 128Kbps-640Kbps
Web hosting 400Kbps-1.5Mbps 400Kbps-1.5Mbps
Video conferencing 384Kbps-1.5Mbps 384Kbps-1.5Mbps
Video on demand 6.0Mbps-18Mbps 64Kbps-128Kbps
Interactive video 1.5Mbps-6.0Mbps 128Kbps-1.5Mbps
Telemedicine 6.0Mbps 384Kbps-1.5Mbps
High-definition TV 16Mbps 64Kbps

Table I.2. A few potential cryptographic applications

algorithms or using software methods on embedded processors. High speed or highly
efficient applications therefore reside in the range from 400Kbps onward. Software
methods on general-purpose processors cannot achieve such a high frequency gains
for cryptographic algorithms. High speeds above 400Kbps can easily be achieved
on hardware platforms. The implementations of cryptographic algorithms on both,
the classical (ASICs) and reconfigurable (FPGAs) types of hardware platforms can
achieve a throughput factor in the order of Gbits/s.

I.4 Alternatives for implementing cryptographic algorithms

The implementation approaches for cryptographic algorithms are based on the ques-
tion: what needs to be secured? Low speed or moderately high speed network where
very small amount of bit traffic is to be processed unpredictable and in real time,
can be implemented in software. Usually this is done by developing software pack-
ages for Pentium class PCs. Cryptographic products in software by Certicom [20]
for the protection of e-mail (movianMail) and data storage for mobile devices (mo-
vianCrypt) are such examples. For small sized applications like wireless devices, the
implementation can be made in the device’s main CPU, usually via some single-
on-chip (SoC) variation around an ARM (ARM1026EJ-S, ARM926EJ-S, etc from
ARM Limited) or MIINTROFIG (MIINTROFIG64, MIINTROFIG32, etc. from MI-
INTROFIG Technologies, Inc.) processor. If the information needs to be encrypted
by 3DES or by Rijndael, it can be done in software using embedded processors. The
encryption routine will be used in a small part of the whole day; it will not affect
the economics and speed of the design.

High-speed network where large amount of data traffic is to be processed in un-
predictable and in real time are not supposed to be a good candidate for software
implementations as data is coming at significant line speeds and must be treated in
real time. Examples of such situation include telephone conversation, video confer-

7

I. Introduction

encing, streaming audio or encoded video transmissions and so forth. VLSI solutions
might be a suitable choice if the architecture prevent buffer overflow performing full
processing before the next incoming piece of data is presented at the input. VLSI
implementations on the other hand take considerable time from high-level specifi-
cations to final prototype resulting high fabrication cost although cost per unit is
low.

The big challenge is in the design domain where the data flow rate is significant,
the available time to get the job done is short, and the available computational
resources are limited. Software on general-purpose processors (CPU or DSP) would
not solve the problem. If software is not the solution the alternative is hardware.
Hardware solutions on VLSI can accommodate high data rates but they take long
development cycle for the application. Any change or modification in the design is a
difficult or even impossible task. The design size becomes a bottleneck when it does
not fit for small sized applications like handheld devices. However, a hardware plat-
form, which overcomes the difficulties of VLSI solutions and accommodates high
data flow in considerable short time, is reconfigurable hardware. Reconfigurable
devices like FPGAs (Field Programmable Gate Arrays) provide fast solutions in
short time with high degree of flexibility and low cost. Table I.3 presents a quick
comparison of reconfigurable logic to software and VLSI based solutions. Software

Software VLSI FPGAs
Size small (depends) big small
Cost low high cost low cost
Speed low Very high high
Memory fine fine fine
Flexibility highly flexible no flexibility highly flexible
Time-to-market short very high short
Power consumption depends low not too low
Testing/Verification easy difficult easy
Run-time configuration none none yes

Table I.3. Comparison between Software, VLSI, and FPGA platforms.

implementations are low cost, easy to debug, take short time cycle but are slow.
VLSI implementations are very fast but their application development cycle is too
large and also they are not flexible. Reconfigurable devices are fast, highly flexi-
ble, easy to debug and take small developing cycle offering cost effective solutions.
In the rest of this subsection a short introduction to reconfigurable computing is
presented followed by its advantages/disadvantages for implementing cryptographic
algorithms.

8

I.4. ALTERNATIVES FOR IMPLEMENTING CRYPTOGRAPHIC
ALGORITHMS

I.4.1 Reconfigurable computing

Reconfigurable computing (custom computing) denotes the use of reconfigurable
hardware to speed-up execution of software. Field programmable gate arrays (FP-
GAs) are considered reconfigurable devices as they can be configured at run time.
In other words, the design of the hardware may change in response to the demands
placed upon the system while it is running. Faster programming times permit dy-
namic design swapping: a single FPGA performs a series of tasks in rapid succession,
reconfiguring itself between each one. Such designs operate on a time sharing mode
and swap between successive configurations so rapidly that it appears as FPGA is
performing all its functions at once.

An FPGA is an integrated circuit that belongs to a class of programmable de-
vices and consists of thousands of building blocks, known as Configuration Logic
Blocks(CLB) connected through programmable interconnections as shown in Fig. I.3.
These CLBs can be reconfigured by the designers themselves resulting a function-
ally new digital circuit. A CLB can be configured into two modes: logic mode and

Figure I.3. Basic architecture of an FPGA

memory mode. As shown in Fig. I.4, in logic mode, each of these elementary units
consists of a combinational logic block and a one bit register. Those combinational
logic blocks can be reprogrammed to any combinational logic function like XORs,
ANDs, etc. In memory mode, combinational logic is replaced with two small piece
of memory blocks. Normally, each CLB contains two small functional units (slices)
but strictly speaking its exact architecture depends upon the family of FPGA de-
vices. Modern FPGAs offer four slices packed into one CLB. The functionality and
quantity of a CLB are defined by the manufacturer specifications. There exist var-
ious families and manufacturers of FPGA’s devices, the most famous are Virtex,
Spartan (Xilinx), FLEX, APEX (Altera), ACT (Actel), pASIC (QuickLogic), LCA

9

I. Introduction

Figure I.4. CLB configuration modes

(Logic Cell Array) and ORCA (Lucent). In recent years, huge developments have
been shown in FPGA technology. Modern FPGAs operate at more than 400 MHz
internal clock with a gate complexity of over than 8 Million gates in a single chip
FPGA (Virtex-II). The improvements in technology are not only limited to increase
number of logic gates but also to the addition of many functional blocks like fast
access memories, multipliers and even some FPGA’s families include PowerPCs in-
tegrated with the single chip. The Virtex-II family of devices for example, include
up to four IBM processors @125MHz, up to 8 Mbits embedded memory, and up to
168 (18× 18) multipliers.

I.4.2 Advantages/disadvantages of reconfigurable computing

Using reconfigurable hardware for cryptographic algorithms is beneficial in several
ways:

• Most of the cryptographic algorithms especially symmetric ciphers contain
bit-wise logic operations well suited to FPGA CLB structure.

• In Section I.2, it was mentioned the iterative nature of most cryptographic
algorithms. An iterative looping design (IL) implements only one round and
n iterations of the algorithm are carried out by feeding back previous round
results. For a high speed network, instead of implementing one round, n rounds
of the algorithm are replicated and registers are provided between the rounds
to control the flow of data, called loop unrolling or pipeline (PP) approach.
Reconfigurable FPGA logic is useful for both design strategies due to its high
speed and high-density features.

• Substitution is the fundamental operation in most block ciphers like DES or
Rijndael which make use of lot of memory resources. Using pipeline design
strategies, the memory requirements become significant. Fortunately modern
FPGA families like Virtex series device are equipped with more than 280 built-
in memory blocks 4K each, called BlockRams (BRAM). A dual port BRAM

10

I.5. RESEARCH GOALS

can be configured into two single port BRAMs with independent and fast data
access, that is, read or write operations can be executed independently at each
port. Only the simultaneous write operation at the same location is prohibited.

• At the same time, in several contexts, designers use reconfigurable FPGA logic
to implement in the same hardware both the public key algorithm for the gen-
eration and secure exchange of key and the private key algorithm traditionally
used in the bulk encryption of the underlying traffic.

• The usage of different cryptographic algorithms for various applications faces
several compatibility issues. A dynamic configuration for any cryptographic
algorithm on FPGA is a practical solution to this problem.

• FPGA devices are ideal for debugging of a design, specially if the synthe-
sized hardware description can be mapped by the design team from an FPGA
domain to ASIC.

• The ease of integration into larger platform and the straightforward modifica-
tion in the architecture are worthwhile advantages over FPGA platform, es-
pecially in government communications where versatility, flexibility and func-
tionality in many cases are of primary importance, as opposed to cost or power
consumption.

Reconfigurable logic offers numerous useful advantages, however use of FPGA
devices in inexpensive consumer-oriented devices like wireless PDAs and handsets
seems to be difficult at this moment. The physical size, high power consumption and
expansive price tag are some of the distressing elements. Some recent models however
can easily be integrated into very high seed communication systems. FPGA devices
obviously can be contemplated on large wireless systems, big (transportable or not)
transmitters and receivers, repeaters, spectrum scanning devices, and intelligent
equipment.

I.5 Research goals

The choice of reconfigurable logic as a target platform for the implementations of
cryptographic algorithms appears to be a practical solution for small sized and
high-speed applications. One of the reasons could be the well suitability of the basic
operations in cryptographic algorithms on FPGA structure. It was therefore planned
to look for the possibilities of high-speed cryptographic solutions on reconfigurable
hardware platform. Theoretically, it looks feasible. This thesis however investigates
practical issues of cryptographic solutions. High-speed solutions on cryptographic
applications where speed factor is indispensable and the cost is of secondary concern.
Acceptable cryptographic solutions to those applications where high speed is desired
but cost is also an important factor. Low cost cryptographic solutions where speed
factor is not so strict. Both efficient and cost effective solutions of cryptographic al-
gorithms are desired on reconfigurable logic platform. The term ‘efficient’ is normally

11

I. Introduction

referred to ‘high speed’ solutions. In this thesis however it is not only meant a high
speed but also a low area (hardware resources) solution. The problem is therefore
to find high speed and low area implementations of cryptographic algorithms using
reconfigurable logic devices. That implies careful considerations to cryptographic
algorithms whether they are from secret or public key domain, which often will lead
to suggest/modify the standard transformations of those algorithms. That also im-
plies a deep knowledge of the target device: device structure, device resources, and
device suitability to the given task. The design techniques and the understanding of
the design tools are also included in the implications imposed by efficient solutions.
An optimized cryptographic solution will be the one for which every step from its
high level specifications to physical prototype is carefully examined.

Efficient implementations of cryptographic algorithms on reconfigurable hard-
ware was the main goal of this research. A set of three of the most important cryp-
tographic algorithms from both symmetric and asymmetric cryptography had been
selected for their implementation on reconfigurable logic devices. Those algorithms
are Data Encryption Standard (DES), Advance Encryption Standard (AES) from
symmetric ciphers and Elliptic Curve Cryptography (ECC) from asymmetric cryp-
tosystems. Several considerations were made to achieve high speed and economical
(using minimum hardware resources) implementations of those algorithms on recon-
figurable logic platform. One of them was to exploit high bit-level parallelism where
and whenever it was possible. Similarly, good designing techniques well mapped to
the structure of the target devices and the features of the design tools for optimizing
the circuit for speed and area, were also addressed in this thesis. Some specific tasks
for the three chosen cryptographic algorithms are described below.

DES was the first algorithm studied in this thesis. The basic primitives involved
in block ciphers specifically for DES were analyzed for their implementations on
reconfigurable logic platform. A high-speed one round FPGA implementation of
DES was carried out exploiting high bit-level parallelism. The experiments were
made for optimizing an FPGA architecture with respect to both hardware area
and speed. Expertise in design tools and techniques were the other benefits for
implementing other cryptographic algorithms on reconfigurable devices.

A more detailed study was planned regarding AES due to its importance for the
current security needs in the industrial and non-industrial units. Each step of the al-
gorithm was investigated looking for improvements in the standard transformations
of the algorithm and for an optimal mapping to the target device. Both, iterative
and pipeline approaches for encryption were used for AES FPGA implementation.
The encryptor/decryptor cores using both the look-up table method and on-fly ar-
chitecture schemes were optimized for the FPGA implementation of AES. It was
attempted to reduce the critical paths for encryption/decryption by sharing com-
mon resources or optimizing the standard transformations of the algorithm. Several
high speed and economical AES encryptor and encryptor/decryptor cores were the
contributions for this thesis.

ECC is a public key cryptographic scheme, which is widely accepted by aca-

12

I.6. METHODOLOGY

demic and industrial organizations for its shorter key length as compared to others
contemporary algorithms providing the same security level. A three-layer model for
ECC implementation is normally adopted. First layer deals with the implementa-
tions of finite field arithmetic in GF(2m): squaring, multiplication, and reduction
in GF(2m). Second layer makes use of those building blocks to implement elliptic
curve arithmetic in GF(2m): point addition and point doubling. The third layer im-
plements elliptic curve scalar multiplication which is achieved by adding n copies
of the same point P on the curve. Both the point addition and doubling operations
from the second layer serve as building blocks for the third layer. In this thesis,
ECC implementation on reconfigurable logic platform was addressed using paral-
lel techniques for all the three layers. Efficient building blocks were obtained for
finite field arithmetic in GF(2m) on FPGAs. Some parallel strategies were devised
for the best use of those building blocks to execute point addition and doubling
operations. A generic architecture for the elliptic curve scalar multiplication was
proposed and implemented on FPGA platform. Achieved results improve previous
FPGA implementations of elliptic curve scalar multiplications.

I.6 Methodology

Achieving high-speed implementations for cryptographic algorithms is an exciting
job requiring deep considerations at every stage of the design. Our methodology
for this investigation is therefore not only based on the best implementing tech-
niques on reconfigurable platform but also in contributing on the theoretical side
by improving the standard transformations of cryptographic algorithms. The key
idea in this methodology is to adopt parallel approaches while designing or working
on the algorithms occupying minimum possible hardware resources for the designs.
Important considerations in our methodology to achieve high speed and low area
architecture for cryptographic algorithms are:

I.6.1 Parallelism at algorithm level

Secret-key ciphers provide standard transformation for encryption/decryption. One
of the crucial points in our methodology is to search for those operations, which can
be executed in a parallel way. There is a possibility to modify the standard trans-
formation of the algorithms. It is also possible to manipulate the standard trans-
formations using different methods. The manipulation of AES S-Box [24] in GF(2)4

instead of GF(2)8 is one example. In public-key ciphers most common operations
are squaring, doubling, multiplication or inversion. Those arithmetic operations are
normally not bound to a particular algorithm. A general or fast algorithm could be
adopted or modified by the designer.

I.6.2 Parallelism at design level

The design of a cryptographic algorithm could be more efficient when it is optimized
to a special platform (VLSI or FPGA) or a special device (Virtex, Spartan devices,

13

I. Introduction

etc.). Number of design tools in the market now offers multiple platform selection
(VLSI or FPGA). The circuit designed using any method (hardware description
language, etc.) can be mapped to VLSI or FPGAs (Synopsis 7.0). However the
design optimization to a particular platform either VLSI or FPGA might produce
good results. For example, each Virtex CLB consists of two functional units with
4-input/1-output configuration as shown in Fig. I.4. That shows an optimal use
of CLB slices if the design logic is well mapped to 4-input/1-output configuration
mode. The expression Z = A⊕B⊕C⊕D consists of four inputs A, B, C, D and one
output, Z. The same expression can be manipulated by combination of two inputs
i-e X = A ⊕ B, Y = X ⊕ C, and Z = Y ⊕ D. The output is the same for both
of them, however, first expression well maps to CLB structure and occupies just
half slice as compared to second expression, which utilizes one and half slices. These
peculiarities have no importance in VLSI as 2,3, or 4-input/1 output gates do not
occupy equal resources.

I.6.3 Design strategies

Various design strategies are used for the implementation of a typical secret-key
cipher. An iterative looping design (IL), implements only one round and n itera-
tions of the algorithm are carried out by feeding back previous round results as
shown in Figure I.5a. It utilizes less area but consumes more clock cycles resulting
on a relatively low speed encryption. Architecture with loop unrolling is shown in
Figure I.5b. In a loop unrolling or pipeline design (PP), rounds are replicated and
registers are provided between the rounds to control the flow of data. The design
offers high speed but area requirements are too high. Figure I.6a shows an inner-

Figure I.5. Basic architectures for (a) iterative looping (b) loop unrolling

round pipelining architecture where extra registers are provided at different stages
of the same round in such a way that several blocks of data can be processed by
the circuit at the same time. High speed circuit results at the cost of more hard-
ware resources in the form of registers. Outer-round pipelining is created by loop

14

I.7. DESIGN STATISTICS OF AN FPGA ARCHITECTURE

unrolling by adding extra registers at different stages of the same round as shown
in Figure I.6b. It enables to directly trade circuit speed with the circuit area.

Figure I.6. Round-pipelining for (a) one round (b) n rounds

It was already pointed out that high-speed and economical circuits (less area)
would be targeted to this investigation. Both the iterative and pipeline architectures
would be optimized for the implementation of secret-key ciphers. Public key algo-
rithms exhibit different nature. They do not have rounds however they maintain a
hierarchical setup. It is possible to exploit parallelism at the different stages of the
hierarchal model.

I.6.4 Design tools

An intelligent use of the design tools is considered useful in our methodology for
better performances. The design tools (Xilinx Foundation Series, Synopsis, etc.)
provide several useful features for the improvements of the design. Better placement
of the components or better routing of the tracks can obviously be helpful in cutting
net delays in the circuit. This is the reason that some of the design tools in the market
claim to provide more efficient circuits.

I.7 Design statistics of an FPGA architecture

Although the basic structure of FPGAs is the same, FPGA manufacturers provide
diverse features for their devices. Those features include 1, 2 or 4 slices within a
CLB, built-in additional logic or memory modules. It will be therefore useful to
understand the architectural description of the target device. In this thesis, Virtex
series devices are mainly used. The architectural description is therefore provided
for Virtex family of devices. That will help in defining the basic parameters used for
describing the performance of an FPGA architecture.

15

I. Introduction

I.7.1 Architectural description of the target device

FPGAs comprise two major configurable elements: configurable logic blocks (CLBs)
and input/output blocks (IOBs). CLBs provide the functional elements for constructing

Figure I.7. VirtexE architecture overview.

Logic and IOBs provide the interface between the package pins and the CLBs. FP-
GAs come from different vendors but the basic CLB structure remains the same.
High density FPGAs contains large number of CLBs and IOBs. Some families of
FPGA devices offer additional logic such as built-in multipliers and memory modules
and even some of them include power microprocessors. We used Virtex-E devices for
our FPGA implementations in this thesis. A brief discussion is therefore provided
explaining the internal structure for Virtex-E family of devices. It would be helpful
for the understanding of design statistics for an FPGA architecture.

An overview of VirtexE architecture is shown in Figure I.7. As shown in Fig-
ure I.7, VirtexE FPGAs occupy a separate space for BRAMs in addition to the
space occupied by CLBs and IOBs. BRAMs (Block Selected RAMs) are built-in
memory modules in Virtex Series devices. Virtex series devices contain more than
280 BRAMs, each of 4096 bits.

The basic building block of the Virtex-E CLB is the logic cell (LC). An LC
includes a 4-input function generator, carry logic, and a storage element (flip-flop)
as shown in Figure I.8.

Figure I.8. VirtexE Logic Cell (LC).

16

I.7. DESIGN STATISTICS OF AN FPGA ARCHITECTURE

Figure I.9. 2-Slices VirtexE Configuration Logic Block (CLB).

Each Virtex-E CLB contains four LCs, organized in two similar slices. Virtex-E
function generators are implemented as 4-input look-up tables (LUTs). In addition
to operating as a function generator, each LUT can provide a 16 x 1-bit synchronous
RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x
2-bit or 32 x 1-bit synchronous RAM, or a 16 x 1-bit dual-port synchronous RAM.
Figure I.9 shows the structure for a single VirtexE CLB.

Figure I.9 can help in understanding design statistics of an FPGA architecture.
Each VirtexE CLB contains 2 slices and each slice contains 2 LUTs, 2 Flip-Flops,
and some carry logic. As an example, Virtex XCV400e-8-bg560 contains 4800 slices,
9600 LUTs, and 9600 Flip-Flops in addition to 404 IOBs. It should be noted that
slices are often termed as, CLB slices and Flip-Flops as, slice Flip-Flops. Sometimes,
the specifications of an FPGA architecture are directly shown in terms of LUTs. To
calculate number of slices from LUTs, is complicated as design tools can map a
design occupying LUTs from different slices. Ideally, if all the LUTs of all the slices
were occupied by a design, the number of LUTs would be exactly double of the
number of slices.

I.7.2 Metrics to measure performance

Both area and throughput factors provide a measure for comparing different designs.
Their definitions are supplied to understand implementation results presented in the
next sections.

1. Area: The space occupied by the design is expressed in terms of CLB slices.
Some FPGAs contains other resources like BRAMs, multipliers, etc. If these

17

I. Introduction

resources are used in the design, it is important to mention those resources
because those are dedicated resources and do not occupy CLB slices. In case
they are not mentioned, it is difficult to justify the savings on space occupied
by a given design. The numbers of inputs/outputs are also mentioned in some
cases. The design is said to be economical if less space is occupied by it.

2. Throughput: Throughput is an important factor to measure timing perfor-
mances of the design. Throughput of the design is obtained by multiplying the
allowed frequency for the design with the number of bits processed per cycle.
For cryptographic algorithms, throughput is defined as:

Throughput = Allowed Frequency×Number of Bits
Number of rounds (bits/s)

The higher the throughput of a design is the better its efficiency.

3. Throughput/Area: It is the ratio of the above two figures of merits and
shows how efficient the design is with respect to both area and throughput.
The ratio is high in case of high throughput and less space.

I.8 Summary of contributions

This dissertation investigates the hardware (on reconfigurable logic devices) imple-
mentations of three important cryptographic algorithms: DES and AES (from secret
key cryptography) and ECC (public key cryptography). Those are highly optimized
implementations with respect to both area and time. However this thesis is not lim-
ited to the implementation work only but it contributes in the theoretical side too
by introducing modifications in the standard transformations of the said algorithms.
The thesis work therefore sums up optimizations for cryptographic algorithms due
to both theoretical and practical considerations. As a result high speed and econom-
ical implementations were obtained. In the rest of this Section, the contributions of
this investigation are explained with respect to chosen cryptographic algorithms.

• DES Algorithm

DES served a case of study for implementing block ciphers on reconfigurable
platform. The contributions of this work are as follows:

1. FPGA implementation of DES was made on Xilinx VirtexE device XCV400e-
8-bg. It is a one round implementation, which exploits high bit-level par-
allelism. The design occupies 165 (3%) CLB slices, 117 (1%) Slice Flip-
Flops, and 129 (2%) IOBs. The system runs at a frequency of 68.5 MHz
and achieves a throughput of 274 Mbits/s which is 10 times faster than
the fastest one round FPGA implementation of DES reported in the lit-
erature [103]. It is also an economical design occupying less than half of
the FPGA resources as compared to [103].

18

I.8. SUMMARY OF CONTRIBUTIONS

2. The basic primitives in block ciphers specifically for DES were deeply
studied. Some possible options were provided for the efficient implemen-
tation of those primitives on reconfigurable devices. The design proce-
dure for an FPGA architecture and some useful design tips were given
for the implementation of other block ciphers. The discussion made in
DES chapter would provide a general guideline for the implementation
of other block ciphers on reconfigurable platform.

• AES

Some efficient AES encryptor and encryptor/decryptor cores on FPGAs form
part of this thesis contribution. Those FPGA implementations were optimized
with respect to both area and time by introducing some modifications in the
standard transformation of AES and by using better design techniques for
FPGAs. A short description of our contributions about AES are presented
below:

1. AES Encryptor Core-Sequential Approach: It is one round single
chip FPGA implementation of AES on VirtexE XCV812 device. It takes
10 clock cycles for 10 AES rounds to complete one encryption (block
length = 128 bits). Also there is a 0 round which is simply an addition
of the plain text and the user-key. The design occupies 2744 (28%) CLB
slices and 385 (95%) IOBs. The system runs at 20.192 MHz and data is
processed at the rate of 258.5 Mbits/s. The core implements an iterative
looping approach by using the standard resources of an FPGA.

2. AES Encryptor Core-Pipeline Approach: It is a pipeline architec-
ture implementing all AES rounds on a single chip FPGA. The design
targets VirtexE XCV812 device occupying 2136 CLB slices, 100 Block
RAMs, and 385 (95%) IOBs. There is no initial delay as round keys are
generated in parallel making possible the encryption process from the
first clock cycle. The main characteristics of this design is a look up table
method for AES S-Box where the pre-computed values of the S-Box were
stored in the built-in memory modules of FPGA. The encryptor core
structure occupies 2136 CLB slices (22%) and achieves a throughput of
5.2 Gbits/s at the rate of 40.575 MHz. Both AES encryptor cores using
iterative looping (from the last step) and pipeline approach show a trade-
off between hardware area and time. The former occupies less hardware
resources consuming more time for one encryption. The later is a fast
architecture but the cost has been paid in terms of hardware resources.
Both AES encryptor cores produced promising results and were published
in [83, 82].

3. AES Decryptor Core: Encryption and decryption processes in AES are
not symmetrical. A separate decryptor core is therefore implemented on
FPGA to investigate the time differences for encryption and decryption.

19

I. Introduction

It is a single chip FPGA implementation using a pipeline architecture.
There is an initial delay of 11 clock cycles, as the round keys for decryption
are required to be stored in the reverse order before the decryption starts.
The design is implemented on VirtexE XCV812 device occupying 3216
CLB slices(34%), 100 BRAMs (35%), and 385 IOBs (95%). The decryptor
core achieves a throughput of 4.95 Gbits/s at the rate of 38.67 MHz. The
achieved throughput for the decryptor core is still less than the encryptor
core (5.2 Gbits/s) from the previous step and it consumes more FPGA
resources. In fact, it has been tried to minimize the decryption time by
introducing some modifications in the standard transformations of the
algorithm. The goal was achieved, as both the encryption and decryption
timings are now very close. This work was published in [80].

4. 1st AES Encryptor/Decryptor Core: This is a single chip FPGA
implementation of an encryptor/decryptor core using VirtexE XCV2600
device. The architecture explores various options for optimizing AES S-
Box for its implementation on FPGAs. AES S-Box can be implemented
using look-up table method where the pre-computed values are stored
in the memories. Some FPGA families like Virtex series devices con-
tain more than 280 memory modules each one of 4K bits. Those are
fast memories and can be used to speed up S-Box (substitution) opera-
tion. However most of FPGA families do not posses such a large number
of memory modules. An alternative could be on-fly architecture scheme
where the values for the S-Box are manipulated in each clock cycle. Both
approaches for AES S-Box were implemented. Also it has been observed
that there exist some common operations for an encryptor/decryptor
core. Those operations were implemented once and were shared for both
encryption and decryption. The encryptor/decryptor core using look up
table method is fast and achieves a throughput factor of 3840 Mbits/s by
consuming 5677 (22.3%) CLB slices and 80 (43%) Block RAMs. The en-
cryptor/decryptor core using on-fly architecture scheme is relatively slow
as it achieves throughput of 3136 Mbits/s and occupies 12270 (48%) CLB
slices but no Block RAMs. The achieved results for both architectures
improves similar FPGA implementations of AES and were published in
[84].

5. 2nd AES Encrytpor/Decryptor Core: This is an encryptor/decryptor
core which uses the look-up table method for the AES S-Box and then
focus on optimizing an other important operation known as MixCol-
umn/Inverse MixColumn (see Chapter 3). Normally both the MixColumn
for encryption and Inverse MixColumn for decryption are implemented
separately consuming more FPGA resources and producing long critical
paths. We introduced a modification for this architecture, which uses the
MixColumn step for both encryption/decryption and only a small trans-
formation is applied after MixColumn for decryption. That consumed less

20

I.8. SUMMARY OF CONTRIBUTIONS

FPGA resources and helped in reducing the critical paths for the circuit.
This AES encryptor/decryptor core occupies 80 BRAMs (43%), 386 I/O
Blocks (48%) and 5677 slices (22.3%) by implementing on Xilinx Vir-
texE FPGA devices (XCV812BEG). It uses a system clock of 34.2 MHz
and the data is processed at the rate of 4121 Mbits/sec. This is a fully
pipeline architecture optimized for both time and space that performs at
high speed and consumes less space. It was published in [75].

• ECC: Reconfigurable implementations of ECC conclude the third part of
this thesis. It has been explained earlier in Section I.5 that most important
operation in ECC is elliptic curve scalar multiplication or point multiplication,
which was implemented using a three-layer model: finite field arithmetic in
GF(2m), elliptic curve arithmetic in GF(2m), and point multiplication. The
efficiency of point multiplication therefore directly depends on the efficiency
of the bottom two layers. In this thesis, all three layers have been addressed.

1. Finite Field Arithmetic GF(2m). Finite field arithmetic in GF(2m) in
this thesis includes multiplication, squaring, inversion, and then reduc-
tion in GF(2m). Multiplication in GF(2m) is a costly operation which has
been implemented on FPGAs using binary Karatsuba-Ofman approach
(a variant of Karatsuba Multiplier). Some economical and efficient meth-
ods were devised for the FPGA implementation of squaring in GF(2m)
and for reduction. Inversion mainly includes a sequence of multiplication
operations, which was performed by using same building block for the
multiplier using binary Karatsuba-Ofman approach. The results of those
high speed implementations plus the estimations for the second and third
layers were published in [76].

2. Elliptic Curve Scalar Multiplication-Hessian form: As it was ear-
lier explained in Section I.5, elliptic curve scalar multiplications is the
most dominant operation in elliptic curve cryptography. For the second
and third layers, several parallel approaches were considered. An efficient
architecture for point multiplication using Hessian form of elliptic curve
was implemented. The group law (point addition & doubling) for the
Hessian form of elliptic curve allows maximum parallelism subject to the
availability of hardware resources. Two Karatsuba multipliers in GF(2191)
were used for the implementation of Hessian form of elliptic curve on FP-
GAs. The architecture was implemented on VirtexE XCV2600 which con-
sumed 18314 (56%) CLB slices and 24 (11%) BRAMs and computes scalar
multiplication in 114.71µS. Achieved results improve time factor for point
multiplication over the existing ECC FPGA implementations and were
published in [87]. An improved version of this work has been already
accepted as a book chapter published by Nova Science New York [86].

3. Elliptic Curve Scalar Multiplication-Montgomery Algorithm:
Implementation for the point multiplication is based on Montgomery

21

I. Introduction

algorithm which was further modified in [50]. The algorithm offer less
field operations as compared to the Hessian form of elliptic curves. A
generic architecture for the implementation of point multiplication was
presented which was further used for the implementation of Montgomery
point multiplication on FPGAs. The FPGA implementation of this algo-
rithms was made on VirtexE XCV2600 which computes point multiplica-
tion (GF(2191)) in just 56.44µS. It costs 18314 (56%) CLB slices and 24
(11%) BRAMs. This work was published in [81]. An improved version
of this work is already accepted for its publication in [88].

I.9 Dissertation organization

This dissertation starts with some mathematical concepts, which are necessary for
the understanding of the basic operations involved in cryptographic algorithms. In
the next chapters, it is presented a short introduction to the chosen cryptographic
algorithms and our investigations about them. The result comparisons and conclu-
sion remarks are presented at the end of each Chapter. Concluding remarks for the
whole dissertation work were presented in the last Chapter. A short summary for
each chapter is presented below.

In Chapter 1, some important mathematical concepts are presented. Those con-
cepts are particularly helpful for the understanding of cryptographic operations for
AES and ECC. Mathematical steps for some selected applications of ECC are also
described at the end of this Chapter.

In Chapter 2, a general guideline for implementing symmetric block ciphers is
described. Basic primitives involved in block ciphers are listed and design tips are
provided for their efficient implementations on reconfigurable platform. DES is pre-
sented as a case of study. A compact and fast DES implementation on reconfigurable
platform is explained.

In Chapter 3, we explore multiple architectures for AES. Some novel techniques
for the implementation of AES are described. Several efficient AES encryptor and
encryptor/decryptor cores based on those novel techniques are presented on reconfig-
urable platforms. The benefits/drawbacks of all AES cores are examined. Achieved
results are compared with previous state-of-the-art implementations of AES on FP-
GAs.

