CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITECNICO NACIONAL
DEPARTAMENTO DE COMPUTACION

The Analysis and Implementation of a Practical
Crypto-System in the Limited Access Model

Tesis que presenta

René Ernesto Henriquez Garcia

Para obtener el grado de

Maestro en Ciencias

en Computacién

Departamento de Computacion

Director de la Tesis: Dr. Debrup Chakraborty

México, D. F. Octubre 2010

ii

CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITECNICO NACIONAL
COMPUTER SCIENCE DEPARTMENT

The Analysis and Implementation of a Practical
Crypto-System in the Limited Access Model

René Ernesto Henriquez Garcia

In partial fulfillment of the requirements for the degree of

Master of

Computer Science

Computer Science Department

Thesis Advisor: Dr. Debrup Chakraborty

México, D. F. October 2010

iv

Esta tesis se la dedico Al Ser Supremo que siempre ha guiado mis pasos;
a mi bella madre Sonia Garcia, quien es la mdxima inspiracion y adoracion en mi vida y a
quien debo cada bit de mi existencia;
a mi ejemplar padre Carlos Henriquez, por ser mi gran referente inculcdndome los mejores
valores y a quien admiro profundamente;
y a mi pais El Salvador a quien represento y llevo con mucho orgullo en mi corazon.

vi

Agradecimientos

Deseo comenzar agradeciendo a mis hermanos Carlos y Eduardo por su inagotable
apoyo y carifio, con los que fue un honor haber crecido y que siempre cuidaron de mi.
A mi sobrinita Maria José por su ternura e inocencia que siempre alegré mi corazén.

A mi gran familia presente en varios paises y a la que me siento orgulloso de pertenecer,
quienes siempre han creido en mi y me han animado a luchar para concretizar cada
uno de mis suefios.

A mi prima Lil Maria que me ha regalado lo mejor de ella en cada momento, apoyan-
dome sin descanso y quien es indiscutiblemente gran responsable en la consecuciéon
de mis éxitos hasta el momento. A mi prima Ana Marfa por su tiempo y sus palabras
de aliento, recorddndome que con dedicacién y esmero es posible triunfar en la vida.

A mi primo Francisco Rodriguez-Henriquez, quien siempre fue un icono para lograr
mi superacion académico-cientifica que me he trazado en la vida, y a su apreciable
esposa Nareli Cruz por su afecto y carifio incondicionales.

Agradezco con especial carifio a Zayrita Perla, quien me motivé a continuar en mo-
mentos de debilidad y de quien aprendi tanto para mejorar como ser humano a través
de sus bellas palabras.

A mis amigos en México, quienes en forma desinteresada me ofrecieron su amistad y
con los cuales comparti momentos gratos e inolvidables, con especial mencién a Jorge
Gonzélez y Francisco Quintanar.

A mis amigos de El Salvador, quienes ciegamente me impulsaron a conquistar mis
objetivos y a los que adeudo la fortaleza que me inspir6 para alcanzar mis ideales.

A mi asesor el Dr. Debrup Chakraborty quien pacientemente me ha transmitido la ca-
lidad de sus conocimientos, influencidndome siempre a dar lo mejor de mi y brindan-
dome su valiosa amistad.

A mis revisores de tesis y profesores durante mi maestria, por su ejemplar ensefianza.

A la Organizacion de Estados Americanos (OEA), con especial agradecimiento por
haberme regalado la invaluable oportunidad de cumplir mi gran deseo de superarme
estudiando en el extranjero.

A México, por haberse convertido en mi casa durante este tiempo de estudio abrigan-
dome material, cultural y espiritualmente.

Al CINVESTAV modelo y paradigma de ensefianza superior, por haberse convertido
en mi alma mater, guia y conductora de mi formacion cientifica.

A Sofia Reza por su nobleza e inigualable espiritu de servicio.

vii

viil

Contents

Figures Index
Tables Index
Resumen
Abstract

1 Introduction

1.1 Modern Cryptography

1.2 Scope and Contributions of the Thesis

Background and Previous Work

21 Typesofsecurity
2.1.1 Perfect secrecy and the one-time pad scheme

2.2 Bounded StorageModel oL

2.3 Limited AccessModel o L.

The Limited Access Model Description

3.1 The description of thescheme
3.1.1 The Page Server Node Network
3.1.2 The page reconciliation protocol

3.2 The description of the Polyand MAC

iX

10
11
15
17

CONTENTS

3.3 Outline of a secure communication protocol
3.3.1 The Environment Architecture and Required Assumptions

332 TheProtocol

The Security of the Scheme

4.1 Choice of Parameters Lo oo

4.2 DPossible vulnerabilities in thesystem

43 How the system defends against the vulnerabilities
43.1 The initial key-exchange protocol
432 Totaldecryption
43.3 Interceptingtheservers,

434 Security Concerning Polyand MAC

Our Random Number Generator

5.1 Background and types of generators

5.2 Classification of true random number generators
521 Source of randomness in physical TRNGs
5.2.2 Typical architecture of a physical TRNG

53 Ourphysical TRNGdesign
53.1 Description oo

53.2 Testing the randomness of the generator

The Implementation of the Scheme

6.1 Brief description of thesystem

6.2 ThePSNsystem

6.3 Theuserclientsystem
6.3.1 The functionality of the application
6.3.2 Structure of the Software Implementation

6.4 Testingthesystem.

26
27

29
30
31
32
32
33
33
37

CONTENTS xi
7 Conclusions 67
71 Conclusions 67
7.2 Futurework 68
A The PSN Implementation 71
Bibliography 75

xii CONTENTS

List of Figures

2.1
2.2

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3
44

51
52
53

The basic setting for a symmetric encryption scheme. 10
The one-time pad encryptionscheme 13
The limited access model with protocols 20
Various parts of the key: The key is a binary string containing four dis-

tinct parts named the index key («), the reconciliation keys (&1, ..., &,),
the Poly key (t) and the MAC keys ((1,(2,0).. 20

The algorithms needed for the internal functionality of each PSN: Get-
TrueRandomness returns a random string of ¢ bytes on each invocation. 22

The algorithm needed by the users to download pages from the PSNs:
PSN;,.SendPage(j;) represents the running of SendPage(j;) at PSN;, . .. 22

Page Reconciliation Algorithms 24

Graph for the success probabilities Pr[Succl] of an adversary for 30 <
v < 64. The y-axis is represented is logarithmic scale i.e. —45 means 10-*. 35

Graph for the success probabilities Pr[Succ2] of an adversary when N =

20 n=64andm =[] 36
The same graph of Fig. 4.2 using a logarithmicscale 37
Graph for the success probabilities Pr[Succ2] of an adversary when N =

2!, n =96 and m = [¥] using a logarithmicscale 38
TRNG generic architecture 45
Schematic circuitof the TRNG 47
The Von Neumann corrector 48

xiv LIST OF FIGURES
6.1 Architecture of the prototype oo oL 53
6.2 The time line during a page requesttoany PSN. 55
6.3 The main window of the client application 57
6.4 The mail composer window of the client application 58
6.5 The received message viewer window of the client application 59
6.6 The contacts management window of the client application 60

List of Tables

41 Hypergeometric distribution probabilities

5.1 NIST test suite results

XV

XVi

Resumen

a confidencialidad de la informacién es un requisito crucial en muchas aplicaciones,
L donde los datos viajan a través de medios inseguros como el Internet. Hoy en dia
muchos esquemas de cifrado utilizados en estas aplicaciones, basan su seguridad en
suposiciones no demostrables. Dichas suposiciones se refieren a la dificultad computa-
cional de ciertos problemas matemaéticos, para los cuales no se conocen algoritmos efi-
cientes que los resuelvan; por tanto, son utilizadas para garantizar la seguridad de los
esquemas de cifrado. Debido a que el nivel de conocimiento actual no nos permite
aseverar la validez de tales suposiciones, no hay una razén sélida para creer que estos
esquemas permanecerdn seguros en el futuro. Ademads, la seguridad brindada por los
esquemas actuales es llamada computacional, pues s6lo se consideran adversarios con
poder de computo "razonable" que pueden vulnerar su seguridad. Por tanto, la seguri-
dad computacional no considera adversarios con capacidad de cémputo ilimitado.

La alternativa a la seguridad computacional es la denominada segquridad tedrica de la
informacion. En sistemas de este tipo, la seguridad es garantizada sin suposiciones
sobre la dificultad computacional de cualquier problema matemaético o la capacidad
de computo del adversario. Por tanto, son conocidos como sistemas perfectamente
seguros. A pesar que estos esquemas proveen el nivel més alto de seguridad, no son
précticos. Esto se debe a que el tamafio de la llave en bits debe ser igual al tamafio en
bits del mensaje, y ademads se debe utilizar una nueva llave por cada mensaje.

El modelo de acceso limitado propuesto por Michael Rabin, describe un cripto-sistema
demostrablemente sequro sin suposicién alguna en la capacidad de computo del adver-
sario. El objetivo del modelo es superar las limitantes de los esquemas perfectamente
seguros. El modelo supone la existencia de una fuente de aleatoriedad distribuida la
cual es una red de miles de computadoras dispersas alrededor del mundo, a la que el
adversario posee un accesso limitado. Cada computadora genera, almacena y actualiza
péginas aleatorias, las cuales son llamadas Page Server Nodes (PSNs). Asi, dos usuarios
que desean comunicarse, hacen uso de una llave inicial k£ y seleccionan aleatoriamente
los mismos PSNs descargando el mismo conjunto de paginas de los servidores. Dado
que algunas pdaginas descargadas pueden ser alteradas, los usuarios utilizan un meca-
nismo de reconciliacién para determinar cuales paginas mantienen en comun. Poste-
riormente, esta aleatoriedad es empleada para comunicarse mediante one-time pads.

En esta tesis, describimos de manera precisa una implementacién practica de un es-
quema de cifrado en el modelo de acceso limitado. En ella mostramos modificaciones
sobre una implementacién previa de tal esquema, las cuales proveen mejoras en com-
ponentes del modelo como el protocolo de reconciliacién de paginas y la construccién
de la llave inicial k. Ademds, se sugieren los valores para varios pardmetros a fin de
lograr una implementacion practica y se discute la seguridad del esquema. Asimismo,
presentamos el disefio de un generador de ntimeros aleatorios requerido por el modelo
y finalmente presentamos los detalles de nuestra implementacién.

Abstract

ecrecy of data is an important requirement in many application areas where data

travels through insecure channels such as the Internet. Now-a-days, most of the
existing encryption schemes used for practical applications rely on un-proven assump-
tions. These assumptions refer to the computational hardness of some mathematical
problems for which there is no knowledge of efficient algorithms to solve them. These
assumptions are used to derive security. But given our current state of knowledge no-
body is able to prove the validity of these assumptions. Thus, there is no firm reason to
believe that these encryption schemes which are based on un-proven assumptions will
remain secure forever. Moreover, the security that modern encryption schemes guar-
antees is computational in nature, i.e., they only consider adversaries with "reasonable"
computational power for breaking the security of these crypto-systems. Thus, compu-
tational security does not rule out the success of an adversary in breaking a system if
(s)he is given unlimited computational ability.

The alternative to computational security is what is known as information theoretic se-
curity. In an information theoretically secure system, security is guaranteed without
any assumption regarding computational hardness of any mathematical problem or
the computational power of an adversary. Thus, they are rightly called perfectly secret
systems. Even though these schemes provide the highest level of security, they are not
practical. This is because the number of necessary key bits is the same as the number
of bits in the message, and also one needs to use a different key for each message.

The limited access model proposed by Michael Rabin, describes a crypto-system which
is provably unbreakable without any assumption on the computational power of an ad-
versary. The aim of this model is to overcome the inherent drawbacks encountered in
perfectly-secret schemes. But this model makes assumption on the inaccessibility of a
distributed source of randomness which is a network of tens of thousands of comput-
ers distributed across the globe. Each of these computers generates, stores and updates
random pages acting as Page Server Nodes (PSNs). Two communicating users who ini-
tially shares a key £ uses this key to randomly select the same PSNs downloading the
same set of pages from them. Since some pages may be different between users, they
also employ a reconciliation mechanism for assuring the pages they have in common.
Then this randomness is used to communicate among themselves using one-time pads.

In this thesis we precisely describe an encryption scheme in the limited access model
for a practical prototypical implementation. We describe some modifications over a
previous attempt, and provide improvements in some components of the model like
the page reconciliation protocol and also in the construction of the initial key k. More-
over, we suggest various choices of parameters for a practical implementation and
also argue about the security of the scheme. Furthermore, we describe the design of a
physical random number generator required for the model and finally provide some
implementational details of a prototype which we implemented.

Chapter 1

Introduction

Simplicity is the ultimate sophistication.

Leonardo da Vinci

We live in a connected world. An important basis of the prosperity that we have
achieved in the modern days is the ease of communication that current technology
offers us. The technology of communication has made the world smaller. Nowadays,
it is perfectly normal that an employee in Tokyo maintains regular communication and
receives instructions from his boss working at Montreal. The cost of the communica-
tion technology has been also reduced a lot over the years and thus, it has become
accessible to the common man. A day without internet, emails, mobile phone has be-
come inconceivable to the modern man.

The ease of communication has brought certain new concerns. An important concern
being the privacy of the data that gets transmitted through the various communication
channels which are mostly public. The connected world has become more dangerous
as the users are vulnerable to new kinds of dangers. Now we are concerned to keep
confidential the messages that we send or receive and even our identity. An adversary
can do much harm if (s)he can intercept the messages that go through the communi-
cation channels every day. As an average user also transmits and receives sensitive
information like information about his bank accounts etc, thus, privacy in communi-
cation which was a concern to the military or the administrators fifty years ago, is a
house-hold requirement of today.

There have been tremendous improvements in development of means for secure com-
munication. Cryptography which is the age-old science of secret communication has
gained a considerable importance in the modern society, and this science has flour-
ished in the past few decades with the discovery of elegant techniques, which offer
solutions to the problem of privacy in communication. In cryptography, the type of
security offered by any system can be broadly classified into two categories namely,
information theoretic and computational. Information theoretic security is the highest
form of security achievable as it does not depend on any assumption regarding the
computational power of an adversary. But achieving such kind of security has many

5

6 1.1. MODERN CRYPTOGRAPHY

bottlenecks and thus it is difficult to have a practically usable system which provides
information theoretic security. This thesis develops over some existing techniques to
build a practical system which can provide information theoretic security. In the rest
of the chapter we discuss some basic issues of cryptography and discuss in detail the
scope and contributions of this thesis.