In Chapter 4, several issues for implementing Elliptic Curve Cryptography (ECC)
are discussed. Theoretical description and FPGA implementation of finite field arith-
metic in GF(2m) are provided. Some algorithms for elliptic curve arithmetic (point
addition & point doubling) are described and discussions are made for their fast
implementations on FPGAs. Parallel strategies for elliptic curve scalar multiplica-
tion and some efficient parallel architectures for the implementation of elliptic curve
scalar multiplication are described.

22

I.9. DISSERTATION ORGANIZATION

In Chapter 5, Conclusion remarks for the whole dissertation are drawn.

23

Chapter II

Mathematical Background

This chapter presents a brief introduction to the theory of finite fields necessary to be
familiar with the basic operations involved in the specifications of Rijndael algorithm
(new Advance Encryption Standard (AES)). The reader is then introduced to some
of the most important mathematical concepts, fundamental for the understanding
of elliptic curve public-key cryptosystems. For a more detailed treatment of these
aspects, the reader is referred to Number theory books like [100, 53, 22, 78], and to
elliptic Curve mathematical books like [57, 47, 56]. The material presented in this
chapter was written based on [24, 20, 77].

II.1 Finite fields

We start with some basic definitions and then arithmetic operations for the finite
fields are explained.

II.1.1 Rings

A ring R is a set whose objects can be added and multiplied, satisfying the following
conditions:

• Under addition, R is an additive (Abelian) group.

• For all x; y; z ∈ R we have, x(y + z) = xy + xz; (y + z)x = yx + zx :

• For all x; y ∈ R, we have (xy)z = x(yz).

• There exists an element e ∈ R such that ex = xe = x for all x ∈ R.

The integer numbers, the rational numbers, the real numbers and the complex num-
bers are all rings. An element x of a ring is said to be invertible if x has a multi-
plicative inverse in R, that is, if there is a unique u ∈ R such that: xu = ux = 1. 1
is called the unit element of the ring.

25

II. Finite Fields in Cryptography

II.1.2 Fields

A Field is a ring in which the multiplication is commutative and every element
except 0 has a multiplicative inverse. We can define the Field F with respect to the
addition and the multiplication if:

• F is a commutative group with respect to the addition.

• F\{0} is a commutative group with respect to the multiplication.

• The distributive laws mentioned for rings hold.

II.1.3 Finite fields

A finite field or Galois field denoted by GF(q = pn), is a field with characteristic
p, and a number q of elements. Such a finite field exists for every prime p and
positive integer n, and contains a subfield having p elements. This subfield is called
ground field of the original field. For every non-zero element α ∈ GF(q), the identity
αq−1 = 1 holds.

In cryptography two cases are mostly used: q = p, with p a prime and q = 2m.
The former case, GF(p), is denoted as prime field, whereas the latter, GF(2m), is
known as finite field of characteristic two or simply binary extension field. Binary
extension field is also denoted as F2m . Elements of F2m are m-bit strings. The rules
for arithmetic in F2m can be determined by either polynomial representation or by
optimal normal basis representation. Since F2m operates on bit strings, computers
can perform arithmetic in this field very efficiently. The arithmetic performed in
our work is based on binary extension fields using polynomials basis. A short de-
scription of polynomial basis and their arithmetic operations is provided in the next
subsection.

II.1.4 Polynomials over a field

A polynomial over a field F is an expression of the form

b(x) = bn−1x
n−1 + bn−2x

n−2 + + b2x
2 + b1x + b0 (II.1)

where,

• x is called indeterminate of the polynomial, n is a non-negative integer, and
bn−1, ..., b0 (bi ∈ F) are fixed scalars, called the coefficients of the polynomial
b.

• The highest occurring power of x (n− 1, if the coefficient an−1 is not zero) is
called the degree of b.

26

II.1. FINITE FIELDS

II.1.5 Operations on polynomials

We define two operations addition and multiplication here.

Addition. Let c(x) be the sum of two polynomials a(x) and b(x) then addition
of polynomials consists of adding the coefficients with equal power of x, where the
addition of the coefficients occur in the underlying field F:

c(x) = a(x) + b(x)⇔ ci = ai + bi, 0 ≤ i < n (II.2)

• In addition, neutral element 0 is the polynomial with all coefficients equal to
0.

• The inverse element is found by replacing each coefficient with its inverse in
F.

• The degree of c(x) is at most the maximum degree of a(x) and b(x).

• The addition and subtraction are the same if F=GF(2).

Example:
Let F be the field GF(2), the sum of polynomials denoted by 57 and 83 is the
polynomial denoted by D4, since:

(x6 + x4 + x2 + x + 1)⊕ (x7 + x + 1)
= x7 + x6 + x4 + x2 + (1⊕ 1)x + (1⊕ 1)
= x7 + x6 + x4 + x2

In binary notation we have: 01010111 ⊕ 10000011 = 11010100. Clearly, the ad-
dition can be implemented with the bitwise XOR instruction.

Multiplication. If m(x) is the reduction polynomial, then multiplication of two
polynomials a(x) and b(x) is the algebric product of the polynomials modulo the
polynomial m(x):

c(x) = a(x).b(x)⇔ c(x) = a(x)× b(x) (mod m(x)) (II.3)

Multiplication of polynomials is associative, commutative and distributive with re-
spect to addition.

II.1.6 Polynomials and bytes

A byte can be considered as a polynomial with coefficients in GF(2):

b7b6b5b4b3b2b1b0 → b(x)
b(x) = b7x

7 + b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x + b0

27

II. Finite Fields in Cryptography

The set of all byte values corresponds to the set of all polynomials with degree less
than eight.

Addition: Addition of bytes can be defined as addition of corresponding poly-
nomials.

Multiplication: In order to define byte multiplication, we need to select a reduc-
tion polynomial m(x). Let us use the following irreducible polynomial as reduction
polynomial:

m(x) = x8 + x4 + x3 + x + 1 (II.4)

Since this reduction polynomial is irreducible, we have constructed a representation
for the field GF(28). Hence we can say that the bytes are considered as elements of
GF(28). Operations on bytes are defined as operations in GF(28).

Example:
In our representation for GF(28), the product of the elements 57 (hex) and 83 (hex)
is the element C1 (hex), since:

(x6 + x4 + x2 + x + 1)× (x7 + x + 1)
= (x13 + x11 + x9 + x8 + x7)⊕ (x7 + x5 + x3 + x2 + 1)

⊕(x6 + x4 + x2 + x + 1)
= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

and

(x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1)
≡ x7 + x6 + 1 (mod x8 + x4 + x3 + x + 1)

II.2 Elliptic curves

The theory of elliptic curves has been studied extensively in number theory and
algebra for the past 150 years. It has been developed a rich and deep theoretical
background initially tailored for purely aesthetic reasons. Elliptic curve cryptosys-
tems were first time proposed by N. Koblitz [48] and V. Miller [60]. Since then a
vast amount of literature has been accumulated on this topic. Recently elliptic curve
cryptosystems are widely accepted for security applications like key generation, sig-
nature and verification.

Elliptic curves can be defined over real numbers, complex numbers and any other
field. To explain the geometric properties for elliptic curves they are examined first
over real numbers. However, elliptic curves over finite fields are the only relevant

28

II.2. ELLIPTIC CURVES

ones from the cryptographic point of view. More specifically binary representation
of elliptic curves will be discussed here which is directly related to our work.

In the rest of this section, basic definitions and common operations of elliptic
curves will be explained.

y2 = x3 + x + 9 y2 = x3 − 9x + 9 y2 = x3 + 2x + 6

Figure II.1. Elliptic curve equation y2 = x3 + ax + b for different a and b

II.2.1 Definition

Elliptic curves over real numbers are defined as the set of points (x, y) which satisfy
the elliptic curve equation of the form:

y2 = x3 + ax + b (II.5)

where a and b are real numbers. Each choice of a and b produces a different elliptic
curve as shown in Figure II.1. The elliptic curve in Equation II.5 forms a group if
4a3 + 27b2 �= 0. An elliptic curve group over real numbers consists of the points on
the corresponding elliptic curve, together with a special point O called the point at
infinity.

II.2.2 Elliptic curve operations

Elliptic curve groups are additive groups; that is, their basic function is addition.
To visualize the addition of two points on the curve, a geometric representation is
presented here. It is to be recalled that the negative of a point P = (x, y) is its
reflection in the x-axis: the point −P is (x,−y). Also if the point P is on the curve,
the point −P is also on the curve.

In the rest of this subsection the addition operation for two distinct points on
the curve are explained. Some special cases for the addition of two points on the
curve are also described.

29

II. Finite Fields in Cryptography

• Adding distinct P and Q: Let P and Q be two distinct points on an elliptic
curve, and P �= −Q. The addition law in an elliptic curve group is P +Q = R.
For the addition of the points P and Q, a line is drawn through the two
points that will intersect the curve at another point, call −R. The point −R
is reflected in the x-axis to get a point R which is the required point. A
geometrical representation of adding two distinct points on the elliptic curve
is shown in Figure II.2.

Figure II.2. Adding two distinct points on an Elliptic curve (Q �= −P).

Figure II.3. Adding two points P and Q when Q = −P

• Adding P and −P : The method for adding two distinct points P and Q
cannot be adopted for the addition of the points P and −P because the line

30

II.2. ELLIPTIC CURVES

through P and −P is a vertical line which does not intersect the elliptic curve
at a third point as shown in Figure II.3. This is the reason why the elliptic
curve group includes the point at infinity O. By definition, P + (−P) = O. As
a result of this equation, P + O = P in the elliptic curve group. The point at
infinity O is called the additive identity of the elliptic curve group. All elliptic
curves have an additive identity.

Figure II.4. Doubling a point P on an Elliptic curve.

• Doubling P (x, y) when y �= 0:

Figure II.5. Doubling P (x, y) when y = 0

The law for doubling a point on an elliptic curve group is defined by: P +P =
2P = R. To add a point P (x, y) to itself, a tangent line to the curve is drawn

31

II. Finite Fields in Cryptography

at the point P . If y �= 0, then the tangent line intersects the elliptic curve at
exactly one other point −R as shown in Figure II.4. The point −R is reflected
in the x-axis to R which is the required point. This operation is called doubling
the point P .

• Doubling P (x, y) when y = 0: If for a point P (x, y), y = 0, then it does
not intersect the elliptic curve at any other point because the tangent line to
the elliptic curve at P is vertical. By definition, 2P = O for such a point P .
If one wanted to find 3P in this situation, one can add 2P + P . This becomes
P + O = P . Thus 3P = P , 4P = O, 5P = P , 6P = O, 7P = P , etc.

II.2.3 Elliptic curve scalar multiplication

There is no multiplication operation in elliptic curve groups. However, the scalar
product nP can be obtained by adding n copies of the same point P by using
the addition and doubling formulae as were explained in the last section. Thus the
product nP = P + P +P obtained in this way is referred to elliptic curve scalar
multiplication. Figure II.6 shows the scalar multiplication process for obtaining 6
copies of the point P . However for the security of elliptic curve cryptosystems, higher
and prime values of k are used. The values range from 160-521 bits provides enough
security for elliptic curve cryptosystems against known attacks.

II.3 Elliptic curves over F2m

The equation for the elliptic curve with the underlying field F2m is slightly adjusted
for binary representation because of its characteristic 2 as shown in Equation II.6.
It is formed by choosing the elements a and b within F2m with b �= 0.

y2 + xy = x3 + ax2 + b (II.6)

The elliptic curve includes all points (x, y) which satisfy the elliptic curve equa-
tion over F2m (where x and y ∈ F2m). An elliptic curve group over F2m consists of
the points on the corresponding elliptic curve, together with a point at infinity, O.

The points on an Elliptic curve can be represented using either two or three
coordinates. In affine-coordinate representation, a finite point on E(Fq) is specified
by two coordinates x; y ∈ Fq satisfying Equation II.6. The point at infinity has no
affine coordinates. We can make use of the concept of a projective plane over the
field Fq [59]. In this way, one can represent a number using three rather than two
coordinates. Then, given a point P with affine-coordinate representation x; y; there
exists a corresponding projective-coordinate representation X; Y and Z such that,

P (x; y) = P (X;Y ;Z)

The formulae for converting from affine coordinates to projective coordinates and
vice versa are given as:

32

II.3. ELLIPTIC CURVES OVER F2M

(a) P (b) 2P (c) 3P

(d) 4P (e) 5P (f) 6P

Figure II.6. Elliptic curve scalar multiplication kP , for k = 6 and for the elliptic
curve y2 = x3 − 3x + 3

Affine-to-Projective: X = x; Y = y; Z=1
Projective-to-Affine: x = X/Z2; y = Y/Z3

The algebraic formulae for the group law in an underlying field are different for
affine and projective coordinates. In the next subsections the group law over F2m is
explained using affine coordinates representation. The group laws for the different
projective coordinates representations can be seen at [40].

33

II. Finite Fields in Cryptography

II.3.1 Point addition

The negative of a point P = (x, y) is −P = (x, x + y). When P and Q are distinct
such that P �= Q, then R(x3, y3) = P (x1, y1) + Q(x2, y2) where:

m = (y2+y1)
(x2+x1)

x3 = m2 + m + x1 + x2 + a
y3 = m(x1 + x3) + x3 + y1

(II.7)

As with elliptic curve groups over real numbers, P + (−P) = O, the point at
infinity. Furthermore, P + O = P for all points P in the elliptic curve group.

II.3.2 Point doubling

Let P (x1, y1) is the point on the curve. If x1 = 0, then 2P = O. If x1 �= 0 then
R = 2P , and R(x2, y2) is:

m = x1 + y1

x1

x2 = m2 + m + a
y2 = (x1)2 + (m + 1)× x2

(II.8)

Recall that a is one of the parameters chosen with the elliptic curve and that m
is the slope of the line through P and Q.

II.3.3 Order of an elliptic curve

Recall that all the points in Fq that satisfy the Equation II.6 plus the point at infin-
ity O forms the elliptic curve group and is denoted as E(Fq). Each group consists of
finite number of elements. Even if every possible pair (x; y) were on the curve, there
would be only q2 possibilities. As a matter of fact, the curve E(Fq) could have at
most 2q+1 points because we have one point at infinity and 2q pairs (x; y) (for each
x we have two values of y). The total number of points in the curve, including the
point O, is called the order of the curve. The order is written #E(Fq). A renowned
result discovered by Hasse gives the lower and the upper bounds for this number.

Theorem[57]: Let #E(Fq) be the number of points in E(Fq). Then,

q + 1− 2
√

q ≤ #E(Fq) ≤ q + 1 + 2
√

q (II.9)

The interval [q + 1− 2
√

q, q + 1 + 2
√

q] is called the Hasse interval. An alternate
form of this theorem is as: if E is defined over Fq, then #E(Fq) ≤ q + 1 − t where
t ≤ 2

√
q; t is the called the trace of E over Fq. Since 2

√
q is small relative to q, we

have #E(Fq) ≈ q.
The order of an element in elliptic curves can also be described as follows: The

order of a point P on E(Fq) is the smallest integer k such that kP = O. The order of
any point always exists and divides the order of the curve #E(Fq). This guarantees
that if r and l are integers, then rP = lP if and only if r ≡ l (mod k).

34

II.3. ELLIPTIC CURVES OVER F2M

II.3.4 Elliptic curve groups and the discrete logarithm problem

Every cryptosystem is based on hard mathematical problem that is computationally
infeasible to solve. The discrete logarithm problem is the basis for the security of
many cryptosystems including Elliptic Curve Cryptosystems. More specifically the
security of elliptic curve cryptosystems relies on Elliptic Curve Discrete Logarithmic
Problem (ECDLP).

In the last section we examined two elliptic curve operations: point addition and
point doubling. Both point addition and doubling operations can be used to get sum
of any number of copies of a point (2P , 3P , kP , etc). The determination of a point
nP in this manner is referred to as Scalar Multiplication of a point. The ECDLP is
based upon the intractability of scalar multiplication products.

II.3.5 An Example

Consider the field F24 with the irreducible polynomial p(x), defined as:

p(x) = x4 + x + 1 (II.10)

Then if g is the root of p(x), we have p(x)= 0 that implies:

p(g) = g4 + g + 1 = 0 (II.11)

Addition and subtraction in binary field arithmetic are the same, hence the
Equation II.11 can be written as:

g4 = g + 1 (II.12)

The powers of g give all the elements in the field F24 . We can define the 15 non-
zero elements for F24 by using Equations II.10 and II.12 as shown in Table II.1.
Notice that any element in F24 can be defined using only four coordinates. Also it is
to be noted that each element in F24 can be described in any of the three represen-
tation as given in Table II.1: coordinate representation, polynomial representation
and powers of the primitive root g.

Let us now consider the curve in Equation II.6 defined as the set of points
(x, y) ∈ F × F that satisfy:

y2 + xy = x3 + g4x2 + 1 (II.13)

We have selected the values of a = g4 and b = g0 = 1 and substituted in Equa-
tion II.6 for the above equation. Using Table II.1, the point (g5, g3) satisfies this
equation over F2m , since:

35

II. Finite Fields in Cryptography

Elements in F24 Polynomial Coordinates
g0 0 (0000)
g1 g (0010)
g2 g2 (0100)
g3 g3 (1000)
g4 g + 1 (0011)
g5 g2 + g (0110)
g6 g3 + g2 (1100)
g7 g3 + g + 1 (1011)
g8 g2 + 1 (0101)
g9 g3 + g (1010)
g10 g2 + g + 1 (0111)
g11 g3 + g2 + g (1110)
g12 g3 + g2 + g + 1 (1111)
g13 g3 + g2 + 1 (1101)
g14 g3 + 1 (1001)
g15 1 (0001)

Table II.1. Elements of the field F24 using irreducible polynomial p(x) = x4 +x+1

(g3)2 + (g3)(g5) = (g5)3 + g4(g3)2 + 1
g6 + g8 = g15 + g10 + 1

(1100) + (0101) = (0001) + (1001) + (0001)
(1001) = (1001)

There exists a total of fifteen points that satisfy this equation. The graphical repre-
sentation of those points is shown in Figure II.7. The points are:

(1, g13), (g3, g13), (g5, g11), (g6, g14), (g9, g13), (g10, g8)
(g12, g12), (1, g6), (g3, g8), (g5, g3), (g6, g8), (g9, g10),
(g10, g), (g12, 0), (0, 1)

Let us now add any two points on the curve: say P = (1, g13) and Q = (g12, 0).
Then by using the point addition formulae from Equation II.7 and the Table II.1,

36

II.3. ELLIPTIC CURVES OVER F2M

Figure II.7. Points for the elliptic curve y2 + xy = x3 + g4x2 + 1 over GF(24)

we have:

m = (y2+y1)
(x2+x1)

= (g13)
(1+g12)

= (g13)
(1+g3+g2+g+1)

= (g13)
(g11)

= g13.g−11

= g13.g4 = g2

x3 = m2 + m + x1 + x2 + a
= g4 + g2 + 1 + g12 + g4

= g4 + g2 + 1 + g3 + g2 + g + 1 + g4

= g3 + g = g9

y3 = g2(1 + g9) + g9 + g13

= g2 + g11 + g9 + g13

= g2 + g3 + g2 + g + g3 + g + g3 + g2 + 1
= g13

(II.14)

The new point R(x3, y3) = (g9, g13) is one of the fifteen points and hence it lies
on the elliptic curve of Equation II.13. Similarly the resultant point obtained by
doubling any point on the curve must lie on the same curve.

37

II. Finite Fields in Cryptography

P 2P 3P 4P 5P 6P
(g3,g8) (g5,g3) (g9,g10) (1,g13) (g6,g8) (g10,g)

Table II.2. Scalar multiplication for the point P of Equation II.13

It has been mentioned earlier that there is no multiplication operation in Elliptic
curve groups. Instead the product kP is obtained by adding k copies of the same
point P by using the addition and doubling formulas. This was called as elliptic curve
scalar multiplication. An example of getting 6P for the same curve in Equation II.13
and by using Table II.1 is shown in Table II.2.

II.4 Elliptic curve cryptography

In the previous sections, we described elliptic curves, their curve operations and
defined elliptic curve scalar multiplication as well as elliptic curve discrete logarith-
mic problem. With this mathematical background we can now build a public-key
cryptosystem based on the theory of elliptic curves. These cryptosystems are mainly
applicable for establishing secret keys for further use in symmetrical key cryptosys-
tems and the creation of digital signature as well as their digital verification. In the
remaining part of this chapter, we will briefly discuss some of the most Relevant
aspects in the construction and design of elliptic curve cryptosystems.

II.4.1 Elliptic curve cryptosystem parameters

Suppose that we select the elliptic curve E(Fq) as defined in the Equation II.6 and
that the underlying finite field Fq, its coefficients a, b and the order #E(Fq) of the
selected curve are given. Let us select the base point P ∈ E(Fq) with a prime order k
then the private/public key pair can be defined by computing elliptic curve discrete
logarithm W = sP where,

• The private key s is integer modulo k.

• The corresponding public key W is a point on the curve E(Fq).

The calculations for the public key W are directly based on the elliptic curve
discrete logarithm problem. It is therefore said that the security of this cryptosystem
relies in the difficulty of discrete logarithm problem.

II.4.2 Key pair generation

Let P is the point on the elliptic curve E(Fq) of prime order k then for the com-
putation of a private/public key pair we choose first a random integer d ∈ [1, k − 1]
which is a private key. After that, a public key Q is computed as:

Q = (xQ, yQ) = dP (II.15)

38

II.4. ELLIPTIC CURVE CRYPTOGRAPHY

II.4.3 Key exchange

In secret key cryptography, it is necessary that both parties at the sending and
receiving ends agree on a secret key for the transfer of messages. Fortunately key
agreement protocols exist which help in establishing a key by exchanging information
between two parties. It turns out that key protocols are best done using asymmetric
(public key) cryptography. We present a famous protocol due to Diffie-Hellman,
which provides the key establishment of a key with two message transfers. Then
it is explained how the same process can be executed using elliptic curve discrete
logarithmic algorithms (ECDSA).

Diffie-Hellman key exchange: Diffie-Hellman key exchange was invented in 1976
during collaboration between Whitfield Diffie, Martin Hellman and Ralph Merkle
and was the first practical method for establishing a shared secret over an unpro-
tected communications channel. Let A and B are already agree on a group G (most
commonly used group G is the group of integers modulo p) and an element g in G
(g mod p). Then the protocol is as follows (Figure II.8):

• A picks a random natural number a and sends ga to B.

• B picks a random number b and sends gb to A.

• A computes K=(gb)a.

• B computes K=(ga)b.

g and p are the public keys and K is the private key for the session which from
this moment will be used for the communication between A and B. The protocol is
considered secure if G and g are chosen properly: the eavesdropper has difficulty to
compute the element gab, because it is needed to solve the Diffie-Hellman problem
related to discrete logarithms in order to deduce a from ga or b from gb.

Figure II.8. Diffie-Hellman protocol for key exchange

39

II. Finite Fields in Cryptography

Elliptic Curve Diffie-Hellman Key Exchange: Let A and B agree on an elliptic
curve E over a large finite field F and a point P on that curve. Then following are the
steps to exchange a secret key by using elliptic curve discrete logarithmic algorithm
as shown in Figure II.9.
• A and B each privately choose large random integers, denoted r1 and r2.

• Using elliptic curve point-addition, A computes r1P on E and sends it to B.
B computes r2P on E and sends it to A.

• Both A and B can now compute the point r1r2P : A by multiplying the received
value of r2P by his/her secret number r1, and B vice-versa.

A and B agree that the x coordinate of this point will be their shared secret
value.

Figure II.9. Variant of Diffie-Hellamn for Elliptic Curves.

II.4.4 Digital signature scheme

Digital signatures confer three qualities on an electronic document. These are data
integrity, authentication and non-repudiation. Successful verification of a digital sig-
nature ensures the recipient that the ‘document received’ is identical to the ‘docu-
ment sent’ (data integrity) and confirms the identity of the sender (authentication).
It also prevents any subsequent denial by the sender that the document originated
with them (non-repudiation).

In cryptography, digital signature schemes relay on public key encryption where
data is signed by encrypting with private key of the sender and verified by decrypting
it with the public key. A general digital signature scheme is shown in Figure II.10.

As shown in Figure II.10 a hash function (a hash function h maps bitstrings of
arbitrary finite length to strings of fixed length, say n bits. MD5 and SHA-1 are two
examples of hash functions) is applied to the message to add an extra information
to the document which is then signed by encrypting it with the private key of the
sender: the signature part of the message. The signature is annexed to the original
message and sent to the destination. On the receiving end, both parts: the message

40

II.4. ELLIPTIC CURVE CRYPTOGRAPHY

Figure II.10. A general digital signature scheme

and the signature are separated. The same hash function is applied to the received
message to get λ1 and the signature is verified by performing the decryption using
the public key of the signer obtaining λ2. If λ1 = λ2, then is said that message has
not changed during transmission and the origin of the message is also confirmed.

Digital signature with ECDSA: Elliptic Curve Digital Signature Algorithm
(ECDSA) is the elliptic curve analogue of the Digital Signature Algorithm (DSA).
It was accepted in 1999 as an ANSI standard, and was accepted in 2000 as IEEE and
NIST standards. Unlike the ordinary discrete logarithm problem and the integer fac-
torization problem, no subexponential-time algorithm is known for the elliptic curve
discrete logarithm problem. For this reason, the strength-per-key-bit is substantially
greater in an algorithm that uses elliptic curves.

The following is the procedure to digitally sign a message with ECDSA. Only a
private key holder can perform digital signature.

1. Let M be the message then a compressed version of M is obtained using Hash
function, e = H(M).

2. A random integer n ∈ [1, k − 1] is selected which is secret and valid for the
specific message only.

3. A point on the curve is obtained using n, (x1, y1) = nP .

4. Using the field element x1 from the last step, generate,

r = x1 (mod k) (II.16)

and

s = n−1(e + dr) (mod k) (II.17)

41

II. Finite Fields in Cryptography

The signature for this message is the pair (r, s). It is to be noted that the
signature depends on the private key and the message. This implies that no one
can substitute a different message for the same signature.

Verification: On the receiving end, the recipient can verify the signature using the
received signature’ s values and the public key Q of the singer. Let us call the received
pair (r′, s′). The signature has been verified if the received pair (r′, s′) is equal to
the pair (r, s). The following is the procedure for the signature’ s verification.

1. Verify that r′ and s′ are between [1, k − 1], if not, the signature is rejected.

2. Using hash function, compute e′ = H(M ′).

3. Compute

c = (s′)−1 (mod k)
u = (e′)c (mod k) (II.18)
v = (r′)c (mod k)

4. Compute the point (x, y) = uP + vQ. If this point is the point at infinity, the
signature is rejected.

5. Compute w = x (mod k).

6. If r′ = w, the signature is valid and the process of verification ends.

II.5 Symmetric vs asymmetric cryptography

In the last section, it has been explained the various applications (signature, verifica-
tion, key exchange) of elliptic curve cryptography which is an asymmetric or public
key version of cryptography. The other variants of the same protocols using other
asymmetric ciphers like RSA have been used in the industry since long time. Those
algorithms are based on complicated mathematical problems, which are infeasible to
solve in a considerable time period. On the other hand, symmetric ciphers are based
on well understandable mathematical problems, which contribute to the algorithmic
strength and can efficiently be implemented on both software and hardware plat-
forms. That especial characteristic of symmetric ciphers makes them suitable for the
encryption of large amount of data at high speed. Both the symmetric and asymmet-
ric cryptography therefore have their unique applications in worldwide industries.
In fact, for a large number of applications where symmetric cryptography plays a
vital role for rapid encryption, asymmetric encryption works at the same time to
decide the session keys and to provide other features like authentication. In short,
both symmetric and asymmetric cryptosystems have their specific applications and
also they are used together for the safe communications on insecure networks. This
thesis therefore addresses rapid implementations of cryptographic algorithms from
both symmetric and asymmetric cryptography.

42

Chapter III

General Guidelines for

Implementing Block Ciphers in

FPGAs

This chapter provides general guidelines for the implementation of block ciphers
in reconfigurable logic platform. The general structure and the design principles for
block ciphers are discussed. Basic primitives in block ciphers are identified and some
useful design techniques are devised for efficient implementations on reconfigurable
devices. The chapter presents Data Encryption Standard (DES) as a case of study. A
reconfigurable implementation of DES has been carried out using the same guidelines
in this chapter achieving a throughput of 274 Mbits/s occupying just 165 CLB slices
for DES one round implementation.

III.1 Introduction

Block ciphers are based on well-understood mathematical problems using non-linear
functions and linear modular algebra [56].

Most of the block ciphers have regular structure: same building block is repeated
multiple times. Generally, block ciphers are of symmetric nature: the encryption and
decryption only differ in the way of using the key so that the same device can be
used for both encryption and decryption.

Implementation of block ciphers mainly use bit-level operations and table look-
ups. Bit-wise operators (XORs, AND/OR, etc.), substitutions, logical shifts and
permutations are quite common operations. Such operations are well suited for fast
execution in reconfigurable hardware platform (FPGAs). Furthermore, currently
abundant memory resources in FPGAs enhance encryption speed for the operations

43

III. General Guidelines for Implementing Block Ciphers in FPGAs

like substitution. Highly parallel architectures can be designed in reconfigurable
hardware achieving higher performance compared to software implementations.

In this chapter, we analyze basic characteristics of block ciphers and we explore
about general strategies for implementing them in reconfigurable logic platform. We
search for the most frequent operations involved in block ciphers and we develop
strategies for their implementations in reconfigurable devices. It is also explained
how the bit level parallelism is exploited for block ciphers using either iterative
or pipeline approaches. We present a case of study for Data Encryption Standard
(DES), which can be extended to the other similar cryptosystems.

DES is the most popular example in the field of block ciphers [26, 32], which was
developed by IBM in the mid-seventies. The DES algorithm is organized in repetitive
rounds composed of several bit-level operations such as logical operations, permu-
tations, substitutions, shift operations, etc. Although those features are naturally
suited for efficient implementations on reconfigurable devices FPGAs, DES imple-
mentations can be found on all platforms: software [26, 32, 46, 19, 18], VLSI [29, 28,
102] and reconfigurable hardware using FPGA devices [49, 103, 45, 13, 55, 102, 71].
In this Chapter, we present an efficient and compact DES architecture especially
designed for reconfigurable hardware platforms.

The rest of this Chapter is organized as follows: Section III.2 describes the gen-
eral structure and design principles for block ciphers. Some useful properties for the
implementation of block ciphers in reconfigurable platform are also discussed in this
Section. An introduction to Data Encryption Standard (DES) is presented in Sec-
tion III.3. A description of encryption and key scheduling processes using DES is also
provided in this Section. In Section III.4, design procedure and the design techniques
for an FPGA architecture are described first, followed by DES implementation in
FPGAs. Finally, conclusions are made in Section III.5.

III.2 Block ciphers

In cryptography, a block cipher is a type of symmetric key cipher which operates
on groups of bits of a fixed length, called blocks. Block sizes are typically 64 or 128
bits, though some block ciphers have a variable block size. DES is a typical example
of block ciphers, which operates on 64-bit block. Modern block ciphers operate on
block length of 128 bits or more. Rijndael (new Advanced Encryption Standard)
allows block lengths of 128, 192, or 256 bits. A block cipher makes use of a key for
both encryption and decryption. The key length not necessary to matches the block
size of the input data. In 3DES (a variant of DES), a 64-bit block length is allowed
using a key of 192-bit (three keys of 64-bit each) for encryption and decryption.
Rijndael allows the various combinations of 128, 192, and 256 bits. Block length of
less than 80 bits is not recommended for current security applications [65].

In the rest of this Section, general structure and the design principles for the
block ciphers are explained. Basic primitives in block ciphers are discussed. Finally,
the implementation considerations are made in general for the hardware platforms
specifically for reconfigurable type of hardware.

44

III.2. BLOCK CIPHERS

III.2.1 General structure of a block cipher

As shown in Figure III.1, there are three main building blocks for a block cipher:
block cipher encryption, block cipher decryption, and key schedule. The input is
plaintext for a block cipher encryption and the output is ciphertext. Block cipher
decryption takes ciphertext as input and converts back to plaintexts. A number of
rounds are performed for a single encryption/decryption of a block. Each round uses
a round key which is derived from cipher key through a process called key scheduling.
Key schedule is occupied for both block cipher encryption and decryption. The
general structure of a block cipher involves three main building blocks:

Figure III.1. General structure for a block cipher

1. Block cipher encryption: Most of the block ciphers are Fiestel [94] ciphers.
Fiestel ciphers divide input into two halves and then two halves of the data
pass through n rounds of processing. In the final round, the two halves are
combined to produce the ciphertext block. All rounds have the same structure.
Each round uses a round key, which is derived from the cipher key. In general
all the round keys are different from each other and from the cipher key. Most
of the block ciphers partial or completely follow the same Fiestel structure.
DES is a perfect Fiestel cipher. Modern block ciphers also repeat n rounds
of the algorithm but they do not divide the input block into two halves. All
the rounds of the algorithm are generally similar. The round transformation
normally includes the basic operations of substitution and permutation, which
apply non-linear transformations to strength the algorithm against the current
cryptanalytic attacks.

2. Block cipher decryption: Fiestel ciphers use the same structure for both
encryption and decryption. Modern block ciphers however maintain symmetric
nature of the algorithm but use different critical path for decryption, that is,

45

III. General Guidelines for Implementing Block Ciphers in FPGAs

for each operation there is a reverse operation but the number of operations
remains the same.

3. Key schedule: The round keys are derived from the user key through a
process called key scheduling. Generally, block ciphers occupy the same steps
for the derivation of round keys for both encryption and decryption or the
round keys for encryption can be used for decryption in reverse order.

III.2.2 Design principles for a block cipher

As knowledge of cryptanalysis has been evolved and as the need for both software
and hardware encryption has emerged, advances have been shown in the design-
ing new block ciphers to comply with the current security requirements. In this
subsection, we analyze some key features in designing of a block cipher.

1. Key size: If the block cipher is designed to be highly resistant against brute
force attack, then its strength is determined by its key length: the longer
the key, the longer its takes against brute force search. Modern block ciphers
employ key lengths of 128 bits or more. A key length of less than 80 bits is
not sufficient for the current security requirements [65].

2. Variable key length: The encryption speed may be reduced by increasing key
length. Modern block ciphers offer variable key lengths to tradeoff the security
and encryption speed. Blowfish, CAST, Mars, Rijndael provide a variable key
length.

3. Mixed operations: The complication against cryptanalysis arise with the
use of more than one arithmetic and/or Boolean operator in a block cipher.
This approach provides non-linearity as an alternative to S-boxes and also to
introduce non-linearity in S-Boxes. S-boxes substitute or transform input bits
into output bits. Almost all modern block ciphers use mixed operators.

4. Variable number of rounds: Increasing the number of rounds increases the
cryptanalytic strength, but also increases encryption/decryption time. Modern
block ciphers provide variable number of rounds to allow the user to make a
tradeoff between security and execution speed. Considering number of rounds
for a block cipher, the strength of an algorithm is interlinked with the other
design parameters. For example, AES with 10 rounds provides higher security
level as compared to DES with 16 rounds.

5. Variable plaintext/ciphertext block length: A longer block length yields
greater cryptographic strength. Also, a variable block length can provide a
measure of convenience, allowing the algorithm to be tailored to the applica-
tion. RC5 adopts this strategy.

46

III.2. BLOCK CIPHERS

DES Blowfish IDEA AES MARS RC6 Serpent TwoFish
Properties
Block 64 64 64 128- 128 128 128 128
length 256
Key 64 32- 128 128- 128- 128- 256 128-
length 448 256 448 256 192
No. of 16 16 8 10- 32 20 32 16
rounds 14
Software

√ √ √ √ √ √ √
Hardware

√ √ √ √ √ √ √
Symmetric

√ × × × × √
Bit-wise

√ √ √ √ √ √ √ √
operations
Permutation

√ × × × × √ √
S-Box

√ √ × √ √ × √ √
Shift or

√ √ √ √ √ √ √
rotation
Fast Key

√ × √ √ √ √ √ √
setup

Table III.1. Key features for some famous block ciphers

6. Fast key setup: In Blowfish, a lengthy key schedule algorithm was used. The
generation of round keys takes much longer than a single encryption/decryption.
As a result, an effort to brute force attacks is greatly magnified. However,
fast key setup is strongly required where the keys are required to be changed
rapidly. For example, the encryption of Internet protocol (IP) packets in In-
ternet Protocol Security, the overhead due to key setup may become quite
relevant. Modern block ciphers offer simple and fast key schedule algorithm.
The key schedule algorithm in Rijndael is such an example.

7. Software/Hardware implementations: Modern block ciphers are designed
to be implemented for both the software and hardware platforms. That implies
the use of those arithmetic and logical operations likely to be implemented on
both the platforms offering high encryption speed. It is in fact a need for the
current security applications.

8. Simple arithmetic/logical operations: Perhaps, this characteristic can be
seen in most block ciphers. Modern block ciphers also maintain this feature as
they include simple bit-wise operations. The algorithms are simple but strong
enough against known crypto attacks.

Table III.1 describes key features for some famous block ciphers including five
finalists (AES, MARS, RC6, Serpent, Twofish) for the competition of new Advanced
Encryption Standard. It can be seen that modern block ciphers use high block

47

III. General Guidelines for Implementing Block Ciphers in FPGAs

lengths of 128 bits or more. Similarly they provide high key lengths up till 448 bits.
Both block and key lengths in block ciphers are often variable to trade the security
and speed for the chosen algorithm. Number of rounds ranges from 8 to 32, they
are fixed for some block ciphers but they can vary depending on the chosen block
and key lengths. Most block ciphers can efficiently be implemented in software and
hardware platforms. All block ciphers generally include bit-wise (XOR, AND) and
shift or rotate operations. Excluding few block ciphers, most of them use S-boxes for
substitution. Fast key set-up is an important feature among modern block ciphers.
They are not symmetric, that is, same building blocks used for encryption cannot
be used for decryption. Normally, each step for encryption has its own inverse for
decryption.

III.2.3 Useful properties for implementing block ciphers in FPGAs

Hardware implementations are intrinsically more physically secure: key access and
algorithm modification is considerably harder and some properties of symmetric-key
cryptographic algorithms well match their implementation on reconfigurable devices
like FPGAs.

1. Bit-wise operations: Almost all the block ciphers include bit-level opera-
tions: XOR, AND, OR, etc. The abundance of bit-level operations in crypto-
graphic algorithms makes their execution faster on FPGAs and additionally
they occupy relatively less hardware resources. The basic unit in FPGAs is a
logic cell (LC) which provides a 4-input/1-ouput configuration for many fam-
ilies of FPGA devices. This useful feature of FPGAs allow to build 2,3, or 4
input and 1 output Boolean logic using the same hardware resources as shown
in Figure III.2.

Figure III.2. Same resources for 2,3,4-in/1-out Boolean logic in FPGAs

2. Substitution: Substitution is an important operation in symmetric block ci-
phers to add maximum non-linearity. Substitution is usually built as a look-up
table called S-Box. The strength of DES is mainly considered due to its sub-
stitution boxes (S-Boxes). AES S-Box is used for both encryption/decryption

48

III.2. BLOCK CIPHERS

and key schedule algorithms. FPGAs offer three solutions for the implemen-
tation of substitution operation as shown in Figure III.3. a) The logic cell
(LC) of an FPGA can be configured into memory mode. In fact, a function
generator (FG) in an LC is implemented as a 4-input Look Up Table (LUT)
(see Section I.7.1). A 4-in/1-out LUT provides 4 × 1 memory. Large number
of LUTs can be combined into a big memory. This is a fast approach because
the pre-computed values for the S-Box can be stored saving the computational
time for S-Box manipulation. b) The Boolean logic for substitution operation
can be implemented by configuring LCs in logic mode. It would be slow due to
large routing overheads among a large number of LCs. 3) Some FPGA devices
contain built-in memory modules, BRAMs (Block RAMs). Those are fast ac-
cess memories which do not make use of LCs and consequently with minor
routing overheads. This approach is similar but fast as compared to the op-
tion (a). Only the Virtex series devices contain BRAMs. Virtex series devices
contain more than 280 BRAMs of 4K each [8].

Figure III.3. 3 approaches for the implementation of S-Box in FPGAs.

3. Permutation operation: Permutation is a common operation among block
ciphers. Fortunately, there is no cost associated with it since it does not make
use of FPGA resources and therefore consume no time for its executions.
Permutation is just rewiring and the bits are rearranged (concatenated) ac-
cording to the required order. Figure III.4 demonstrates a simple example of
permutation operation for 6 bits only. The same strategy is extended for the
permutation operation over longer blocks.

4. Shift & Rotation operations: Shift is simpler than the permutation opera-
tion. Shift operation is normally executed to achieve some particular data bits
or bytes, for example, retrieving 6-bit shorter blocks from 48-bit block to pass
through substitution operation in DES. In this case, shorter blocks are made
by dividing longer bus to a number of shorter buses as shown in Figure III.5a.

49

III. General Guidelines for Implementing Block Ciphers in FPGAs

Figure III.4. Permutation operation in FPGAs.

In some cases, the input data is shifted n bits and n zeroes are added, called
as zero padding. In FPGAS, zero padding for n bits is achieved by simply
connecting n bits to the ground as shown in Figure III.5b. Most block ciphers
(AES, RC6, DEAL, etc.) use rotation operation. It is similar to shift operation
but no zero padding is used. Instead, bits are moved according to a defined
setup. For example, for a 4-bit buffer, shifting left a0a1a2a3 by 1-bit is a1a2a30
while rotating left by 1-bit is a1a2a3a0. Fixed rotation is trivial and there is no
cost associated with it. Variable rotation is also used by some cryptographic
algorithms (RC5, RC6, CAST) however this is not a trivial operation.

Figure III.5. Shift operation in FPGAs.

5. Iterative design strategy: Block ciphers are of iterative nature, that is, n
iterations of the same algorithm are made for a single encryption/decryption.
An iterative design strategy would be a straightforward approach which im-
plements the algorithm and executes n iterations of it by consuming n clock
cycles for a single encryption/decryption as shown in Figure III.6. Obviously,
it is an economical approach with respect to the hardware area and the cost
has to be paid in terms of design speed which gets reduced with a factor of
n. Such architectures would be useful for applications where hardware area is
limited and speed is no more critical.

6. Pipeline design strategy: If reconfigurable platform is the choice for the

50

III.2. BLOCK CIPHERS

Figure III.6. Iterative design strategy.

implementation of a block cipher, a high speed architecture would result by
implementing n rounds of the algorithm as modern FPGAs are bigger enough
to accommodate massive circuits. This is called loop unrolling or pipeline
approach as shown in Figure III.7. Registers are provided between two con-
secutive rounds, which operate with the same clock cycle. Once the pipeline is
filled, the output blocks therefore appear at each successive clock cycle. This
is a fast approach but costly in terms of hardware area.

Figure III.7. Pipeline design strategy.

7. Sub-pipelining design strategy: FPGAs provide large number of flip-flops,
which can be used to put several registers inside the different steps of a single
round for a pipeline design strategy. This improves the performance of pipeline
architecture as those registers shift the internal results of a round while the
final results are being transferred to the next round. It has been observed that
careful use of those registers inside a round causes a significant increase in
design performance. Figure III.8 represents a sub-pipeline design strategy.

Figure III.8. Sub-pipeline design strategy.

51

III. General Guidelines for Implementing Block Ciphers in FPGAs

8. Managing block size: Modern block ciphers operate on data blocks of 128
bits or more. Unlike software implementations on general-purpose micropro-
cessors, FPGAs permit parallel execution of the whole data block provided
there is no data dependency in the algorithm. Our experience shows that the
manual search for operations, which can be executed in parallel, is always use-
ful. Moreover, FPGAs offer more than 1000 external pins to be programmable
for inputs or outputs. This is advantageous when the communication is needed
with several peripheral devices on the same board simultaneously.

9. Key scheduling: Fast key setup is one of the characteristics of modern block
ciphers. The keys are required to be changed rapidly in some cryptographic
applications e.g. the encryption of Internet protocol (IP) packets in Internet
Protocol Security (IPSec). It is possible to exploit the reconfigurable feature
of the FPGAs to configure for various keys rapidly.

10. Key storage It is recommendable for cryptographic applications to make use
of different secret keys for different sessions. FPGAs provide enough memory
resources to store various session keys. As the keys are stored inside an FPGA,
it is therefore valid to say that FPGA implementations are physical secure.

III.3 Data Encryption Standard

On August, 1974, IBM submitted a candidate (under the name LUCIFER) for cryp-
tographic algorithm in response to the 2nd call from National Bureau of Standards
(NBS), now the National Institute of Standards & Technology (NIST)[65], to pro-
tect data during transmission and storage. NBS launched an evaluation process with
the help of National Security Agency (NSA) and finally adopted a modification of
LUCIFER algorithm as the new Data Encryption Standard (DES) on July 15, 1977.
The Data Encryption Standard [105], known as Data Encryption Algorithm (DEA)
by the ANSI [105] and the DEA-1 by the ISO [43] remained a worldwide standard
for a long time until it was replaced by the new Advanced Encryption Standard
(AES) on October 2000. However, it is expected that DES will remain in the public
domain for a number of years. It provides a basis for comparison for new algorithms
and it is still used in IPSec protocols, ATM encryption, the secure socket layer (SSL)
protocol and in TripleDES. A detail description of DES algorithm can be seen at
[90, 56, 97]. A brief introduction about DES in this chapter is mainly based on [90].

DES uses a 64-bit block for the key; however, 8 of these bits are used for odd
parity and are, therefore, not counted in the key length. The effective key length
is then calculated as 56 bits, giving 256 possible keys. DES is a block cipher: It
encrypts/decrypts data in 64-bit blocks using a 64-bit key. DES is a symmetric
algorithm: The same algorithm and key are used for both encryption and decryption.
DES is an iterative cipher: the basic building block (a substitution followed by a
permutation) called a round is repeated 16 times. For each DES round, a sub-
key is derived from the original key through a process called key scheduling. Key

52

III.3. DATA ENCRYPTION STANDARD

scheduling algorithm for encryption and decryption is the same however round keys
for decryption are used in reverse order. Figure III.9 demonstrate the basic algorithm
flow for both the encryption and key schedule processes.

Figure III.9. DES Algorithm

Encryption begins with an initial permutation (IP), which scrambles the 64-bit
plain-text in a fixed pattern. The result of the initial permutation is sent to two 32-bit
registers, called the right half register, R0 and left half register, L0. Those registers
hold the two halves of the intermediate results through succeeding 16 iterations of

53

III. General Guidelines for Implementing Block Ciphers in FPGAs

the function fk which is given by (n = 0 to 15):

Ln = Rn−1

Rn = Ln−1 + f(Rn−1,Kn)
(III.1)

After 16 iterations, the contents of the right and left half registers are subjected to
a final permutation IP−1, which is the inverse of the initial permutation. The output
of IP−1 is the 64-bit ciphertext. A detailed explanation of those three operations is
provided in the rest of this Subsection followed by the process of generating sub-keys
from the original key.

III.3.1 The initial permutation (IP−1)

The initial permutation is the first operation applied to the input block before
iteration 1. It transposes the input block as described in Table III.2. For example,
the initial permutation moves bit 58 to bit position 1, bit 50 to bit position 2, bit
42 to bit position 3, and so forth. The initial permutation has no effect on DES
security and its primary purpose is to make it easier to load plain-text into a DES
chip in a byte-sized pieces. Implementing it in hardware is trivial but cumbersome
in software.

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Table III.2. Initial permutation for 64-bit input block

III.3.2 Structure of the function fk

The 64-bit output from the initial permutation is divided into two halves L0 of 32
bits and R0 of 32 bits, as shown in Figure III.9. Both halves go through the 16
iterations of the function fk (Eq. III.1) which is described as follows:

For the first iteration, R0 of 32 bits and 48-bit round key are the two inputs.
We first expand R0 from 32 bits to 48 bits by using the expansion permutation
(Permutation E).

54

III.3. DATA ENCRYPTION STANDARD

32 1 2 3 4 5 4 5 6 7 8 9
8 9 10 11 12 13 12 13 14 15 16 17
16 17 18 19 20 21 20 21 22 23 24 25
24 25 26 27 28 29 28 29 30 31 32 1

Table III.3. E-bit selection

The Expansion Permutation (Permutation E)

This operation expands right half 32-bit to 48 bits. Some bits are therefore repeated
and the order of the bits is also changed as shown in Table III.3.

Table III.3 shows the position relationship between inputs and outputs. For
example, the bit in position 3 of input block moves to position 4 of the output
block, and the bit in position 21 of the input block moves to position 30 and 32 of
the output block. The repeated bits and their positions in output block can easily
be seen as they are outside the squares in boldface letter as shown Table III.3.

This operation has two purposes. First, it makes the size of right half register
equal to key size for XOR operation. Second, it provides longer result that can be
compressed during substitution operation.

The output 48-bit is XORed with the 48-bit round key. We now have 48 bits, or
eight groups of six bits. The six bits of eight groups are used as addresses in tables
called, S-Boxes. Each group of six bits is substituted to a group of 4 bits.

The S-Box substitution

DES S-box is 64-entry table arranged into four rows and sixteen columns. The input
is 6-bit address and output of each S-box is 4-bit long. This way, the first and last bits
a0a5 of 6-bit address a0a1a2a3a4a5 represent the row number while the middle four
bits a1a2a3a4 denote the column number. Hence the S-box will substitute 101011,
the entity located at row 4th (11) and column 6th (0101). To substitute 48-bit input,
DES contains eight S-boxes each of size 64 × 4 = 256 bits occupying a total of 2k
memory as shown in Table III.4

The 32-bit S-Box output undergoes through another permutation, which is called
P-Box Permutation.

The P-Box permutation

This is called straight permutation or just permutation. The 32-bit output of the
S-box substitution is permutated according to P-box as shown in Table III.5. Ta-
ble III.5 shows the position to which each bit moves. For example, bit 21 moves to
bit 4, while bit 4 moves to bit 31. No bits are used twice and no bits are ignored.

The output 32-bit after this permutation is XORed with the 32-bit of L0, achiev-
ing R1. This is the end of first iteration. Let us remember that all the operations
were executed on the contents of 32-bit register R0 and we achieve R1. In the next

55

III. General Guidelines for Implementing Block Ciphers in FPGAs

Column
Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 S-Box

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 S1

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5 S2

2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1 S3

2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 S4

2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 S5

2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 S6

2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 S7

2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2 S8

2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Table III.4. DES S-boxes

16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25

Table III.5. Permutation P

iteration, we will have L2 = R1, which is the block we just calculated and then we
must calculate R2, repeating the same procedure as was used for R0 and so on for
16 iterations. At the end of the 16th iterations we have the blocks L16 and R16. The
order of these blocks is reversed and two blocks are concatenated into a 64-bit block
R16L16. A final permutation IP−1 is then applied.

The Final permutation

This permutation is exactly inverse of the initial permutation and is described in
Table III.6. Referring to Fig. III.9, left and right halves are not changed after the

56

III.3. DATA ENCRYPTION STANDARD

last round of DES, instead the concatenated block R16L16 is used as input to the
final permutation. Exchanging halves and shifting around the permutation would
yield the same results. This way, the same algorithm can be used for both encryption
and decryption.

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Table III.6. Inverse permutation

This completes the encryption process for a single block. Decryption is simply
the inverse of encryption, following the same steps as above, but reversing the order
in which the sub-keys are applied.

III.3.3 Key schedule

The sub-keys for all the 16 rounds are derived from the original key as shown in
Figure III.9. First the 64-bit DES key is reduced by ignoring every 8th bit governed
by the Table III.7 (Permuted Choice One PC-1). After 56-bit key is extracted, the

57 49 41 33 25 17 9 1 58 50 42 34 26 18
10 2 59 51 43 35 27 19 11 3 60 52 44 36
63 55 47 39 31 23 15 7 62 54 46 38 30 22
14 6 61 53 45 37 29 21 13 5 28 20 12 4

Table III.7. Permuted choice one PC-1

48-bit sub-keys for all rounds are generated as follows:
The 56-bit key is divided into two halves C0 and D0. At each round, the two

halves are subjected to a circular left shift or rotation by either one or two bits,
depending on the round as given in Table III.8.

Round No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bits shifted 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Table III.8. Number of key bits shifted per round

57

III. General Guidelines for Implementing Block Ciphers in FPGAs

The shifted values serve as input to the next round and also serve as input to
the Permutated Choice Two (PC-2) as given in Table III.9. The resulting 48 bits is
the required round key.

14 17 11 24 1 5 3 28 15 6 21 10
23 19 12 4 26 8 16 7 27 20 13 2
41 52 31 37 47 55 30 40 51 45 33 48
44 49 39 56 34 53 46 42 50 36 29 32

Table III.9. Permutated choice two (PC-2)

III.4 FPGA implementation of DES algorithm

In this section DES implementation is described on reconfigurable hardware plat-
form. All the design steps for the development of FPGA architecture are explained.
Some useful design techniques for the improvement of design performance are illus-
trated. Performance results and comparison with the previous FPGA implementa-
tions of DES are presented at the end of this Section.

III.4.1 Design steps

In general, most of the design tools follow the basic six steps for an FPGA design
as shown in Fig. III.10. Those steps are not executed in a specific order but they
can be repeated to improve design’s performance. A short description of each step
is provided below.

Figure III.10. Design flow

1. Design Entry : There are two standard ways to specify a design on FPGA.

58

III.4. FPGA IMPLEMENTATION OF DES ALGORITHM

• Design Entry through HDLs (Hardware Description Languages): A De-
signer can describe an FPGA design in high-level abstract language like
VHDL (Very high speed integrated circuit Hardware Description Lan-
guage) or Verilog. Those languages are ideal to build state machines,
combinational logic, complex and large designs. All the existing software
management methods well hold for those languages as any change or mod-
ification is being treated like in other traditional languages. However, this
really depends on the quality of the tools used for synthesis.

• Design Entry through Schematic: An FPGA design can also be described
by using library components of the devices through a graphical interface.
It is easy to optimize a circuit for speed/area and consequently it saves
time and efforts of the design tool in hardware mapping, placement and
routing, etc. However, it is hard to debug and modifications to the design
are not straightforward as compared to design entry through HDLs.

2. Functional verification and simulation: It checks the logical correctness
of an FPGA design. After the design has been represented by using HDLs
or schematic, it is necessary to verify if such description meets the design
specifications.

3. FPGA synthesis: Synthesis converts design entry into gates/blocks of an
FPGA device. A netlist of basic gates is prepared from HDL/schematic design
entry, which is further optimized at gate level. The next step is to map netlist
into FPGA real resources. This is an important step based on design entry.
An FPGA designer must keep in mind the basic structure of the target device
while writing HDL code or using schematic libraries of the device for design
entry.

4. FPGA place and route: Place and route selects the optimal position for
elementary design blocks and minimal interconnection distance between them.
Place and route tools normally use device vendor specifications. Usually they
provide hand-placement and also automatic features for optimizing critical
paths for speed or area.

5. Circuit analysis: Circuit analysis determines different features of the cir-
cuit related to efficiency. Timing verification is made which may differ from
functional simulation as it provides logical correctness taking into account all
circuit delays occurring in the real device. Similarly, power analysis provides
power consumption by the circuit. There exist special tools to determine and
to improve such type of circuit features.

6. Programming FPGA device: Programming FPGA implies downloading
bit stream codes from the last steps onto the target FPGA device. Universal
programming tools work with FPGAs from different vendors. However there

59

III. General Guidelines for Implementing Block Ciphers in FPGAs

are dedicated programming tools bounded only with a single family of FPGA
devices.

III.4.2 Design techniques

Here we discuss few design techniques, in general for symmetric-key block ciphers
and in particular for DES on FPGAs. It has been observed that better design tech-
niques for both design entry and design implementation play an important role for
optimizing circuits. A short description of those optimizing techniques is provided
here.

• Design strategy: Design strategy is application dependent. Time critical
applications care of timings and other factors like hardware resources or cost of
the device are of secondary importance. Cryptographic algorithms (especially
block ciphers) have iterative nature and n iterations of the same algorithm
are made. It is therefore possible to implement just one round and consume n
cycles (iterative looping) or implement n rounds of the algorithm (pipelining)
to achieve high timing performances. DES has 16 rounds.

• Choice of target device: The choice of the target device (FPGA) is based
on the design strategy. A large number of FPGAs are available in the mar-
ket by various manufacturers. The basic structure of all FPGAs is the same
however some of them offer additional features like built-in-memories, built-in-
arithmetic functions, etc. FPGAs are of different sizes depending on the prices.
For DES implementation, the chosen target device XCV400fg456 belongs to
VirtexE family of devices. Virtex and VirtexE family of devices contains more
than 280 built-in memory modules called as BlockRAMs (BRAMs). Those
memories are fast access memories and can be occupied for DES SP-boxes.
However, due to small memory requirements, BRAMs were not used. Instead,
FPGA CLBs were configured in memory mode. In short, the selection of an
FPGA depends upon the design size and design requirements.

• Design analysis: Design/algorithm analysis helps in reducing design size
and path delays in the circuit. It may not be a good effort to implement a fast
software code in hardware. Software codes are often optimized for 8, 16 or 32
bit general-purpose microprocessors. In hardware, such types of limitations do
not exist. A bit-level parallelism can freely be exploited unless one encounters
data dependencies or resource limitations. Let us consider an instruction from
a software code optimized for 32-bit general-purpose microprocessor:

work = [((left
 16) | right)&0× 0000FFFF];

which requires 16 right shifts, logical XOR and then logical AND with 0 ×
0000FFFF . That instruction in software is an effort to execute an XOR op-
eration for the 16 most significant bits of 32-bit ‘left’ and ‘right’ registers. In

60

III.4. FPGA IMPLEMENTATION OF DES ALGORITHM

hardware description languages, the same instruction can be implemented just
caring for language notations. One of the best option is to eliminate the AND
and 16 logical Shifts by executing XOR operation directly to the 16 most sig-
nificant bits of left and right registers, that is, work = left [31:16] XOR right
[31:16].

• Selecting FPGA resources: An FPGA designer can opt for multiple options
for performing a function. For example, two choices for implementing a 2-bit
multiplexer are shown in Figure III.11.

Figure III.11. 2-bit multiplixer using (a) Tristate Buffer. (b) LUT

Figure III.11a shows usage of tri-state buffers for a multiplexer. A large number
of tri-state buffers are available in FPGAs and it seems logical to make use
of them. However, our experience shows that, using large number of tri-state
buffers slows down the circuit. It is due to physical distribution of tri-state
buffers all around FPGA, which requires long routing paths. A multiplexer can
also be implemented using LUTs as shown in Figure III.11b. Using adjacent
LUTs for an n to 1 multiplexer would be useful when a circuit is required to
be optimized for speed.

Similarly, some FPGA devices contain built-in memory modules. It would be
useful to utilize those memories as they provide faster access to the data as
compared to distributed memories in FPGAs which are formed using several
LUTs.

• Hardware approach: Hardware Description Languages (HDLs) are analo-
gous to other high level languages (C, C++, etc.) with some subtle differences.
Both types of language are processed by a compiler. Writing style is the same.
However they differ in executing compiled code. HDLs are used for formal
description of electronic circuits. They describe circuit’s operation, its design,
and tests to verify its operation by means of simulation. Compilers compile an
HDL code and provide a list of electronic components in the circuit and also
give details of how they are connected. We will focus here in writing an HDL
code for an FPGA design.

An FPGA designer can know about the components (flip-flops, tri-state buffers,
LUTs) resulted by an HDL instruction. For example, an if statement in HDL

61

III. General Guidelines for Implementing Block Ciphers in FPGAs

describes a multiplexer or a flip-flop. Now, the frequent use of this state-
ment would insert large number of multiplexers or flip-flops resulting a circuit,
which is functionally correct but may or may not be efficient. Here, hardware
approach, therefore, defines in thinking about the component first and then
writing an HDL code accordingly. In other words if a programmer requires the
functionality of a flip-flop than he can search for a suitable flip flop for the
design and then he/she can write a code for it. That would generate a list of
components for an electronic circuit prior to its implementation providing a
complete control to the designer over the used and available resources in an
FPGA.

III.4.3 DES implementation on FPGAs

Figure III.12 represents a block diagram for DES implementation on FPGA. As it
has been earlier discussed that permutation is a simple operation on hardware de-
vices. It can be implemented by changing bit positions for the outgoing bus (change
of wires), hence it is free of cost. DES includes lot of permutation operations (ini-
tial, final, permutation E, permutation P). The building blocks for those operations
in Figure III.12 are therefore symbolic representations having no logic inside. Each
S-Box in DES occupy 64×4=256-bit memory, a total of 2048 bits for eight S-Boxes.
The implementation for S-Boxes consumes only 32 CLB slices configured in memory
mode. Temporary registers and XOR blocks are the other operations, which occupy
FPGA resources.

Figure III.12. DES implementation on FPGA

Three inputs: Chip Enable (CE), Clock (CLK), input data (IN) and the only
output (OUT) are the four pins of DES chip. Chip enable (CE) activates the timing
logic as well as the rest of the circuitry, in its low state (when it is ’0’). The ex-
ternal clock CLK is the master clock for the whole circuit that is used to generate
all the control signals to synchronize the data flow. When CE enables the circuit,

62

III.4. FPGA IMPLEMENTATION OF DES ALGORITHM

The 64-bit at the input are permuted and divided into two halves RIN and LIN. At
the first rising edge of the clock both halves are being transferred to the output of
the two registers REGA and REGB. The right halves (REGA output) go through a
number of operations: Permutation E; addition with sub-key; substitution (through
S-Boxes); Permutation P and; addition with the original left half (REGB output).
Before the next clock comes, the old right half (RIGHT) is the input of the register
REGB and the new left half (LEFT) is the input of the register REGA. The sixteen
iterations are then executed. After 16th clock cycles the two halves RIGHT and
LEFT are concatenated and the resulting block goes through the inverse permuta-
tion (IP−1) resulting one encryption for a 64-bit input block. Notice that the usage
of an eight DES S-Boxes parallel structure, results in a significant reduction of the
critical path for encryption/decryption.

III.4.4 Design testing and verification

DES implementation was made on XCV400e-8-bg560 VirtexE device using Xilinx
Foundation Series F4.1i. The design tool provides two options for design testing
and verification: functional simulation and timing verification. Functional verifica-
tion tests the logical correctness of the design. It is performed after the design entry
has been completed using VHDL or using library components of the target devices.
It detects logical errors without considering circuit overheads like path delays, syn-
chronization, etc. A netlist of the logic components in the design is created by the
design tool, which is then mapped to the available resources of the actual target
device. Timing verifications are made at this stage. That is useful feature by the
design tool to verify circuit performance taking into account all circuit overheads.
Both functional and timing verifications must be performed for a successful design
implementation. For both cases, test vectors are used for the verification of the
results. Table III.10 shows the test vectors used in our DES implementations.

Input Block First Permutation f (R,K) Second permutation

LIN=0×FFFF0000 LFOUT=0×06060606 LEFT=0×49DE9DF2 LOUT=0×17F77A33
RIN=0×AAAAAAAA RFOUT=0×E7E7E7E7 RIGHT=0×C7EEC966 ROUT=0×7B7AB72A

Table III.10. Test vectors

Figure III.13 and Figure III.14 show the results for the functional simulation
and the timing verification for DES implementation on FPGA. Notice that the
difference between Figure III.13 and III.14. Time delays in Figure III.14 are more
clear. Timings (clock cycles) presented in Figure III.14 are the real timings for the
circuit.

III.4.5 Performance results and comparison

FPGA implementation of DES algorithm was accomplished on a VirtexE device
XCV400e-8-bg560 using Xilinx Foundation Series F4.1i as synthesis tool. The design

63

III. General Guidelines for Implementing Block Ciphers in FPGAs

Figure III.13. Functional simulation

Figure III.14. Timing verification

was coded using VHDL language. It occupied 165 (3%) CLB slices, 117 (1%) slice
Flip Flops and 129 (41%) I/Os. The design achieves a frequency of 68.05 MHz (14.7
ηS). It takes 16 clock cycles to encrypt one data block (64-bits). Therefore, the
achieved throughput is (68.05 × 64)/16=274 Mbits/s.

Table III.11 shows the performance figures for some representative DES hardware

64

III.4. FPGA IMPLEMENTATION OF DES ALGORITHM

implementations. Notice that the achieved results are competitive with the existing
implementations.