1.1 Modern Cryptography

Historically, the main goal of cryptography is to provide privacy, i.e., two entities could
communicate with each other over an insecure channel, in such a way that an intruder
would not be able to learn anything meaningful about the content of the messages sent
between the entities. However privacy it is not the only service that cryptography can
offer. There exist cryptographic schemes which can offer other security services like
integrity, authentication, non-repudiation etc. Cryptography is an age-old science, it
has been in use for hundreds of years to enable secret communication between enti-
ties. Modern cryptography is mathematical in nature, i.e., it involves strict definitions
and assumptions and relies upon a broad spectrum of mathematical tools to develop
systems to provide security services. Security provided by a cryptographic system
largely depends on the assumptions that it makes on the adversary. An adversary is
the entity who is supposed to break the system by intercepting the ciphered informa-
tion. An adversary can perform computations, thus, formally it can be viewed as a
computational procedure or an algorithm. The most natural parameter involved with
an adversary is its running time, which translates to its computational power, i.e., an
adversary with less running time is considered to be more powerful. The security
provided by crypto-systems can be classified according to the assumption on the ad-
versary, a crypto-system which assumes nothing about the computatuional power of
the adversary, i.e., is secure even if the adversary is allowed to have un-limited compu-
tational power is called information theoretically secure. On the other hand, most prac-
tical crypto-systems makes some assumption regarding the computational power of
the adversary and are only secure if it is assumed that the adversary does not have an
un-limited running time (for example a cryptosystem may provide the guarantee that
it cannot be broken by an adversary in more than say one million years), such cryp-
tosystems are said to provide computational security. Computational security is thus
weaker than information theoretic security.

The security of computationally secure systems also depends on some hardness as-
sumptions. A hardness assumption is an assumption involving the computational
hardness of certain mathematical problems. It is believed that there are no efficient
computational procedure to factorize large integers or to find the discrete logarithm
of elements in certain groups. Crypto-systems are developed based on these assump-
tions. It is important to note that these are assumptions, we do not yet know of any

CHAPTER 1. INTRODUCTION 7

efficient procedure to factorize large integers but there do exist a possibility that in the
near future we would have such a method. Assuming something about the running
time of an adversary also amounts to some kind of assumption regarding the technol-
ogy of computation, as enhanced computation technologies can reduce running time of
adversaries drastically. Thus, computational security stands on the shoulders of shaky
assumptions regarding human ignorance (of efficient computational procedures for
certain problems) and limitations of the computational technologies. In contrast, infor-
mation theoretic security does not depend on any kind of assumptions.

So, it seems clear from the above discussion, that information theoretic security is de-
sirable. But, there are certain practical limitations which prevents practical deployment
of information-theoretic schemes. The basic limitation being the size of the secret key
and issues regarding reuse of a particular key (these issues are discussed in detail in
Chapter 2). For practical deployment we have to be satisfied with computational secu-
rity and this kind of security works well and seems to be secure for a short period of
time.

There have been attempts to develop systems whose security does not depend on as-
sumptions or depends on assumptions very different from the computational power
of the adversary. There have been two notable attempts towards this direction: the
bounded storage model and the limited access model. The bounded storage model
makes an assumption on the storage capacity of an adversary but allows it to have
unlimited computational power. The limited access model assumes that an adversary
would be unable to gain total access to a huge distributed source of randomness. With
these assumptions the mentioned models achieve information theoretic security.

1.2 Scope and Contributions of the Thesis

In this thesis we develop a cryptosystem secure in the limited access model. The Lim-
ited Access Model introduced by Michael O. Rabin in [1] is an interesting approach that
proposes the possibility of a practical provably unbreakable crypto-system. It is based on
the functionality of a voluntary network of computers, each storing and updating ran-
dom pages, called as Page Server Nodes (PSNs). The PSNs provide randomness to
users who in turn use this randomness to communicate among themselves using the
one-time pad encryption (which is known to be information-theoretically secure). The
security of the system depends on the assumption that an adversary can monitor only a
part of the total number of PSNs which are involved in providing the randomness nec-
essary for the functioning of the crypto-system. The theoretical aspects of the limited
access model were proposed in [1]. A practical implementation of the system was first
attempted in [2]. There were several issues not addressed in [2], one of them being the
generation of the randomness. We propose a better method to generate randomness.
Also, we propose some modifications of the protocols involved to improve efficiency

8 1.2. SCOPE AND CONTRIBUTIONS OF THE THESIS

and reduce key sizes. Next we describe briefly the contents of the rest of the thesis.

In Chapter 2 we discuss the background of our work. Specifically, we define infor-
mation theoretically secure systems, and provide the characterization of such systems,
from those characterizations we conclude why such a system would not be practical.
Then, we discuss some previous works in the bounded storage model and the lim-
ited access model. As discussed before, those models do not make any assumptions
regarding the computational power of the adversary but they make certain other as-
sumptions.

In Chapter 3 we discuss in details the limited access model. All the protocols involved
in the model are explained keeping in mind the ease of implementation. The model
described in this chapter deviates a bit from the original description in [1]. In partic-
ular, we do some modification in the page reconciliation protocol which helps us to
achieve drastic reduction in key sizes. Also we add a message authentication code
which enhances security in a certain sense.

In Chapter 4 we discuss the security properties of the proposed scheme. We were
unable to provide a strict security definition and the corresponding security proof, but
we carefully point out the various possible vulnerabilities of the proposed system and
discuss how the system is protected against those vulnerabilities. These arguments
about security are also our contribution as to our knowledge no such study has so far
appeared in the literature.

In Chapter 5 we discuss about the design of a physical random number generator. As
stated earlier, in the limited access model the randomness required for encryption is
provided by a network of computers each of which is called a page server node (PSN).
Thus, there must be a mechanism to generate high quality random numbers within
each PSNs. We propose to use a physical random number generator. This is also a
modification over [2], as the work in [2] does not consider physical random number
generation. In Chapter 5 we discuss some general issues of random number generation
and then describe our design and some experimental results to judge the quality of
randomness generated by our generator.

In Chapter 6 we describe in detail a prototypical implementation of the whole scheme
and in Chapter 7 we conclude the thesis and provide some directions for future work.

Chapter 2

Background and Previous Work

Never think you've seen the last of anything.

Eudora Welty

uring the last two decades, research toward designing a provably unbreakable scheme

has received an increasing attention from the cryptographic community. Never-
theless, the only way to assure perfect secrecy is by using an information theoretically
secure scheme. In 1949 Claude E. Shannon demonstrated that the so-called one-time pad
encryption scheme is information theoretically secure [3].

As a result, the one-time pad encryption scheme assures confidentiality even against
adversaries without any limitation in their computational capabilities. But this alterna-
tive imposes a cruel penalty in the overhead of the scheme, because of the unbounded
size of the keys needed to encrypt/decrypt messages. Thus, historically the one-time
pad has been considered impractical for all general purposes.

In this regard, there has been a lot of research toward the design of models in which
it could be possible to overcome the natural drawbacks of an information theoretically
secure scheme. All these attempts try to avoid computational assumptions of an adver-
sary, defining the security in terms of some other types of assumptions. Some of these
works can be seenin [4, 5, 6,7, 8,9, 10].

In this chapter we discuss about the types of security and their characteristics. Then we
explicitly define what perfect secrecy means and the one-time pad encryption scheme
which is fundamental for our research. We also describe in detail some of the previous
models proposed to achieve provably unbreakable crypto-systems, based on assump-
tions other than the computational ability of an adversary.

9

10 2.1. TYPES OF SECURITY

GEN
Alice entlz(rg)p,)tion deckrgetion
BT >

Y _ Y
m i ciphertext) m
— Encryption = Decryptio——

ENCi(m) DECK(c)
Eve

Figure 2.1: The basic setting for a symmetric encryption scheme.
2.1 Types of security

One important contribution (out of many) of modern cryptography is the realization of
formal definitions of security which are fundamental for the design, usage and study
of any cryptographic construction [11]. A definition of security essentially provides a
mathematical formulation of a real-world problem, so special care must be taken for
considering every part of the model in order to deliver the "real" security according to
the given definition.

The power of the adversary is an essential part of the model that needs to be consid-
ered. This is closely related to the type of security offered by an encryption scheme.
The security guarantees that modern crypto-systems provide are computational in na-
ture, which means that an adversary with "reasonable" computational power would be
able to break a system with only a very low probability. Thus, computational security
makes assumptions on the computational power of the adversary and it does not rule
out the success of an adversary in breaking a system given unlimited computational
ability. Moreover, most cryptographic procedures depend on other mathematical as-
sumptions. Like in symmetric key cryptography one assumes the existence of pseudo-
random generators and pseudorandom functions. Stream ciphers and block-ciphers
are the most used symmetric cryptographic primitives and they are used to build other
procedures providing different functionalities like encryption schemes, authentication
schemes etc. The security of these primitives (like block-ciphers and stream ciphers)
cannot be mathematically proved, so one assumes that stream ciphers are pseudoran-
dom generators or block-ciphers are pseudorandom functions to derive security of
most symmetric encryption schemes. In asymmetric (public) key cryptography one
assumes the computational hardness of certain problems like integer factoring or the
computation of the discrete logarithm in certain groups. Though it is "socially be-

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 11

lieved" that these assumptions are true but still one cannot rule out the possibility that
we are building systems based on wrong assumptions.

On the other hand, "information theoretic security" stands in stark contrast to "compu-
tational security”. An information theoretically secure system neither depends on any
un-proven assumption regarding computational hardness of any mathematical prob-
lem, nor makes any assumption regarding the computational power of an adversary,
thus they are rightly called perfectly secret systems. Information theoretically secure
systems were a starting point of the rigorous study of cryptography which was initi-
ated by Shannon [3]. An example of such a secure system is the famous one-time-pad
encryption scheme which was proposed by Gilbert Vernam and proved to be infor-
mation theoretically secure by Shannon [3]'. Even though information theoretically
secure schemes provide the highest level of security, they are not practical. As for the
one-time pad, the number of necessary key bits is the same as the number of bits in the
message, also one needs to use a different key for each message. These requirements
make the scheme practically infeasible.

2.1.1 Perfect secrecy and the one-time pad scheme

The basic and the most used cryptographic primitive is an encryption scheme. A sym-
metric encryption scheme is pictorially depicted in Fig. 2.1. We define an encryption
scheme as a tuple consisting of three algorithms: = = (GEN, ENC, DEC). These algo-
rithms are described as follows:

e GEN is the key-generation algorithm that outputs a key k chosen according to
some distribution determined by the algorithm. It is a probabilistic algorithm.

e ENC is the encryption algorithm, that takes as input a key k and a plaintext mes-
sage m and outputs a ciphertext c. EN'C,(m) denotes the encryption of the plain-
text m using the key k.

e DEC is the decryption algorithm, that takes as input a key k and a ciphertext ¢
and outputs a plaintext m. DECy(c) denotes the decryption of a ciphertext ¢ using
the key k.

The basic correctness requirement of any encryption scheme is that for every key &
output by GEN and every plaintext message m € M, it holds that

!t is said that Vladimir Kotelnikov also independently proved the perfect secrecy of one time pad
(12]

12 2.1. TYPES OF SECURITY

This means that decrypting a ciphertext (using the appropriate key) yields the original
message that was encrypted.

The key space, denoted by K is defined as the set of all possible keys output by the
key-generation algorithm. Without loss of generality, we assume that GEN chooses a
key uniformly at random from the key space. The plaintext or message space, is denoted
by M, which is the set of all legal messages supported by the encryption algorithm.
Finally, the sets K and M together with the encryption algorithm define the set of all
possible ciphertexts denoted by C.

Now, we define the security of a crypto-system. To define security we assume certain
probability distributions over the finite sets ', M and C. The distribution over K is
defined by the key generation algorithm GEN. So, Pr[K = k] denotes the probability
that the key output by GEN is equal to k. Also, for m € M, let Pr[M = m] denote the
probability that the message is equal to m. So in this way, we are assuming a proba-
bility distribution over the message space M. Such a probability distribution over M
is natural, as different messages may have different probabilities of being sent. The
key and the message are chosen independently (the key is chosen and fixed before the
message is known), and Pr[C' = ¢] denotes the probability that the ciphertext is ¢. Once
we fix the encryption algorithm ENC, the distribution over C is fully determined by
the distributions over K and M.

Now, we proceed to define the notion of perfect secrecy. We consider an adversary
who knows the probability distribution over M. The adversary eavesdrops some ci-
phertexts sent by a honest party to another. Then, ideally this ciphertext should not
make any difference in the knowledge of the adversary. In other words, the a posteri-
ori probability that some message m was sent should not be different from the a priori
probability that m would be sent. This should hold for any m € M and even if the
adversary has unbounded computational power. This is stated formally as:

DEFINITION 1. An encryption scheme m = (GEN,ENC, DEC) over a message space M is
perfectly secret if for every probability distribution over M, every message m € M and every
ciphertext ¢ € C for which Pr[C' = ¢] > 0:

Pr[M = m|C = ¢] = Pr[M = m)|

In short, the definition also means that a scheme is perfectly secret if the distributions
over the messages and ciphertexts are independent. The requirement of Pr[C' = ¢] > 0 is
needed to prevent conditioning on a zero-probability event.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 13

randomly

generate
m K C
1 0 1
0 1 1
0 0 0
1 @ 1 = 0]
0 1 1
1 0 1

Figure 2.2: The one-time pad encryption scheme

The crypto-system called One-Time Pad (Vernam’s cipher, created at 1917), is an exam-
ple of a perfectly-secret scheme as Claude Shannon showed in [3]. The one-time pad
encryption scheme is defined as follows:

e The message space M, key space K, and ciphertext space C are all equal to {0, 1}*
where ¢ > 0 is an integer.

e The key-generation algorithm GEN works by randomly choosing a string from
K = {0, 1}* according to the uniform distribution. Thus each key has a probability
of 27 in getting selected.

e The encryption algorithm ENC works like this: given a key k € {0,1}¢ and a
message m € {0,1}, output c = k & m.

e The decryption algorithm DEC works like this: given a key £ € {0,1} and a
ciphertext ¢ € {0,1}¢, output m = k & c.

o Note that for every invocation of the encryption algorithm a new key needs to be
used.

The encryption scheme is pictorially depicted in Figure 2.2. The one-time pad is per-
fectly secret because given a ciphertext c, there is no way an adversary can know which
plaintext m it originated from. Notice that for every possible m there exists a key & such
that ¢ = ENCi(m). Moreover, each key is chosen uniformly at random and no key is

14 2.1. TYPES OF SECURITY

more likely than any other. Finally, it is possible to say that c reveals nothing whatso-
ever about which plaintext m was encrypted, since every plaintext is equally likely to
have been encrypted. This can be formally written as:

Theorem 1 (Shanon). The one-time pad encryption scheme is perfectly-secret.