Author Device Design Area (A) Freq. Throughput T/A
Strategy CLB slices (MHz) (Mbits/s) (T)

Kaps and XC4028EX pipeline 741 25.18 402.7 0.54
Paar [45] (4-round)
Free-DES XCV400 Pipeline 5263 47.7 3052 0.57
[13]
McLoony et XCV1000 Pipeline 6446 59.5 3808 0.59
al. [55]
Patterson XCV150 pipeline 1584 168 10752 6.78
(Jbits) [71] SW/HW
Wong et al. XC4020E Iterative 438 10 26.7 0.06
[103]
This work XCV400e Iterative 117 68.05 274 2.34

Table III.11. Recent DES reconfigurable hardware implementations

Several FPGA implementations of DES have been reported in the literature
achieving throughput ranges from 26 to 10752 Mbits/s. A DES implementation in
[13] is a free DES core which achieves a data rate of 3052 Mbits/s using pipeline
approach in ECB mode. A java-based (Jbits) DES implementation in [71] achieves
the fastest encryption rate of 10752 Mbits/s. It implements all DES primitives in
FPGA while key schedule in software. The communication between the two opera-
tions is made through a Java-based Application Programming Interface (API) which
is used for the runtime creation and modification of the configuration bit-stream.
FPGA implementation of DES in [45] implement both 2-stage and 4-stage pipeline
approaches obtaining throughput of 183.8 Mbits/s and 402.7 Mbits/s respectively.
Almost all FPGA architectures for DES implement partial or fully pipeline ap-
proaches. Only the design in [103] is a one round DES implementation on a single-
chip FPGA. A fair comparison is possible with this design only. The design was
implemented on XC4020E occupying 438 CLB slices. It takes 24 cycles to complete
encryption for one single data block achieving a throughput of 26.7 Mbits/s. Hence
the Throughput/Area factor is 0.06. Our DES implementation improves both the
area and throughput factors consuming only 165 CLB slices on XCV400 showing
a throughput of 274 Mbits/s. The Throughput/Area factor for our design is 2.34.
Comparing our architecture with the design in [103], we get a speedup improvement
of almost 10 times in throughput occupying four times less CLB slices. In fact our
design ranks second considering as a figure of merit the Throughput/Area Factor is
really convincing.

65

III. General Guidelines for Implementing Block Ciphers in FPGAs

III.5 Conclusions

This chapter provides a general guideline for the implementation of block ciphers in
reconfigurable logic platform. The general structure of block ciphers was discussed.
Most frequent operations in block ciphers were presented. Some useful properties for
implementing block ciphers in FPGAs were discussed. The design steps and some
design techniques for an FPGA implementation were described. A general guideline,
therefore, developed for the implementation of block ciphers in reconfigurable de-
vices. Same guideline was then applied for DES implementation resulting an efficient
and compact DES core on reconfigurable hardware platform. From Table III.11, it
can be seen that our design showed improvements both in time and area when
compared with other reported reconfigurable hardware implementations of DES.

Our architecture can be improved to offer even better results in terms of achieved
throughput. The most obvious extension is to design a fully pipelined architecture
in order to obtain a higher throughput at the price of area.

66

Chapter IV

Architectural Designs For

Advanced Encryption

Standard

This chapter investigate the significance of FPGA implementations for new Ad-
vanced Encryption Standard (AES). Multiple architectural implementation options
are explored for AES. The results of each AES implementation are evaluated in an
effort to determine the most suitable candidate architecture for variety of different
cryptographic applications restricted to area or time. The performance results are
well compared with the existing FPGA implementations of AES algorithm showing
significant improvements both in space and time.

IV.1 Introduction

On October 2000, a new Advanced Encryption Standard (AES) ‘Rijndael’ (based
on the names of two inventors ‘Rijmen’ and ‘Daemen’) was selected by NIST [65]
replacing Data Encryption Standard DES. From its evaluation process to post se-
lection period the algorithm has been implemented on all kind of hardware and
software platforms. Gladman [34] and Guido et al [17], reported software imple-
mentations in which AES specification is manipulated to increase performance. AES
software implementations have a throughput that ranges from 300 to 800 Mbps de-
pending on the specific architecture and platform selected by the developers. Some
efficient AES encryptor/decryptor core VLSI implementations have been also re-
ported [42, 99, 51, 79]. Performance of VLSI implementations ranges from 2 to 7.5
Gbits/s.

Similarly, various AES FPGA implementations have been reported at [33, 25, 30,
52]. Those are one round (iterative) or n rounds (pipeline) FPGA implementations

67

IV. Architectural Designs For Advanced Encryption Standard

optimized for encryption or encryption/decryption processes. Since FPGA devices
used in previous works are rather different, performance results are broadly variable;
they range from 300 Mbps to 6 Gbit/s, approximately.

Asymmetric characteristics of AES encryption and decryption processes limit the
implementation of high-performance AES cores. Each step in AES for encryption
has its inverse (in GF(2m)) for decryption. Designing separated architectures for
encryption and decryption processes would imply the allocation of a large amount of
FPGA resources and the area requirements of such design might be even impossible
or difficult to meet in several FPGA families of devices. This is one of the reasons
why designs reported [33, 25, 30], have considered only the encryption part of AES.
Both designs at [33, 25] are one round implementations with [25] or without [33]
key scheduling. The design at [30] implements all AES rounds (pipeline) without
key scheduling. Only the design at [52] has reported an FPGA implementation of
a fully pipeline AES encryptor/decryptor core.

In this Chapter, various FPGA implementations of AES are presented. Those
implementations cover all three basic processes: key scheduling, encryption and de-
cryption, on a single-chip FPGA. Different design architectures are considered by
implementing AES encryptor, decryptor and encryptor/decryptor cores separately.
Both iterative and pipeline techniques are applied showing time-area tradeoffs. All
AES implementations are optimized for low cost, high efficiency or high portability.
The rest of this Chapter is organized as follows.

An introduction to AES algorithm is presented in Section IV.2. The difference
between AES and Rijndael is clarified. The basic transformations of the algorithm
and their effects on the algorithm cryptographic strength are also explained in this
Section. Section IV.3 describes various novel techniques for implementing AES on
FPGAs. Those techniques help to improve overall algorithm performance by mod-
ifying the most costly operations of the algorithm. Section IV.4 deals with AES
implementation on FPGAs by taking into account the modifications in AES trans-
formations discussed in the previous Sections. Section IV.5 compares achieved results
followed by conclusion remarks in Section IV.6.

IV.2 The Rijndael algorithm

Rijndael algorithm was announced as the winner of the contest for new Advanced
Encryption Standard(AES) [65, 24] by NIST [65] on October, 2000. This Section
explains the behavior the algorithm. First it is explained the difference between
AES and Rijndael. Secondly, the basic structure and building blocks are described.
Third, it is specified the round transformation of the algorithm. Then, key schedule
is described.

IV.2.1 Difference between AES and Rijndael

Rijndael is a block cipher algorithm with variable block and key lengths. It can
process blocks of 128, 192, and 256 bits. All combinations of block and key lengths

68

IV.2. THE RIJNDAEL ALGORITHM

are possible. The only difference between Rijndael and AES is the supported range
of block length and cipher key length.

key length (bits) Block length (bits)
128 192 256

128 10 12 14
192 12 12 14
256 14 14 14

Table IV.1. Selection of Rijndael rounds

The AES fixes the block length to 128 bits and supports key lengths of 128,
192 or 256 bits only. The numbers of rounds depend upon the combination of the
selected block and key lengths as shown in Table IV.1. From Table IV.1, the allowed
number of rounds for this combination are 10. All over this document whenever we
use AES, it means a block and key lengths of 128 bits.

IV.2.2 Structure of the AES algorithm

The basic structure of AES algorithm is shown in Figure IV.1.

Figure IV.1. Basic structure of Rijndael algorithm.

For encryption the input is a plaintext block and a key block, and the output is
ciphertext block. For decryption the input is ciphertext block and a key, the output
is plaintext. The basic algorithm flow for encrypting one block of data is shown in
Figure IV.2.

Figure IV.2. Basic algorithm flow.

69

IV. Architectural Designs For Advanced Encryption Standard

The AES cipher treats the input 128 bit block as a group of 16 bytes organized
in a 4× 4 matrix called State matrix. The algorithm consists of an initial transfor-
mation, followed by a main loop where nine iterations called rounds are executed.
Each round transformation is composed of a sequence of four transformations: Byte-
Substitution (BS), ShiftRows (SR), MixColumns (MC) and

AddRoundKey (ARK). For each round of the main loop, a round key is derived
from the original key through a process called Key Scheduling. Finally, a last round
consisting of three transformations BS, SR and ARK is executed. The AES decryp-
tion algorithm operates similarly by applying the inverse of all the transformations
described above in the reverse order.

IV.2.3 The round transformation

The round transformation [24] is a sequence of four transformations BS, SR, MC and
ARK. All four transformations contribute in AES strength by inducing confusion
and diffusion optimalities. The confusion and diffusion are two important properties
that give some indication about the strength of a cryptographic system. Confusion
makes the output dependent on the key. Ideally, every key bit influences every out-
put bit. Diffusion makes the output dependent on previous input (plain/ciphertext).
Ideally, each output bit is influenced by every (previous) input bit. Those, roughly
correspond to substitution and permutation. Symmetric ciphers need to be complex,
so they cannot be analyzed easily. Also, they need to be simple, enough to be imple-
mented efficiently achieving high encryption rates. For AES, the general criteria for
round transformation was invertibility and simplicity besides the step-specific crite-
ria. This Section describes all four steps of round transformation with step-specific
criteria to provide an idea how effective AES is at mixing up bits.

ByteSubstitution (BS)

It is mainly a non-linear transformation where each input byte of the State matrix is
independently replaced by another byte from a look-up table called S-Box as shown
in Figure IV.3.

Figure IV.3. BS operates at each individual byte of the state matrix

70

IV.2. THE RIJNDAEL ALGORITHM

The non-linearity and algebraic complexity are the general criteria for designing
AES S-Box [24]. The AES S-Box is a 256-entry table composed of two transforma-
tions: First each input byte is replaced with its multiplicative inverse (MI) in GF(28)
with the element {00} being mapped to itself; followed by an affine transformation
over GF(2).

Multiplicative inverse can be found by means of extended Euclidean algorithm
[56]. Let MI of the polynomial a(x) is desired then extended Euclidean algorithm
can be used to find two polynomials b(x) and c(x) such that:

a(x)× b(x) + m(x)× c(x) = gcd(a(x),m(x)) (IV.1)

where gcd(a(x),m(x)) represents greatest common divisor of the polynomials a(x)
and m(x) which is always 1 iff m(x) is irreducible. Applying modular reduction to
Equation IV.1, we get:

a(x)× b(x) = 1 mod m(x) (IV.2)

which means that b(x) is the inverse element of a(x) (by the definition of multipli-
cation).

The affine transformation f is defined as follows.

y = f(x)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y7

y6

y5

y4

y3

y2

y1

y0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x7

x6

x5

x4

x3

x2

x1

x0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊕

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
0
0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(IV.3)

The non-linearity is introduced by applying multiplicative inverse in GF(28).
The affine transformation has no impact on the non-linearity but contribute in al-
gebraic complexity.

Inverse operation: The inverse S-Box is obtained by applying inverse affine trans-
formations followed by the multiplicative inverse in GF(28). The inverse of affine
transformation is defined as follows.

x = f−1(y)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x7

x6

x5

x4

x3

x2

x1

x0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y7

y6

y5

y4

y3

y2

y1

y0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊕

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(IV.4)

71

IV. Architectural Designs For Advanced Encryption Standard

For both affine and inverse affine transformations, multiplicative inverse is taken
in GF(28) with irreducible polynomial m(x) = x8 + x4 + x3 + x + 1.

ShiftRows (SR)

It is a cyclic shift operation where each row is rotated cyclically to the left using
0,1,2 and 3-byte offset for encryption as shown in Figure IV.4.

Figure IV.4. ShiftRows operates at rows of the state matrix

The diffusion optimality is the design criteria for selecting the offsets. The dif-
fusion optimality require the four offsets have to be different.

Inverse Operation: The inverse operation of ShiftRows is called Inverse ShiftRows
(ISR). It is a cyclic shift operation where each row is rotated cyclically to the right
using 0,1,2 and 3-byte offset for decryption.

MixColumns (MC)

In this transformation, each column of the State matrix is considered a polynomial
over GF(28) and is multiplied by a fixed polynomial c(x) modulo x4 + 1. The
polynomial c(x) is given by:

c(x) = 03.x3 + 01.x2 + 01.x + 02

Let b(x) = c(x).a(x) mod x4 + 1, then the modular multiplication with a fixed
polynomial can be written as shown in Equation IV.5.

⎡
⎢⎢⎣

b0

b1

b2

b3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ (IV.5)

MixColumns operates on the columns of the state matrix as shown in Figure IV.5.
The design criteria for MixColumns step includes dimensions, linearity, diffusion
and performance on 8-bit processor. The dimension criteria defines transformation
operation on 4-byte columns.

72

IV.2. THE RIJNDAEL ALGORITHM

Figure IV.5. MixColumns operates at columns of the state matrix

Inverse operation: The inverse of MixColumns is called (IMC). The constant
polynomial c(x) is co-prime to x4 + 1 and therefore invertible denoted by d(x) writ-
ten as follows.

(03.x3 + 01.x2 + 01.x + 02).d(x) ≡ 01(modx4 + 1)

The d(x) is given by:

d(x) = 0B.x3 + 0D.x2 + 09.x + 0E

In IMC, each column is transformed by multiplying with constant polynomial d(x)
written as a matrix multiplication as shown in Equation IV.6.

⎡
⎢⎢⎣

b0

b1

b2

b3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ (IV.6)

AddRoundKey (ARK)

In the last step, the output of MC is XOR-ed with the corresponding round key
derived from

the user’s key. This step is denoted as ARK, is essentially the same for encryption
and decryption. Figure IV.6 illustrates the effect of key addition on the state matrix.

Figure IV.6. ARK operates at bits of the state matrix

73

IV. Architectural Designs For Advanced Encryption Standard

IV.2.4 Key schedule

Both encryption and decryption, each require the generation of round keys, called
collectively key schedule. The round keys are obtained through the expansion of
secret user key by attaching recursively the 4-byte word ki = (k0,i, k1,i, k2,i, k3,i) to
the user key. The original user key consists of 128 bits arranged as a 4× 4 matrix of
bytes. Let w[0], w[1], w[2], and w[3] be the four columns of the original key. Then,
these four columns are recursively expanded to obtain 40 more columns as follows:

Let the columns up to w[i− 1] have been defined then,

w[i] =
{

w[i − 4]⊕ w[i − 1] if i mod 4 �= 0
w[i − 4]⊕ T (w[i − 1]) otherwise

(IV.7)

where T (w[i− 1]) is a non-linear transformation of w[i− 1] calculated as follows:

Let w, x, y, and z be the elements of column w[i− 1] then,

1. Shift cyclically the elements to obtain z, w, x, and y.

2. Replace each of the byte with the byte from S-Box S(z), S(w), S(x) and S(y).

3. Compute the round constant r(i) = 02(i−4)/4 in GF(28).

Then T (w[i − 1]) is the column vector, (S(z) ⊕ r(i), S(w), S(x), S(y)). In this
way, the columns from w[4] to w[43] are generated from the first four columns. The
round key for the ith round consists of the columns

(w(4i), w(4i + 1), w(4i + 2), w(4i + 3))

IV.3 Novel techniques for efficient implementation of AES

round transformation on FPGAs

Section IV.2.3 describes round transformation and impact of four basic transfor-
mations (BS, SR, MC, and ARK) on the state matrix. The most important oper-
ations for all the transformations include polynomial multiplication in GF(28) for
BS/IBS, fixed-rotation for SR/ISR, constant polynomial multiplication in GF(28)
for MC/IMC, and simple addition (XOR) for ARK/IARK. Fixed-rotation is hard-
wired and does not consume FPGA’s resources. The addition is a simple XOR op-
eration. Perhaps the most costly operation is polynomial multiplication in GF(28)
for BS/IBS. The polynomial multiplication in GF(28) for MC/IMC takes advantage
of constant multiplication and is relatively less costly however occupies consider-
able FPGA’s resources. Therefore, both BS/IBS and MC/IMC are good candidates
for improving overall performance of the round transformation. On the other hand,
AES hardware implementation poses a challenge since encryption and decryption

74

IV.3. NOVEL TECHNIQUES FOR EFFICIENT IMPLEMENTATION
OF AES ROUND TRANSFORMATION ON FPGAS

processes are not symmetrical. Designing separated architectures for encryption and
decryption processes would imply the allocation of a large amount of FPGA re-
sources. Various techniques can be derived for efficient implementation of BS/IBS
and MC/IMC.

In the rest of this Section, two approaches for implementing BS/IBS are de-
scribed. In the first approach, pre-computed values are stored in FPGA’s built-in
memory modules to save computational time. The second approach provides an al-
ternative to reduce memory requirements and is based on the on-fly architecture
strategy. Similarly, two approaches for MC/IMC implementations are presented.
First approach called classical approach, deals with the structural organization of
MC/IMC transformations. The second approach called modified approach intro-
duces a small modification before MC to perform IMC step. Finally, some struc-
tural changes are proposed in key schedule algorithm which can improve algorithm
performance by cutting path delays.

IV.3.1 S-Box/inverse S-Box implementations on FPGAs

The straightforward approach for implementing BS is by using a look-up table in
which pre-computed values are stored in memories. This requires memory modules
with fast memory access. In FPGAs, there are two ways to organize memory: by us-
ing flip-flops and CLBs, and by using FPGAs with built-in memory modules called
BRAMs (BlockRAMs). To increase performance several BS operations should be
performed in parallel which translates in high memory requirements. A different ap-
proach manipulates BS in GF(24) and GF(22)2 instead of GF(28). In this approach,
memory requirements are reduced. Clearly, it will occupy more area and does not
have fast access time like BRAMs.

S-Box and inverse S-Box based on look-up table

To avoid utilization of considerable amount of FPGA resources, the implementation
of S-Box and inverse S-Box can be made using look-up table method. Both may
be computed by implementing affine (AF) and inverse affine (IAF) transformations
together with a look-up table for multiplicative inverse (MI). In this way, the com-
bination MI + AF provides S-Box for encryption while IAF + MI computes the
inverse S-Box for decryption. To use only one MI module for both encryption and
decryption, a multiplexer is used to switch the data path for encryption/decryption,
as shown in Figure IV.7

Figure IV.7. S-Box and Inv. S-Box using same look-up table

75

IV. Architectural Designs For Advanced Encryption Standard

II. S-Box and inverse S-Box based on composite field techniques

Several authors [69, 62, 79] have designed AES S-Box based on the composite field
techniques reported first in [69]. Those techniques use a three-stage strategy:

1. Map the element A ∈ GF(28) to a composite field F by using an isomorphism
function δ.

2. Compute the multiplicative inverse over the field F .

3. Finally, map the computations back to the original field.

In [62], an efficient method to compute the inverse multiplicative based on Fermat’s
little theorem was outlined. That method is useful because it allows us to com-
pute the multiplicative inverse over a composite filed GF(2m)n as a combination of
operations over the ground field GF(2m). It is based on the following theorem:

Theorem 1 [69, 36] The multiplicative inverse of an element A of the composite
field GF(2m)n, A �= 0, can be computed by,

A−1 = (Aγ)−1Aγ−1 mod P (x) (IV.8)

where Aγ ∈ GF(2n) & γ =
2nm − 1
2m − 1

An important observation of the above theorem is that the element Aγ belongs to
the ground field GF(2m). This remarkable characteristic can be exploited to obtain
an efficient implementation of the inverse multiplicative over the composite field. By
selecting m = 4 and n = 2 in the above theorem, we obtain γ = 17 and,

A−1 = (Aγ)−1Aγ−1 = (A17)−1A16 (IV.9)

In case of AES, it is possible to construct a suitable composite field F , by using two
degree-two extensions based on the following irreducible polynomials .

F1 = GF(22) P0(x) = x2 + x + 1
F2 = GF((22)2 P1(y) = y2 + y + φ
F3 = GF(((22)2)2 P2(z) = z2 + z + λ

(IV.10)

where φ = {10}2, λ = {1100}2
The inverse multiplicative over the composite field F2 defined in the Equation IV.9,
can be found as follows:

76

IV.3. NOVEL TECHNIQUES FOR EFFICIENT IMPLEMENTATION
OF AES ROUND TRANSFORMATION ON FPGAS

Let A ∈ F2 = GF(22)2 be defined in polynomial basis as A = AHy + AL, and let
the Galois Fields F1, F2, and F3 be defined as shown in Equation IV.10, then it can
be shown that,

A16 = AHy + (AH + AL)
A17 = A16.A = 0.y + (λ(AH)16AH + (AL)16AL)

= λ(AH)2 + (AL)16AL (IV.11)

Figure IV.19 depicts block diagram to three-stage inverse multiplier represented by
Equations IV.9 and IV.11. The circuit shown in Figure IV.20 and Figure IV.21
present a gate level implementation of the aforementioned strategy.

As we explained above, in order to obtain the multiplicative inverse of the el-
ement A ∈ F =GF(28), we first map A to its equivalent representation (AH , AL)
in the isomorphic field F2 = GF(22)2 using the isomorphism δ (and its correspond-
ing inverse δ−1). In order to map a given element A from the finite field F to its
isomorphic composite field F2 and vice versa, we only need to compute the matrix
multiplication of the said element A, by the isomorphic functions shown in Equa-
tion IV.12 given by [62]:

δ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 0
1 0 1 0 1 1 0 0
1 0 1 0 1 1 1 0
1 1 0 0 0 1 1 0
1 0 0 1 1 1 1 0
0 1 0 1 0 0 1 0
0 1 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

δ−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 0 0 0 1 0
0 1 1 1 0 1 1 0
0 0 1 1 1 1 1 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 1 1
0 1 1 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(IV.12)

The isomorphism function δ and δ−1) can be constructed as follows: Let α and β are
roots of a same primitive irreducible polynomial (we use m(x) = x8+x4+x3+x2+1),
first search for primitive element α in the field A and a primitive element β in the
field B. Once we find δ and δ−1), the definition table for both of them can be
determined, where αk is mapped to βk or vice versa.

Also by taking advantage of the fact that A17 is an element of F2, the final
operation (A17)−1A16 of Equation IV.9 can be easily computed with further gate
reduction. Last stage of algorithm consists of mapping computed value in the com-
posite field, back to the field GF(28).

IV.3.2 MC/IMC implementations on FPGA

For an encryptor/decryptor core MC/IMC steps are implemented separately and
can be realized in a small series of instructions. These instructions can be realized

77

IV. Architectural Designs For Advanced Encryption Standard

by keeping in mind the basic structure of instructions of CLB (4 input/1 output)
to limit path delays and to save space. Let us call this approach MC/IMC classical
approach. Fortunately, there exists another approach for which the implementation
of IMC is made by introducing small modification before MC. The first approach
is efficient but needs separate implementation for MC and IMC. The MC/IMC
modified approach reuses some modules which eliminates the need for separated
implementation of MC/IMC.

MC and IMC transformations classic approach

Encryption’ MC can be efficiently computed by using only 3 steps [17, 24]: a sum
step, a doubling step and a final sum step. Let the element of State matrix’s column
one be a[0], a[1], a[2], and a[3], then the transformed MC column a′[0], a′[1], a′[2],
and a′[3] can be efficiently obtained as shown in Equation IV.13.

t = a[0]⊕ a[1]⊕ a[2]⊕ a[3];
v = a[0] ⊕ a[1]; v = xtime(v); a′[0] = a[0]⊕ v ⊕ t;
v = a[1] ⊕ a[2]; v = xtime(v); a′[1] = a[1]⊕ v ⊕ t;
v = a[2] ⊕ a[3]; v = xtime(v); a′[2] = a[2]⊕ v ⊕ t;
v = a[3] ⊕ a[0]; v = xtime(v); a′[3] = a[3]⊕ v ⊕ t;

(IV.13)

Here xtime(v) represents the field multiplication of 02 × v, where 02 stands for
the constant polynomial x in GF(28). To enhance time performance, the above
computation can be re-structured. Further optimization consists on embedding ARK
step to fully exploit 4-input FPGA slice resources as shown in Equation IV.14.

v = a[1]⊕ a[2]⊕ a[3]; xt0 = xtime(a[0]); a′[0] = k[0]⊕ v ⊕ xt0 ⊕ xt1;
v = a[0]⊕ a[2]⊕ a[3]; xt1 = xtime(a[1]); a′[1] = k[1]⊕ v ⊕ xt1 ⊕ xt2;
v = a[0]⊕ a[1]⊕ a[3]; xt2 = xtime(a[2]); a′[2] = k[2]⊕ v ⊕ xt2 ⊕ xt3;
v = a[0]⊕ a[1]⊕ a[2]; xt3 = xtime(a[3]); a′[3] = k[3]⊕ v ⊕ xt3 ⊕ xt0;

(IV.14)

The same strategy applied above for MC would yield up to seven steps to compute
IMC: four sum steps and three doubling steps. The difference is due to the fact
that coefficients in Equation IV.6 have a higher Hamming weight than the ones in
Equation IV.5. To overcome this drawback, we use the strategy depicted in Equa-
tion IV.15 where IMC manipulation is restructured and seven steps are cut to five
steps. Moreover, as explained above, IARK is embedded into IMC resulting in six
total steps. For final round (Round 10), MC/IMC steps are not executed; therefore

78

IV.3. NOVEL TECHNIQUES FOR EFFICIENT IMPLEMENTATION
OF AES ROUND TRANSFORMATION ON FPGAS

a separate implementation of ARK is made.

Step 1 Step 2 Step 3
t = a[0]⊕ a[1]⊕ a[3] u = s′0 ⊕ s′1 ⊕ s′2 ⊕ s′3;

s0 = xtime(a[0]); s′0 = xtime(s0); v = s0 ⊕ s1 ⊕ s′0 ⊕ s′2;
s1 = xtime(a[1]); s′1 = xtime(s1); v = s1 ⊕ s2 ⊕ s′1 ⊕ s′3;
s2 = xtime(a[2]); s′2 = xtime(s2); v = s2 ⊕ s3 ⊕ s′0 ⊕ s′2;
s3 = xtime(a[3]); s′3 = xtime(s3); v = s3 ⊕ s0 ⊕ s′1 ⊕ s′3;

Step 4 Step 5 Step 6
u = xtime(u); t′ = t⊕ u; a′[0] = a[0]⊕ t′ ⊕ v ⊕ k[0];

a′[1] = a[1]⊕ t′ ⊕ v ⊕ k[1];
a′[2] = a[2]⊕ t′ ⊕ v ⊕ k[2];
a′[3] = a[3]⊕ t′ ⊕ v ⊕ k[3];

(IV.15)

MC and IMC transformations modified approach

The strategy utilized above for MC and IMC yields up to three and six computa-
tional steps for encryption and decryption respectively. In order to minimize this
complexity difference, we use the following strategy.

We observe that it should exist a 4 × 4 byte matrix D(x) in GF(28) such that
the constant MC matrix of Equation IV.5 can be related to the constant matrix of
Equation IV.6 as,

⎡
⎢⎣

0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

⎤
⎥⎦ =

⎡
⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎦D(x) (IV.16)

Using the fact that both constant matrices in Equation IV.16 are the inverse of each
other in the finite field F = GF(28). We can solve Equation IV.16 using irreducible
polynomial m(x) = x8 + x4 + x3 + x + 1 [24] for the first column of D(x) as shown
in Equation IV.17.

⎡
⎢⎣

d0,0

d1,0

d2,0

d3,0

⎤
⎥⎦ =

⎡
⎢⎣

0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

⎤
⎥⎦

⎡
⎢⎣

0E
09
0D
0B

⎤
⎥⎦ (IV.17)

Where di,0, i = 0, 1, 2, 3 represent the four coefficients of the first column of
D(x). It follows that Equation IV.17 has a unique solution in the finite field F as
given in Equation IV.18,

79

IV. Architectural Designs For Advanced Encryption Standard

d0,0 = 5 d1,0 = 0 d2,0 = 4 d3,0 = 0 (IV.18)

Hence Equation IV.16 can be re-written as shown in Equation IV.19.

⎡
⎢⎣

0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

⎤
⎥⎦ =

⎡
⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎦

⎡
⎢⎣

05 00 04 00
00 05 00 04
04 00 05 00
00 04 00 05

⎤
⎥⎦ (IV.19)

Equation IV.19 suggests an efficient way to compute IMC by re-using the MC trans-
formation to obtain IMC constant matrix. This is useful since the second matrix in
the right side of Equation IV.19 is very light from the computational point of view
as compared to the original constant matrix for IMC.

IV.3.3 Key schedule optimization

The original user key consists of 128 bits arranged as a 4 x 4 matrix of bytes. Let
w[0], w[1], w[2], and w[3] be the four columns of the original key. Then, these four
columns are recursively expanded to obtain 40 more columns as follows:

Let the columns up to w[i− 1] have been defined then,

w[i] =
{

w[i− 4]⊕ w[i− 1] if i mod 4 �= 0
w[i− 4]⊕ T (w[i− 1]) otherwise

(IV.20)

where T (w[i − 1]) a is non-linear transformation based on the application of the
S-Box to the four bytes of the column. It involves also an additional cyclic rotation
of the bytes within the column and the addition of a round constant (rcon) for
symmetric elimination [24].

Let w[0], w[1], w[2], and w[3] be represented as:

w[0] =

⎡
⎢⎢⎣

k0

k4

k8

k12

⎤
⎥⎥⎦ w[1] =

⎡
⎢⎢⎣

k1

k5

k9

k13

⎤
⎥⎥⎦

w[2] =

⎡
⎢⎢⎣

k2

k6

k10

k14

⎤
⎥⎥⎦ w[3] =

⎡
⎢⎢⎣

k3

k7

k11

k15

⎤
⎥⎥⎦ (IV.21)

Then according to the above expressions, the new columns w′[0], w′[1], w′[2], and
w′[3] of the next round key can be calculated as shown in Equation IV.22.

80

IV.4. AES IMPLEMENTATIONS ON FPGAS

Step 1 Step 2 Step 3 Step 4
k′
0 = k0 ⊕ SBox(k13)⊕ rcon; k′

4 = k4 ⊕ k′
0; k′

8 = k8 ⊕ k′
4; k′

12 = k12 ⊕ k′
8;

k′
1 = k0 ⊕ SBox(k14); k′

5 = k5 ⊕ k′
1; k′

9 = k9 ⊕ k′
5; k′

13 = k13 ⊕ k′
9;

k′
2 = k0 ⊕ SBox(k15); k′

6 = k6 ⊕ k′
2; k′

10 = k10 ⊕ k′
6; k′

14 = k14 ⊕ k′
10;

k′
3 = k0 ⊕ SBox(k12); k′

7 = k7 ⊕ k′
3; k′

11 = k11 ⊕ k′
7; k′

15 = k15 ⊕ k′
11;

(IV.22)

But as we have mentioned before, in a typical FPGA device, 4 input bits look-up
table can be configured indistinctly to handle 2,3, or 4 input logic gates. Hence we
can save some time by parallelizing the above computation using only two steps. By
applying redundant computations, Equation IV.22 can be rewritten as it is shown
in Equation IV.23 for the first row. Parallel computations are applied to obtain k′

4,
k′

8, and k′
12.

Step 1 Step 2
k′

4 = k4 ⊕ k′
0;

k′
0 = k0 ⊕ SBox(k13)⊕ rcon; k′

8 = k4 ⊕ k8 ⊕ k′
0;

k′
12 = k4 ⊕ k8 ⊕ k12 ⊕ k′

0;
(IV.23)

IV.4 AES implementations on FPGAs

Figure IV.8. Basic organization of a block cipher

The basic organization of the hardware implementation of an AES algorithm
is shown in Figure IV.8 which represents three blocks encryptor/decryptor unit,
key scheduling unit, and a control unit for synchronizing the flow of data between
them. The control unit is the default unit of each application however, three main
processes, which participate for AES, are:

• Key Schedule

• Encryption.

• Decryption

81

IV. Architectural Designs For Advanced Encryption Standard

For AES implementation, the above three processes can be implemented sepa-
rately or totally on a single-chip FPGA as shown in Table IV.2. Table IV.2 details
all implemented AES designs in this Section. It provides four parameters: design
(Sec.IV.4), based on Section (Sec. IV.3), E/D/K module (encryption/decryption/key
schedule) and architecture (encryptor, decryptor or encryptor/decryptor core).

The variety of different AES architectures presents area-time tradeoffs. A sepa-
rate implementation of AES encryptor or decryptor core would be less complex and
efficient. However, a single-chip FPGA implementation of AES encryptor/decryptor
will give out a complete solution. Moreover, by implementing a single copy of com-
mon operations between encryption and decryption, both complexity and efficiency
factors could be improved. For AES, the key schedule process is quite different for
an encryptor, decryptor or encryptor/decryptor cores. The use of internal memory
resources of an FPGA for storing pre-computed round-keys would be a simple ap-
proach. For encryption/decryption processes however it is recommendable not to use
the same key for long time. A key schedule implementation will therefore provide a
user to select encryption/decryption key of his own choice.

Table IV.2. A roadmap to implemented AES designs.
Design Based on E/D/K Module Architecture

the Section
Sec. IV.4.1 Sec. IV.3.3 (Key schedule) For iterative & pipeline

encryptor cores only
Sec. IV.4.1 Sec. IV.3.3 (Key schedule) For Pipeline

encryptor/decryptor cores
Sec. IV.4.2 Sec. IV.3.1 S-box Look-up table Encryptor core

Sec. IV.3.2 MC classic (Iterative)
Sec. IV.4.2 Sec. IV.3.1 S-box Look-up table Encryptor core

Sec. IV.3.2 MC classic (Pipeline)
Sec. IV.4.3 Sec. IV.3.1 S-box Look-up table Encryptor/decryptor

Sec. IV.3.2 MC classic core (Pipeline)
Sec. IV.4.3 Sec. IV.3.1 S-box Composite field Encryptor/decryptor

Sec. IV.3.2 MC classic core (Pipeline)
Sec. IV.4.4 Sec. IV.3.1 S-box Look-up table Encryptor/decryptor

Sec. IV.3.2 Modified MC/IMC core (Pipeline)
Sec. IV.4.4 Sec. IV.3.1 S-box Look-up table Encryptor core

Sec. IV.3.2 MC classic (Pipeline)
Sec. IV.4.4 Sec. IV.3.1 S-box Look-up table Decryptor core

Sec. IV.3.2 Modified IMC (Pipeline)

The efficiency is another important factor for AES implementations on FPGAs.
Several approaches can be followed to implement AES on hardware to achieve vari-
able performance results. An iterative looping design (IL), implements only one
round and n iterations of the algorithm are carried out by feeding back previous
round results. The design utilizes less area but the achieved throughput would be too
low. Sub-pipelining (SP) is achieved by placing buffers between different stages of a

82

IV.4. AES IMPLEMENTATIONS ON FPGAS

round, hence reducing the pipeline’s delay but at the same time increases the num-
ber of clock cycles needed to perform an encryption and by adding an area penalty
for buffers’ implementation. In a pipeline design (PP), rounds are replicated and
registers are provided between the rounds to control the flow of data. This design
offers high throughput but area requirements might be too high for some devices.

In the rest of this section some promising AES implementations on a single-chip
FPGA are presented. Those AES implementations consist of encryptor, decryptor,
and encryptor/decryptor cores using iterative or pipeline approaches. Each AES
implementation targets specific criteria composed of factors like efficiency, cost, ef-
fectiveness and portability. Table IV.2 provides a roadmap to all implemented AES
designs. The key schedule implementations for encryptor, decryptor and encryp-
tor/decryptor cores are also presented.

The Xilinx Foundation Tool F4.1i is used for implementing, testing and verifi-
cating the results. All designs are either coded in VHDL or by using libraries of the
target devices. The Coregenerator is another tool used for design entry.

IV.4.1 Key schedule algorithm implementations

Let the user key consisting of 16 bytes be arranged as:

⎡
⎢⎢⎣

k0 k1 k2 k3

k4 k5 k6 k7

k8 k9 k10 k11

k12 k13 k14 k15

⎤
⎥⎥⎦ (IV.24)

Then the process of generating next round key is optimized as discussed in
Section IV.3.3 and is shown in Figure IV.9. The KGEN block consists of four similar
units where each unit contains an S-Box and four XORs. The first block is slightly
different as a constant predefined value (rcon) is XOR-ed in each round. As shown
in Figure IV.9, last four bytes k12, k13, k14, k15, of each round key are substituted
with the bytes from S-Box and then XOR ed operations are performed to get the
next round key.

The KGEN block is the basic building block used to generate round keys for
all AES implementations. However, keys must be available to the corresponding
rounds, therefore, the management for latching round keys is different for different
implementation’s strategies. For an encryptor core in iterative mode, round keys are
also generated in iterative mode. For fully pipeline encryptor core, all round keys
must be available before the encryption process starts. In a fully pipeline encryp-
tor/decryptor core, the round keys for decryption are stored in reverse order as that
of encryption.

Key schedule for iterative and pipeline encryptor cores

For an encryptor core in iterative mode, a single round key is generated. The round
key is fed to perform ARK step and also latched to fed back to KGEN block to

83

IV. Architectural Designs For Advanced Encryption Standard

Figure IV.9. KGEN architecture

prepare for next round key as shown in Figure IV.10. The multiplexer is used to
switch the user-key first time and then for all rounds, each round key is used to
generate the next round key.

Figure IV.10. Key schedule for an encryptor core in iterative mode

For a fully pipelined encryptor core, the round keys must be available for each
round permanently. The key generation process for a fully pipeline encryptor core is
shown in Figure IV.11. The internal structure of each block is the same as shown in
Figure IV.10, however, same block is replicated n (number of rounds) times. Once
the round keys are generated, there is no need to repeat this process again and
again. The same round keys serve for the whole

session. For a fully pipeline encryptor core, the encryption process can be started
in a parallel way, and there is no need to wait for the completion of all round keys.

Key schedule for encryptor/decryptor cores

For an encryptor/decryptor core on a single-chip FPGA, all the round keys must be
generated and latched before the encryption/decryption processes start. The reason
why round keys cannot be generated in a parallel way because they are required in
reverse order for decryption. The process of key generation is the same as explained

84

IV.4. AES IMPLEMENTATIONS ON FPGAS

Figure IV.11. Key schedule for a fully pipeline encryptor core

above, however, round keys are stored in the registers for encryption and decryption
in ascending or descending order respectively as shown in Figure IV.12. Besides this
difference, the same blocks can be used for encryption and decryption processes.

Figure IV.12. Key schedule for a fully pipeline encryptor/decryptor core

As shown in Figure IV.12, round keys are generated by KGEN block as explained
above with two modifications. The first one is the generation of select signals (si)
for latches through an up/down counter. Those select signals provide a complete
control for storing round keys in the corresponding registers depending upon en-
cryption/decryption processes. The second modification is the addition of IMC step.
The multiplexer allows to pass round keys directly for encryption. For decryption,
IMC operation is performed before all the round keys are stored in their registers
except the first and last round keys according to the theoretical descriptions for
AES decryption process.

Some modifications are introduced in IMC as discussed in Section IV.3.2. Those
modifications (ModM) are also introduced in IMC step for key scheduling and serve
for the second AES encryptor/decryptor design explained in the next Section. For
that design, key schedule procedure will remain the same as explained above for an
encryptor/decryptor core except the change in IMC as shown in Figure IV.13.

85

IV. Architectural Designs For Advanced Encryption Standard

Figure IV.13. Key schedule for a fully pipeline encryptor/decryptor core with
modified IMC

IV.4.2 AES encryptor cores - iterative and pipeline approaches

For an encryptor core, the AES implementations on FPGAs are carried out in two
modes: iterative and pipeline. The area requirements are reduced for an iterative
architecture but low timing performances are achieved. On the other hand, high
performances are obtained for a pipeline architecture at the price of high area re-
quirements.

AES encryptor core using an iterative approach

For an iterative approach, instead of implementing n iterations of the algorithm, one
iteration is implemented and n clock cycles are consumed to achieve final output.
An iterative approach for AES is shown in Figure IV.14.

Figure IV.14. Iterative approach for AES encryptor core

An encryption process is presented in Figure IV.14 where RND0 is a simple
ARK step: the user-key and plain-text are added. In the next nine cycle, RND1-9
is performed that includes four AES steps (BS,SR,MC,ARK). All nine iterations
are made by using new round keys. Each time, an encryption round is executed, the
output is stored in the register and provide a feedback for the next encryption round.
The multiplexer switch RND0 output at the first time and the RND1-9 results for
the next nine cycles. Finally, RND10 is executed which is similar to RND1-9 but
excludes MC step.

86

IV.4. AES IMPLEMENTATIONS ON FPGAS

16 ROMs (256 × 8) are configured by using CLB in memory mode to perform
BS step for RND1-9. RND10 also includes BS step, 16 ROMs are occupied there
making a total of 32 ROMs for encryption part only. The key scheduling algorithm
also includes BS step for the last four bytes of each round key (IV.4.1) as shown in
Figure IV.9 occupying 4 ROMs. The SR step is just a change of wires and is combined
with BS step. The MC and ARK steps are joined to reduce area requirements as
discussed in Section IV.3.2.

The design is implemented on Xilinx VirtexE FPGA devices (XCV812BEG) and
occupies 36 ROMs, 385 I/O Blocks (95%) and 2744 slices (28%). Data blocks are
accepted after each 10 clock cycle and similarly output blocks appear after each 10
clock cycles. An allowed frequency for this architecture is 20.192 MHz and the data
is processed at a rate of 258.5 Mbits/sec. It does not make use of FPGA dedicated
resources (BRAMs, etc.), hence it has a high portability as it can be implemented
in virtually every commercial FPGA device available.

Fully pipeline AES encryptor core

For a pipeline architecture, all AES rounds are unrolled. That is achieved by repeat-
ing one AES round in iterative mode 11 times as shown in Figure IV.15.

Figure IV.15. Fully pipeline AES encryptor core

Similar to the iterative architecture, RND0 is just ARK step. RND 1-9 includes
all four steps BS, SR, MC, and ARK. The RND10 includes three steps BS, SR,
ARK excluding MC step. 160 ROMs are required for 10 AES rounds instead of
16 ROMs occupied by the iterative architecture to perform BS step. Critical data
path in a pipeline architecture is bigger which causes the design to run at lower
speeds. However, by using dedicated memory modules BRAMs, as explained in the
introduction Section, it is possible to reduce delays. The Virtex and VirtexE FPGA
devices [9] contain more than 280 BRAMs each of 4K. Each dual port BRAM
can be configured to two single port BRAMs which reduces half of the memory
requirements, a total of 80 BRAMs are used to perform BS step. The same approach
is used for key schedule implementation by occupying 20 BRAMs instead of 40
ROMs.

The design is targeted to Xilinx VirtexE FPGA devices (XCV812BEG) and oc-
cupies 2136 CLB slices (22%), 385 I/O Blocks (95%) and 100 BRAMs (35%). It
uses a system clock of 22.41 MHz and data is processed at a rate of 2868 Mbits/sec.
For a fully pipeline encryptor core, encryption starts from first clock cycle without

87

IV. Architectural Designs For Advanced Encryption Standard

initial delay. The round keys are generated in parallel. It takes 11 clock cycles to
fill the pipeline first and then one encrypted block starts appearing at each consec-
utive clock cycle. This is why, pipeline architecture is preferred when high speed is
required.

By comparing iterative and pipeline architectures, number of CLB slices occupied
by the pipeline architecture seem to be less as compared to an iterative architecture.
But this is accomplished at the price of occupying extra memory (100 BRAMs)
needed to achieve desired fully pipeline architecture. The use of dedicated memory
resources (BRAMs) makes the pipeline design importable as it can be targeted to
only those FPGA family of devices which already contain similar memory modules.
However, it is a highly economical and an efficient architecture.

IV.4.3 AES encryptor/decryptor cores- using look-up table and
composite field approaches for S-Box

For an encryptor/decryptor core, each encryption step (BS, SR, MC, ARK) has its
own inverse (IBS, ISR, IMC, IARK) which is to be implemented separately. The
implementation of BS and IBS on a single chip is the most costly operation for AES
implementation on FPGAs. In this design, two architectures are proposed for the
BS/IBS implementation on FPGAs. First architecture proposes high performance
implementations of BS/IBS step and second architecture is based on on-fly archi-
tecture scheme which tries to reduce memory requirements. The implementation of
rest of three steps SR, MC, and ARK is same as explained in Section IV.4.2. In the
following, BS/IBS implementation strategies are discussed.

Figure IV.16. S-Box and Inv S-Box using (a) different MI (b) same MI

For encryption, BS implementation can be made by taking Multiplicative Inverse
(MI) of input byte in GF(28) followed by affine transformation (AF). For decryption,
inverse affine transformation (IAF) is applied first followed by MI step. Implementing
MI as look-up table requires memory modules, therefore, a separated implementation
of BS/IBS causes the allocation of high memory requirements especially for a fully
pipelined architecture. We can reduce such requirements by developing a single data

88

IV.4. AES IMPLEMENTATIONS ON FPGAS

path which uses one MI block for encryption and decryption. Figure IV.16 shows
the BS/IBS implementation using single block for MI.

There are two design approaches for implementing MI: look-up table method
and composite field calculation.

MI using look-up table method

MI can be implemented using memory modules (BRAMs) of FPGAs by storing
pre-computed values for MI. By configuring a dual port BRAM into two single port
BRAMs, 8 BRAMs are required for a one stage of a pipeline architecture, hence a
total of 80 BRAMs are used for 10 stages. A separated implementation of AF and
IAF is made. Data path selection for encryption and decryption is performed by
using two multiplexers which are switched depending on E/D signal. A complete
set-up is shown in Figure IV.17

Figure IV.17. Data path for encryption/decryption

The data path for both encryption and decryption is, therefore, as follows:

Encryption: MI→ AF→ SR→ MC→ ARK
Decryption: ISR→ IAF→ MI→ IMC→IARK

The design targets Xilinx VirtexE FPGA devices (XCV2600) and occupies 80
BRAMs (43%), 386 I/O blocks (48%), and 5677 CLB slices (22.3%). It runs at 30
MHz and data is processed at 3840 Mbits/s. The data blocks are accepted at each
clock cycle and then after 11 cycles, output encrypted/decrypted blocks appear
at the output at consecutive clock cycles. It is an efficient fully pipeline encryp-
tor/decryptor core expedient for those cryptographic applications where time factor
really matters.

MI with composite field calculation

This is composite field approach that deals MI manipulation in GF(22) and GF(24)
instead of GF(28) as explained in Section IV.3.1. It is 3-stage strategy as shown
in Figure IV.18. First and last stages transform data from GF(28) to GF(24) and
vice versa. The middle stage manipulates inverse MI in GF(24). The implemen-
tation of middle stage with two initial and final transformations is represented in

89

IV. Architectural Designs For Advanced Encryption Standard

Figure IV.18. Block diagrm for 3-stage MI manipulation

Figure IV.19. Three-stage to compute multiplicative inverse in composite fields.

Figure IV.19 which depicts block diagram to three-stage inverse multiplier repre-
sented by Equations IV.9 and IV.11. Data path for encryption/decryption for this
approach remains same as the change is introduced in MI manipulation.

The circuit shown in Figure IV.20 and Figure IV.21 present a gate level imple-
mentation of the aforementioned strategy.

Figure IV.20. GF (22)2 and GF (22) multipliers.

Figure IV.21. Gate level implementation for x2 and λx.

90

IV.4. AES IMPLEMENTATIONS ON FPGAS

The architecture is implemented on Xilinx VirtexE FPGA devices (XCV2600BEG)
and occupies 12,270 CLB slices (48%), 386 I/O blocks (48%). It runs at 24.5 MHz
and throughput achieved is 3136 Mbits/s. The increase in CLB slices for this design
is due to the manipulation for MI instead of using BRAMs. The increase in design
complexity causes the throughput to decrease as compared to first design. However
it is a fully pipeline encryptor/decryptor core with relatively less throughput but it
is a portable and a cost-effective solution.

IV.4.4 AES encryptor/decryptor, encryptor, and decryptor cores
based on modified MC/IMC

Three AES cores are presented in this Section. First design is an encryptor/decryptor
core based on the ideas discussed in Section IV.3.2 for MC/IMC implementations.
The second and third designs implement encryption and decryption paths sepa-
rately for that design. There are two main reasons for the separate implementation
of encryption and decryption paths. First, to realize the effects of the modifications
introduced in MC/IMC transformations. Second, all reported AES implementations
are either encryptor cores or encryptor/decryptor cores and there is no known de-
cryptor core. In the rest of this Section, the implementation aspects of all three cores
are described.

Encryptor/decryptor core

This architecture reduces the large difference between the encryption/decryption
time by exploiting the ideas explained in Section IV.3.2 for MC/IMC transforma-
tions. For this design, BS/IBS implementations are made by storing pre-computed
MI values in FPGA’s memory modules (BRAMs) with separate implementation of
AF/IAF as explained in Section IV.4.3. The MC and ARK are combined together
for encryption and a small modification ModM is applied before MC+ARK to get
IMC operation as shown in Figure IV.22. Two multiplexers are used to switch the
data path for encryption and decryption.

Figure IV.22. AES algorithm encryptor/decryptor implementation

The data path for both encryption and decryption is, therefore, as follows:

Encryption: MI→ AF→ SR→ MC→ ARK
Decryption: ISR→ IAF→ MI→ ModM→ MC→ ARK

91

IV. Architectural Designs For Advanced Encryption Standard

This AES encryptor/decryptor core occupies 80 BRAMs (43%), 386 I/O Blocks
(48%) and 5677 slices (22.3%) by implementing on Xilinx VirtexE FPGA devices
(XCV812BEG). It uses a system clock of 34.2 MHz and the data is processed at the
rate of 4121 Mbits/sec. This is a fully pipeline architecture optimized for both time
and space that performs at high speed and consumes less space. It is useful design
for applications where time factor dominates all other factors like cost, portability
etc.

Encryptor core

It is a fully pipeline AES encryptor core. As it is already mentioned, the encryptor
core implements the encryption path for AES encryptor/decryptor core explained in
the last Section. The critical path for one encryption round is shown in Figure IV.23.

Figure IV.23. The data path for encryptor core implementation

For BS step, pre-computed values for S-Box are directly stored in the memories
(BRAMs), therefore, AF transformation is embedded into BS. For symmetry pur-
poses, BS and SR steps are combined together. Similarly MC and ARK steps are
merged to use 4-input/1-output CLB configuration which helps to decrement time
delays for the circuit. The encryption process starts from the first clock cycle as the
round-keys are generated in parallel as described in Section IV.4.1. The encrypted
blocks appear at the output after 11 clock cycles after the pipeline got filled. Once
the pipeline is filled, the output is available at each consecutive clock cycle.

The encryptor core structure occupies 2136 CLB slices(22%), 100 BRAMs (35%)
and 386 I/O blocks (95%) on targeting Xilinx VirtexE FPGA devices (XCV812BEG).
It achieves a throughput of 5.2 Gbits/s at the rate of 40.575 MHz. A separate re-
alization of this encryptor core provide a measure of timings for encryption process
only. The results shows huge boost in throughput by implementing the encryptor
core separately.

Decryptor Core

It is a fully pipeline decryptor core which implements the separate critical path
for the AES encryptor/decryptor core explained in the same Section. The critical
path for this decryptor core is taken from Figure IV.22 and then modified for IBS
implementations is shown in Figure IV.24.
The computations for IBS step are made by using look-up tables and pre-computed
values of inverse S-Box are directly stored in the memories (BRAMs). The IAF step
is embedded into IBS step for symmetric reasons which is obtained by just changing
wires in FPGA implementations. The IMC step implementation is a major change in
this design, which is implemented by performing a small modification ModM before

92

IV.5. PERFORMANCE COMPARISON

Figure IV.24. The data path for decryptor core implementation

MC step as discussed in Section IV.3.2. The MC and ARK steps are merged for the
same reasons of targeting 4-input/1-output CLB structure.

The decryption process requires 11 cycles to generate the entire round Keys,
then 11 cycles are consumed to fill the pipeline. Once the pipeline is filled the
output plain-texts appear at the output after each consecutive clock cycle. On the
other hand, decryptor core achieves a throughput of 4.95 Gbits/s at the rate of 38.67
MHz by consuming 3216 CLB slices(34%), 100 BRAMs (35%) and 385 I/Os (95%).
The implementation of decryptor core is made on Xilinx VirtexE FPGA devices
(XCV812BEG).

By comparing encryptor and decryptor cores, there is no big difference in the
number of CLB slices occupied by both encryptor and decryptor cores. Also the
achieved throughput for both designs is very close. Both parameters indicate strong
effect by modified IMC transformation which resulted reduced data path for decryp-
tion. The performance comparison of the separate implementations of encryptor and
decryptor cores with combined encryptor/decryptor implementation is significant.
It provides another option to the end-user to select a big chip for combined imple-
mentation or to choose two small chips for separate implementations of encryptor
and decryptor cores to accomplish high gains in throughput.

IV.5 Performance comparison

IV.5.1 Previous work

Although the selection of new advanced encryption standard was finalized on Octo-
ber, 2000, still very few AES implementations are reported on FPGAs. Three main
features are observed for the previous AES implementations on FPGAs.

1. Algorithm’s selection: Not all of the AES architectures implemented the
whole process: encryption, decryption and key schedule algorithms. Most of
them implement the encryption part only. The key schedule algorithm is of-
ten ignored and it is supposed that keys are stored in the internal memory of
FPGAs or can be provided through an external interface. The FPGA’s imple-
mentations at [33, 30, 25] are encryptor cores and the key schedule algorithm
is implemented for the design at [25] only. The AES cores at [52, 10, 11]
implements both encryption and decryption with key schedule algorithm.

2. Design’s strategy: This is an important factor that decides design’s strategy
as area/time tradeoffs. The reported AES cores adopted various implemen-
tation’s strategies. Some of them are iterative looping (IL) [33], sub-pipline

93

IV. Architectural Designs For Advanced Encryption Standard

(SP) [30], one-round implementation [25]. Few fully pipeline (PP) architec-
tures have been also reported at [52, 10, 11].

3. Selection of FPGA: The high performance of AES cores is also subjected to
the selection of FPGAs. High performance FPGAs can be efficiently used to
achieve high gains in throughput. Most of the reported AES cores used Virtex
series devices (XCV812, XCV1000, XCV3200). Those are single chip FPGA
implementations. Some AES cores achieved ultra high throughput but at the
cost of multi-chip FPGA architectures [10, 11].

IV.5.2 Results comparison

The results comparison for FPGA’s implementations is not simple, since the three
features mentioned strongly affect the algorithm performance. It would be a fair
comparison if it were done under the same environment for all implementations.
The performance of an encryptor core must be compared with the performances of
the encryptor cores using the same FPGA, same design’s strategies and same design
specifications. Table IV.3 provides a quick comparison of the results with existing
FPGA implementations. The comparison of encryptor/decryptor cores is made first
followed by the comparison of encryptor cores with existing FPGA implementations.
Finally, the comments are provided for our decryptor core implementation.

Our encryptor/decryptor cores (Sec. IV.4.3) are compared with the only known
encryptor/decryptor core architecture at [52]. The first encryptor/decryptor core
(Sec. IV.4.3) improves design at [52] both in speed and area. There is an increase of
15% in throughput at 15% less area utilization. The second encryptor/core (Sec.IV.4.3)
is based on on-fly architecture scheme for BS/IBS computations in GF(24) and
GF(22)2 and does not occupy BRAMs. In fact, memory requirements for the first
encryptor/decryptor core (Sec. IV.4.3) were overcomed by introducing this idea. The
penalty paid was an increment in CLB slices however throughput still proves to be
competitive. Our encryptor/decryptor core (Sec. IV.4.4) is another highly optimized
core. The results are highly appreciable as it requires up to 27.23% higher through-
put, 25.06% less CLB slices and 21.56% less BRAMs than the fastest AES single-chip
FPGA implementation at [52]. That high performance is obtained by reducing delay
in the data paths for MC/IMC transformations, by using highly efficient memories
BRAMs for BS/IBS computations, and by optimizing the circuit for long delays.
It should be noted that some highly efficient AES encryptor/decryptor cores are
available at [10, 11]. Those cores are for commercial use and high throughput is
achieved by targeting multi-chip FPGA architectures.

According current results, our encryptor core design (Sec. IV.4.2) can be com-
pared with two existing cores at [33, 25], since they are encryptor cores using the
same IL architecture. Those cores were implemented to compare performance re-
sults for AES candidates algorithms and are designed to achieve high timing perfor-
mances by using some primary assumptions. The design at [33] does not implement
key schedule and use external interfaces to load input data and to store output data,

94

IV.6. CONCLUSIONS

the feedback paths are not observed. The design at [25] implements key schedule
algorithm too and achieves high throughput by using 5673 CLB slices. Both imple-
mentations are nice for comparing AES candidates and not for practical uses. How-
ever, our encryptor core is optimized for both area/time parameters and includes a
complete set-up for encryption process. The user-key is accepted and round-keys are
generated. The results of each round are latched for next rounds and a final output
appears at the output after 10 rounds. The design complexity therefore, increases
which causes the decrease in throughput however our encryptor occupies 2744 CLB
slices, less CLB slices for any encryptor core reported to-date. Similarly, our fully
pipeline encryptor cores (Sec. IV.4.2 and IV.4.4) well compare with the similar de-
sign in [52]. Due to the optimization work for reducing design area, our fully pipeline
architecture consumes only 2136 CLB slices plus 100 BRAMs. Throughput obtained
for this architecture is 5.2 Gbits/s. The timing optimizations are pending and there
exist strong chances to improve throughput in the range of 6 to 7 Gbits/s.

Finally, our decryptor core (Sec. IV.4.4) achieves a throughput of 4.9 Gbits/s
by consuming 3216 CLB slices. The author does not know any reported decryptor
core implementation on FPGAs for the purpose of comparison. Decryptor core im-
plementation was considered important for our investigation work about AES to
estimate performances for combined and separated implementations of the encryp-
tor and decryptor cores. In addition, it is convenient to provide an option to the
end-user for the selection of encryptor/decryptor core on a single chip or encryptor
and decryptor cores on two small chips with high gains in throughput.

Table IV.3. Specifications of AES FPGA implementations.
Core Type Device BRAMs CLB(S) Throughput T/S

(XCV) Slices Mbits/s (T)
Gaj et al [33] E IL 1000 2902 331.5 0.11
Dandalis et al [25] E IL 1000 5673 353 0.06
Elbirt et al [30] E SP 1000 9004 1940 0.26
McLoone et al [52] E P 812E 100 2222 6956 3.1
McLoone et al [52] E/D P 3200E 102 7576 3239 0.43
Sec. IV.4.3 [84] E/D P 2600E 80 6676 3840 0.58
Sec. IV.4.3 [84] E/D P 2600E 13416 3136 0.24
Sec. IV.4.4 [75] E/D P 2600E 100 5677 4121 1.73
Sec. IV.4.2 [82] E IL 812E 2744 258.5 0.09
Sec. IV.4.2 [82] E P 812E 100 2136 5193 2.43
Sec. IV.4.4 [83] E P 812E 100 2136 5193 2.43
Sec. IV.4.4 [80] D P 812E 100 3216 4949 1.54

IV.6 Conclusions

A variety of different encryptor, decryptor and encryptor/decryptor AES cores
are presented. The encryptor cores are implemented both in iterative and pipeline

95

IV. Architectural Designs For Advanced Encryption Standard

modes. Some novel implementation techniques are presented for the implementations
of encryptor/decryptor cores which include: composite field approach for BS/IBS,
look-up table method for BS/IBS, and modified MC/IMC approach. All the archi-
tectures are highly optimized AES cores that tradeoff between time and area. For
each architecture, we focus not only time performances but space is also a major
concern. Three main factors were considered for implementing diverse AES cores.

• High performance : High performances require efficient usage of fast FPGA’s
resources. Similarly efficient algorithmic techniques enhance design perfor-
mance.

• Low cost solution : It refers to iterative architectures which occupy less hard-
ware area at the cost of speed. Such architectures accommodate in smaller and
consequently low cost FPGAs.

• Portable architecture: A portable architecture can be migrated to most of the
FPGAs by introducing minor modifications in the design. It provides an option
to the end-user to choose FPGA of his own choice. Portability can be achieved
when a design targets to the standard resources available in most FPGAs. A
general methodology for achieving a portable architecture, in some cases, costs
timing decrease in performance.

For AES encryptor cores, both iterative and fully pipeline architectures are im-
plemented. The high timing performances are achieved by consuming the minimum
space occupied by any AES core reported to-date. The iterative encryptor core
design is implemented using VirtexE device XCV812 by occupying the standard
resources of the FPGAs and therefore can be migrated to all other family of FPGA
devices. The fully pipeline encryptor core is implemented on the same device (Vir-
texE device XCV812). That core is optimized for high timing performances by using
dedicated memory resources (BRAMs); it is a fully pipeline architecture useful for
the applications where time is crucial and other factors like portability and cost are of
secondary concern. The same factors can be considered to AES encryptor/decryptor
cores. The AES encryptor/decryptor cores based on the BS/IBS implementation
using look-up table method are efficient architectures as compared to BS/IBS im-
plementation using composite fields which is a portable and low cost solution. The
AES encryptor/decryptor core based on the modified MC/IMC is a good example
to achieve high performance by using both efficient design and algorithmic tech-
niques. It is a single-chip FPGA implementation that exhibits high performance at
low area consumption. In short, time/area tradeoffs are always present, however by
using efficient techniques at both design and algorithm level, the gap between area
and time can be significantly reduced. A fully pipeline decryptor core for FPGAs
was presented and there is no other known decryptor core implementation reported
in the literature. FPGA implementations presented in this Section are competitive
or in some cases even outperforms existing FPGA implementations reported in the
literature to-date.

96

Chapter V

Elliptic Curve Cryptography

In this chapter we present a generic parallel architecture for the computation of the
scalar multiplication over binary fields for two elliptic curve forms: and Weierstrass
non-singular form. The architecture was designed as general as possible trying to
make no assumptions about the specific hardware platform to be used by the de-
signers. The idea of using parallel strategies was considered in every design stage
and implemented as much as our hardware resources allowed us to do it so. The de-
sign results reported in this work allow us to compute GF(2191) elliptic curve scalar
multiplication operations for the Hessian and the Weierstrass non-singular form in
about 114.7µ Secs and 59.26µ Secs, respectively.

V.1 Introduction

Over the past 17 years, many mathematical evidences have consistently shown that
Elliptic Curve Cryptography (ECC) offers more security by key length than any
other major public key cryptosystem. The most important operation for elliptic
curve cryptosystems is the so-called Scalar multiplication operation. Let n be a
positive integer and P a point on an elliptic curve. Then the scalar multiple Q = nP
is the point resulting of adding n − 1 copies of P to itself. Scalar multiplication is
the main building block used in all the three fundamental ECC primitives: Key
Generation, Signature and Verification schemes.

The security of elliptic curve systems is based on the intractability of the elliptic
curve discrete logarithm problem (ECDLP) that can be formulated as follows. Given
an elliptic curve E defined over a finite field Fq and two points Q and P that belong
to the curve, where P has order r, find a positive scalar n ∈ [0, r − 1] such that the
equation Q = nP holds. Solving the discrete logarithm problem over elliptic curves
is believed to be an extremely hard mathematical problem, much harder than its
analogous one defined over finite fields of the same size.

97

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

Figure V.1. Hierarchical Model for Elliptic Curve Cryptography

Several implementations have been reported so far [39, 92, 67, 91, 16, 89], and
most of them utilize a four-layer hierarchical scheme such as the one depicted in
Figure V.1. As a consequence, high performance implementations of elliptic curve
cryptography directly depend on the efficiency in the computation of the three
underlying layers of the model.

The main idea discussed throughout this chapter is that each one of the three
bottom layers shown in Figure V.1 can be implemented using parallel strategies.
Although parallel architectures offer an interesting potential for obtaining a high
timing performance at the price of area, only in [91, 16] authors have explicitly
attempted a parallel strategy to compute elliptic curve scalar multiplication. The
contribution of this Chapter is the design of a generic parallel architecture espe-
cially tailored to obtain fast computation of the elliptic curves scalar multiplication
operation. The architecture proposed here exploits the inherent parallelism of two
elliptic curves forms defined over GF(2m): The Hessian form and the Weierstrass
non-supersingular form.

The rest of this Chapter is organized as follows. Section V.2 explains GF (2m)
finite field arithmetic. In Section V.3 we briefly describe the Hessian and Weierstrass
Forms of an elliptic curve together with their corresponding group laws. We also
include some comments about the different design options that one can take in
order to obtain a parallel version of the point addition and doubling operators. In
Section V.4 we describe the generic parallel architecture for scalar multiplication
that constitutes the main contribution of this chapter. Then in Section V.5 we give
all the design details accomplished to implement the proposed architecture on an
FPGA platform. Section V.6 includes a performance comparison of our design with
other similar implementations previously reported. Finally, in Section V.7 some
conclusions remarks as well as future work are drawn.

V.2 GF (2m) Finite field arithmetic

Arithmetic over GF (2m) has many important applications, in particular in the the-
ory of error control coding and in cryptography [54, 57, 101]. Finite field’s arithmetic

98

V.2. GF (2M) FINITE FIELD ARITHMETIC

operations include addition, subtraction, multiplication, and division. Addition and
subtraction are equivalent operations in GF (2m). Addition in binary finite fields is
defined as polynomial addition and can be implemented simply as the XOR addition
of the two m-bit operands.