Proof Fix some distribution over M and fix an arbitrary m € M and ¢ € C. The key
observation is that for the one-time pad,

PrlC=cM=m|=PrM @K =c]M=m|=Prlm® K =c|=Pr[K=mdc =5
Since this holds for all distributions and all m, we have that for every probability dis-
tribution over M, every m,, m; € M and every c € C,

Pr[C = ¢|M = mg] = 5; = Pr[C = ¢|M = my]
O

Perfect secrecy in the aforementioned encryption scheme is attainable but unfortu-
nately has a number of drawbacks. The most prominent is that the number of key
bits necessary for one-time pad encryption is same as the number of plaintext bits. But
the problem of the unbounded key length is not only specific to the one-time pad; it
is inherent to any scheme achieving perfect secrecy. In the following theorem we now
prove that any perfectly-secret encryption scheme must have a key space that is at least
as large as the message space.

Theorem 2. Let (GEN,ENC, DEC) be a perfectly-secret encryption scheme over a message
space M, and let K be the key space as determined by GEN'. Then |K| > |M|.

Proof We show that if |[[C| < |M] then the scheme is not perfectly secret. Assume
|| < |M]|. Consider the uniform distribution over M and let ¢ € C be a ciphertext that
occurs with non-zero probability. Let M(c) be the set of all possible messages that can
be decrypted to c for a given key k; that is

M(c) = {m|m = DEC,(c) for some k € K}.

Clearly |[M(c)| < |K] since for each message m € M(c) we can identify at least one key
k € K for which 1 = DEC i.(¢). (Recall that we assume DEC is deterministic.) Under the
assumption that |KC| < | M|, this means that there is some m’ € M such that m’ ¢ M(c).
But then

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 15

Pr[M =m/|C = ¢| =0 # Pr[M =m/],

and so the scheme is not perfectly secret.

2.2 Bounded Storage Model

The bounded storage model was introduced by U. Maurer in his seminal work [4] in
1992. It is based on the assumption that the adversary’s storage capacity is bounded,
say by s bits, but the adversary is allowed to have unlimited computational power.
This model assumes that a random string R of size u bits where s < u is publicly avail-
able (e.g. the signal of a space radio source with a physical random number generator,
beaming down a stream of random bits at a very high rate). We shall sometimes call
this random source R as the randomizer. The adversary is able to store only a small
portion of R (arbitrary s bits of information about R), and it is assumed that it is tech-
nically or financially infeasible for the adversary to store the whole random string R.
Then, legitimate parties simply collect a relatively small number of common bits from
R according to a shared secret key k so they can communicate through one-time-pads
created from the randomness in R.

This model has been criticized to be unrealistic as having a public random source with
high throughput as demanded by the model may be beyond what today’s technology
can offer us suggesting that it could be impractical, and also it has been said that with
the current pace of storage technology it is not feasible to make a long term assumption
regarding the storage bound of an adversary.

Despite the criticisms many attempts have been made at the beginning of this decade,
modifying some components of the original model proposed in [4]. Based on this
model, it was shown by Aumann, Ding and Rabin in [6] that a perfectly secret en-
cryption scheme can be designed. They also showed a nice characteristic called "ever-
lasting security" which means that the security of the messages sent in the past is still
guaranteed even if the secret key is revealed in the future. What is more, Ding and Ra-
bin in [13] presented extensions of previous works with a major new result regarding
that the shared secret key employed by the honest users can be re-used an exponential
amount of times to encrypt messages, against strong adaptive attacks. By strong adap-
tive attacks we understand the active attacks where the adversary can adaptively ask
for encryptions and/or decryptions of its choice. Examples of this type of attacks are

16 2.2. BOUNDED STORAGE MODEL

the so-called chosen-plaintext attack* and chosen-ciphertext attack®.

Later, Chi-Jen Lu also studied the problem of an information-theoretically secure en-
cryption in the bounded storage model showing that an encryption scheme with the
appealing characteristics mentioned above can be derived immediately from a strong
randomness extractor [10]. An extractor is a function that extracts randomness from a
weak random source, where its output and its seed together are almost random. Since
an efficient encryption scheme in this scenario calls for a strong extractor that can be
evaluated in an on-line and efficient way, then it is interesting to notice that not every
strong extractor is suitable for an encryption scheme in the setting considered here.
The author proved the security of the scheme and described a construction with an
efficient on-line extractor.

The aforementioned attempts also dealt with the size of the initial secret key %, essential
to derive the security of the schemes. In some cases the initial key had to be longer than
the derived one-time pad X, or the size u of the randomizer R had to be extremely large
(u> s). In any case, the results in the bounded storage model were partial or far from
optimal. Dziembowski and Maurer [14] introduced a new security proof for which %
is short, the pad X needed by the users is very long and u needs to be moderately
larger than s (the ratio called the randomness efficiency is close to 1). The authors
proved security also for the case when R is not uniformly random, provided that the

min-entropy of 12 is sufficiently greater than s.

In all previous works, it was always assumed that Alice and Bob initially share the
secret key k without considering how it could be obtained. Dziembowski and Maurer
addressed in [15] the problem of generating the initial key £ focussing also on how
the key generation process relates to the security proof of the scheme. They argued
about the case in which a key agreement in the bounded storage model is performed,
requiring for the users to have very high storage capacity and also investigate the hy-
brid model where k is generated by a computationally secure key agreement protocol,
showing that this scenario is questionable.

In 2005, Savas and Sunar [7] made a first attempt in constructing a secure communi-
cation protocol in the bounded storage model defining means for successfully estab-
lishing and carrying out an encryption session. In their work, novel methods were
provided for aspects like the synchronization between users at the time they tap into
the random string R, the handling of transmission errors and the one time pad gener-
ation mechanism. Also, an analysis regarding the parameters values involved in the

?In this attack, the adversary has the ability to obtain the encryption of plaintexts of its
choice. It then attempts to determine the plaintext corresponding to a ciphertext which it has
not yet seen.

3In this attack, the adversary is even given the capability to obtain the decryption of ci-
phertexts of its choice. The adversary’s aim, is to determine the plaintext corresponding to a
ciphertext whose decryption it has not yet asked for.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 17

model was made which is of practical interest for an implementation.

In 2006 Harnik and Naor [9] considered the idea of a hybrid bounded storage model were
computational limitations on the eavesdropper are assumed up until the time that the
transmission of R has ended. In this regard, they studied the possibility of achieving
everlasting security with low memory requirements in the hybrid bounded storage
model. One interesting proposal was to incorporate the use of a random oracle RO
apart from the big random stream R in order to form the shared key needed by the
model. In this manner, they would form the indices to read in R by querying first this
random oracle RO that is accessible to all the parties. Furthermore, they argued about
the possibility of not letting the adversary read the entire string R, perhaps by dividing
that big string into many sub-channels so an adversary would not manage to record
them all.

Nevertheless, serious practical issues prevent this model from being employed in real
life communications. Some of them are: the publicly accessible random source at a very
high rate, the authentication of this random stream, the syncronization of the honest
parties, among others.

2.3 Limited Access Model

The limited access model introduced by Michael O. Rabin in [1] at 2005 is based on the
functionality of a voluntary network of computers, each generating, storing and updat-
ing random pages, called Page Server Nodes (PSNs). The PSNs provide randomness to
users who in turn use this randomness to communicate among themselves using one-
time pads. An important property of the PSNs is that they serve each random page
at most twice preventing an adversary from having common pages with the honest
parties. Initially, two communicating parties share a short key £, and asynchronously
in time randomly select the same PSNs and download the same set of random pages
based on k. Since these communications could be compromised by an adversary, the
users run a page reconciliation protocol to verify which pages they have in common.
These common pages are employed to form one-time pads common to the parties. The
security of such a system is not based on any assumption on the computational power
of the adversary but on the inability of an adversary to monitor a huge number of PSNs
distributed across the globe while the parties are downloading pages of random bytes
from them. Under this assumption an encryption scheme in this model can be proved
to be information-theoretically secure.

The limited access model can be seen as an improvement over the bounded storage
model, in the sense that it is proposed a provably unbreakable encryption scheme where
the single source of publicly available random bits are replaced by a network dis-
tributed source that supplies the required randomness to the clients.

18 2.3. LIMITED ACCESS MODEL

An important characteristic of the limited access model is the fact that the initial key k
is continually extended using the common one-time pads, playing an essential role in
the security of the scheme. As a result, a scheme in the limited access model provides
Everlasting Secrecy. This means that even if the initial key & or its later extensions
were revealed after their use for collecting common random pages from the PSNs, the
enchipered messages will still be secure. This is because the pages used to construct
the one-time pad key are not available any more at the servers as a result of the serve
only twice policy. After the second request or after a specified short amount of time,
the pages are destroyed.

In the literature there is a single work related to the field of interest of this thesis project
as reported in [2], developed by Jason K. Juang at the M.L.T. in may 2009. Some of
the components involved in the model were addressed leaving some gaps with many
interesting parts left open for future work.

Chapter 3

The Limited Access Model Description

Whoever wishes to keep a secret must hide the
fact that he possesses one.

Johann Wolfgang Von Goethe

he Limited Access Model introduced by Michael O. Rabin in [1] enables the realization
T of a practical provably unbreakable encryption scheme. As mentioned before, the
security of an encryption scheme in this model is based on the existence of a huge
network of computers called the Page Server Node (PSN) network who are the ones
that provide pages of random data to the users. Initially, two communicating parties
share a short secret key k, and use this key to randomly select the same PSNs and
download the same set of random pages based on k. Since some pages may not be
received properly by the users for different situations (i.e. modifications during transit,
network communication problems, etc.) they run a page reconciliation protocol to
verify which pages they have in common. These common pages are then employed
to form a long random string, a part of which is used to encrypt the messages using
one-time pad and a part used to update the initial key.

An important property of the PSNs crucial for the security of the system is that each
random page can only be served at most twice. Moreover, as already mentioned, the
initial short secret key k is continuously updated by using part of the created random
string. So a new round for downloading new pages can start again with a new key.
We remark that the security of such a system is not based on any assumption on the
computational power of the adversary but on the inability of an adversary to moni-
tor a huge number of PSNs distributed across the globe. Under this assumption an
encryption scheme in this model can be proved to be information-theoretically secure.

In this chapter we provide a detailed description of each entity and algorithm involved
in a scheme in the limited access model, in a precise manner so that they would be
amenable to a practical implementation. We also analyze deeply some modifications
regarding the page reconciliation protocol, which results in improvements in the size
of the initial shared key needed by the model and in the security of the scheme. Fi-

19

20 3.1. THE DESCRIPTION OF THE SCHEME

initial key k key exchange protocol initial key k

1 1

0 0

0 0

1 Requesting pages with random bytes é

0

1 1

1 1

0 0

L page reconciliation protocol L

one time pad one time pad

I ; ;
plaintext encryption ciphertext decryption

Figure 3.1: The limited access model with protocols

o] alel & |t]Gl

[—————————— ||
Index keys Reconciliation keys Poly key MAC keys

Figure 3.2: Various parts of the key: The key is a binary string containing four distinct
parts named the index key (o), the reconciliation keys (&1, . .., &,), the Poly key (¢) and
the MAC keys (1, (2, 9).

nally, we outline a secure communication protocol which defines means for securely
establishing an encryption session in the limited access model.

3.1 The description of the scheme

An encryption scheme under the limited access model can be seen as a system com-
prised of the following entities and algorithms: the Page Server Node network (PSN
network), the page reconciliation protocol, the initial key-exchange protocol, the en-
cryption algorithm and the decryption algorithm. The basic scheme is shown in Fig.
3.1.

The scheme assumes that two legitimate users Alice and Bob share a secret key k. The
key k is divided into four distinct fields as shown in Fig. 3.2. Thus the key consists of
four basic parts: the index keys, reconciliation keys, the Poly key and the MAC keys.
Also it assumes the existence of a huge network of PSNs which serves random bytes

CHAPTER 3. THE LIMITED ACCESS MODEL DESCRIPTION 21

when requested. A part of the secret key k called the index key (a) acts as an index to
a PSN and the pages stored within a PSN.

If Bob wants to communicate securely with Alice both of them request random pages
from multiple PSNs, they choose the PSNs based on their index key. Once the selected
PSNs have served their requests, Alice and Bob run a page reconciliation protocol to
verify whether they own the same pages. The reconciliation protocol uses the reconcil-
iation keys, the Poly key and the MAC keys (refer to Fig. 3.2). After running the page
reconciliation protocol, Alice and Bob will know which pages they have in common.
Using a part of these common pages Alice and Bob construct one-time-pads for secure
communication and the other part is used to update their initial key which they would
use in future if they require more randomness for secure communication. We describe
in details each of the entities involved in the subsequent subsections.

Notation: In what follows, by a||b we shall mean concatenation of the binary strings a
and b, and bin,,(z) would mean the m bit binary representation of x. We shall denote
log, n by Ign.

3.1.1 The Page Server Node Network

The PSN network is a collection of server nodes as shown in Fig. 3.1 which consist of N
PSNs distributed around the globe (/N needs to be huge, say there are tens of thousands
of computers maintaining random pages). Each of these computers acting as a PSN has
an identity associated with it (it may be the server name or an IP address), so a PSN
named j will be referred as PSN;. Moreover, each PSN has a “true" random number
generator (I'RNG)) built into it. This random source of bits is the most important
component of a PSN. We assume that each PSN; maintains a table PageTable of r
pages, thus for any natural number i (i < r), PageT able|i] represents a page, which has
been generated by the TRNG;. Also, two algorithms run in a PSN, the algorithms are
shown in Fig. 3.3.

The algorithm getNewRandPage() creates a random page using the TRNG. Each random
page is ¢ bytes long. We assume that the procedure GetTrueRandomness() generates the
required ¢ bytes of randomness. In our implementation the procedure Get TrueRandomness|()
is realized by a hardware based random number generator, which is described in
Chapter 5. The algorithm sendPage(id) returns a page of the desired id if PageTable[id]
contains a valid page, and later destroys this page (by assigning a NULL value to
PageTable[id]). We remark that placing a NULL value to the memory location may not
ensure complete erasure of the data from the memory. For security one needs to totally
destroy a used page preventing further analysis using forensics or other techniques to
recover the page. If PageTable[id] does not contain a page (i.e., contains a NULL) then
the algorithm creates a page using the routine getNewRandPage() and sends the same.
The interesting thing to note is that the way the algorithm sendPage(id) is designed, it

22 3.1. THE DESCRIPTION OF THE SCHEME

Algorithm getNewRandPage()
1. P < GetTrueRandomness();
2. return P;

Algorithm sendPage(id)

1. P « PageTable|id);

2. if P =NULL

2.1. PageTablelid] «+ getNewRandPage();
2.2. P« PageTable|id);

3. else

3.1. PageTable[id] — NULL

4. return P;

Figure 3.3: The algorithms needed for the internal functionality of each PSN: Get-
TrueRandomness returns a random string of ¢ bytes on each invocation.

Algorithm downloadPage(k)

L. (ihjl)? (i27j2)a ey (Zm]n) — k;
2. forl=1ton

2.1. P, — PSN,,.sendPage(j;);
3. end for

Figure 3.4: The algorithm needed by the users to download pages from the PSNss:
PSN;, .SendPage(j;) represents the running of SendPage(j;) at PSN;,

is guaranteed that a single page is served at most twice.

There is another important functionality of the PSNs which is not depicted by the al-
gorithms described. As is obvious from the algorithm sendPage(id) , a random page is
generated only when it is first requested, and it is stored until the second request, after
the second request has been served the page is destroyed. But a PSN does not store a
page in-definitely. We assume that when a new page is created by getNewRandPage(),
the page is marked with a time stamp which keeps the information regarding the time
at which it was created (this would be the same as the time when the page was first
requested). The PSN keeps track of the time stamps of all the pages currently stored,
and after a specified amount of time t,,,, after a certain page was created if a second
request is not received by the PSN then that specific page is destroyed. A reasonable
value for the parameter ¢,,,, can be considered to be 24 hours.

The honest users employ a mechanism to request and download a page of random
bytes produced by a PSN. As discussed earlier the key consists of four parts, the first
part which is called the index key is used for the purpose of selecting PSNs and the
pages within a PSN. We assume that when a user requires some randomness it down-

CHAPTER 3. THE LIMITED ACCESS MODEL DESCRIPTION 23

loads n pages at a time from different PSNs. The index key « is a string of length
n(lg N +1gr) bits, which can be parsed as i1||j1]| - . . ||ix|[jn, Where each 7, and j; are g N
and lgr bits long respectively. 7, acts as an index to a PSN and j; is the id of a page
within PSN;,. Thus, the index key helps a user to address the PSNs and the pages
within them.

The algorithm for getting pages called downloadPage() is shown in Fig. 3.4. Since the
key has been chosen randomly, we say that this PSN selection is also random. It is
assumed that the users share a list of the available PSNs in the system.

Regarding the PSN internal specification, since it can be seen as a database (in memory)
of random pages generated by the TRNG built into it then there are few requirements
needed for a node of this type. We will describe in Chapter 6 the implementational
details of our work, but for now it is clear that a PSN just only requires an interface
connection to the TRNG (i.e. USB-Serial or Ethernet), a necessary amount of principal
memory to hold the random data, an eviction policy for staled pages and a communi-
cation protocol for letting users contact it (i.e. TCP sockets) every time a new page is
needed.

3.1.2 The page reconciliation protocol

For proper functioning of the system it is required that Alice and Bob download the
same pages, as these pages would be the source of randomness from which both would
construct their keys for encryption. There exist a possibility that Alice and Bob end up
downloading different pages. The possible reasons for this can be as follows. Since in
the PSNs one random page is served at most twice and the honest users request them
asynchronously, it is possible that Alice made a first request and downloaded a spe-
cific page P, and then an adversary was served with the same page before Bob made
his request. Moreover, it is possible that an adversary manage to subvert or control
internally a PSN providing malicious data to the honest parties or even modifies the
content of a page while it is in transit.

There must be a mechanism for Alice and Bob to verify which pages they have in com-
mon. The page reconciliation protocol provides this mechanism. The reconciliation
protocol uses two special functions Poly;'() and M ACs (). Poly;() outputs a string of
A bits and M AC; () outputs a string of ~y bits. The parameter ¢ associated with Poly;\()
is a string of A bits which is the Poly key of the initial key. The parameters ¢ and ¢
associated with M AC; () are ~ bits long and they are part of the MAC keys of the
initial key. Note that, the MAC key part of the initial key contains three strings (i, (s
and ¢, as we shall see soon that Alice and Bob will respectively use (; and (, to com-
pute the function M AC(). The function Poly;\() is used to compute a foot-print of the
pages, whereas M ACj () acts as a message authentication code. The details of these
functions would be described in the next section. In addition to the functions and pa-

24 3.1. THE DESCRIPTION OF THE SCHEME

Algorithm Alice.Reconciliation(F, ..., P,)
1. fori=1ton

2. 7« Poly)(P)

3 i —TiDE

4. end for

5. C — c1|eal]...||en

6. T «— MAC&Q (C)

7. return (C, 7) to Bob

Algorithm Bob.Reconciliation(C, 7, P, ..., P,)
1. if MAC&Q(C) 7& T

1.1. return INVALID

allell..|len — C

3. L < € (eis the null string)
3. fori=1ton

4. m; « Poly}P)

5. T a®§
6
7
7
8

N

if Thi = Tris L LHbInlgn(Z)
else L « L||biny,(0)
. end for
return L, M AC;, (L) to Alice

Figure 3.5: Page Reconciliation Algorithms

rameters mentioned the reconciliation protocol requires n strings &; (1 < i < n), where
each ¢; is A bits long. These ¢;s are called the reconciliation keys which are part of the
key k.

Assuming that Alice initiates the reconciliation protocol, the procedures followed by
both Alice and Bob are depicted in Fig. 3.5. Suppose Alice has downloaded the pages
Py, Py, ..., P,, she computes a string C' = & & Poly)(Py)]] .. .||&, & Poly)(P,) and sends
(C, MAC;.,(C)) to Bob. As Bob shares ¢, (; and &;(1 < i < n) with Alice he can compute
the foot prints of Poly;() on his downloaded pages and thus verify which of the pages
he has in common with Alice. Finally, he prepares as a response a list of indexes of the
common pages that they have downloaded, and sends this list to Alice (for details see
Fig. 3.5) along with the corresponding MAC tag computed over the list by using the
key (5. Thus, in a single round Alice transmits An + 7 bits to Bob which contains the
footprint of the n pages downloaded by Alice along with a authentication tag of ~ bits
of these footprints. Bob transmits n1g n + v bits to Alice, where each lg n bits of the the
list is either an index of a page that Bob has in common with Alice or is a 0 along with
a v bit authentication tag of the list.

After the reconciliation protocol both Alice and Bob would have a list of indices of the

CHAPTER 3. THE LIMITED ACCESS MODEL DESCRIPTION 25

pages that they have in common. From this list both selects the first i (11 < n) entries,
and thus get ;1 pages. They perform an XOR of these i pages to get ¢ bytes, we call
these ¢ bytes as the final page. A part of the final page is used to change the key % to a
new key and the rest is available to use as key for the one-time-pads, by which Alice
and Bob would have secure communication. The encryption / decryption algorithm
is just one-time pad as explained in Section 2.1.1 using the bits in the final page as key.

It is clear that the protocol will fail if users cannot own at least 1 common pages of
random data during a page reconciliation phase. Then it is crucial for the security of
the encryption scheme to define in a precise manner the parameters involved. In the
next chapter we will analyze the choice of values for the different parameters involved
and necessary for a practical and secure implementation. Moreover, even though it is
necessary to define the length in bits of the foot prints output by Poly;'(), in terms of
security this is not a problem, since these foot prints are encrypted with one-time pad
using the corresponding part of the initial key & (1 < i < n). Then absolute secrecy is
guaranteed during the interchange of messages phase in the Page Reconciliation Pro-
tocol. The use of the functions Poly;'() and M AC; () is an improvement over the page
reconciliation protocol described in [2], in terms of security and also for decreasing the
initial shared key £ as will be shown later.

Finally, the users share an initial key £, and after each download session followed by
reconciliation the key is updated using the randomness they have downloaded. The
initial key exchange is not part of the protocol. One can use computationally secure
key exchange schemes like the Diffie Hellman scheme without much implications on
security, as this key is very short lived. This is true since we can assume that the
adversary though is unbounded in his computational capabilities, still will take some
days to finally break the computationally secure key exchange scheme. Moreover, this
scheme needs only to be performed once; the system itself refresh this key providing
secure communication in perpetuity.

3.2 The description of the Poly and MAC

Before we describe the construction of the functions Poly,() and M AC; (), we would
discuss a few important things about the finite field GF'(2"). n bit strings can be viewed
as polynomials of degree less than n with coefficients in GF'(2), thus one could view n
bit strings as elements of GF'(2"). For n-bit strings z, y, = & y will denote the addition
in the field, which is a bitwise xor of the strings, and zy will denote multiplication
in the field which can be realized by ordinary polynomial multiplication modulo the
irreducible polynomial representing the field.

The function Poly;'(X) takes as input a arbitrary length string X and a string ¢ of length

26 3.3. OUTLINE OF A SECURE COMMUNICATION PROTOCOL

A bits. It partitions X into blocks of A bits as
X = zq|za||. || Tm,

where each z;, 1 <1i < m — 1is A bits long, if the last block z,, is less than A bits then it
pads it with appropriate number of zeros to make it A bits. The partition and padding
thus ensures that each z; is an element of GF'(2*). Then the function Poly}() is defined
as

Poly)(X) = 21t @ 2o* @ ... ®)y t™,

where all the operations are in the finite field GF(2*).

The function M AC;(X) outputs a string of length v bits and takes in as input two
strings 0 and (each of length v bits and an arbitrary long string X. The function is
defined as

Here all operations are in the field GF'(27).

3.3 Outline of a secure communication protocol

So far we have described precisely every entity and algorithm that comprises an en-
cryption scheme in the limited access model. Later, in Chapter 4 we will provide guide-
lines for the choice of the parameters involved in a practical implementation. In this
section, we now describe a protocol which defines means for efficiently establishing
and carrying out an encryption session in the limited access model.

The description in the following section is general and does not refer to any specific
technological tools. The specific implementational details would be explained later in
Chapter 6.

3.3.1 The Environment Architecture and Required Assumptions

We now describe the general architecture that would enable users who wish to primar-
ily transfer sensitive data over an insecure network such as the Intenet. We assume the
existence of an environment where the publicly available PSNs are spread all over
across the globe. More to the point, we explicitly define the required and reasonable
assumptions needed by the system to perform correctly. The important entities part of
the whole environment are described as follows:

o A True Random Number Generator. The existence of true randomness is a com-
plex question that even has become a rather philosophical matter. Since the one-
time pad encryption calls for true randomness (as pseudo-random numbers are

CHAPTER 3. THE LIMITED ACCESS MODEL DESCRIPTION 27

unsuitable in the presence of an unbounded computationally adversary), many
researchers think that it can only be extracted from physical phenomena (i.e. at-
mospheric noise, white noise or radioactive decay).

e A PSN. A PSN is capable of serve pages of ¢ random bytes (reading the TRNG)
efficiently to any users who contacts it. There is no privacy channel between
the user and the PSN during the communication, and we can assume that the
transmission of data takes place by using a TCP socket. It also maintains an
internal database (in the principal memory) of the pages served just once. No
other special equipment is required.

e PSN Network. Every single PSN that is part of the whole network is indepen-
dent of the others, in the sense that it has its own random generator built into
it. These PSNs can be installed in any place of the world (better if they are very
scattered across) as long as it has a public IP address in order to contact it without
inconveniences.

e The honest clients. These represent all the honest users (i.e. Alice and Bob)
using the system who wish to communicate securely between them making use
of the distributed randomness of the PSN network. In this regard, an efficient
client needs only to access the PSNs selected with the key % asynchronously in
time with the other honest party. Also, these clients are intended to manage in a
secure manner the randomness downloaded.

e The adversary. We model the protocol in the presence of an adversary without
limitations in his computing power, but on his inaccessibility to monitor all the
PSN’s connections. Specifically, we make the assumption that an adversary can
compromise no more than one-fifth of the total number of PSNs connections.
Also, the adversary may disrupt the system in a variety of ways like, reading
confidential information, tampering messages, preventing user to communicate,
etc.

3.3.2 The Protocol

We now proceed to describe the steps that will take place per every encryption session
in the protocol proposed for a practical implementation. In what follows, assume that
a special field or header will mark every message exchanged between the users so they
will know it is a message of the encryption system and also, Alice will always start the
communication with Bob. Basically, the procedures that the client users will perform
are as follows:

¢ Key-exchange Request. If Alice and Bob are not sharing yet an initial key k, then
they will make use of a computationally secure key exchange scheme, i.e. Diftie-

28

3.3. OUTLINE OF A SECURE COMMUNICATION PROTOCOL

Hellman. Alice starts the protocol by computing her corresponding part of the
scheme, and sends to Bob the corresponding message for initialization.

Key-exchange settlement. Bob receives the message from Alice and computes
his corresponding part of the key exchange scheme. Also he send to Alice the
message for letting her to finally compute the initial shared &.

Synchronization hello and reply. Alice wish to send sensitive data securely to
Bob. Thus, she issues a communication request which includes her identity and
the length of the message to be send. Bob receives the request from Alice and
store the length of the message. In this manner, they will exactly know how
much random bytes they need for encryption / decryption with one-time pad.
He confirms reception to Alice. This transaction is required to be authenticated
and there must be a secure way for Bob and Alice to identify each other. This is
not a part of the encryption protocol under the limited access model.

Request of pages to the PSNs. After the synchronization messages confirmed,
both Alice and Bob asynchronously start to download n pages from the PSNs
according to the key k.

Page Reconciliation initialization. After the request of pages phase, Alice issues
the algorithm Alice.Reconciliation presented in subsection 3.1.2 for the first part of
the protocol, and send to Bob the corresponding tuple as was described above
(see Fig. 3.5 for details).

Page Reconciliation reply. Bob receives the tuple from Alice and performs the
algorithm Bob.Reconciliation presented in subsection 3.1.2 for constructing the list
of common pages own with Alice. He sends this list authenticated to Alice as de-
picted in the algorithm (see Fig. 3.5 for details). If more randomness is required,
they will re-run the last three steps until they have the necessary randomness for
communicating.

One-time pad encrypt. With the required randomness harvested, Alice will en-
crypt the original sensitive message with the one-time pad scheme. She also au-
thenticates the ciphertext before sending the information through the insecure
channel to Bob.

One-time pad decryption. Bob receives the ciphertext and proceeds to decrypt it
with the random bytes downloaded from the PSNs and reconciliated with Alice.

Dispose of the used key. After the encryption / decryption phase, Alice and Bob
proceed to dispose the key used for the secure communication, ensuring that it is
employed just once and thus maintaining security.