Let A(x), B(x) and C ′(x) ∈ GF (2m) and P (x) be the irreducible polynomial
generating GF (2m). Multiplication in GF (2m) is defined as polynomial multiplica-
tion modulo the irreducible polynomial P (x), C ′(x) = A(x)B(x) mod P (x). In
order to obtain C ′(x), we can first obtain the product polynomial C(x) of degree at
most 2m− 2, as

C(x) = A(x)B(x) = (
m−1∑
i=0

aix
i)(

m−1∑
i=0

bix
i) (V.1)

In a second step the reduction operation needs to be performed in order to obtain
the m− 1 degree polynomial C ′(x), which is defined as

C ′(x) = C(x) mod P (x) (V.2)

Notice that once the irreducible polynomial P (x) has been selected, the reduction
step can be accomplished by using XOR gates only.

Hardware implementation efficiency of finite field arithmetic is measured in terms
of the associated space and time complexities. Space complexity is defined as the
total amount of hardware resources needed to implement the circuit, whereas time
complexity is the total delay of the circuit.

In the rest of this section different implementation aspects and several efficient
methods to compute GF (2m) finite field arithmetic are discussed. In § V.2.1 and
§ V.2.2 we study the problem of how to compute Equation V.1 efficiently, considering
two separate cases. First, in section § V.2.1 a variation of the classical Karatsuba-
Ofman algorithm is analyzed as one of the most efficient techniques to find the
polynomial product of Equation V.1. In subsection § V.2.2 we describe an efficient
method to compute polynomial squaring in hardware, at a complexity cost of only
O(1). In § V.2.3 we describe in detail a highly efficient hardware implementation
that carries on the reduction step of Equation V.2. Finally, in § V.2.4, it is explained
of how the inversion in GF (2m) can be computed in less number of clock cycles.

V.2.1 Binary Karatsuba-Ofman multipliers

Several architectures have been reported for multiplication in GF (2m). For example,
efficient bit-parallel multipliers for both canonical and normal basis representation
have been proposed in [41, 95, 61, 104, 16]. All these algorithms exhibit a space
complexity O(m2). However, there are some asymptotically faster methods for fi-
nite field multiplications, such as the Karatsuba-Ofman algorithm [70]. Discovered
in 1962, it was the first algorithm to accomplish polynomial multiplication in under

99

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

O(m2) operations [15]. Karatsuba-Ofman multipliers may result in fewer bit opera-
tions at the expense of some design restrictions, particularly in the selection of the
degree of the generating irreducible polynomial m.

In [37] was presented a Karatsuba multiplier based on composite fields of the
type GF ((2n)s) with m = sn, s = 2t, t an integer. However, for certain applica-
tions, quite particularly, elliptic curve cryptosystems, it is important to consider
finite fields GF (2m) where m is not necessarily a power of two. In fact, for this spe-
cific application some sources [68] suggest that, for security purposes, it is strongly
recommended to choose degrees m primes for finite fields in the range [160, 512].

In the rest of this subsection we will briefly describe a variation of the classic
Karatsuba-Ofman Multiplier called binary Karatsuba-Ofman multipliers that was
first presented in [74]. Binary Karatsuba-Ofman multipliers can be utilized arbitrar-
ily, regardless the form of the required degree m.

Let the field GF (2m) be constructed using the irreducible polynomial P (x) of
degree m = rn, with r = 2k, k an integer. Let A,B be two elements in GF (2m).
Both elements can be represented in the polynomial basis as,

A =
m−1∑
i=0

aix
i =

m−1∑
i= m

2

aix
i +

m
2
−1∑

i=0

aix
i

= x
m
2

m
2
−1∑

i=0

ai+ m
2
xi +

m
2
−1∑

i=0

aix
i = x

m
2 AH + AL

and

B =
m−1∑
i=0

bix
i =

m−1∑
i= m

2

bix
i +

m
2
−1∑

i=0

bix
i

= x
m
2

m
2
−1∑

i=0

bi+ m
2
xi +

m
2
−1∑

i=0

bix
i = x

m
2 BH + BL.

Then, using last two equations, the polynomial product is given as

C = xmAHBH + (AHBL + ALBH)x
m
2 + ALBL. (V.3)

Karatsuba-Ofman algorithm is based on the idea that the product of last equation
can be equivalently written as,

C = xmAHBH + ALBL+
(AHBH + ALBL + (AH + AL)(BL + BH))x

m
2

= xmCH + CL.

(V.4)

Let us define

MA := AH + AL;
MB := BL + BH ;
M := MAMB .

(V.5)

100

V.2. GF (2M) FINITE FIELD ARITHMETIC

Using Equation V.4, and taking into account that the polynomial product C has at
most 2m− 1 coordinates, we can classify its coordinates as,

CH = [c2m−2, c2m−3, . . . , cm+1, cm];
CL = [cm−1, cm−2, . . . , c1, c0].

(V.6)

Although (V.4) seems to be more complicated than (V.3), it is easy to see that
Equation (V.4) can be used to compute the product at a cost of four polynomial
additions and three polynomial multiplications. In contrast, when using equation
(V.3), one needs to compute four polynomial multiplications and three polynomial
additions. Due to the fact that polynomial multiplications are in general much more
expensive operations than polynomial additions, it is valid to conclude that (V.4) is
computationally simpler than the classic algorithm.

Input: Two elements A, B ∈ GF (2m) with m = rn = 2kn, and

where A, B can be expressed as,

A = x
m
2 AH + AL, B = x

m
2 BH + BL.

Output: A polynomial C = AB with up to 2m − 1 coordinates,

where C = xmCH + CL.

Procedure Kmul2k(C, A, B)

0. begin

1. if (r == 1) then

2. C = mul n(A, B);

3. return;

4. for i from 0 to r
2
− 1 do

5. MAi = AL
i + AH

i ;

6. MBi = BL
i + BH

i ;

7. end

8. mul2k(CL, AL, BL);

9. mul2k(M, MA, MB);

10. mul2k(CH , AH , BH);

11. for i from 0 to r − 1 do

12. Mi = Mi + CL
i + CH

i ;

13. end

14. for i from 0 to r − 1 do

15. C r
2+i = C r

2+i + Mi;

16. end

17. end

Figure V.2. m = 2kn-bit Karatsuba-Ofman multiplier.

Karatsuba-Ofman’s algorithm can be applied recursively to the three polynomial
multiplications in (V.4). Hence, we can postpone the computations of the polynomial
products AHBH , ALBL and M , and instead we can split again each one of these
three factors into three polynomial products. By applying this strategy recursively,

101

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

in each iteration each degree polynomial multiplication is transformed into three
polynomial multiplications with their degrees reduced to about half of its previous
value.

Eventually, after no more than �log2(m)� iterations, all the polynomial operands
collapse into single coefficients. In the last iteration, the resulting bit multiplications
can be directly computed. Although it is possible to implement the Karatsuba-
Ofman algorithm until the �log2 m� iteration, it is usually more practical to truncate
the algorithm earlier. If the Karatsuba-Ofman algorithm is truncated at a certain
point, the remaining multiplications can be computed by using alternative tech-
niques (classic algorithm or other techniques).

The algorithm presented in Figure V.2 implements the Karatsuba-Ofman strat-
egy for polynomial multiplication. By Combining the Karatsuba-Ofman algorithm
with the classic algorithm, it can be shown [74] that the space and time complexities
of the hybrid m-bit Karatsuba-Ofman multiplier truncated at the n-bit multiplicand
level are upper bounded by

XORs ≤ (
m
n

)log2 3 (n2 + 6n− 1)− 8m + 2 ;

ANDs ≤ 3log2 rMand2n =
(

m
n

)log2 3
n2; (V.7)

Delay ≤ TAND + TX(log2 n + 4 log2 r) .

Where TX and TAND correspond to an XOR gate delay and an AND gate delay,
respectively. Table V.1 shows the space and time complexities of Karatsuba-Ofman
multipliers for the optimal case when m is a power of two. The values of m presented
in Table V.1 are the first eight powers of two. Various factors including target devices
and design techniques influence the space complexity in terms of number of CLBs.
The space complexity provided in the last column of Table V.1 is based on our
experimental results optimized for VirtexE devices only.

Table V.1. Space and time complexities for several m = 2k-bit hybrid Karatsuba-
Ofman multipliers.

m r n AND gates XOR gates Time delay Area (in CLBs)
1 1 1 1 0 TA −
2 1 2 4 1 TX + TA −
4 1 4 16 9 2TX + TA 8
8 2 4 48 55 6TX + TA 32
16 4 4 144 225 10TX + TA 115
32 8 4 432 799 14TX + TA 368
64 16 4 1296 2649 18TX + TA 1171
128 32 4 3888 8455 22TX + TA 3379

To generalize the Karatsuba-Ofman algorithm of Figure V.2 for arbitrary degrees
m, particularly m primes, let us consider the multiplication of two polynomials
A,B ∈ GF (2m), such that their degree is less or equal to m− 1, where m = 2k + d.
As a very first approach, we could pretend that both operands have 2k+1 coordinates

102

V.2. GF (2M) FINITE FIELD ARITHMETIC

A = [
2k+1−d︷ ︸︸ ︷

0, . . . , 0, 0, a2k+d−1, . . . , a2k+1, a2k︸ ︷︷ ︸
AH

,

AL︷ ︸︸ ︷
a2k−1, a2k−2, . . . , a2, a1, a0];

AH = [0, . . . , 0, 0, a2k+d−1, . . . , a2k+1, a2k];
AL = [a2k−1, a2k−2, . . . , a2, a1, a0];

Figure V.3. Binary Karatsuba-Ofman strategy

each, where their respective 2k+1−d most significant bits are all equal to zero. Figure
V.3 shows how the subpolynomials AH and AL will be redefined according with this
approach. If we partition the operands A and B as shown in Figure V.3, then, in
order to compute their polynomial multiplication, we can use the regular Karatsuba-
Ofman algorithm using m = 2k+1. Although this approach is a valid one, it clearly
implies the waste of several arithmetic operations, as some of the most significant bits
of the operands are zeroes. However, if we were able to identify the extra arithmetic
operations and remove them from the computation, we would then be able to find
a quasi-optimal solution for arbitrary degrees of m. To see how this can be done,
consider the algorithm shown in Figure V.4, which has been adapted from the one
presented in previous Figure V.2.

In lines 1-2 the values of the constants k, d such that m = 2k + d are computed.
If d = 0, i.e, if m is a power of two, then the binary Karatsuba-Ofman algorithm of
Figure V.4 reverts to the specialized algorithm in Figure V.2 presented in the pre-
vious section. If that is not the case, the algorithm of Figure V.4 uses the constants
k and d to prevent us to compute unnecessary arithmetic operations. In lines 6-9,
the d least significant bits of MA and MB of equation (V.5) are computed using
the d non-zero coordinates of AH and BH . The remaining k − d most significant
bits of MA and MB are directly obtained from AL and BL, respectively. Notice
that the operands, AL, BL,MA and MB are all 2k-bit polynomials. Because of that,
our algorithm invokes the multiplier of Figure V.2 in lines 10 and 11. On the other
hand, both operands AH and BH are d-bit polynomials, where d, in general, is not
a power of two. Consequently, in line 12, the algorithm calls itself in a recursive
manner. This recursive call is invoked using the operand’s degree reduced to d. In
each iteration the degree of the operands gets reduced, and eventually, after a total
of h iterations (where h is the hamming weight of the binary representation of the
original degree m), the algorithm ends. As a design example, consider the binary
Karatsuba-Ofman multiplier shown in Figure V.5. That circuit computes the poly-
nomial multiplication of the elements A and B ∈ GF (2191). Notice that for this
case m = 191 = 2k + d = 27 + 63. Since (191)2 = 10111111, the Hamming
weight h of the binary representation of m is h = 7. This implies that we would
need a total of seven iterations in order to compute the multiplication using the

103

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

Input: Two elements A, B ∈ GF (2m) with m an arbitrary

number, and where A, B can be expressed as

A = x
m
2 AH + AL, B = x

m
2 BH + BL.

Output: A polynomial C = AB with up to 2m − 1 coordinates,

where C = xmCH + CL.

Procedure mulgen m(C, A, B)

0. begin

1. k = �log2 m�;
2. d = m − 2k;

3. if (d == 0) then

4. C = Kmul2k(A, B);

5. return;

6. for i from 0 to d − 1 do

7. MAi = AL
i + AH

i ;

8. MBi = BL
i + BH

i ;

9. end

10. mul2k(CL, AL, BL);

11. mul2k(M, MA, MB);

12. mulgen d(CH , AH , BH);

13. for i from 0 to 2k − 2 do

14. Mi = Mi + CL
i + CH

i ;

15. end

16. for i from 0 to 2k − 2 do

17. Ck+i = Ck+i + Mi;

18. end

19. end

Figure V.4. m-bit binary Karatsuba-Ofman multiplier.

Figure V.5. Karatsuba Multiplier GF (2191)

generalized m-bit binary Karatsuba-Ofman multiplier. However we can do much
better by assuming that the d = 63 most significant leftover bits are 64 (implying

104

V.2. GF (2M) FINITE FIELD ARITHMETIC

m = (192)2 = 11000000). Hence, algorithm V.4 can finish the computation in
only two iterations, as shown in Figure V.5. By using the complexity Figures listed
in Table V.1, we can estimate the space and time complexities of the generalized
191-bit binary Karatsuba-Ofman multiplier as,

Number of CLBs = 2MULX(128) + MULX(64) + C
= 2 · 3379 + 1171 + C
= 7929 + C

Delay = MULdelay(2�log2 m�) + O

= MULdelay(2�log2 191�) + O
= MULdelay(27) + O

(V.8)

Where C and O represent the overhead in space and time, respectively, associ-
ated with the extra circuitry shown in Figure V.5. The generalized 191-bit binary
Karatsuba-Ofman multiplier was implemented using Xilinx Foundation Series F4.1i
software on Xilinx Virtex-E FPGA device XCV2600e-8bg560. The design is coded
using VHDL, using library components and also by using Xilinx Coregenerator for
design entry. The implementation occupied a total of 8721 slices and 576 I/O Blocks.
We obtained a total path delay of 43 ηSec.

V.2.2 Squaring

In this section we investigate some efficient methods to compute polynomial squar-
ing, which is a special case of polynomial multiplication. Let us assume that we have

an element A given as A =
m−1∑
i=0

aix
i. Then the square of A is given as

C(x) = A(x)A(x) = A2(x) = (
m−1∑
i=0

aix
i)(

m−1∑
i=0

aix
i) =

m−1∑
i=0

aix
2i. (V.9)

The main implication of the above equation is that the first k < m bits of A
completely determine the first 2k bits of A2. Notice also that half the bits of A2 (the
odd ones) are zeroes. Taking advantage of this feature, the hardware implementation
shown in Figure V.6 simply interleaves a zero value between each one of the original
bits of A yielding the required squaring computation. The implementation shown in
Figure V.6 has a computational complexity O(1), and hence its cost can be basically
neglected.

V.2.3 Reduction

Let the field GF (2m) be constructed using the irreducible polynomial P (x) and
let A(x), B(x) ∈ GF (2m). Assuming that we already have computed the product
polynomial C(x) of Equation (V.1), by using any one of the methods described
in the previous two subsections, we want to obtain the modular product C ′ of

105

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

Figure V.6. Squaring Circuit

Equation (V.2). Recall that the polynomial product C and the modular product C ′,
have 2m− 1 and m, coordinates, respectively, i.e.,

C = [c2m−2, c2m−3, . . . , cm+1, cm, . . . , c1, c0];
C ′ = [c′m−1, c

′
m−2, . . . , c′1, c′0].

(V.10)

Once the generating polynomial P (x) has been selected, the reduction step that
obtains C ′ from C can be computed by using XOR and shift operations only. Let
the field GF (2m) be constructed using the irreducible trinomial P (x) = xm +xn +1
with a root α and 1 < n < m

2 . Let also A(x), B(x) be elements in GF (2m). In order
to obtain the modular product C ′(x) of (V.1), we use the property P (α) = 0, and
write

αm = 1 + αn ;
αm+1 = α + αn+1 ;

...
α2m−3 = αm−3 + αm+n−3 ;
α2m−2 = αm−2 + αm+n−2 .

(V.11)

The above m − 1 set of identities suggests a method to obtain the m-coordinates
of the modular product C ′ of Equation (V.2). We can partially reduce the 2m − 1
coordinates of C by reducing its most significant m− 1 bits into its first m + n− 1
bits, as indicated by (V.11). For instance, in order to obtain the first partially
reduced coordinate c′0 we just need to add the regular product coordinate cm to the
c0 coordinate, yielding c′0 as c′0 = c0 + cm.

Similarly the whole set of m + n− 2 partially reduced coordinates can be found

106

V.2. GF (2M) FINITE FIELD ARITHMETIC

as,

c′0 = c0 + cm ;
c′1 = c1 + cm+1 ;

...
c′n−1 = cn−1 + cm+n−1 ;
c′n = cn + cm+n + cm ;
c′n+1 = cn+1 + cm+n+1 + cm+1 ;

...
c′m−2 = cm−2 + c2m−2 + c2m−n−2 ;
c′m−1 = cm−1 + c2m−n−1 ;
c′m = cm + c2m−n ;

...
c′m+n−3 = cm+n−3 + c2m−3 ;
c′m+n−2 = cm+n−2 + c2m−2 .

(V.12)

Notice that in the reduction process of (V.12), the constant coefficient of the irre-
ducible generating trinomial P (x) reflects its influence in the first m − 1 partially
reduced bits. The middle term of P (x), on the other hand, affects the partially re-
duced bits of (V.12) in the range [c′n, c′m+n−2]. Notice also that there is an overlap

Figure V.7. Reduction Diagram

in the range [c′n, c′m−2], where both the constant and the middle coefficients of P (x)
affect the partially reduced coordinates.

We say that the coefficients in (V.12) have been partially reduced because in
general, if n > 1, we still need to reduce the n−2 most significant reduced coordinates

107

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

of (V.12). However, this same idea can be used repeatedly until the m− 1 modular
coordinates of (V.10) are obtained. Each time that this strategy is applied we reduce
m− n coordinates.

Figure V.7 shows how to implement on reconfigurable hardware the reduction
strategy just outlined. As it was mentioned before, the reduction step involves XOR
and overlap operations only.

Although the strategy shown in Figure V.7 works for arbitrary irreducible trino-
mials, for the purposes of this research work we utilized a fixed irreducible generating
trinomial, namely, P (x) = x191 + x9 + 1.

V.2.4 Inversion

The Euclidean algorithm required O(n2) bit operations to perform inversion. Fermat
’s Little Theorem (FLT) establishes that for any nonzero element α ∈ GF (2m), the
identity α−1 ≡ α2m−2 holds. Therefore, multiplicative inversion can be performed
by computing,

α2m−2 = α21 × α21 × · · ·α2m−1
(V.13)

A straightforward implementation of Eq. V.13 can be carried out using the binary
exponentiation method, which requires m−1 field squarings and m−2 field multipli-
cations. The Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA) algorithm [44] on
the other hand, reduces the required number of multiplications to k+hw(m−1)−2,
where k = log2(m− 1)� and hw(m − 1) are the number of bits and the Ham-
ming weight of the binary representation of m − 1, respectively. This remarkably
saving on the number of multiplications is based on the observation that since
2m − 2 = (2m−1 − 1) · 2, then the identity from Fermat’s little theorem can be
rewritten as α−1 ≡ α2m−2 ≡ α(2m−1−1)2 . Then ITMIA computes the field element
(2m−1 − 1) using a recursive re-arrangement of the finite field operations.

Using the ITMIA algorithm one can find an addition chain for an arbitrary
m. We used this algorithm to obtain an addition chain for m = 191 (our design
example). In this case e = m− 1 = 190 = 27 + 25 + 24 + 23 + 22 + 21. Therefore,

U = 1→ 2→ 4→ 8→ 16→ 32→ 64→ 128→
160→ 176→ 184→ 188→ 190 (V.14)

The addition chain in Eq. V.14 can be accomplished using 12 multiplications
and m − 1 squarings in accordance to the algorithm. However it can be seen that
various addition chains of shortest length for the same m exist. Let l be the shortest
length of any valid addition chain for a given positive integer e = m− 1. Then the
problem of finding an addition chain for e with length l is an NP-hard problem [58].
Let us first formally define an addition chain in order to describe a methodology to
achieve field multiplicative inverses.

108

V.2. GF (2M) FINITE FIELD ARITHMETIC

Addition Chains

An addition chain U for a positive integer e = m − 1 of length t is a sequence
of positive integers U = {u0, u1, · · · , ut}, and an associated sequence of r pairs
V = {(v1, v2 · · · , vt} with vi = (i1, i2), 0 ≤ i2 ≤ i1 < i, such that:

• u0 = 1 and ut = m− 1;

• for each ui, 1 ≤ i ≤ t, ui = ui1 + ui2 .

Consider the same design example for m = 191, e = m− 1 = 190− 1. Then, one
of possible addition chain with length t = 10 is,

U = 1→ 2→ 3→ 5→ 10→ 20→ 40→
80→ 160→ 180→ 190 (V.15)

Each term of this chain ui is obtained either by doubling the immediate preceding
term ui−1 +ui−1 or by adding any two previous terms uj +uk. That provides us two
indices i1 and i2. In the former case, the same term was doubled so i1 = i2 = i− 1
while for later case two different terms uj and uk were added provided i1 = j and
i2 = k.

Input: An element α ∈ GF (2m), an addition chain U of
length t for m− 1 and its associated sequence V.
Output: α−1 ∈ GF (2m)
Procedure MultiplicativeInversion(α, U)
1. β0 = α
2. for i from 1 to t do:
3. βi = (βi1)

2
ui2 · βi2

4. return (βt
2);

Figure V.8. An Algorithm for multiplicative inversion using addition chains

Consider the algorithm shown in Fig. V.8. That algorithm iteratively computes
the βi coefficients in the exact order stipulated by the addition chain U . Indeed,
starting from β0 = (α)2

u0−1 = (α)2
u0−1 = α21−1, the algorithm computes the

other t βi coefficients. In the final iteration, after having computed the coefficient
βt = (α)2

m−1−1, the algorithm returns the required multiplicative inversion by
performing a regular field squaring, namely, β2

t = (α2m−2) = α−1.
Let us assume that the binary extension field GF (2191) has been generated with

the trinomial P (x) = x191 + x9 + 1, irreducible over GF (2). Let α ∈ GF (2191) be
an arbitrary nonzero field element. Then, using the addition chain of Example V.15,
the algorithm of Fig. V.8 will compute the sequence of β coefficients as shown in

109

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

Table V.2. Algorithm of Fig. V.8: βi Coefficient Generation

i ui i1 i2 ui2 rule β2
ui2

i1
· βi2 βi = α2u

i −1

0 1 0 0 1 – – β0 = α21−1

1 2 0 0 1 u0 + u0 β21

0 · β0 β1 = α22−1

2 3 1 0 1 u1 + u0 β21

1 · β0 β2 = α23−1

3 5 2 1 2 u2 + u1 β22

2 · β1 β3 = α25−1

4 10 3 3 5 u3 + u3 β25

3 · β3 β4 = α210−1

5 20 4 4 10 u4 + u4 β210

4 · β4 β5 = α220−1

6 40 5 5 20 u5 + u5 β220

5 · β5 β6 = α240−1

7 80 6 6 40 u6 + u6 β240

6 · β6 β7 = α280−1

8 160 7 7 80 u7 + u7 β280

7 · β7 β8 = α2160−1

9 180 8 5 20 u8 + u5 β220

8 · β5 β9 = α2180−1

10 190 9 4 10 u9 + u4 β210

9 · β4 β10 = α2190−1

Table V.2.4. Once again, notice that after having computed the coefficient β10 the
only remaining step is to obtain α−1 as, α−1 = β2

10

Let us now assess the computational complexity of the algorithm shown in
Fig. V.8. The algorithm performs t iterations (where t is the length of the addi-
tion chain U) and one field multiplication per iteration. Thus, we conclude that a
total of t field multiplication computations are required.

On the other hand, notice that at each iteration i, a total of 2ui2 field squarings
are performed. Notice also that by definition, the addition chain guarantees that for
each ui, 1 ≤ i ≤ t, the relation ui2 = ui − ui1 holds. Hence, one can show by
induction that the total number of field squaring operations performed right after
the execution of the i-esime iteration is ui− 1 [98]. Therefore, at the end of the final
iteration t, a total of ut − 1 = m − 2 squaring operations have been performed.
This, together with the final squaring operation, yield a total of m−1 field squaring
computations.

Summarizing, the algorithm of Fig. V.8 can find the inverse of any nonzero
element of the field using exactly,

#Multiplications = t;
#Squarings = m− 1. (V.16)

Squarer and Multiplier are the two main building blocks for performing inver-
sion in GF(2m). We have already discussed the structure of our multiplier in Sec-
tion V.2.1. Squaring in GF(2m) is a simple operation however, as it was stated in
Eq. V.16, it devours m−1 clock cycles performing m−1 squarings for m-bit inversion.
However, much less field multiplications are needed for computing the multiplicative

110

V.3. ELLIPTIC CURVE SCALAR MULTIPLICATION

inversion, which is valuable for the design since field multiplication in GF(2m) is a
costly and extensive time consuming operation. Figure V.9.a shows our strategy for

Figure V.9. Squarer GF(2193) (a) for x21
(b) for x2n

implementation

implementing field squaring trying to use as few clock cycles as possible. Polynomial
squaring is free of cost and is obtained by connecting each alternate even bit to zero
(ground). That operation is followed by a second step where reduction is performed
by using few XOR gates. Figure V.9.b shows the GF (2191) field squarer implemen-
tation used in this work. Referring to the addition chain described in Table V.2.4,
frequent squaring operations in GF (2191) are βi

21
(2 times), βi22 (1 time), βi25 (1

time), and βi210 (10 times).
That is why we preferred to cascade 10 field squarer blocks back to back and

then by the appropriate use of multiplexers obtain the corresponding outputs after
1, 2, 5, and 10 squarer blocks as shown in Figure V.9.b. As an example, the x220

field operation can be performed in just two clock cycles by taking the output after
the last squarer block (10 squarers) in the first clock cycle and then after a second
clock cycle we will get the required 20 field squarings.

V.3 Elliptic curve scalar multiplication

In this section we discuss the Hessian form of elliptic curves and its group law
followed by Montgomery point multiplication algorithm. The group law for Mont-
gomery point multiplication is discussed both in affine and projective coordinates.
The discussions are also made for the conversion from projective to affine coordi-
nates.

V.3.1 Hessian form

Let P (x) be a degree-m polynomial, irreducible over GF(2). Then P (x) generates
the finite field Fq = GF (2m) of characteristic two. A Hessian elliptic curve E(Fq)
is defined to be the set of points (x, y, z) ∈ GF (2m) × GF (2m) that satisfy the
canonical homogeneous equation,

x3 + y3 + z3 = Dxyz (V.17)

111

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

Together with the point at infinity denoted by O and given by (1, 0,−1).
The original form of the group law on curves in Hessian form belongs to Cauchy

and was later simplified by Sylvester-Desboves [23].
Let P = (x1, y1, z1) and Q = (x2, y2, z2) be two points that belong to the plane

cubic curve of Eq. V.22. Then we define −P = (y1, x1, z1) and P + Q = (x3, y3, z3)
where,

x3 = y1
2x2z2 − y2

2x1z1

y3 = x1
2y2z2 − x2

2y1z1

z3 = z1
2y2x2 − z2

2y1x1

(V.18)

Provided that P �= Q. The addition formulae of Eq. (V.18) might be parallelized
using 12 field multiplications as follows [91],

λ1 = y1x2 λ2 = x1y2 λ3 = x1z2

λ4 = z1x2 λ5 = z1y2 λ6 = z2y1

s1 = λ1λ6 s2 = λ2λ3 s3 = λ5λ4

t1 = λ2λ5 t2 = λ1λ4 t3 = λ6λ3

x3 = s1 − t1 y3 = s2 − t2 z3 = s3 − t3

(V.19)

Whereas the formulae for point doubling are giving by

x3 = y1

(
z1

3 − x1
3
)
;

y3 = x1

(
y1

3 − z1
3
)
;

z3 = z1

(
x1

3 − y1
3
)
.

(V.20)

Where 2P = (x3, y3, z3). The doubling formulae of Eq. (V.20) can be also parallelized
requiring 6 field multiplications plus three field squarings for their computation. The
resulting arrangement can be rewritten as [91],

λ1 = x1
2 λ2 = y1

2 λ3 = z1
2;

λ4 = x1λ1 λ5 = y1λ2 λ6 = z1λ3;
λ7 = λ5 − λ6 λ8 = λ6 − λ4 λ9 = λ4 − λ5;
x2 = y1λ8 y2 = x1λ7 z2 = z1λ9;

(V.21)

By implementing Eqs. (V.19) and (V.21), one can obtain the two building blocks
needed for the implementation of the second layer shown in Figure V.1. Hence,
provided that those two blocks are available, one can compute the third layer of
Figure V.1 by using the well-known doubling and add algorithm of Figure V.10.
That sequential algorithm needs an average of m

2 point additions plus m point
doublings in order to complete one scalar multiplication computation.

Alternatively, we can use the algorithm of Figure V.11 that can potentially be
implemented in parallel since in this case the point addition and doubling operations
do not show any dependencies between them. Therefore, if we assume that the
algorithm of Figure V.11 is implemented in parallel, one needs an average of just m

2
point additions plus m

2 point doublings in order to complete one scalar multiplication
computation.

In Subsection V.3.3 we discuss how to obtain an efficient parallel-sequential
implementation of the second and third layers of the model of Figure V.1.

112

V.3. ELLIPTIC CURVE SCALAR MULTIPLICATION

Input: k = (kn−1, kn−2....., k1, k0)2 with kn−1 = 1,
P (x, y, z) ∈ E(F2m)
Output: Q = kP

1. Set Q = P

2. For i from n− 2 downto 0 do
3. Q = 2.Q (point doubling)
4. if (ki = 1) then
5. Q = Q + P (point addition)
6. end if;
7. end for;

Figure V.10. Doubling & Add algorithm for Scalar Multiplication: MSB-First

Input: k = (kn−1, kn−2....., k1, k0)2 with kn−1 = 1,
P (x, y, z) ∈ E(F2m)
Output: Q = kP

1. Set Q = 1; R = P

2. For i from 0 to n− 1 do
3. if (ki = 1) then
4. Q = Q + R (point addition)
5. R = 2.R (point doubling)
6. end if;
7. end for;

Figure V.11. Doubling & Add algorithm for Scalar Multiplication: LSB-First

V.3.2 Weierstrass Non-Singular form and Montgomery Point
Multiplication Algorithm

Let P (x) be a degree-m polynomial, irreducible over GF (2). Then P (x) generates
the finite field Fq = GF (2m) of characteristic two. A non-supersingular elliptic curve
E(Fq) is defined to be the set of points (x, y) ∈ GF (2m)× GF (2m) that satisfy the
affine equation,

y2 + xy = x3 + ax2 + b, (V.22)

Where a and b ∈ Fq, b �= 0, together with the point at infinity denoted by O. The
elliptic curve group law in affine coordinates is given by:

Let P = (x1, y1) and Q = (x2, y2) be two points that belong to the curve V.22
then −P = (x1, x1 + y1). For all P on the curve P + O = O + P = P . If Q �= −P ,

113

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

then P + Q = (x3, y3), where

x3 =

{
(y1+y2

x1+x2
)2 + y1+y2

x1+x2
+ x1 + x2 + a P �= Q

x2
1 + b

x2
1

P = Q (V.23)

y3 =
{

(y1+y2

x1+x2
)(x1 + x3) + x3 + y1 P �= Q

x2
1 + (x1 + y1

x1
)x3 + x3 P = Q

(V.24)

It can be seen from Eqns. V.23 and V.24 that for both of them, point addition
(when P �= −Q) and point doubling (when P = Q), the computations for (x3, y3)
require one field inversion and two field multiplications neglecting the costs of field
additions and squarings. An important observation first made by Montgomery is
that the x-coordinate of 2P does not involve the y-coordinate of P .

I. Projective Coordinates

Compared with field multiplication in affine coordinates, inversion is by far the
most expensive basic arithmetic operation in GF (2m). Inversion can be avoided by
means of projective coordinate representation. A point P in projective coordinates
is represented using three coordinates X, Y, and Z. This representation greatly helps
to reduce internal computational operations. It is customary to convert the point P
back from projective to affine coordinates in the final step. This is due to the fact
that affine coordinate representation involves the usage of only two coordinates and
therefore is more useful for external communication saving some valuable bandwidth.