Chapter 4

The Security of the Scheme

There is no security on this earth. Only
opportunity.

General Douglas MacArthur

he security of the one-time pad encryption scheme can be mathematically proved
T as it was shown in Chapter 2. Nevertheless, because of its inherent drawbacks
we have introduced the limited access model in the chapter before, turning our research
toward the design and implementation of an information-theoretically secure encryption
scheme in that model.

But a crypto-system designed in this model introduces new assumptions and compo-
nents (i.e. entities and protocols) besides of the one-time pad encryption block, and
they need to be analyzed carefully. This is true since before encrypting with one-time
pad, they are playing an important role during the time for progressively construct the
long key needed (which has the same size as the plaintext desired to be sent between
the honest users).

In this chapter we discuss the security aspects of the different entities and algorithms
involved in the limited access model. First we start this chapter by providing values
for many important parameters involved in the system and then we argue about the
security of the whole scheme and provide some justification regarding the choice of
the parameters. Then, we make reference to the initial key-exchange protocol, analyz-
ing its impact to the model. Moreover we continue our discussion by computing and
arguing about the probabilities of success for an adversary in breaking the page recon-
ciliation protocol and also the system, based on the limited access assumption and the
paremeters suggested by the section before. Finally, we also analyze the probabilities
regarding the collisions that could be encountered by using the unconditionally secure
MAC algorithm, which is an important block inside the system.

29

30 4.1. CHOICE OF PARAMETERS

4,1 Choice of Parameters

There are multiple parameters involved in the system. The parameters whose values
required to be fixed are listed below:

N The number of PSNs.

r The number of pages stored in each PSN.

¢ The size of each page in bytes.

n The number of pages downloaded in each session.

A The size in bits of the Poly output.

v The size in bits of the MAC output

i The number of pages used for constructing the final page.

The values of these parameters are crucial for the security of the system and also the
values would dictate whether an efficient implementation would be practically fea-
sible. Next, we provide guidelines for the choice of the parameters and also argue
regarding the suitability of our choices.

The first important parameter is V. The security of the model depends on the fact that
the access of an adversary is limited, which translates to the fact that an adversary must
not be able to manipulate or control more than a small fraction of the total number
of PSNs. In [1] it was stated that an assumption on the inability of an adversary to
manipulate less than one-fifth of the total PSNs is reasonable. We fix N = 216 which
is reasonable, and given the current state of technology it may be possible to maintain
these many page server nodes. Also we assume that each PSN has the capability of
storing 2'6 pages each of size 4096 bytes, i.e., r = 26 and ¢ = 4096. We propose { =
4096 bytes because it is an adequate amount of bytes that can be feasibly transmitted
through TCP sockets nowadays without much overhead.

As stated earlier, to construct the final page Alice and Bob XORs 1 pages out of all the
common pages they downloaded in a session. So, after a reconciliation protocol if the
parties fail to have © common pages the protocol will fail, and they have to start from
the beginning. As they download n pages in a single session, it is necessary that ;. be
less than n, also ;1 should be sufficiently large such that there is an effect of multiple
PSNs on the final page. In [1] it was proposed that ;1 = 30 is a reasonable value and
in our scheme also we stick to this choice. Based on this value of u we choose n to
be equal to 64, which provides lot of flexibility and even if the adversary manages to
manipulate : of the downloaded pages, the protocol will not be affected.

The Poly used in the reconciliation protocol acts as a foot print of the pages down-
loaded, so a small value can be sent which represents a page instead of sending the
whole page. Moreover, the MAC function employed in the reconciliation protocol is

CHAPTER 4. THE SECURITY OF THE SCHEME 31

used to authenticate the lists that are being exchanged by the parties and performs calls
to the Poly function for computing tags, as was described in Chapter 3. The best choice
would be an information theoretically secure message authentication code. Such codes
can be realized through universal hash functions, which can be constructed by simple
polynomial evaluations but are not suitable in the sense that the key also require huge
amount of key material. We assume that the Poly key ¢ is of 32 bit long. Then all the
operations are performed in the finite field GF(2%?) (refer to Section 3.2 for details).
Thus, every foot print is of 32 bits long making A = 32. For computing the MAC tags,
we need two keys which are known as the MAC keys. The first key is called ¢ and is of
128 bits long. As we showed in the description of the MAC in Chapter 3, we are call-
ing the Poly function but this time all the operations are performed in the finite field
GF(2'%®). Since the random string ¢; is XORed with the output of the Poly function,
then we define that (i, (; are of 128 bits long each. Moreover, we also assume that the
MAC output v is of 128 bit long.

With these parameters fixed, we can comment on the size of the key. As stated earlier,
the key consist of four parts the index keys, the reconciliation keys, the Poly key and
MAC keys. Thus the total size of the key would be n(lg N + Igr) + nA + A + 3. Using
the values suggested above we have the size of the key as 564 bytes, which is a big
improvement over the key length suggested in [2], which suggested a key length of
2880 bytes. The huge key size in [2] was due to the fact that they used more specialized
finger-printing methods instead of the Poly that we use.

As ¢ = 4096 bytes is the size of the final page, so out of this 4096 bytes 564 bytes would
be used to form the new key and 3532 bytes would be available for forming the one-
time-pads. Thus at the end of the protocol the users would be able to send a message
less than or equal to 3532 bytes. If they intend to send bigger messages they have to
re-run the protocol to obtain more randomness.

4.2 Possible vulnerabilities in the system

In this work we are not able to give a precise security definition and a security proof
of the system described. However, we provide some heuristic arguments regarding
security of the whole scheme by pointing out possible vulnerabilities and how our
system can protect itself against those vulnerabilities. This analysis also helps us to
justify the various choice of parameters made in the previous section. To begin with,
as already stated, we have two basic assumptions which are:

1. The adversary cannot control more than one fifth of the total Page Server Nodes.

2. The randomness provided by the Page Server Nodes is truly random.

32 4.3. HOW THE SYSTEM DEFENDS AGAINST THE VULNERABILITIES

Now we list down the possible vulnerabilities and pitfalls in the system that can be
exploited by an adversary:

o The initial key-exchange protocol: One can implement an exponential key exchange
Diffie-Hellman which is an anonymous key agreement protocol. But this protocol
does not provide authentication of the parties, and consequently is vulnerable to
man-in-the-middle attacks. These type of attacks refer to a form of active eaves-
dropping where the oponent makes independent connections with the honest
users, causing them to transmit messages between them so they believe that they
are talking directly to each other. But actually, all the conversation is controlled
by an atacker.

o Total decryption: The adversary manages to decrypt the ciphertext containing the
foot prints of every downloaded page from the PSNs. This implies that the ad-
versary will discover the encryption key.

o Intercepting the servers: An adversary can compromise some PSNs and the con-
nection between the users and these servers. This has serious implications in
the security of the system since an adversary can prevent users the possibility of
having at least ;x common pages, which are required by the scheme in order to
construct the final page. Also if the adversary can monitor all the servers which
are used by the users in a single session then it can easily decrypt the encrypted
communication and get hold of the key that would be used in the future.

e Finding collisions in the Poly and MAC functions: An adversary can find a collision
in the Poly function used by the page reconciliation protocol, providing two dif-
ferent pages say p, p’ with the same foot print to the users. In this case, they will
reconciliate but they will produce different final pages. Moreover, this can also
be a pitfall when computing tags with the MAC function, where an adversary
modifies a tag associated to a ciphertext which are then sent to the other commu-
nicating user.

4.3 How the system defends against the vulnerabilities

We now point out how the system can face and defend against the pitfalls described in
the previous section.

4.3.1 The initial key-exchange protocol

As we pointed out before, pitfalls like man-in-the-middle attacks can be exploited
by an adversary when issuing an initial key-exchange protocol. But these vulnera-

CHAPTER 4. THE SECURITY OF THE SCHEME 33

bilities can be defended by using authentication mechanisms. For example, one can
think in public key infrastructure solutions and certificate authorities, or the option of
password-authenticated key agreement. Moreover, there is a possibility of still per-
form anonymous key-agreement protocols by using the Interlock Protocol proposed by
Shamir and Rivest.

Nevertheless, we remark that it is outside of the scope for this work a practical and for-
mally secure implementation of a key exchange protocol, since the initial key exchange
is not actually part of the system in the limited access model. We just implemented the
exponential key exchange Diffie-Hellman protocol for a proof of concept in our work.

4.3.2 Total decryption

The encryption scheme used by our system is the one-time pad. There are many mes-
sages that are sent using one-time pad between the users, like the messages which are
part of the page reconciliation protocol (when a user sends the foot prints of the pages
enciphered) or the encryption of the original plaintext. Then, one possible attack from
an adversary would be try to decrypt all these enciphered strings. However, based on
the assumption that the key is truly random (also has the same size as the message to be
encrypted) and that it is only shared between the honest users, then we know that the
only opportunity for an adversary to totally decrypt is just guess, as was demonstrated
in Chapter 2. Thus, the probability that an adversary can achieve total decryption is
very low.

4.3.3 Intercepting the servers

By intercepting the servers an adversary can attempt to do two things:

1. In a single session, the users download n pages from n servers. Then they run the
page reconciliation protocol and select the first 4 pages which both the users have
in common to form the final page. If an adversary is able to intercept the specific
e servers whose pages were used to form the final page then the adversary would
have knowledge of the one-time-pad key along with the new key which would
be used for the future sessions. Note that if the adversary fails to know even one
of the 1 pages which would be used to form the final page, the adversary would
have no useful knowledge, as all the ;1 pages are randomly generated.

2. Out of the n servers that the users access in a single session, if the adversary have
access to any of the n—/1+1 or more servers, then he can tamper the pages sent by
the server and thus prevent the users from reconciliating the pages and making
the protocol fail.

34 4.3. HOW THE SYSTEM DEFENDS AGAINST THE VULNERABILITIES

Considering the adversary has no knowledge of the index keys being used by the users
it can at best randomly intercept the servers. In this scenario we shall analyze the
probability of success of the adversary in both scenarios.

Let us consider a single session where the users choose n servers randomly (as dictated
by the randomly generated index key) from the existing IV servers. If there is no ad-
versarial tampering of the random pages, or no other technical problems like loss of
network packets or accidental alteration during transit, then the users will reconciliate
with the first downloaded pages, and using those pages they would form the final
page. If the adversary has gained access to these designated ;. pages then he himself
would be able to form the final page. Suppose the adversary has access to m servers,
then the probability of success of the adversary would be same as the probability that
the 11 pages used for computing the final page are all among the m pages controlled by
the adversary. If Succl be the event that the adversary succeeds in the first scenario,
we have
()

Pr[Succl] = 4= (4.1)

()
Now, consider the second scenario which can be described using an urn model. Con-
sider an urn with N balls out of which m are white and the rest are black. n balls are
randomly chosen without replacement from the urn, we are interested in the probabil-

ity that £ of the drawn balls are white. Let X be the random variable which denotes
the number of white balls drawn, then it is easy to see that

m\ (N—m

(2) Goid)
G
The random variable X follows the so called Hypergeometric distribution [16]. The
relation of our scheme with this urn model is that the balls represents the servers and
the white balls represents the compromised servers. When the users select n servers

randomly, we are trying to see the probability that £ many of them would be the com-
promised servers.

Pr[X = k] = (4.2)

With the choice of our parameters and assumptions, we can say the following;:

1. The number of servers N = 216,
The number of compromised servers m < [N/5].
The number of servers selected in a single session n = 64.

The number of pages used to create the final page i« = 30

A T

Finally we are interested in £ > n — u + 1 = 35, as if the adversary can tamper
more than £ pages then the users will not be able to reconciliate.

CHAPTER 4. THE SECURITY OF THE SCHEME 35

-20

Probability of suc

65

Figure 4.1: Graph for the success probabilities Pr[Succl] of an adversary for 30 < p <
64. The y-axis is represented is logarithmic scale i.e. —45 means 10~%.

Thus, if Succ2 denotes the probability of success in the second case then, we have

Pr[Succ2] = Pr[X >n — pu+1]. (4.3)

Using eq. (4.1) and the values stated above we have Pr[Succl] = 1.045104711 x 1072
By varying the values of ;1 we compute the success probabilities which are shown in
Fig. 4.1. We see that the success probabilities decreases with the increase of ;.. But if
is very big then the reconciliation protocol will have lesser flexibility and would have
lesser tolerance to transmission errors or adversarial corruption of the pages.

For estimating Pr[Succ2] we tabulate the values of probabilities for various values of &
ranging from 35 to 64 in Table 4.1. The values are also plotted in Figures 4.2 and 4.3.
Figures 4.2 and 4.3 clearly show that the probability decreases with increase of k. Also,
the probability for k = 35is 7.21 x 1071°.

A thing to note is that the success probabilities here are pretty bigger than the usual
success probabilities that we encounter in typical cryptographic scenarios. For exam-
ple, consider a block-cipher with a key length of 128 bits, the block-cipher is considered
secure if no adversary can guess the key with probability more than 27128, This prob-
ability is far lesser than the probabilities of the events Succl and Succ2. But, a thing
to be noted is that the scenario described here is quite different from a typical crypto-
graphic scenario. As, in case of the example of the block-cipher, the adversary can go

36 4.3. HOW THE SYSTEM DEFENDS AGAINST THE VULNERABILITIES

Table 4.1: Hypergeometric distribution probabilities
k| Probability | k| Probability |
35 | 7.21753484047e — 10 | 36 | 1.4503968582¢ — 10
37 | 2.73781506864e — 11 | 38 | 4.85180920525¢ — 12
39 | 8.06659727036e — 13 | 40 | 1.25720700707¢ — 13
41 | 1.83497037238e — 14 | 42 | 2.50530702627¢ — 15
43 | 3.19541308517e — 16 | 44 | 3.80157817897e — 17
45 | 4.21124176911e — 18 | 46 | 4.33504068502¢ — 19
47 | 4.1372667416e — 20 | 48 | 3.65111375824¢e — 21
49 | 2.97037912873e — 22 | 50 | 2.22000633385¢ — 23
51 | 1.51806931357¢ — 24 | 52 | 9.45299853007¢e — 26
53 | 5.33054233034e — 27 | 54 | 2.70411525713e — 28
55 | 1.22426611811e — 29 | 56 | 4.89893950498e — 31
57 | 1.71177788566e — 32 | 58 | 5.14287654257e — 34
59 1.30182442e — 35 | 60 | 2.70008027851e — 37
61 | 4.40626661827¢ — 39 | 62 | 5.30545584755¢ — 41
63 | 4.19076148158e — 43 | 64 | 1.62911666151e — 45

x10™"

Probability of success

Figure 4.2: Graph for the success probabilities Pr[Succ2] of an adversary when N =
21 n=64and m = [£]

on trying every key and each time he checks a key his probability of success increases
in the successive steps. Also the interpretation of security based on success probability
depends on the computational power of the adversary, like if the adversary can check

CHAPTER 4. THE SECURITY OF THE SCHEME 37

Probability of success

65

Figure 4.3: The same graph of Fig. 4.2 using a logarithmic scale

2128 keys in a reasonable amount of time then there would be no security. But the sce-
nario for our scheme is quite different. Here the adversary has no way that he can try
his/her method multiple times. As each session starts with a different key, hence for
each session the probability of success remains unchanged. Given this interpretation,
the probability of the events Succl and Succ2 are low enough to provide reasonable
security.

The success probabilities in case of the second scenario, i.e., Pr[Succ2| can be further
reduced if the number of pages downloaded in each session (the parameter n) is in-
creased. We show the probabilities for 67 < k < 96 in Fig. 4.4. But an increase in n
would lead to an increase in the initial key length and would also increase the commu-
nication overhead of the page reconciliation protocol.

4.3.4 Security Concerning Poly and MAC

The functions Poly() and M AC() are two other important components of the system
used in the page reconciliation protocol. The security of these functions are addressed
in this section.

The function Poly;\() is used to create a footprint of the pages. Note that a ¢ byte page
is converted into) bits using the function Poly;(). The output of Poly;'(), is masked
with a random string and then sent to the communicating party. Thus, the footprints of

38 4.3. HOW THE SYSTEM DEFENDS AGAINST THE VULNERABILITIES

-25

30

35

—a0

cess

a5

50

Probability of suc

70 | | | | | |
65 70 75 80 85 90 95 100

Figure 4.4: Graph for the success probabilities Pr[Succ2] of an adversary when N =
2!, n =96 and m = [£] using a logarithmic scale

the pages as transmitted are random strings and the adversary has no way to guess the
original page from the footprint that gets transmitted. But, the adversary can use some
weaknesses in the function Poly;'() to make the protocol fail. As described in Chapter
3, apage X is partitioned into blocks of A bits and written as X = x1||xs]| ... ||zs, where
each z; is A bits long. Given a A bit long key ¢, Poly;(X) is computed as

Poly)(X) = z1t @ 2ot® @ - - - ® wt°,

where the multiplication and the addition (denoted by @) are in the field GF(2*). If
the adversary has access to a PSN from where the users are downloading, (s)he can
potentially serve two different pages X' = z||z}]|... ||z} and X" = 2f||25]|... ||z} to
the two users such that Poly,(X’) = Poly;(X"). If the adversary can do this then the
users would think that they have the same page but in reality they do not. Let us call
this event as Succ3, and thus the probability of success for an adversary in doing this
would be denoted by Pr[Succ3]. Recall that ¢ is a part of the key hence can be assumed
to be a A bit random string unknown to the adversary. With this assumption we have

Pr[Succ3] = Pr[Poly)(X') = Poly}(X")] (4.4)
= Pr[Poly}(X') @ Poly}(X") = 0] (4.5)
= Pri(zi@z\)t®- & (2] & 2)t° =0]. (4.6)

Now, (] @ 2)t & - - - & (2} & 2)t° is a non-zero polynomial of degree s, as X’ and X"
are different. Thus, this polynomial can have at most s roots in GF(2}). And, t is a

CHAPTER 4. THE SECURITY OF THE SCHEME 39

random element in G F'(2*), thus the probability that this equation in eq. 4.6 is satisfied
is same as the probability that ¢ is a root of the polynomial. Thus we have

Pr[Succ3] = 2% 4.7)

According to our choice of parameters A\ = 32 bits and each page is 4096 bytes long,
hence s = (4096 x 8)/32 = 1024. Thus, using eq. 4.7 we have

1024
932

Pr[Succ3] = =27% (4.8)

Again, as discussed in the previous section this success probability should not be
equated with the success probabilities of typical crypto-systems, as the adversary can-
not repeat his attempts to break the scheme. The probability can be reduced by increas-
ing A. In particular if we increase A to 64 bits then the probability of success reduces to
2755, But, the increase in the size of A would mean that larger footprints would be used,
and this would increase the length of the initial key and the communication overhead
of the page reconciliation protocol.

Next we discuss the security of the function M AC(). This function is a message au-
thentication code employed by the users to ensure the integrity of the messages sent
during the page reconciliation protocol. The M AC() for a message Y is computed as
follows

MACs:(Y) = Polyl(Y) & C.

Note, here the keys ¢ and (are 7 bits long and thus the polynomial Poly] () is computed
over the field GF(27). { is a random string obtained from the key, and (is not reused,
i.e., in the reconciliation protocol Alice and Bob uses different values of (.

The goal of the adversary here would be to tamper the messages to a different message
which would have the same MAC. Let this event be called Succ4. The structure of
the MAC used is very similar to that of any polynomial based MACs [17], which are
generally computed as Poly](Y) @ Ex(N), where Ex() is a block-cipher and N a non-
repeating quantity usually called a nonce. It is known that probability of forging of
such MACs is at most of the order of s?¢*/2” + v, where ¢ is the number of message
MAC pairs previously seen by the adversary and v is the probability with which a
random string can be distinguished from the outputs of the block cipher Ek(). In our
construction E() is replaced by a truly random string, thus ¥ = 0 and the adversary
gets to see at most one message MAC pair. Hence the probability of success in our case

becomes)

s
Pr[Succ3] < >
With our choice of parameters v = 128 bits, we obtain s = 4096 x 8/128 = 256 we have
16

2 -
Pr[Succ3] < o = 27112

40 4.3. HOW THE SYSTEM DEFENDS AGAINST THE VULNERABILITIES

which is pretty small for all practical purposes.

Chapter 5

Our Random Number Generator

If you aren’t going all the way, why go at all?

Joe Namath

A random number generator is a very important component of the model since the
one-time pad encryption scheme (which is part of the system) requires random
bits to assure perfect secrecy. We recall that a one-time pad encryption scheme uses as
much key material as the size of the plaintext. One-time pad provides information
theoretic security only if the key bits are perfectly random. In our scheme the random-
ness is provided by the page server nodes. Thus, each PSN must be equipped with a
mechanism which can generate random bits. Also, it is required that the random bits
provided by the PSNs are "truly random". Though it is debatable whether true ran-
dom bits can really be produced by any device, but it is well accepted that to generate
true randomness one has to depend on some natural physical phenomenon. Thus, in
our attempt to generate "true randomness" we designed a physical random number
generator which is supposed to be embedded in every PSN. There are many previous
designs available for physical random number generators suited for different environ-
ments [18, 19, 20]. For a proof of concept we designed a simple but efficient generator.
Our basic design is based on the work of Aaron Logue [21]. In this chapter we will
describe some basic issues in generating randomness and then we shall describe the
random number generator which we designed.

5.1 Background and types of generators

A random number generator (RNG) is required in a wide range of areas, like statistics,
cryptography, etc. The required quality of randomness is dictated by the type of appli-
cation. Since most cryptographic protocols and applications depend on the generation
of random numbers, the security of such protocols generally depend on the quality of
randomness. Thus, cryptographic applications in general demand very high quality of
randomness. Examples of random material required in cryptography are:

41

42 5.1. BACKGROUND AND TYPES OF GENERATORS

Secret keys.

Nonces and initialization vectors.

Seeds required by pseudo-random generators.

Challenge data and parameters used in challenge-response type security proto-
cols, among others.

For cryptographic purposes, a RNG can be a computational or physical device that
gives as output sequences which are expected to be unpredictable to an adversary. This
component is important in cryptographic protocols since their security essentially rely
on the unpredictability of the random material. In this sense, even if an adversary has
knowledge about the design and previously generated random numbers, (s)he would
not be able to predict the future outputs from the RNG.

There can be different types of generators based on the techniques to generate ran-
domness. In one hand, we have Pseudo Random Number Generators (PRNG) which
are deterministic algorithms whose output is a sequence of bits that approximates the
properties of truly random bits. They completely depend on an initialization process
for generating the sequence of bits. This initialization is performed by using a short
random value called the seed. These generators are called deterministic since if they
are initialized with the same seed, then they will always produce the same sequence
of bits. Generally a PRNG cannot generate unlimited amount of random bits from a
single seed. After generating say ¢ many bits if a PRNG repeats the sequence, we say
that the PRNG has a period of t. Most PRNGs are periodic (i.e. they have a period).
On the other hand, we have True Random Number Generators (TRNG) which extract
statistically independent and unbiased bits from a physical process. Hence, the TRNGs
are non-deterministic generators and also have no period. They always produce a se-
quence which never repeats. The major difference between PRNGs and TRNGs is that
an internal state is kept in the former whereas nothing is kept in the TRNGs, producing
bits independent of the previously generated. PRNGs are computational algorithms
which are easier to describe and also generally more efficient than TRNGs.

For our work, PRNGs are unsuitable since an encryption scheme in the limited access
model considers an adversary without limitations in the computational capabilities.
Thus, security provided by PRNGs (which depends on the assumption that it should
be computationally infeasible to compute the next output even if the algorithm used
and all previous outputs generated from the PRNG are known) does not hold anymore
under this scenario. Then, from now onwards we will only discuss TRNGs which are
of interest for our protocol.

CHAPTER 5. OUR RANDOM NUMBER GENERATOR 43

5.2 Classification of true random number generators

We start this section by defining a very important term called the entropy, as a mea-
sure of the uncertainty associated with a random variable. This is written formally as
follows:

DEFINITION 2. The entropy H of a discrete random variable X with possible values {x+, ..., z,}
is:

H(X)=—> Prlx]lg(Pr[z;])

i=1

This definition was introduced by Claude E. Shannon [22] in 1948. Entropy is used to
measure uncertainty of a specific event X. An event X is more uncertain if X has high
entropy. Thus, natural sources of randomness are generally called as entropy sources.
We now focus on the discussion regarding the true random number generators. These
generators can be divided in:

o Software based generators. The entropy source in which these generators relies
on, is extracted from random events that take place in a computer system. Exam-
ples of such events can be the user movement of the mouse, keystrokes, network
traffic, etc. These events are captured and used by software procedures and con-
verted into numerical values which serves as random numbers. They are also
called non-physical TRNGs.

e Hardware based generators. The randomness is extracted from physical phe-
nomena like electronic noise, radioactive decay, etc. These sources of entropy are
better in quality than the software based ones.

The option of Hardware based generators (also called as Physical TRNGs) are more
reliable, since they are more robust and secure and with higher entropy than the soft-
ware based generators. The following methods are generally employed with physical
TRNGs for generating random numbers:

e using analog components

o using exclusively digital components

e using a combination of analog and digital components

We now discuss the possible sources of randomness usually considered when con-
structing physical true random number generators.

44 5.2. CLASSIFICATION OF TRUE RANDOM NUMBER GENERATORS

5.2.1 Source of randomness in physical TRNGs

When constructing physical TRNGs, the entropy source is always extracted from a
physical source. The decision regarding which source better fits the necessities are
based on the performance, security and efficiency required for the specific case, the
costs for constructing as well as the type of components wished to be present in the
random generator.

We now describe the different source of randomness that can be exploited for con-
structing a physical generator [20]:

e Quantum mechanical properties. The nuclear decay from a radioactive sub-
stance or the quantum mechanical properties of a photon are examples of entropy
sources that can be employed for a physical TRNG.

¢ Electronic noises. Noise is an undesirable characteristic of all electronic circuits.
Undesired random fluctuation in electrical signals within a circuit constitutes
noise. This noise can vary significantly with time and thus can act as a rich source
of randomness. There can be various types of noise present in a circuit. We men-
tion some of them as follows:

— Thermal noise. This kind of noise is generated by the thermal agitation of
electrons in a conductor and can be observed in resistors. This noise is ap-
proximately white and it is also known as Johnson Noise.

— Shot noise. This type of electronic noise occurs when a voltage differential
causes electrons and holes cross a barrier. Examples of components produc-
ing shot noise are: a diode, a transistor or a vacuum tube.

- Avalanche noise. This noise is produced by an avalanche breakdown of an
avalanche diode when a specified reverse bias voltage is applied. This can
be observed on zener diodes where the phenomenon is called zener break-
down.

— Flicker noise. It is also known as 1/f noise or pink noise, is a signal with
a frequency spectrum that falls off steadily into the higher frequencies. It
occurs in almost all electronic devices, and results from a variety of effects.
It is always related to the direct current flow.

e Metastability. In electronic systems metastability refers to the ability of the sys-
tem to persist in an unstable equilibrium state for an un-bounded time. This
phenomenon can be frequently encountered in flip-flops. A flip-flop has two
well-defined stable states designated as 0 and 1, but in certain conditions it can
hover between its stable states for more than one clock cycle. This can result in an
un-predictable behavior of the system. This unpredictability can act as a suitable
source of randomness.

CHAPTER 5. OUR RANDOM NUMBER GENERATOR 45

Analog signal - raw randomness Digital signal

T g oo m T |
I I ! Internal External !

N n I
| Noise Harvesting L b _randomness oy | randomnesg
\ source method A ost-processing Interface ! !
| | !
| | !
| | !

I
digitized analog signal :

Figure 5.1: TRNG generic architecture

e Jitter. Roughly speaking, jitter can be defined as short-term variations or dis-
placement of some aspects of the pulses in a digital signal. It can be seen as a
variation in characteristics of the pulse such as amplitude, frequency or phase of
successive cycles.

After briefly describing these source of randomness, it is important to note that if a
TRNG is required to be designed with pure digital components, then using the first
two options is not suitable. Moreover, if a generator design makes use of any electronic
noise as described above, then commonly it is necessary to use an amplifier in order
to bring the output of the physical source into a macroscopic realm; also, a sampler is
needed for converting the analog output into a digital signal.

5.2.2 Typical architecture of a physical TRNG

We now discuss regarding the general architecture needed for a TRNG design. Without
loss of generality, a typical TRNG design is comprised of three basic components:

e the source of randomness
e the sampler

e the post processing phase

This generic architecture is depicted in Fig. 5.1. As pointed out before, a good TRNG
design is based on the non-deterministic characteristic of a physical phenomena. This
component is the most important part of the generator, since it is crucial for the qual-
ity of the random numbers that would be extracted and used later in applications and
protocols. The process starts with a noisy source generating an analog signal that is
immediately fed into the sampler (the second component of the TRNG) in order to
convert the analog signal into a digital one (also called the digitized analog signal or
das). Thus, a harvesting method is employed for sampling the entropy source with the
requirement of not disturbing the physical source in order to collect the maximum en-
tropy. The harvesting method will depend on the noisy source of randomness selected.
The das numbers so far are called raw random numbers.