In standard projective coordinates the projective point (X:Y:Z) with Z�= 0 cor-
responds to the affine coordinates x = X/Z and y = Y/Z. The projective equation
of the elliptic curve is given as:

Y 2Z + XY Z = X3 + aX2Z + bZ3 (V.25)

II. Montgomery Group Law

Let P = (x1, y1) and Q = (x2, y2) be two points that belong to the curve of Equa-
tion V.22. Then P + Q = (x3, y3) and P − Q = (x4, y4), also belong to the curve
and it can be shown that x3 is given as [39],

x3 = x4 +
x1

x1 + x2
+

(
x1

x1 + x2

)2

; (V.26)

Hence we only need the x coordinates of P , Q and P − Q to exactly determine
the value of the x-coordinate of the point P + Q. Let the x coordinate of P be
represented by X/Z. Then, when the point 2P = (X2P , Y2P , Z2P) is converted to
projective coordinate representation, it becomes [50],

x2P = X4 + b · Z4;
z2P = X2 · Z2;

(V.27)

114

V.3. ELLIPTIC CURVE SCALAR MULTIPLICATION

The computation of Eq. V.27 requires one general multiplication, one multiplica-
tion by the constant b, five squarings and one addition. Fig. V.12 is the sequence of
instructions needed to compute a single point doubling operation Mdouble(X1, Z1)
efficiently.

Input: P = (X1,−, Z1) ∈ E(F2m), c such that c2 = b

Output: P = 2 · P
Procedure: Mdouble(X1, Z1)

1. T = X2
1

2. M = c · Z2
1

3. Z1 = T · Z2
1

4. M = M2

5. T = T 2

6. X1 = T + M

Figure V.12. Montgomery point doubling

In a similar way, the coordinates of P + Q in projective coordinates can be
computed as the fraction X3/Z3 and are given as:

Z3 = (X1 · Z2 + X2 · Z1)
2 ;

X3 = x · Z3 + (X1 · Z2) · (X2 · Z1);
(V.28)

Input: P = (X1,−, Z1), Q = (X2,−, Z2) ∈ E(F2m)
Output: P = P + Q

Procedure: Madd(X1, Z1, X2, Z2)

1. M = (X1 · Z2) + (Z1 ·X2)
2. Z1 = M2

3. N = (X1 · Z2) · (Z1 ·X2)
4. M = x · Z3

5. X1 = M + N

Figure V.13. Montgomery point addition

The required field operations for point addition of Eq. V.28 are three general
multiplications, one multiplication by x, one squaring and two additions. This op-
eration can be efficiently implemented as shown in Fig. V.13.

115

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

III. Montgomery Point Multiplication

A method based on the formulas for doubling (from Eq. V.27) and for addition
(from Eq. V.28) is shown in Fig. V.14 [50]. Notice that steps 2.2 and 2.3 are
formulae for point doubling (Mdouble) and point addition (Madd) from Figs. V.12
and V.13 respectively. In fact both Mdouble and Madd operations are executed in
each iteration of the algorithm. If the test bit ki is ‘1’, the manipulations are made
for Madd(X1, Z1,X2, Z2) and Mdouble(X2, Z2) (step 2.2) else Madd(X2, Z2,X1, Z1)
and Mdouble(X1, Z1) i-e Mdouble and Madd with reversed arguments (step 2.3).

The approximate running time of the algorithm shown in Fig. V.14 is 6mM +
(1I + 10M) where M represents a field multiplication operation, m stands for the
number of bits and I corresponds to inversion. It is to be noted that the factor
(1I + 10M) represents time needed to convert from standard projective to affine
coordinates. In the next Subsection we explain the conversion from SP to affine
coordinates and then in Subsection V.3.3, we discuss how to obtain an efficient
parallel implementation of the above algorithm quite especially for step 2.

Input: k = (kn−1, kn−2....., k1, k0)2 with kn−1 = 1,
P (x, y) ∈ E(F2m)
Output: Q = kP

Procedure: MontPointMult(P, k)
1. Set X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2

2. For i from n− 2 downto 0 do
2.1 if (ki = 1) then

Madd(X1, Z1, X2, Z2);
Mdouble(X2, Z2);

2.2 else
Madd(X2, Z2, X1, Z1);
Mdouble(X1, Z1);

3. x3 ← X1/Z1

4. y3 ← (x + X1/Z1)[(X1 + xZ1)(X2 + xZ2)+
(x2 + y)(Z1Z2)](xZ1Z2)−1 + y

5. Return (x3, y3)

Figure V.14. Montgomery point multiplication

IV. Conversion from standard projective (SP) to affine coordinates

Both, point addition and point doubling algorithms are presented in standard pro-
jective coordinates. A conversion process is therefore needed from SP to affine coordi-
nates. Referring to the algorithm of Fig. V.14, the corresponding affine x-coordinate

116

V.3. ELLIPTIC CURVE SCALAR MULTIPLICATION

is obtained in step 3: x3 = X1/Z1. Whereas the affine representation for the y-
coordinate is computed by step 4: y3 ← (x + X1/Z1)[(X1 + xZ1)(X2 + xZ2) + (x2 +
y)(Z1Z2)](xZ1Z2)−1 +y. Notice also that both expressions for x3 and y3 in affine co-
ordinates include one inversion operation. Although this conversion procedure must
be performed only once in the final step, still it would be useful to minimize the
number of inversion operations as much as possible. Fortunately it is possible to
reduce one inversion operation by using the common operations from the conversion
formulae for both x and y-coordinates. A possible sequence of the instructions from
SP to affine coordinates is given by the algorithm in Fig. V.15.

Input: P = (X1, Z1), Q = (X2, Z2) ∈ E(F2m)
P (x, y) ∈ E(F2m)
Output:(x3, y3) affine coordinates
Procedure: SPtoAffine(X1, Z1, X2, Z2)

1. λ1 = Z1 × Z2

2. λ2 = Z1 × x

3. λ3 = λ2 + X1

4. λ4 = Z2 × x

5. λ5 = λ4 + X1

6. λ6 = λ4 + X2

7. λ7 = λ3 × λ6

8. λ8 = x2 + y

9. λ9 = λ1 × λ8

11.λ10 = λ7 + λ9

12.λ11 = x× λ1

13.λ12 = inverse(λ11)
13.λ13 = λ12 × λ10

14.x3 = λ14 = λ5 × λ12

15.λ15 = λ14 + x

16.λ16 = λ15 × λ13

17.y3 = λ16 + y

Figure V.15. Standard projective to affine coordinate

The coordinate conversion process makes use of 10 multiplications and only 1
inversion ignoring addition and squaring operations.

The algorithm in Fig. V.15 includes one inversion operation which can be per-
formed using Extended Euclidean Algorithm or Fermat’s Little Theorem (FLT).

117

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

V.3.3 Parallel strategies for scalar point multiplication

As it was mentioned in the introduction Section, parallel implementations of the
three underlying layers depicted in Figure V.1 constitutes the main interest of this
chapter. We briefly described how to do so in the case of the first layer in Subsection
§V.2. However, hardware resource limitations restrict us from attempting a fully
parallel implementation of second and third layers. Thus, a compromising strategy
must be adopted to exploit parallelism at second and third layers. Several options
to do so are shown in Table V.3.

Table V.3. GF (2m) Elliptic Curve Point Multiplication Computational Costs
Strategy Req. No. EC Operation Cost T. N0. of EC Operation Cost T. No. of

2nd 3rd of Field Hessian form Field Montgomery Algorithm Field
Layer Layer Mults. Doubling Addition Mults. Doubling Addition Mults.

S S 1 6M 12M 18mM 2M 4M 6mM
S P 2 6M 12M 12mM 2M 4M 4mM
P S 2 3M 6M 9mM 1M 2M 3mM
P P 4 6M 6M 6mM M 2M 2mM

Table V.3 presents four of the many options that we can follow in order to
parallelize the computation of scalar point multiplication. The computational costs
shown in Table V.3 are normalized with respect to the required number of field
multiplication operations (since the computation time of squaring operations can
be neglected in arithmetic over GF(2m)).

Due to area restrictions we can afford to accommodate up to two fully parallel
field multipliers in our design. Thus, we can afford both, second and third options
of Table V.3. However, third option is definitely more attractive as it demonstrates
better timing performance at the same area cost. Therefore, and as it is indicated
in the third row of Table V.3, the estimated computational cost of our elliptic curve
Point multiplication implementation will be of 9m field multiplications in Hessian
form. It costs only 3m field multiplications using the Montgomery algorithm for the
Weierstrass form.

In the next Section we discuss how this approach can be carried out on hardware
platforms.

V.4 Generic architecture for scalar point multiplication

Figure V.16 shows a generic structure for parallel implementation of elliptic curve
scalar multiplication on hardware platforms. That structure is able to implement
the parallel-sequential approach listed in the third row of Table V.3, assuming the
availability of two GF(2m) multiplier blocks.

As shown in Figure V.16, the basic organization for the computation of elliptic
curve scalar multiplication is comprised of four classes of blocks: GF(2m) multipliers,
Combinational logic blocks and/or finite field arithmetic (i.e. squaring, etc.), Blocks

118

V.5. IMPLEMENTING SCALAR MULTIPLICATION ON
RECONFIGURABLE HARDWARE

Figure V.16. Basic organization of elliptic curve scalar implementation

for intermediate results storage and selection (i.e. registers, multiplexers, etc.), and
a Control unit (CU). The CU is the default part of every hardware circuit to control
the flow of data between different stages of the design. Registers are provided to
save the intermediate results. The results are further multiplexed to provide correct
operands to the multipliers for next stages. The CL blocks perform pre or post
computations at the multipliers to obtain final results within pre-defined clock cycles.

Figure V.16 presents a generic architecture that can be used for elliptic curve
scalar multiplication with minor modifications on different hardware platforms like
VLSI and FPGAs. Although the selection of the components is totally platform
dependent, the selection of some special devices might be helpful to reduce design
complexity. For example, using read/write memories (RAMs) instead of several reg-
isters and multiplexers might provide more design modularity and efficiency. On the
other hand, one cannot ignore the fact that the most costly operation in kP compu-
tations by far is finite field multiplication over GF(2m). Therefore, efficient GF(2m)
field multiplier blocks become indispensable in order to obtain fast and low-area
implementations of elliptic curve scalar multiplication.

V.5 Implementing scalar multiplication on reconfigurable

hardware

Figure V.17 proposes a parallel structure for implementing the point multiplication
algorithm discussed in Section V.3. It is a generic FPGA architecture based on the
parallel-sequential approach for kP computations discussed before. To implement
the memory blocks of Figure V.16, fast access FPGA’s read/write memories Block-
RAMs (BRAMs) are used. BRAMs are built-in memory blocks available in modern
FPGAs. A dual port BRAM can be configured as a two single port BRAMs with
independent data access. This special feature allows the saving of a considerable
number of multiplexer operations as the required data is accessible independently
from any of the two available input ports. Hence, two similar BRAMs blocks (each
one of 12 BRAMs) provide four operands to the two multiplier blocks simultane-

119

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

Figure V.17. Implementation of Scalar Multiplication on FPGA platforms

ously. Since each BRAM contains 4k memory cells, two BRAM blocks are sufficient.
The combination of 12 BRAMs however provide an access to 191-bit bus length. All
control signals (read/write, address signals to the BRAMs and multiplexer enable
signals) are generated by the control unit (CU). A master clock is directly fed to the
BRAM block which is afterwards divided by two, serving as a master clock for the
rest of the circuitry. The external multiplexers do apply pre and post computations
(squaring, XOR, etc.) on the inputs of the multipliers when they are required.

An inversion operation is performed once at the end for the conversion of SP
to affine coordinates (in case of Montgomery point multiplication using Standard
Projective coordinates). That operation uses building blocks for multiplication and
squaring in GF (2m). One of the multiplier block MUL GF (2m) is used for the
multiplication. A squarer block ‘SqrInv’ is especially added for the inversion only.
As it was earlier explained that m − 1 squarings are performed to complete one
inversion in GF (2m). It takes m − 1 clock cycles by using a single squarer block.
However several squarer blocks can be cascaded to perform more than one squaring
operation in the same clock cycle. That would be a useful approach for performing
all squaring operations using a few clock cycles as was explained in Section V.2.4.

In the next Subsection we discuss how the architecture of Figure V.16 can be
used to compute Hessian scalar multiplication.

V.5.1 Scalar multiplication in Hessian form

According to Eq. (V.19) of Section V.3.1 we know that addition of two points in
Hessian form consists of 12 multiplications, 3 squarings and 3 addition operations.

120

V.5. IMPLEMENTING SCALAR MULTIPLICATION ON
RECONFIGURABLE HARDWARE

Implementing squaring over GF(2m) is a trivial operation, so we can neglect it. Using
the parallel architecture proposed in Figure V.17, point addition can be performed
in 6 clock cycles using two GF(2191) multiplier blocks. For computing Hessian point
addition according to Eq. (V.19), the sequence of the field multiplications must be
followed as shown in Table V.4. In the architecture of Figure V.17, M1 and M2
are two memory (BRAMs) blocks, each one comprising of two independent ports
PT1 and PT2. It should be noticed that the inputs/outputs of the multipliers are
different from those read/write values at the memory blocks. It is due to pre or post
computations required during the next clock cycle. Table V.4 lists values for the
multiplications during read cycle and after the multiplications during write cycle.

Table V.4. Point addition in Hessian form
Cycle Read Write

M1 M2 M1/M2
PT 1 PT 2 PT 1 PT 2 PT 1 PT 2

1 Y1 X1 X2 Y2 λ1 λ2

2 X1 Z1 Z2 X2 λ3 λ4

3 Z1 Z2 Y2 Y1 λ5 λ6

4 λ1 λ2 λ6 λ5 x3 −
5 λ2 λ1 λ3 λ4 y3 −
6 λ5 λ6 λ4 λ3 z3 −

Similarly Hessian point doubling implementation of Eq. (V.21) consists of 6
multiplications, 3 squarings and 3 additions. Table V.5 describes the algorithm flow
implemented using the same architecture (Figure V.17).

Table V.5. Point doubling in Hessian form
Cycle Read Write

M1 M2 M1/M2
PT 1 PT 2 PT 1 PT 2 PT 1 PT 2

1 X1 Y1 X1 Y1 λ4 λ9

2 λ9 λ4 Z1 Z1 z2 λ8

3 λ8 λ9 Y1 X1 x2 y2

Let m represents the number of bits and M denotes a single finite field mul-
tiplication. Then the number of multiplications for one point addition and point
doubling are 6M and 3M respectively. Referring to the algorithm in Figure V.10,
average of (m

2)6M and 3mM multiplications are needed for computing all m bits of
the vector k. Thus, 6mM are the total multiplication operations required for com-
puting kP scalar multiplication. In our case, m = 191 bits, the total number of field
multiplications required by the algorithm are 1146. Let T be the allowed clock period
then 1146 × T is the total time to complete elliptic curve scalar multiplication.

121

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

V.5.2 Montgomery point multiplication

Referring to the algorithm of Figure V.14, each bit of vector k is tested from left to
right (in descending order).

For each test bit (zero or one), both point addition (Madd) and point dou-
bling (Mdouble) operations are performed. However, order of the arguments is re-
versed: if the test bit is ‘1’, Mdouble(X2, Z2), Madd(X1, Z1,X2, Z2) are computed
and Mdouble(X1, Z1), Madd(X2, Z2,X1, Z1) otherwise. The algorithms in Figures
V.13 and V.12 describe the sequence of the instructions for Madd and Mdouble
operations respectively.

Tables V.6 and V.7 describe the multiplications performed for both point addi-
tion and point doubling operations in three normal clock cycles when test bit is ’1’
or ’0’ respectively. The notations used for the algorithms in Figures V.13 and V.12
for point addition and point doubling were kept the same. M1 and M2 represent
two memory blocks (BRAMs) each one with two independent ports PT1 and PT2.
Some required arithmetic operations (squaring etc.) need to be performed during
read/write cycles at the memories before and after the multiplication operations.

Table V.6. kP computation, if test-bit is ‘1’
Cycle Read Write

M1 M2 M1/M2
PT 1 PT 2 PT 1 PT 2 PT 1 PT 2

1 X1 Z2 Z1 X2 P Q
2 X2 Z2 Z2 T1 Z2=Z3 X2=X3

3 P Q Q T2 X1=X ′ Z1=Z ′

The resultant vectors X1,Z1,X2,Z2, are updated at the memories after the com-
pletion of point addition and doubling operations using 3 clock cycles for each bit.
Total time for whole 191-bit test vector is therefore 191×3×T , T represents allowed
frequency.

Table V.7. kP computation, if test-bit is ‘0’
Cycle Read Write

M1 M2 M1/M2
PT 1 PT 2 PT 1 PT 2 PT 1 PT 2

1 X2 Z1 Z2 X1 P Q
2 X1 Z1 Z1 T1 Z1=Z3 X1=X3

3 P Q Q T2 X2=X ′ Z2=Z ′

V.5.3 Implementation summary

All finite field arithmetic blocks and then the kP computational architecture were
implemented on a VirtexE XCV3200e-8bg560 device by using Xilinx Foundation

122

V.5. IMPLEMENTING SCALAR MULTIPLICATION ON
RECONFIGURABLE HARDWARE

Table V.8. Design Implementation Summary
Design Device CLB Timings

(XCV) slices
Inversion in GF (2191) 3200E 1312 1.9ηs
Binary Karatsuba Multiplier 3200E 8721 43.1ηs
1 Field Multiplication 100.1ηs
Point addition + Point 3200E 18300 300.3ηs (if bit = ‘0’)
doubling in Hessian Form 900.9ηs (if bit = ‘1’)
Point Multiplication 3200E 19626 & 114.71µs
in Hessian form 24 BRAMs
Point addition + Point doubling 3200E 18300 300.3ηs
(Montgomery Point Multiplication) (3 Multiplications)
Point Multiplication 3200E 19626 & 59.26µs
(Montgomery Point Multiplication) 24 BRAMs

Tool F4.1i for design entry, synthesis, testing, implementation and verification of
results. Table V.8 lists timing performances and occupied resources by the said
architectures.

Elliptic curve point addition and point doubling do not participate directly as
a single computational unit in this design; however parallel computations for both
point addition and point doubling are designed together as it was shown in Fig-
ure V.10. Both point addition and point doubling occupy 18300 (56.39 %) CLB
slices and it takes 100.1ηs (at a clock speed of 9.99 MHz) to complete one execution
cycle. As it was mentioned in Section V.3.1, six and three cycles are needed for
computing point addition and point doubling in Hessian form, respectively. Thus
the total consumed time for computing each iteration of the algorithm of Figure
V.10 is 900.9η if the corresponding bit is one and 300.3ηs otherwise. Therefore,
scalar point multiplication in Hessian form is the time to complete m/2 point ad-
ditions (in average) and m point doublings. For our case m=191, the total time is
therefore (191/2)(600.6) + 191(300.3) = 114.71µs. Point multiplication in Hessian
form uses affine coordinates and therefore no time has been consumed in coordinates
conversion.

Similarly, two and one multiplications are needed to perform Montgomery point
multiplication, thus consuming 100.1ηs and 200.2ηs for point doubling and point
addition respectively. Each iteration of the algorithm thus consumes 300.3ηs for 3
multiplications. For our case m = 191, total time is therefore 191(300.3) = 57µs
for elliptic curve scalar multiplication. Inversion is performed at the end. It takes
19 clock cycles to perform one inversion in GF (2191) occupying 1312 CLB slices.
The CLB slices for inversion in fact are the FPGA resources occupied for squaring
operations only and the multiplier blocks are the same used for point addition and
point doubling. The total time is the sum of the time for the scalar multiplication
and the time to perform inversion for coordinate conversion i-e 57.36 + 1.9 = 59.26
µs.

123

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

The architecture for elliptic curve scalar multiplication in both cases (Hessian
form & Montgomery point multiplication) occupies 19626 (60 %) CLB slices, 24
(11%) BRAMs and performs at the rate of 100.1ηs (9.99 MHz). The design for
Karatsuba Multiplier in GF(2191) occupies 8721 (26.87%) CLB slices and one field
multiplication is performed in 43.1ηs.

V.6 Performance comparison

Table V.9 provides a quick comparison of the existing FPGA’s implementations
of elliptic curve scalar multiplication over GF(2m). That table sums up the last
three years state of the art implementations, where most of the works featured have
been published this same year. A microcoded EC processor in [72] is implemented
on Annapolis Microsystems Wildstar board. For this design, EC multiplication is
executed in 4300µs, 8300µs, and 11100µs for GF(2113), GF(2155), and GF(2173)
respectively. An efficient VLSI EC processor in [89] support EC scalar

multiplication both in GF(p) and GF(2n). Achieved results for a 160-bit EC
scalar multiplication are 1210µs and 190µs for GF(p) and GF(2n) respectively. A
generic VLSI architecture in [35] implements cryptographic primitives over various
fields. It consumes 6950µs to compute point multiplication using a repeated double-
and-add algorithm. Another reconfigurable system on chip ECC implementation is
reported on a special architecture AT94K40 from Atmel that integrates various com-
ponents including an AVR 8-bit RISC micro-controller, several peripheral devices
and up to 36K bytes SRAM within a single chip. That design execute EC operation
in just 1400µs. All other designs [66, 92, 91, 16] implements EC scalar multiplication
on single chip FPGA.

Table V.9 also includes a speedup factor that measures how much our design is
faster than the others. It is obtained by dividing kP computational time of a given
design over the time taken by our design. As it can be seen, our design shows an
improvement ranging from 2.55 times up to 316 times of speedup.

The design presented in [89] can handle arbitrary fields and elliptic curves with-
out changing its hardware configuration, while those parameters have been fixed in
our implementation. However the design in [89] was implemented on a traditional
ASIC chip, where the flexibility for design changes is quite limited or many times
even inexistent. In our approach on the other hand, taking advantage of the reconfig-
urability feature of the platform selected, we preferred to optimize the performance
of our design for a given field while the possibility to reconfigure the design for other
parameters can still be instrumented.

Table V.9 provides a list of reported designs for elliptic curve scalar multipli-
cation over GF(2m) implemented on FPGAs or VLSI. From that list, our designs
obtained the fastest computation time needing only 114.71µs in Hessian form and
59.26µs using Montgomery point multiplication algorithm.

124

V.7. CONCLUSIONS

Table V.9. GF(2m) Elliptic Curve Point Multiplication Hardware Performance
Comparison
EC scalar Field Platform Freq. kP Speed Multiplier Block
multiplication MHz (µs) up Utilized

[72] GF(2113) Annapolis 4300 76 Serial multiplier
GF(2155) Micro Sys. 8300 148
GF(2173) Wildstar board 11100 198

[89] GF(2160) 0.13µ CMOS 510.2 190 3.39 64-bit multiplier
ASIC

[35] GF(2176) 0.25µ CMOS 50 6950 124 1024-bit adder

[66] GF(2167) XCV400E 76.7 210 3.75 16-bit multiplier
167-bit squarer

[91] GF(2191) XCV4000XL 11820 211 Not
17710 316 specified

[38] GF(2163) XCV2000E 143 2.55 64-bit shift and add
GF(2193) 187 3.34 multiplier

[31] GF(2113) AT94K40 12 1400 25 24-bit Karatsuba

[16] GF(2191) XCV1000BG 50 270 4.82 4 2-Bit level LFSR
36 2270 40 1 Massey-Omura

Hessian GF(2191) XCV3200E 9.99 114.71 Two GF(2191) Binary
Form karatsuba multiplier

Montgomery GF(2191) XCV3200E 9.99 59.26 Two GF(2191) Binary
Point Mult. karatsuba multiplier

V.7 Conclusions

In this chapter, a generic architecture for elliptic curve point multiplication was
presented. The proposed architecture is based on parallel implementations of each
stage of the kP computation process. Although the architecture was optimized for
reconfigurable devices, it can be applied to other hardware platforms (such as VLSI)
with minor modifications.

The structure presented in this chapter constitutes a generic architecture for the
scalar multiplication in Hessian form as well as for Montgomery point multiplication
defined over GF(2191). The resulting performance time for the scalar point multi-
plication operation in Hessian form is of 114.71µs, while it takes just 59.26µs to
complete Montgomery point multiplication. Therefore the Weierstrass form utiliz-
ing the Montgomery group formulation can be computed in about half the execution
time consumed by the time needed in the case of the Hessian form.

Two major factors contribute in achieving high performances for our architec-
ture. First, parallel strategies that were applied throughout the design ranging from
finite field arithmetic to scalar point multiplication. The efficient field units (multi-
pliers, squarers, etc) were designed and optimized for shortest possible data critical
paths. Second, we investigated for the best use of those basic building blocks that
includes the structural arrangements related to the computation of point addition
and point doubling as described in Table V.3. As a whole, implementation of elliptic

125

V. A Generic Coprocessor For Elliptic Curve Scalar Multiplication on
Hardware

curve scalar multiplications on FPGA devices yields efficient architectures, showing
a good balance between speed and time.

Future work includes the search for faster algorithms for elliptic curve scalar mul-
tiplication, the implementation of other design strategies and comparison between
them.

126

Chapter VI

Conclusions

The main focus of this thesis was the study and analysis of cryptographic algo-
rithms (CA) for their compact and high-speed implementations on reconfigurable
logic platform by using optimized techniques with respect to both time and area.
Three main goals were formulated to make a comprehensive study of cryptographic
algorithms: (1) a study of general symmetric block-cipher cryptographic algorithms
to develop general guidelines for implementing them in FPGAs which were applied
to Data Encryption Standard (DES), (2) a study of architectural alternatives for
implementing a modern and standard symmetric block-cipher (AES) in FPGAs,
and (3) a study of basic operations required by public-key cryptography based on
elliptic curves (ECC).

To achieve our first goal, we searched for the most common and fundamental
operations in symmetric block ciphers. It was observed that most block ciphers
were generally constructed using bit-wise logic, permutation and substitution op-
erations. Another important feature was their iterative nature where a single en-
cryption was concluded by repeating n iterations of the algorithm. We presented
some novel techniques for implementing such operations on reconfigurable devices.
We also explained whole design procedure for an FPGA architecture. Some design
recommendations were provided for the optimization of an FPGA design leading to
high performance circuits. A case of study about DES is presented. Therefore, our
contributions obtained from this goal are: we develop general guidelines for the re-
configurable implementation of block ciphers, and we present a compact and efficient
implementation of DES. Those contributions were reported in [85, 27].

To achieve our second goal, We deeply revised all steps in AES algorithm. Various
options for its implementations were discussed considering performance, cost and
area limitations on reconfigurable platform. Consequently, several AES designs for
encryptor, encryptor/decryptor, and decryptor cores using iterative and pipelined
design strategies were developed which were reported in [83, 82, 84, 75, 80].

127

CHAPTER VI. CONCLUSIONS

In the first part of this study, an encryptor core was developed. Iterative and
pipelined architectures were devised for it resulting a pipeline architecture requiring
more area but achieving n times better throughput as compared to the iterative
design.

For a full encryptor/decryptor core, we found that one of the most costly trans-
formations in terms of area are byte substitution (BS) and its corresponding inverse
(IBS) for AES. They are typically implemented as a substitution box (S-Box). Both
transformations require a multiplicative inverse (MI) step plus an affine transforma-
tion (AF). Applying AF before MI produces S-Box for encryption. For decryption,
inverse of AF (IAF) is applied after MI.

Since cost of BS and IBS is mainly due to MI step, in fully pipelined encryp-
tor/decryptor core, we devised a technique for sharing a single MI module for both
processes. Two implementations for MI were considered: by using pre-computed
values stored in look-up tables (built-in memory modules) or by calculating values
on-the-fly using composite field. AES encryptor/decryptor core using look-up table
method for AES S-Box was faster but with high memory requirements. On the other
hand, the composite field strategy yielded a less efficient but memory free architec-
ture which can be suitable for cheap and portable FPGAs. In any case, our designs
reported in [84] are competitive, or in some cases, even better compared to previous
results.

Another consideration in developing a fully pipelined encryptor/decryptor core
was made on MixColumn and Inverse MixColumn transformation (MC and IMC).
A separated implementation for MC and IMC steps is a straightforward approach.
However, we observed that IMC can be implemented by applying a small modifi-
cation followed by MC. We evaluated both approaches whose results were reported
in [75, 80]. We observed that FPGA resources were saved and the critical path for
decryption was reduced resulting high throughput for the AES encryptor/decryptor
core with a modified MC transformation.

Regarding AES, our last architectural consideration was focused on designing
a decryptor core only. It was firstly motivated to show the difference between en-
cryption and decryption timing for AES. In fact, due to asymmetric nature of AES,
different steps are used for encryption/decryption and steps involved in decryption
process are more intensive resulting higher timing for decryption. AES decryptor
core was realized by isolating the data-path for decryption from the most efficient
encryptor/decryptor core. Further, some steps were combined exploiting the CLB
four-input/one-output configuration. S-Box/inverse S-Box were implemented using
look-up table method. Inverse MixColumn was performed using MixColumn plus a
small modification. Using this strategy, decryption timing was very close to that of
encryption.

For all seven AES architectures, key schedule implementations were also made
and all AES architectures were optimized with respect to both area and time. As
a result, high speed and economical (occupying less hardware resources) AES ar-
chitectures were achieved. In summary, our results for AES FPGA implementations

128

were either competitive or better than previous state-of-the-art AES FPGA imple-
mentations reported in the literature to-date.

The third goal of this dissertation was dedicated to public-key cryptosystem
based on Elliptic Curve Cryptography (ECC). Achieved results for this work were
reported in [76, 87, 81, 86, 88]. We developed FPGA implementations for performing
the most important operation in ECC: elliptic curve scalar multiplication (or point
multiplication). We adopted a three-stage model in which basic blocks from the
lower stages were used to implement operations required in higher stages.

In the first stage, we considered the implementation of finite field Arithmetic: ad-
dition/subtraction, squaring, multiplication, and inversion in GF(2m). Implementing
addition/subtraction, squaring and then reduction for all of them is trivial. How-
ever, multiplication in GF(2m) is complicated. We introduced binary Karatsuba
multiplier, a variant of Karatsuba-Ofman multiplier which is a useful approach with
respect to both time and area. Inversion in GF(2m) is a sequence of multiplication
and squaring operations. The common feature for implementing finite field arith-
metic operations was to exploit maximum parallelism and to reduce critical paths
producing less execution time.

Second stage for performing elliptic curve scalar multiplication is elliptic curve
arithmetic: point addition and doubling. Both operations need building blocks for
multiplication and squaring from first stage. Since, multiplication in GF(2m) oc-
cupies large space, a study was made for maximum multipliers allowed by target
FPGA that can produce maximum throughput at this stage. It was found that we
are limited to two multipliers in parallel on VirtexE device XCV3200.

In the third stage of our model, the elliptic curve scalar multiplication was finally
implemented by using building blocks from the two previous stages. A generic archi-
tecture was proposed for the implementation of elliptic curve scalar multiplication.
That architecture was further used for FPGA implementations of Hessian form of
Elliptic curve and Montgomery point multiplication. Due to careful considerations
at all stages of the design, our results improve existing FPGA implementations of
Elliptic curve scalar multiplication reported in the literature to-date.

Concluding Remarks

In this thesis work, we have analyzed cryptographic algorithms for high-speed im-
plementation on reconfigurable logic platform. Concluding remarks for this work are
drawn as follows:

1. We focus on both symmetric and asymmetric cryptographic algorithms. The
study about symmetric algorithms is mainly dedicated to block ciphers. Ba-
sic structure, design principles and most frequent operations in block ciphers
are explained. It has been observed that modern block ciphers are more ef-
ficient and resistive but they exhibit similar structure: same operations such
as transposition and substitution (in improved form), which are repeated for

129

CHAPTER VI. CONCLUSIONS

number of times. Asymmetric algorithms involve complex mathematical oper-
ations however some useful efforts have been observed for making them simple
and proficient.

2. The concept of parallelism can be effectively used for symmetric block ciphers.
Parallel operations in a block cipher can easily be detected. Basic building
blocks in a block cipher can be opted for several combinations in a parallel
way. In asymmetric ciphers, parallel operations are not common. However, an
effort has been in this thesis work for developing parallel algorithms for them.

3. Reconfigurable logic platform proves to be a suitable platform for implement-
ing cryptographic algorithms. Basic structure of reconfigurable hardware de-
vices is found to be suitable for implementing basic primitives in cryptographic
algorithms. Moreover, high density FPGAs can accommodate big circuits due
to parallel approaches for cryptographic algorithms. Reconfigurable logic plat-
form offers several useful benefits for cryptographic algorithm implementations
but it may not be a right choice for all kinds of security applications or all
kinds of cryptographic algorithms.