46 5.3. OUR PHYSICAL TRNG DESIGN

There is the possibility that some noisy sources can exhibit biases in their outputs. This
bias has to be eliminated by a post processing on the das numbers. Post processing
increases the randomness provided by a TRNG at the price of reducing the throughput
of the generator. As in general a post processing technique would discard some bits
or compress a bit string to correct the bias. The decision regarding the post processing
technique depends on the entropy provided by the raw source of randomness and on
the efficiency of the post processing algorithm used. After the post processing phase,
it is expected that the probability distribution of the random bits will be closer to the
uniform distribution, which may not be the case with the das number bits. Thus, the
post processing mechanism improves the quality of the randomness by masking the
imperfections in the entropy source, providing also robustness in the design. Examples
of post processing methods are:

e The Von Neumann corrector
e The XOR corrector

Extractor functions

Hash functions (like SHA-1 algorithm)

Resilient functions

It is important to point out that post processing might not be needed for every single
design for a TRNG. It is usually employed to strengthen the generator if the random-
ness source selected exhibit a bias.

5.3 Our physical TRNG design

5.3.1 Description

Our design is based on the use of electronic devices as noise generators. We use certain
electronic components, and the output of these components is converted to a digital
signal which is measured by a micro-controller. Then we perform a post-processing to
unbias the bits and deliver the randomness. The generator has a serial output compli-
ant with RS232 standard at 115200 bps. It is also possible to use other designs which
uses different kinds of interfaces, like, USB, Ethernet etc. in order to achieve higher
throughputs. In Fig. 5.2 we show the schematic circuit of the true random number
generator.

The circuit consists of five basic parts. The first part is the noise generator, which is
composed of two transistors (7'1 and 7'2) with their bases interconnected creating an

CHAPTER 5. OUR RANDOM NUMBER GENERATOR 47

FCOEDCT) FCERESET)
FC1(ADCT)

PCI(ADCD) GhD
PC3(ADC) AREF
PCAADCAISDA) AVCC
PCS(ADCESCLY

ADCE

ADCT PEEB(TAL1TOSC1)

=3

=3

;:|3
‘ i|§ 2 5 5

=}

=

=

s}

FDORAD) FB7(:TALZTOSCI)

8
PO T¥0) R’ﬂ"j_
3
5]
1
%

<
£
<
¥
<
¥
(el

PD2(NTO)
PDI(NTY) GHD

‘W‘N‘A‘

PDAGCKITO) GND
PDS(T1) wee

R

R

R
=

FDB(AING VGG
FDT(AINT)

o

PBOCP)
PE(OCTA)
PB2SSIOCIE)
PE3MOSHOCZ)

H
.
=
.
=
|—R|4:u—
.
23
a2k
2=
:
=]

C3

TN TouT
T2IN T20UT
R1OUT R1IN

=

=

R20UT RIIN

o

R T oo
13 cae

Lo+
ct- GND (X)
121y
LA VS o
RLE g cz e

AK253

=

=

Figure 5.2: Schematic circuit of the TRNG

avalanche noise in the reverse-biased transistor. The second part is the amplifier, it is
composed of one transistor (7'3) that amplifies the noise generated by the components
in the previous part. The third part, the digitizer, is composed of a Schmitt trigger gate
(IC1). This produce a square wave with an unpredictable frequency and pulse width.
The fourth part, the processing unit, is composed of a micro-controller (/C2) with an
embedded C program to measure the pulse width and then post-process the bits to
generate the output. The fifth part, the interface, is composed of an integrated circuit
(IC3) to translate voltage levels between TTL and RS232 standard.

The micro-controller unit (MCU) used in our design, is an ATMEGAS8 from Atmel.
These MCUs has RISC architecture and can execute 10° instructions per second at 1
MHz. We chose C language to write the firmware that measures the pulse width and
process the bits. The basic idea for measuring the pulse width is to use an internal
module called Timer1 with Input Capture capability. Timerl is implemented internally
as a counter, so when the module starts, the counter increments its value at each clock
cycle. Then when a falling /rising edge is detected the MCU produces an interrupt and
the value of Timerl is recovered. Its value is a variable of type int (16 bits), but for
this work we only use the Least Significant Bit because it has the higher probability to
change in any measurement.

The next step in the program is to perform a procedure to unbias the bits and store
them in groups of 8 before being sent to the computer. There are different methods
for bias corrections, i.e., the Von Neumann corrector, the XOR corrector, hash functions

48 5.3. OUR PHYSICAL TRNG DESIGN

Sampled bits | Output bit
0,0 None
0,1 0
1,0 1
1,1 None

Figure 5.3: The Von Neumann corrector

Table 5.1: NIST test suite results
| seq. length | bias corrector | NIST test suite results |

100,000 | Von Neumann | Passed all tests but RandomExcursions
1,000,000 | Von Neumann | Passed all tests but CumulativeSums

100, 000 XOR Failed 5 tests
1,000, 000 XOR Failed 4 tests

100, 000 None Passed all tests but LinearComplexity
1,000, 000 None Failed 3 tests

(i.e. SHA-1), etc. The Von Neumann corrector [23] is employed in our design because
of its simplicity and the quality of the randomness obtained in our design as explained
next. The Von Neumman method is very simple as can be seen in Fig. 5.3; per every 2
bits sampled, the program makes a comparison, discarding them if they are equal. If
not, we store the first bit and accumulate bits until we have 1 byte to send it over the
serial interface. We measured the throughput of our genetaror with the Von Neumann
corrector and is giving 4096 bytes every 0.03 secs (note that the size of each random
page we require for our scheme is 4096 bytes). We remark that using the serial interface
can slow data transmission between MCU and the computer, but fortunately we can
replace it with USB or Ethernet interfaces to achieve higher throughputs.

5.3.2 Testing the randomness of the generator

The quality of the generated randomness and its entropy is crucial for the system. We
analyzed the randomness associated with the sequence of bits output by our generator.
There exist many statistical tests that can be applied to verify the quality of random-
ness. In our case, we decided to make use of the battery of test (composed of 15 tests)
from NIST [24]. For performing our tests, we collected files with at least 20 MB of
random binary sequences that were provided by our physical TRNG connected to the
computer by the USB-Serial interface. Different files were created from the physical
TRNG with the Von Neumann corrector, the XOR corrector and without any correc-
tion method (raw randomness). Later, these (different) files were feed to the NIST’s
battery of tests. We run all the test using the suggested parameters by NIST. It is also
required to define how many bit streams (sequences of zeros and ones) of a desired

CHAPTER 5. OUR RANDOM NUMBER GENERATOR 49

length will be parsed by the tests using every input file. We selected 100 as the num-
ber of bit streams. For the bit-sequence length, we chose 100,000 and 1, 000, 000 as the
values. The results in terms of bit-sequence length, post-processing method and test
results are presented in Table 5.1.

With the Von Neumann method, the generator presents a nice performance in terms
of its randomness quality in contrast with the use of the XOR method. This is at the
cost of reducing its throughput (got reduced to ;). Also, we remark that without any
post-processing (raw randomness) the generator has a good performance. Regarding
the entropy of the random data provided by the generator, we used a software utility
to calculate the entropy for input blocks of 4096 bytes. Recall the entropy formula
— > 0 pi X lgp;. In short, the test calculates the frequency of every possible value in a
byte (0 — 255) and then proceeds to apply the entropy formula. We had as a result for
the entropy value 7.948536 per byte. These results thus convinced us that the TRNG
provides adequate randomness.

50

5.3. OUR PHYSICAL TRNG DESIGN

Chapter 6

The Implementation of the Scheme

The way to be safe is never to be secure.

Benjamin Franklin

e designed and developed a software application that allows users to securely
W send and receive e-mails messages by using a prototype implementation of a
crypto-system in the limited access model. All the theoretical aspects and contribu-
tions were analyzed and tested through our implementation. The prototype covers
the whole system and it is meant as a proof of concept of the possibility of a future
practical and real implementation. As stated before, we know of a single work in this
direction as reported in [2]. We take that implementation as a starting point and fill
many gaps and develop a working prototype of the system. Our implementation gave
us the opportunity to analyze the model in terms of the implementational constraints,
and also allowed us to test the suitability of the chosen parameters in the functioning
of the system as described in Chapter 3.

In this chapter we describe the details of our implementation addressing the different
features required and the aspects to be concerned with in a real environment. Among
the different entities and algorithms which forms the model, we have implemented
the page reconciliation protocol which plays an important role in the security of the
scheme and our design of the protocol also helped to decrease the size of the initial
key. Our implementation was completely written in python[25] with the help of some
other software tools intended to provide a more realistic scenario, but users need only
to have in their computers the python interpreter in order to use the application. The
solution is divided into two basic modules: the psn system and the user client system,
which are explained in this chapter. Finally we performed some tests of the system
and argued about the efficiency and security of our implementation.

51

52 6.1. BRIEF DESCRIPTION OF THE SYSTEM

6.1 Brief description of the system

In order to simulate a real scenario, our implementation covers both the software for
the PSN side and the user client side. In contrast to the previous attempt as reported
in [2], we built a physical random number generator (being used by every PSN in
the model) in order to provide true random bits to users and not pseudo-randomness
which is not suitable anymore in this context.

As a summary, our implementation from the PSN point of view has the following
characteristics:

e The servers are always listening through an specific port in which they can com-
municate with the users.

e Every time a new page needs to be constructed, the required randomness is ex-
tracted from the TRNG connected to the server by an USB-serial interface.

e Pages are created only after the first request. And gets stored till the second
request and are destroyed there-after to preserve security.

e An eviction policy has been defined for those pages that has been served only
once and no new request has arrived to the server in a reasonable amount of
time.

e For this implementation we did not had access to multiple computers. We had
two physical computers where we have set up multiple servers using a virtu-
alization software tool called VirtualBox [26]. These virtual servers all have an
independent IP address and can independently listen and reply to user request.

The client software has been designed to allow users to easily and securely send e-mail
messages (of any length) to their contacts at any moment. Users can add all the contacts
they want, and the application has been built to internally manage all the features of
the model without requiring the participation of the client user. We now list the basic
features that we considered for our design of the application:

e Users can manage the contacts they desire to have registered in the client appli-
cation.

e There is an interface designed for composing new e-mail messages to the regis-
tered contacts.

e Users have an inbox meant to receive all the incoming e-mail messages from their
registered contacts. Also they can reply or forward received messages.

CHAPTER 6. THE IMPLEMENTATION OF THE SCHEME 53

The PSN system The user client system

virtualization of PSNs Cryptographic algorithms
MAC, one time pad scheme, page

reconciliation protocol, DH, etc.
. ' user—client interfatie persistency

shelve

objects
PSN |mplementat|on .
| Internal PageTable |
| Eviction policy | [Contacts manage o

Disk

| Composer, inbox
physical trng %

E-mail provider@
ﬁ i gmail, yahoo, etc.

Figure 6.1: Architecture of the prototype

o All data needed by the application is stored in the local computer, so persistency
is assured to all the users.

e A user does not need to stick to a single computer; if they happen to run the
application in another computer, they only need to copy the application folder
and everything will work without inconveniences.

e The application makes use of the user email account in order to send all the sys-
tem messages (i.e. encrypted messages, protocol messages, etc.).

e We have implemented the cryptographic algorithms and protocols needed by
the system to securely transmit the e-mail messages. We remark that we imple-
mented the page reconciliation protocol as was described in Chapter 3, where a
user (say Alice) starts the protocol by computing the foot prints of every down-
loaded page and sends them encrypted with one-time pad along with the corre-
sponding MAC tag. Then, the other user (Bob) receives the enciphered foot prints
and compared them with his own computed foot prints, so finally he construct a
list of the common pages between them.

In Figure 6.1 we present the architecture of the prototype implementation, depicting all
the elements involved in our development. Now, we describe in detail the PSN system
and the user-client system.

54 6.2. THE PSN SYSTEM

6.2 The PSN system

As pointed out before, this part of the development has been done using python [25].
For our tests, an instance of the physical TRNG explained in Chapter 5 is connected to
the PSN by the USB-Serial port. Moreover, the python program reads the port every
time a new random page is required. Our implementation allows users to communi-
cate with a PSN through a TCP socket on a selected port. In our case, the number of
this port is always 17078 but it could be some other agreed number above 1024.

For running this python application, a server that will be acting as a PSN will have
no special requirements. In fact it only needs enough memory to hold the maximum
amount of pages allowed for every PSN which is 2'® as pointed out in the choice of
parameters section in Chapter 4. Moreover, this server does not need graphic inter-
face, so a lightweight installation of any distribution of Gnu/Linux (we recommend
Slackware for instance) will do along with the python interpreter.

So, as a starting point the application checks the connection with the USB-Serial port
to be prepared with the construction of random pages. Also, it creates a TCP socket
object and binds it to the corresponding IP address and port, and at this point it is ready
to receive requests from the users.

Each time a user wants to request a page from a selected PSN, (s)he sends the page
identifier (16 bits long) through the TCP socket. The random bytes are then sent back
to the user through the open TCP socket. It is important to specify that for every
request (which may come from many different users), a new connection must be done
with the PSN. We now describe the procedure followed by the server every time an
user requests a page of random data to any PSN:

e Since the server is always listening for connections, when a new one arrives then
in background it starts to work.

e First, it checks internally in the PageTable stored in its memory for a page associ-
ated with the incoming page identifier.

e If found, then it proceeds to internally delete the page and its identifier and re-
turns back the randomness.

o If not found, then issues the execution of the genNewRandPage method for gener-
ating a new page out of the randomness provided by the TRNG connected to the
USB-Serial interface.

e Finally the random page is returned to the user through the established connec-
tion. In our development, this procedure is performed in packets of 32 bytes each
until the total 4096 bytes are delivered.

CHAPTER 6. THE IMPLEMENTATION OF THE SCHEME 55

TRNG PSN Clier

listening
w

checking
PageTable

if not found sending if found

AU 45

[

retrieving random pagse

\174

sending newly page

Figure 6.2: The time line during a page request to any PSN

This procedure has been depicted in Figure 6.2. Also, an eviction policy regarding
stale pages has been implemented. In this regard, if a page which has been served-
only-once has not been again requested in 24 hours, then automatically the page is de-
stroyed along with its identifier from the PSN internal memory. This policy is needed
to minimize the threat of denial of service attacks. In terms of implementation, two
simple classes have been written in python code (this code can be seen in Appendix 1)
and they are explained below:

e The class PSNEngine. This class is in charge of the internal PageTable man-
agement, keeping track of every page served-only-once and its timestamp for
the eviction policy. It has special methods for performing the connection to the
TRNG and reading the port, the generation and grouping of the bytes in a sin-
gle page, the daemon for the eviction duty and the management of the internal
PageTable.

e The class PSNListener. This class is meant to create the socket connections for
the communication with the clients, being always ready listening for incoming
requests. This class works along with the previously explained class for serving
the randomness. Then, this class after receiving the random data from the class
PSNEngine delivers directly the page to the corresponding user.