4. Parallelism is a key feature of this thesis work for achieving high design perfor-
mances equally useful for other similar applications. It requires a deep analysis
at algorithm level in searching parallel operations among cryptographic algo-
rithms. It works at design level in designing involved operations according
to the structure of target devices. It is useful when hardware resources allow
multiple building blocks for a single operation. However, the concept of par-
allelism is not based on occupying unlimited hardware resources for achieving
high performances but on the quality work exploiting parallelism where it has
a worth.

5. Optimization is an essential task for an FPGA architecture in improving de-
sign performance with respect to time and space. It requires manual work in
eliminating overheads in a design: using schematic components for an FPGA
design is cumbersome as compared to HDLs but it facilitates a synthesis tool
while placing and routing design components. Similarly, Synthesis tools allow
a designer to put several time and area constraints according to design specifi-
cations. However, synthesis tools takes long time (in hours) in achieving these
goals and sometimes also fail.

Future Work

We believe that on the basis of this dissertation work, there are strong chances for
more contributions in the field of cryptography. As a future work, a short description
of some of them is provided below:

1. A hardware-software approach for implementing cryptographic algorithms can
be helpful in achieving high performances. Some parts in a cryptographic

130

algorithm can efficiently be implemented in software and some of them in
hardware. Modern FPGAs include microcontrollers besides their standard
resources and also establish an interface for communication between them.
Such type of FPGAs can help in reducing communication overheads between
software-hardware methods.

2. Faster algorithms for the basic transformations of cryptographic algorithms
are always investigated for improving overall performances of cryptographic
schemes. New techniques need to be explored. As an example, ECC implemen-
tations in this thesis are based on addition-doubling method for EC arithmetic.
A new technique based on addition-halving [40] for EC could be an option for
improving design performance.

3. Similar cryptographic schemes can be implemented for comparison between
timing and occupied hardware resources by them. ECC is considered for pro-
viding same security at shorter key length as compared to cotemporary algo-
rithms such as RSA. A comparison between ECC and RSA implementations
would be interesting. Similarly, Koblitz curves for ECC are believed to be more
secure. A comparison of Koblitz curve implementations with other curves can
provide cost estimations for achieving higher security.

4. Cryptographic solutions for smart cards pose a challenge since security is de-
sired under limited hardware resources. Compact and fast cryptographic solu-
tions for smart cards can be a useful and challenging task.

5. Hardware implementations provide physical security. But it is still an open
question whether they are secure against other possible attacks such as side
channel attacks.

6. In this thesis work, reconfigurable logic platform was chosen for implementing
cryptographic algorithms. However, other possible options (software methods
using embedded processors, VLSI) need to be explored for resolving time and
space issues.

7. Several design strategies can be adopted achieving high data rates for cryp-
tographic algorithms. A comparison for iterative and pipeline approaches was
included in this thesis work. Use of other design strategies such as inner-round
or outer-round looping could be an effort to determine cost for the design in
terms of hardware area for high speed.

8. In recent years, security applications using cryptographic algorithms have been
increased. To combat current security threats, it is required to provide security
solutions for large number of security applications within their own framework.
This thesis work is required to be extended to other cryptographic algorithms
such as streams ciphers.

131

Bibliography

[1] Polycom. URL: http://www.polycom.com/common/pw item show doc/
0,1276,3076,00.pdf.

[2] Nokia 6225 Phone. URL: http://www.nokiausa.com/phones/6225.

[3] Ericcson. URL: http://www.erricson.com/.

[4] International Telecommunication Union. URL: http://www.itu.int/home/
index.html.

[5] European Telecommunications Standards Institute. URL: http://www.etsi.
org/.

[6] IEEE 802 LAN/MAN Standards Committee. URL: http://grouper.ieee.org/
groups/802/index.html.

[7] ETSI Technical Specification. Access transmission systems on metallic access
cables; Very High Speed Digital Subscriber Line (VDSL); Part 1: Functional
requirements.

[8] Xilinx Virtex TM-E 1.8V Field Programmable Gate Arrays. URL:
http://www.xilinx.com/xlnx/xweb/xil publications index.jsp.

[9] Xilinx Virtex TM-E 1.8V Field Programmable Gate Arrays. URL:
www.xilinx.com.

[10] Hardware IP Cores of Advanced Encryption Standard AES-Rijndael. URL:
http://ece.gmu.edu/crypto/rijndael.htm.

[11] High Performance Solution in Silicon: AES (Rijndael) Cores. URL:
http://www.heliontech.com/core2.htm.

[12] ANSI T1E1.4, Sep. 1 1999. Draft Technical Document, Revision16, Very High
Speed Digital Subscriber Lines; System requirements.

[13] Free-DES Core(2000), March 2000. URL: http://www.free-ip.com/DES/.

133

BIBLIOGRAPHY

[14] ANSI X9.63. Public Key Cryptography for the Financial Services Industry:
Elliptic Curve Key Agreement and Key Transport Protocols, working draft.,
August 1999.

[15] E. Bach and J. Shallit. Algorithmic number theory, Volume I: efficient algo-
rithms. Kluwer Academic Publishers, Boston, MA, 1996.

[16] M. Bednara, M. Daldrup, J. Shokrollahi, J. Teich, and J. von zur Gathen. Re-
configurable Implementation of Elliptic Curve Crypto Algorithms. In Proc. of
The 9th Reconfigurable Architectures Workshop (RAW-02), Fort Lauderdale,
Florida, U.S.A., April 2002.

[17] Guido Bertoni, Luca Breveglieri, Pasqualina Fragneto, Marco Macchetti, and
Stefano Marchesin. Efficient Software Implementation of AES on 32-bits plat-
forms. In Proceedings of the CHESS 2002, pages 159–171, LNCS 2523, 2002.

[18] E. Biham. A fast new DES implementation in software. In 4th Int. Workshop
on Fast Software Encryption, FSE97, pages 260–271, Haifa, Israel, January
1997. Springer-Verlag, 1997.

[19] Matt Bishop. An application of a fast Data Encryption Standard implemen-
tation. In Computing Systems, 1(3), pages 221–254, Summer 1988.

[20] certicomTM. ECC Tutorial. http://www.certicom.com/index.php?action=
ecc tutorial,home.

[21] Stephen Charlwood and Philip James-Roxby. Evaluation of the XC6200-
Series Architecture for Cryptographic Application. In FPL 98, Lecture Notes
in Computer Science 1482, pages 218–227. Springer-Verlag Berlin Heidelberg
2003, August/September 1998.

[22] L. Childs. A concrete introduction to higher algebra. Springer-Verlag Berlin
Heidelberg, Germany, 1995.

[23] D. V. Chudnovsky and G. V. Chudnovsky. Sequences of numbers generated by
addition in formal groups and new primality and factorization tests. Advances
in Applied Math., 7:385–434, 1986.

[24] Joan Daemen and Vincent Rijmen. The design of Rijndael, AES-The Advance
Encryption Standard. Springer-Verlag Berlin Heidelberg, New York, 2002.

[25] A. Dandalis, V.K. Prasanna, and J.D.P Rolim. A Comparitive Study of Per-
formance of AES Candidates using FPGAs. In The Third AES3 Candidate
Conference, New York, April 2000.

[26] Marc Davio, Yvo Desmedt, Jo Goubert, Frank Hoornaert, and Jean Jacques
Quisquater. Efficient hardware and software implementations for the DES. In
Proc. of Crypto’ 83, pages 144–146, August 1984.

134

BIBLIOGRAPHY

[27] Arturo D́ıaz-Pérez, Nazar A. Saqib, and Francisco Rodŕıguez-Henriquez.
Some Guidelines for Implementing Symmetric-Key Cryptosystems on
Reconfigurable-Hardware. In (Accepted for) IV Jornadas de Computación
Reconfigurable y Aplicaciones, Barcelona, Spain, September.

[28] H. Eberle. A high speed DES implementation for network applications. In Ad-
vances in Cryptology-CRYPTO‘92, Lecture Notes in Computer Science, pages
521–539, Berlin, Germany, September 1992. Springer-Verlag, 1992.

[29] H. Eberle and C.P. Thacker. A 1 Gbit/second GaAs DES chip. In Proc. IEEE
1992 Custom Integrated Circuits Conference, pages 19.7/1–4, New York,USA,
1992. Springer-Verlag, 1992.

[30] J. Elbirt, W. Yip, B. Chetwyned, and C. Paar. A FPGA Implementation
and Performance Evaluation of the AES Block Cipher Candidate Algorithm
Finalist. In The Third AES3 Candidate Conference, New York, April 2000.

[31] M. Ernst, M. Jung, and F. Madlener et. al. A Reconfigurable System on Chip
Implementation for Elliptic Curve Cryptography over GF (2n). Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, 2523:381–
399, August 2003.

[32] David C. Feldmeier. A high speed crypt program, April 1989. Technical Memo
TM-ARH-013711.

[33] Kris Gaj and Pawel Chodowiec. Comparison of the Hardware Performance
of the AES Candidates using Reconfigurable Hardware. In The Third AES3
Candidate Conference, New York, April 2000.

[34] Brian Gladman. The AES Algorithm (Rijndael) in C and C++. URL:
http://fp.gladman.plus.com/cryptography technology/rijndael/.

[35] J. Goodman and A.P. Chandrakasan. An Energy-Efficient Reconfigurability
Public-Key Cryptography Processor. IEEE Journal of Solid-State Circuits,
36(11):1808–1820, November 2001.

[36] J. Guajardo and C. Paar. Efficient Algorithms for Elliptic Curve Cryptosys-
tems. In Advances in Cryptology-CRYPTO 97, LNCS 1294, pages 342–356,
Springer-Verlag, Berlin, Germany, 1997.

[37] J. Guajardo and C. Paar. Efficient Algorithms for Elliptic Curve Cryptosys-
tems. In B. S. Kaliski Jr. (editor) Advances in Cryptology —CRYPTO 97
Lecture Notes in Computer Science, 1294:342–356, 1997.

[38] N. Gura, S. Shantz, and H. Eberle et. al. An End-to-End Systems Approach to
Elliptic Curve Cryptography. Cryptographic Hardware and Embedded Systems

135

BIBLIOGRAPHY

- CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August
13-15, 2002, Revised Papers, 2523:349–365, August 2003.

[39] D. Hankerson, J. Lopez-Hernandez, and A. Menezes. Software Implementa-
tion of Elliptic Curve Cryptography Over Binary Fields. Cryptographic Hard-
ware and Embedded Systems - CHES 2000, Second International Workshop,
Worcester, MA, USA, August 17-18, 2000, Proceedings, 1965:1–24, August
2000.

[40] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to Elliptic
Cryptography. Springer-Verlag Newyork, Inc., 2004.

[41] M. A. Hasan, M. Z. Wang, and V. K. Bhargava. A modified Massey-Omura
parallel multiplier for a class of finite fields. IEEE Transactions on Computers,
42(10):1278–1280, November 1993.

[42] T. Ichikawa, T. Kasuya, and M. Matsui. Hardware Evaluation of the Aes
Finalists. In The Third AES3 Candidate Conference, New York, 2000.

[43] ISO/IEC 15946. Information technology - Security Techniques - Cryptographic
techniques based on Elliptic Curve. Committee Draft (CD),, 1999. URL:
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CS
NUMBER=31077.

[44] T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative Inverses
in GF(2m) using normal basis. Information and Computing, 78:171–177, 1988.

[45] J.P. Kaps and C. Paar. Fast DES implementations for FPGAs and its ap-
plication to a Universal key-search machine. In Proc. 5th Annual Workshop
on selected areas in cryptography-Sac’ 98, pages 234–247, Ontario, Canada,
August 1998. Springer-Verlag, 1998.

[46] Philip R. Karn. Karns DES implementation source code.

[47] N. Koblitz. Introduction to elliptic curves and modular forms. Springer-Verlag
Berlin Heidelberg, Germany, 1984.

[48] N. Koblitz. CM-curve with good cryptographic properties. In Advances in
Cryptology, Crypto’91, pages 279–287. Springer-Verlag, 1992.

[49] J. Leonard and W.H. Magione-Smith. A case study of partially evaluated hard-
ware circuits: key specific DES. In Proc. Field-Programmable Logic and Ap-
plications, FPL’ 97, pages 234–247, London, UK, September 1997. Springer-
Verlag, 1997.

[50] J. Lopez and R. Dahab. Fast multiplication on elliptic curves over GF (2m)
without precomputation. Cryptographic Hardware and Embedded Systems,
First International Workshop, CHES’99, Worcester, MA, USA, August 12-
13, 1999, Proceedings, 1717:316–327, August 1999.

136

BIBLIOGRAPHY

[51] A.K. Lutz, J. Treichler, F.K. Gurkaynak, H. Kaeslin, G. Basler, A. Erni, S. Re-
ichmuth, P. Rommens, S. Oetiker, and W. Fitchtner. 2 Gbits/s Hardware
Realization of RIJNDAEL and SERPENT-A Comparative Analysis. In Pro-
ceedings of the CHESS 2002, pages 171–184, LNCS 2523, 2002.

[52] J.V. McCanny Maire McLoone. High Performance FPGA Rijndael Algorithm
Implementation. In Proceedings of the CHESS 2001, pages 68–80, LNCS 2162,
2001.

[53] R. J. McEliece. Finite Fields for Computer Scientists and Engineers. Kluwer
Academic Publishers, Boston, MA, 1987.

[54] R. J. McEliece. Finite Fields for Computer Scientists and Engineers. Kluwer
Academic Publishers, Boston, MA, 1987.

[55] M. McLoone and J.V. McCanny. High-performance FPGA implementation
of DES using a novel method for implementing the key schedule. IEE Proc.:
Circuits, Devices & Systems, 150(5):373–378, October 2003.

[56] A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, Boca Raton, FL, 1997.

[57] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullen, S. A. Vanstone, and
T. Yaghoobian. Applications of Finite Fields. Kluwer Academic Publishers,
Boston, MA, 1993.

[58] A. J. Menezes, Paul C. van Oorschot, and Scott A.Vanstone. Handbook of
Applied Cryptography. CRC Press, Boca Raton, Florida, 1996.

[59] A.J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic
Publishers, 1993.

[60] V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams (edi-
tor) Advances in Cryptology — CRYPTO 85 Proceedings Lecture Notes in
Computer Science, 218:417–426, January 1985.

[61] M. Morii, M. Kasahara, and D. L. Whiting. Efficient bit-serial multiplication
and the discrete-time Wiener-Hopf equation over finite fields. IEEE Transac-
tions on Information Theory, 35(6):1177–1183, 1989.

[62] S. Morioka and A. Satoh. An Optimized S-Box Circuit Architecture for Low
Power AES Design. In Proceesings of the CHESS 2002, pages 172–183, LNCS
2523, 2002.

[63] Motorola. URL: http://www.motorola.com/LMPS/RNSG/federal/products/
secure telecom/CipherTAC 2000.html.

[64] Randall K. Nichols and Panos C. Lekkas. Wireless Security: Models, Threats,
and Solutions. McGraw Hill, 2000.

137

BIBLIOGRAPHY

[65] NIST. Announcing the ADVANCED ENCRYPTION STANDARD
(AES). Federal Information Standards Publication, Nov. 2001. URL:
http://csrc.nist.gov/CryptoToolkit/aes/index.html.

[66] G. Orlando and C. Paar. A High-Performance Reconfigurable Elliptic Curve
Processor for GF (2m). Cryptographic Hardware and Embedded Systems -
CHES 2000, Second International Workshop, Worcester, MA, USA, August
17-18, 2000, Proceedings, 1965:41–56, August 2000.

[67] G. Orlando and C. Paar. A Scalable GF (p) Elliptic Curve Processor Archi-
tecture for Programmable Hardware. Cryptographic Hardware and Embedded
Systems - CHES 2001, Third International Workshop, Paris, France, May
14-16, 2001, Proceedings, 2162:348–363, May 2001.

[68] IEEE P1363. Standard specifications for public-key cryptography. IEEE stan-
dards documents, ”http://grouper.ieee.org/groups/1363/”, draft version 7 edi-
tion, September 1998.

[69] C. Paar. Efficient VLSI Architectures for Bit Parallel Computation in Galois
Fields: PhD thesis: Universitat GH Essen,1994. VDI Verlag.

[70] C. Paar. A new architecture for a parallel finite field multiplier with low
complexity based on composite fields. IEEE Transactions on Computers,
45(7):856–861, July 1996.

[71] C. Patterson. High performance DES encryption in Virtex FPGAs using Jbits.
In Field-programmable custom computing machines, FCCM’ 00, pages 113–
121, Napa Valley, CA, USA, January 2000. IEEE Comput. Soc., CA, USA,
2000.

[72] philip:des. Philip R. Karn. Technical Memo TM-ARH-013711.

[73] ANSI X9.17 (Revised):. National Standards for financial institution key man-
agement (wholesale), American Bankers Association, 1986.

[74] F. Rodŕıguez-Henŕıquez and Ç. K. Koç. On fully parallel Karatsuba Mul-
tipliers for GF (2m). In International Conference on Computer Science and
Technology (CST 2003), Cancun, Mexico, May 2003.

[75] F. Rodŕıguez-Henriquez, N. A. Saqib, and A. D́ıaz-Pérez. 4.2 Gbit/s Single-
Chip FPGA Implementation of AES Algorithm. In ELECTRONICS LET-
TERS, volume 39, pages 1115–1116. Springer-Verlag Berlin Heidelberg 2003,
July 2003.

[76] F. Rodŕıguez-Henriquez, N. A. Saqib, and A. D́ıaz-Pérez. A Fast Parallel
Implementation of Elliptic Curve Point Multiplication over GF(2m). Micro-
processor and Microsystems, 28:329–339, August 2004.

138

BIBLIOGRAPHY

[77] Francisco Rodŕıguez-Henriquez. New Algorithms and Architectures for Arith-
metic in GF(2m) suitable for Elliptic Curve Cryptography, PhD thesis: Oregon
State University, 2000.

[78] K. Rosen. Elementary Number Theory and its Applications. Addison-Wesley,
Reading, MA, 1992.

[79] Atri Rudra, Pardeep K. Dubey, Charanjit S. julta, Vijay Kumar, Jodyuls
R.Rao, and Pankaj Rohatgi. Efficient Rijndael Encryption Implementation
with Composite Field Arithmetic. In Proceedings of the CHESS 2001, pages
171–184, LNCS 2162, 2001.

[80] N. A. Saqib, A. D́ıaz-Pérez, and F. Rodŕıguez-Henriquez. Highly Opti-
mized Single-Chip FPGA Implementations of AES Encryption and Decryption
Cores. In X Workshop Iberchip, pages 117–118, Cartagena-Colombia, March
2004.

[81] Nazar A. Saqib, Francisco Rodŕıguez-Henriquez, and Arturo D́ıaz-Pérez. A
Parallel Architecture for Fast Computation of Elliptic Curve Scalar Multi-
plication over GF(2m). In Proceedings of 18th International Parallel & Dis-
tributed Processing Symposium (RAW 2004), page 144, Santa Fé, New Mexico,
April. IEEE Computer Society Press.

[82] Nazar A. Saqib, Francisco Rodŕıguez-Henriquez, and Arturo D́ıaz-Pérez. AES
Algorithm Implementation-An efficient Approach for Sequential and Pipeline
Architecures. In Fourth Mexican International Conference on Computer Sci-
ence, pages 126–130, Tlaxcala-Mexico, September 2003. IEEE Computer So-
ciety Press.

[83] Nazar A. Saqib, Francisco Rodŕıguez-Henriquez, and Arturo D́ıaz-Pérez. Se-
quential and Pipelined Architecures for AES Implementation. In Proceedings
of the IASTED International Conference on Computer Science and Technol-
ogy, pages 159–163, Cancun, Mexico, May 2003. IASTED/ACTA Press.

[84] Nazar A. Saqib, Francisco Rodŕıguez-Henriquez, and Arturo D́ıaz-Pérez.
Two Approaches for a Single-chip FPGA Implementation of an Encryp-
tor/Decryptor AES Core. In FPL 2003, Lecture Notes in Computer Science
2778, pages 303–312. Springer-Verlag Berlin Heidelberg 2003, 2003.

[85] Nazar A. Saqib, Francisco Rodŕıguez-Henriquez, and Arturo D́ıaz-Pérez. A
Compact and Efficient FPGA Implementation of the DES Algorithm. In
(Accepted for) International Conference on Reconfigurable Computing and
FPGAs (ReConFig04), Colima, Mexico, September 2004. Mexican Society for
Computer Sciences.

[86] Nazar A. Saqib, Francisco Rodŕıguez-Henriquez, and Arturo D́ıaz-Pérez. A
Generic Coprocessor For Elliptic Curve Scalar Multiplication on Hardware.
Nova Science Publishers, New York, 2004. In press.

139

BIBLIOGRAPHY

[87] Nazar A. Saqib, Francisco Rodŕıguez-Henriquez, and Arturo D́ıaz-Pérez. A
Parallel Architecture for Computing Scalar Multiplication on Hessian Elliptic
Curves. In International Symposium on Information Technology (ITCC 2004),
pages 546–552, Las Vegas (NV), USA, April 2004. IEEE Computer Society
Press.

[88] Nazar A. Saqib, Francisco Rodŕıguez-Henriquez, and Arturo D́ıaz-Pérez. A Re-
configurable Processor for High Speed Point Multiplication in Elliptic Curves.
International Journal of Embedded Systems, (In press for 2004), 2004.

[89] A. Satoh and K. Takano. A Scalable Dual-Field Elliptic Curve Cryptographic
Processor. IEEE Transactions on Computers, 52(4):449–460, April 2003.

[90] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code
in C. John Wiley & Sons, New York, 1996.

[91] N. Smart. The Hessian Form of an Elliptic Curve. Cryptographic Hardware
and Embedded Systems - CHES 2001, Third International Workshop, Paris,
France, May 14-16, 2001, Proceedings, 2162:118–125, May 2001.

[92] N. Smart and E. Westwood. Point multiplication on ordinary elliptic curves
over fields of characteristic three. Applicable Algebra in Engineering, Commu-
nication and Computing, 13:485–497, 2003.

[93] Sony. URL: http://www.sony.com/.

[94] William Stallings. CRYPTOGRAPHY AND NETWROK SECURITY: Pprin-
ciples and Practice. Prentice Hall, Upper Saddle River, New Jersey 07458,
1999.

[95] B. Sunar and Ç. K. Koç. Mastrovito multiplier for all trinomials. IEEE
Transactions on Computers, 48(5):522–527, May 1999.

[96] TCC. URL: http://www.tccsecure.com/csd4100.htm.

[97] W. Trappe and L.C. Washington. Introduction to Cryptography with Coding
Theory. Prentice Hall, Inc., Upper Saddle River, NJ 07458, 2002.

[98] Joachim von zur Gathen and Michael Nöcker. Computing special powers
in finite fields: extended abstract. In Proceedings of the 1999 international
symposium on Symbolic and algebraic computation, pages 83–90. ACM Press,
1999.

[99] B. Weeks, M. Bean, T. rozylowicz, and C. Ficke. Hardware Performance of
Round 2 Advanced Encryption Standard algorithms. In The Third AES3
Candidate Conference, New York, April 2000.

[100] S. Wicker. Error control systems for digital communication and storage.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

140

BIBLIOGRAPHY

[101] S. B. Wicker and V. K. Bhargava (editors). Reed-Solomon Codes and Their
Applications. Prentice-Hall, Englewood Cliffs, NJ, 1994.

[102] D.C. Wilcox, L.G. Pierson, P.J. Robertson, E. L. Witzke, and K. Gass. A
DES ASIC suitable for network encryption at 10 gbs and beyond. In CHESS
99, pages 37–48, LNCS 1717, August 1999.

[103] K. Wong, M. Wark, and E. Dawson. A Single-chip FPGA Implementation of
the Data Encryption Standard (DES) Algorithm. In IEEE Globecom Com-
munication Conf., pages 827–832, Sydney, Australia, Nov. 1998.

[104] H. Wu and M. A. Hasan. Low complexity bit-parallel multipliers for a class of
finite fields. IEEE Transactions on Computers, 47(8):883–887, August 1998.

[105] ANSI X9.62. Federal Information Processing Standard (FIPS) 46, National
Bureau Standards, January 1977.

141

GLOSSARY

Area (hardware) Hardware resources occupied by the design. In terms of FPGAs,
hardware area includes number of CLBs, memory blocks, IOBs, etc.

Block cipher A type of symmetric key cipher which operates on groups of bits of
a fixed length, termed blocks.

BlockRAMs Built-in memory modules in FPGAs.

Brute force attack A brute force attack is brute force search for key space: trying
all possible keys to recover plaintext from ciphertext.

Cipher A cipher is an algorithm for performing encryption and decryption.

Ciphertext An encrypted message is called ciphertext.

CLB Configurable logic block (CLB) is a programmable unit in FPGAs. A CLB
can be reconfigured by the designer resulting a functionally new digital circuit.

Confusion Confusion makes the output dependent on the key. Ideally every key
bit influences every output bit.

Decryption The process of retrieving plaintext from ciphertext is called decryp-
tion.

Plaintext Diffusion makes the output dependent on the previous input (plain-
text/ciphertext). Ideally each output bit is influenced by every input bit.

Downstream It defines the transmission from line terminal to network terminal
(from customer to network premise).

Elliptic curve In mathematics, elliptic curves are defined by certain cubic (third
degree) equations. They find applications in cryptography.

Elliptic curve cryptography Elliptic curve cryptography (ECC) is an approach
to public-key cryptography based on the mathematics of elliptic curves.

Elliptic Curve Discrete logarithmic problem Given an elliptic curve E and a
point P on E, the scalar product is then Q = nP. The elliptic curve discrete
logarithm problem (ECDLP) is then to determine the integer n, given points
P and Q, and given that nP = Q.

Elliptic curve scalar multiplication Let P be a point on Elliptic curve then the
scalar product nP can be obtained by adding n copies of the same point P.
The product nP = P + P+.........+ P obtained in this way is referred as elliptic
curve scalar multiplication.

Encryption Encoding the contents of the message in such a way that it hides its
contents from outsiders is called Encryption.

FPGA A field-programmable gate array or FPGA is a gate array that can be
reprogrammed, after it is manufactured.

Iterative Looping It implements only one round and n iterations of the algorithm
are carried out by feeding back previous round results.

Key schedule In cryptography, the algorithm for computing the sub-keys for each
round in a block cipher from the encryption (or decryption) key is called the
key schedule.”

Logic Cell A logic cell is very basic unit in FPGA which includes a 4-input function
generator, carry logic, and a storage element (flip-flop).

Look Up Table A function generator in a logic cell is implemented as a look-up
table which can be programmed to a desired Boolean logic, in addition, each
look up table acts as a memory unit.

Loop unrolling It implements n rounds of the algorithm, thus after an initial
delay, output appears at each clock cycle.

Plaintext In cryptographic terminology, message is called plaintext

Reconfigurable computing Denotes the use of reconfigurable hardware, also called
custom computing.

Reconfigurable hardware Hardware devices in which the functionality of the
logic gates is customizable at run-time. FPGAs is a type of reconfigurable
hardware.

Stream cipher Stream ciphers encrypt each bit of the plaintext individually before
moving on to the next.

Throughput It is a measure for timing performance of a design and is calculated
as: Throughput= (Allowed Frequency x Number of bits)/ Number of rounds
(bits/s).

Upstream It defines the transmission from network terminal to line terminal (from
network to customer premise).

Index

Addition, 96
Addition chain, 106
Addition formulae, 109
Addition law, 27
Addition of polynomials, 25
AddRoundKey, 71
AES algorithm, 67
Affine coordinates, 111
Affine transformation, 69
Affine-coordinate representation, 31
Architectural description, 15
Area, 17
Asymmetric algorithms, 3
Authentication , 2

Binary exponentiation, 105
Binary Karatsuba-Ofman multiplier, 98
Bit-wise operations, 46
Block cipher, 3, 42
Block cipher decryption, 43
Block cipher encryption, 43
Block ciphers, 41
Block length, 67
BlockRAMs, 117
BlockRams, 10
blocks, 42
Blowfish, 44
Brute force attacks, 4
ByteSubstitution, 68

Ciphertext, 2
Circuit analysis, 57
CLB, 9, 15
CLB slices , 121
Composite field, 73

Confidentiality, 1
Configuration Logic Blocks, 8
Confusion, 68
Coordinate conversion, 114
Critical paths, 122
Cryptography, 1

Data Encryption Standard, 50, 65
Data integrity, 2
DES implementation, 55, 59
Design analysis, 58
Design Entry, 56
Design Statistics, 15
Design Steps, 55
Design strategies, 13
Design strategy, 57
Design tools, 15
Diffie-Hellman, 36
Diffusion, 68
Digital Signature Scheme, 38
Discrete Logarithm Problem, 32
Division, 96
Doubling & Add algorithm, 110
Doubling formulae, 109
Doubling law, 28
Downstream, 6

Elliptic Curve Cryptography, 35
Elliptic curve discrete logarithm prob-

lem, 95
Elliptic curve group, 27
Elliptic Curve groups, 32
Elliptic curve operations, 27
Elliptic Curve Scalar Multiplication,

30, 109

3

Elliptic Curves, 26
Elliptic curves over F2m , 31
Encryption, 2
Euclidean algorithm, 105
Expansion permutation, 52
Extended Euclidean algorithm, 68

Fermat ’s Little Theorem, 105
Field programmable gate arrays, 8
Fiestel ciphers, 43
Final Permutation, 54
Finite field, 95
Finite Field Arithmetic, 96
Finite Fields, 23
Fixed rotation, 48
FPGA, 8
FPGA place and route, 56
FPGA synthesis, 56
FPGAs, 116
Function generators, 16
Functional verification, 56

Gate delay, 100
Generic architecture, 116
Group law, 109

Hamming weight, 106
Hardware approach, 59
Hash function, 38
Hessian form, 95, 109, 118
Hessian point addition, 118
Hessian point doubling, 118

information security, 1
Initial Permutation, 51
Inner-round pipelining, 14
inverse affine transformation, 69
inverse MixColumns, 70
Inverse S-Box, 69
Inverse ShiftRow, 70
Inversion, 105
Irreducible polynomial, 69, 97
Iterative looping, 13, 79
ITMIA algorithm, 106

Karatsuba-Ofman Multiplier, 98
Key, 2
Key Exchange, 36
Key length, 67
Key pair generation, 36
Key Schedule, 71
Key Scheduling, 68
Key size, 44
Key storage, 50

Logic cell, 16
Logic mode, 9
Look-up table, 68
Look-up tables, 16
loop unrolling, 14

Memory mode, 9
Methodology, 13
MixColumns, 70
Mixed operations, 44
Montgomery Group Law, 112
Montgomery Point Multiplication, 111,

113, 119
Montgomery point multiplication, 109
Multiplication, 96
Multiplication of polynomials, 25
Multiplicative inverse, 68

Non-repudiation, 2

Operations on Polynomials, 25
Order of an Elliptic Curve, 32

P-Box Permutation, 53
Parallelism at Algorithm level, 13
Parallelism at design level, 13
Permutation, 47
Physically secure, 46
Pipeline design, 79
Plaintext, 2
Point addition, 31
Point Doubling, 32
Polynomial addition, 96
Polynomial multiplication, 97
Polynomial product, 97

Polynomial squaring, 103
Polynomials and Bytes, 25
Polynomials over a Field, 24
Primitives, 4
Private keys, 3
Programming FPGA, 57
Projective coordinates, 111
Public key, 3
Public Key Cryptography, 3

Reconfigurable computing, 8
Reconfigurable devices, 8
Reconfigurable logic, 11
Reduction, 103, 104
Reduction operation, 97
Research Goals, 11
Rijndael algorithm, 66
Round constant, 72
Round key, 68
Round transformation, 67
Rounds, 67

S-Box, 68
S-Box Substitution, 53
Scalar multiplication , 95
Secure communication, 1
Shift operation, 47
ShiftRows, 70
Signature verification, 39
Software implementations, 8
Space complexity, 97
Speedup factor, 121
Squaring, 103
State matrix, 67
Stream cipher, 3
Sub-pipelining, 79
Substitution, 46
Subtraction, 96
Symmetric algorithms, 2
Symmetric key cryptography, 2

Throughput, 17
Throughput/Area , 17
Time complexity, 97

Trinomials, 105

upstream, 6

Variable rotation, 48
VLSI, 116
VLSI implementations, 8
VLSI solutions, 7

Weierstrass, 95, 111

Xilinx, 119