56 6.3. THE USER CLIENT SYSTEM

Finally, we also measured the average time elapsed in a local network when a user
request and receives a new page generated by a PSN. After performing 100 tests, our
average measure is 35 ms.

6.3 The user client system

The user client system has also been written in python with pyqt4 [27] for the user
interface. The system lets parties communicate securely with an easy-to-use interface.
All a user needs is to have an email account (like gmail) and can register all the parties
that (s)he wants to communicate with. Later, (s)he can send e-mail messages securely
with the contacts. In this sense, it is important to point out that only registered contacts
will possibly communicate with the user.

In this section we now describe the functionality of our implementation regarding the
software to be run in the client side of the encryption scheme. Later we will discuss
the implementational details of the application.

6.3.1 The functionality of the application

Every time a user desires to communicate securely through our encryption scheme in
the limited access model, it is only necessary to start a simple and friendly python
program from a text-based console or by the graphic environment. There are only two
requirements in the user side to run the application, which we state as follows:

o the python interpreter. Since all the instructions has been codified using the python
programming language.

e the gt bindings. Since the graphical user interface of our application has been
developed using this application framework.

Once these requirements are completed and the user has started the application, a lo-
gin form will appear asking for a valid e-mail account along with the corresponding
password. As it might be seen, this is necessary because the application will be using
this communication medium in order to send and receive all the system messages asso-
ciated with the encryption scheme. Otherwise, the application will not allow any user
to connect with it. Different users can login with different accounts in the same com-
puter. The application has capability to manage the different files for every possible
user.

After logging in, the principal window of the application will show up as seen in Figure
6.3. This main window is composed of the following elements:

CHAPTER 6. THE IMPLEMENTATION OF THE SCHEME 57

] %, - secure email application :: rene.henrig g il.com v ~ »®
rene.henriquez@gmail . com
Search
Compose From Subject Date
33 ;infom—naticauesfmo@gma‘.. inew secret rules... Mon Jul 5 15:54:42 2010
Reply i :
2 |informaticauesfmo@gma... |here it goes... Mon Jul 5 15:43:57 2010
Eoskerd 3 informaticauesfmo@gma... test Fri jul 2 14:49:04 2010

Delete

Manage Contacts
View Notifications |

Verbose

Close

Figure 6.3: The main window of the client application

e The inbox pane. This element will show chronologically (starting from the newest
one) all the incoming messages from all the registered contacts of a user. Each
row represents a single message and it shows information about the user who
sent the message, the subject of the incoming e-mail and the received date.

o The search bar. Users can search for messages stored by the client application by
simply entering some text in the field to the left of the search button. This text will
try to be matched by the application in order to find possible messages related to
the search string written by the user. If there are multiple messages returned by
the search mechanism, then a grid with the possible messages will be presented
to the user for selecting one of them.

o The buttons pane. This is a set of options for actions over incoming messages
(reply, forward and delete) as well as to create new ones (compose). Moreover,
there is the option for the management of the contacts and two special windows,
one for viewing notifications of unregistered contacts who wants to get in touch
with the user, and the other for viewing the verbose of the application session.

58 6.3. THE USER CLIENT SYSTEM

K - New secure mail

To: sonia.henriquez@gmail.com | sonia

Subject: The secret decissions of the last meeting

Here I'm listing to you all the important points

| Send secure | | Discard |

Figure 6.4: The mail composer window of the client application

Composing a new message

Every time a user needs to create and send a new message securely to one of the con-
tacts, first it is necessary to click in the Compose button part of the buttons pane. Right
away, a simple window as the one depicted in Figure 6.4 will appear for allowing the
user to compose the new message. As seen in Figure 6.4, it is only necessary to fill up
the fields of the subject and body of the new e-mail. After these fields are completed,
the user needs to click the Send secure button at the bottom of the window. Starting from
that point, the application will start to perform all the tasks involved in the model to
communicate securely with the selected contact.

Visualization and actions over the messages

The client side application is in charge of safely performing all the tasks required to
receive every message from any of the previously registered contacts. In this regard,
again the user needs not to worry about anything related to the cryptographic function-
alities since everything is done by the application. Thus, all the decrypted messages
that appear in the inbox pane can then be viewed by the user by just double clicking
the desired message. Now it is possible to see the complete e-mail body along with the
subject and the received date. Moreover, the user can also reply that e-mail right away

CHAPTER 6. THE IMPLEMENTATION OF THE SCHEME 59

K - Received

Message data Reply | Forward |

To: -;5onia.henriquez@gmail.com | sonia |

Subject: Fwd: new secret rules...

~
| Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec lectus nulla, I
sagittis sed lobortis ac, aliquet rhoncus nunc. Vivamus rutrum elit ac ligula {’
~
~

| ultrices dictum. Nullam volutpat sem cursus guam pharetra sollicitudin.
| Morbi non tortor tellus, id rhoncus arcu. Lorem ipsum dolor sit amet,
| consectetur adipiscing elit. Aenean at mauris vitae nulla gravida
Email body: | scelerisque. Nam pulvinar vehicula aliqguam. Etiam ac nulla sed neque
| laoreet rutrum. Fusce euismod eleifend lobortis. Aliguam porta facilisis
! risus, non gravida velit volutpat ut. Curabitur dapibus, augue vel viverra
| adipiscing, nisl arcu sagittis nisi, ac auctor mauris purus et diam. Praesent
i ut mauris guis leo aliquet varius.
| Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris scelerisque
| mauris ornare erat tempor at auctor arcu pulvinar. Aliguam erat volutpat. In |
i eget libero eget sapien lacinia accumsan a at tortor. Nulla turpis dolor,

L malasuada id tristinue af _auctor su linuka Nnnpe ultricies nolvinar manna

| Forward secure |
e

| Close window

Figure 6.5: The received message viewer window of the client application

or forward it securely to another of the registered contacts as seen in Figure 6.5. Also,
any message can be deleted forever by first selecting it from the inbox pane and then
clicking the Delete button.

Management of contacts

Since all messages have to be exchanged only between the contacts registered in the
application, then a way for their management is needed. For this purpose, our imple-
mentation has a specific interface in which it is only necessary to add the contact name
and email address in order to register successfully. The application takes care of not
letting the user register the same account twice so the integrity in the management of
the data is assured. Also, it is possible to modify the data of any already registered
contact as well as delete it. This window can be seen in Figure 6.6.

Other functionalities

It is possible that a non-registered contact tries to communicate and sends a message to
the connected user. In this sense, the application will detect that the incoming message
belongs to a person not present in the contact list and will notify of this to the connected

60 6.3. THE USER CLIENT SYSTEM

Contact Name: jorge

Contact Address: [gjorgeinx@gmail.com] | Add Contact |

Contact Name Contact Address

1 sonia | sonia.henriguez@gmail.com ‘

2 |informatica 5informati[auesfmo@gmail.com
l Delete selected contact
| Close window |

Figure 6.6: The contacts management window of the client application

user. Then he can decides to accept and register this new contact or just ignore the
notification. Also, there exist an option for viewing the verbose of the application
having the opportunity to monitor or check all the activities that the application is
performing. This is important since we have pointed out that users do not need to get
involved regarding the execution of cryptographic protocols, but still (s)he can check
out the status of the application.

6.3.2 Structure of the Software Implementation

The solution has been structured into different python classes, where each class repre-
sent a window in the client application. This modularization of the the client applica-
tion has brought benefits for simple management of the whole system. Moreover, for
maintaining storage and persistence of the data involved we use the so-called python
shelve objects', which provides the required storage features without depending on
complex database management systems. Then, these persistence key-value-like ob-
jects increase the portability of the client software since no more dependencies than
the python interpreter are needed. Thus, it is a lightweight software. If it is necessary
to port the application along with the stored data to a different computer, it can be

http:/ /docs.python.org/library/shelve.html

CHAPTER 6. THE IMPLEMENTATION OF THE SCHEME 61

easily realized by copying the application directory to the new location.

EmailClientGui class

The core of the implementation resides in this class which is responsible of managing
the main application window. This class performs a variety of different tasks like being
aware of incoming requests, performing decryptions, manipulating and discarding the
already used keys among many other duties. We describe now the most important
methods of the class:

o callbackSetText. Every time a user has logged in successfully to the application,
this method will be executed. It is in charge of storing the received objects from
the logging phase (like the user connection to the email account), the creation of
the cryptographic tool objects, the initialization of the shelve objects and threads
needed to check for new messages coming from the contacts.

e searchMail. This method performs a search through the received and stored e-
mails by using a text phrase entry by the user. If it encounters many options, a
window with all of them will appear for the user to select the right one.

o deleteAction. This procedure will be triggered every time a user decides to delete
a received message forever.

e checkAccount. This method checks the inbox of the user email account, for new
system messages identified by special e-mail headers recognized by the applica-
tion.

o mailDaemon. This method schedules the execution of the checkAccount method.

o initDiffieHellman. If two contacts wish to communicate and they do not agree
yet on an initial key, then this method is performed for an initial key exchange
request to the other party. This method makes use of the crypto tools codified
for our implementation. Also, this key exchange message is sent with an special
header called X-Lam-Message with code 100.

o replyDiffieHellman. This method is executed after receiving a message with code
100 and performs the last part of the Diffie-Hellman protocol for the initial key-
exchange. This message travels with the code 200 in the header X-Lam-Message.
When this message has been received in the client application of the other party,
the method finalizeDiffieHellman is executed so now users will be ready to start
the limited access model protocols.

o initSecureEngine. This method is performed before starting the connection to the
PSNs for requesting the randomness. It checks the length of the message to be ex-
changed in order to know how many random bytes will be needed for encrypting

62

6.3. THE USER CLIENT SYSTEM

with one-time pad scheme. After this, then it start the connection with the ran-
domly selected PSNs from the common list of servers hold among the users of
the system.

requestPsnBytes. It is executed by receiving messages with codes 300 and 400 in
the X-Lam-Message header. This method is used to make the connections to the
PSNis for requesting the pages of random data that will be used later to form the
one-time pad. These requests are performed by threads saving some time for
downloading the randomness. Also, here it is computed the tag of every page by
using the MAC function which is part of the application crypto tools. Per every
tag, it only takes the last 32 bits. After this process, one of the users starts the page
reconciliation protocol by sending a message with code 500 in the X-Lam-Message
header. This message with all the page tags travels encrypted with one-time pad
using part of the initial shared key.

connect2Psn. This is the procedure used by the threads mentioned in the method
above for connecting and retrieving the randomness from the servers. Per every
server connection, it tries twice to request the pages of random data. After these
two trials, if the connection could not be done then the NULL value is stored.

reconcilePages. This method receives the first reconciliation message for the down-
loaded pages of randomness. Basically, after decrypting the received message it
compares every foot print computed by the other party with the corresponding
page foot print computed locally. A list of the common indices is sent to the
contact in a new message with code 600 in the X-Lam-Message header.

checkReconciledMessage. 1t is executed for processing the second message in the
page reconciliation protocol, based on the received message it selects the common
page indices and form the final page. If there are enough bytes in the one-time
pad, it proceeds to encrypt. Otherwise, it starts a new round of connections with
the PSNs.

otpEncryption. This method is used for encrypting the plaintext that a user wish
to send with the one-time pad encryption scheme. It computes the bit-wise XOR
of the plaintext with the constructed pad. Then, this new message with the en-
crypted string is sent with code 700 in the X-Lam-Message header.

hyperEncryptedResponse. This procedure receives the encrypted message and pro-
ceeds to decrypt it with the shared long key. The newly received message is
shown in the inbox pane. Moreover, the bytes already used are discarded by this
method. A message of confirmation is sent with code 800 in the X-Lam-Message
header.

e finalizeHyperProtocol. This method finalizes the encryption scheme in the limited

access model. Here, with the confirmation message the client application knows

CHAPTER 6. THE IMPLEMENTATION OF THE SCHEME 63

that the other party received and decrypted the message, so now it can just dis-
card the used keys.

o createOtpPages. Method for creating new OTP final pages. This is done by using
the reconciled pages in groups of 30 pages. In this way, the initial key is updated
and the encryption/decryption bytes are increased.

StartApp class

This class implements the login window of the system where the users connect with
the client application. The class has a main method called signln which verifies the cre-
dentials of the e-mail account given by the user who is trying to log in. If the connection
to the email account of the user could be done, then the main application window is
loaded ready to use.

ComposerManagement class

This class provides the window for letting the users compose new messages to be sent
to a selected contact. In this window, it is only necessary to fill out the subject and body
fields and then click the corresponding send button. The first task that this class does
is to check if the users already share an initial secret key to start the protocols of the
limited access model. Otherwise, they issue the Diffie-Hellman protocol for an initial
key-exchange which will be performed only once.

ContactsManagement class

This class implements the contact management window. It has the following methods:
e fillContactsTable. Method that fills the contacts grid with all the registered data.
This data can be viewed, modified and deleted by the user.

e addContact. Performs the registration of a new contact, saving the username and
email account for future communications.

o modifiedDataHandler. 1t is triggered every time a user alter the data corresponding
to a selected user in the grid. It checks if an email account has not been repeated
for maintaining the integrity of the contacts information.

e delContact. This method performs the delete action over a selected contact.

64 6.3. THE USER CLIENT SYSTEM

ViewerManagement class

This class has been designed for allowing users to have a detailed view of any received
message in their inbox pane. In this regard, they can also perform actions like replying
the received e-mail or forward it to a new registered contact. The first task that these
class does is to check if the users already share an initial secret key to start the protocols
of the limited access model. Otherwise, they issue the Diffie-Hellman protocol for an
initial key-exchange which will be performed only once.

ImapServerConn class

Since there is a strong necessity of connecting periodically to email accounts for re-
trieving and sending e-mails so we have implemented this class for providing all the
necessary methods that facilitate the tasks of the application. The class has the follow-
ing methods:

o imapConnect. It tries to connect to the mail server of the user email account with
the corresponding credentials.

o getlmapStatus. It returns the status of the connection performed by the method
above.

o getNewMessages. This method is used by the application to check and retrieve
new messages (but only those who belong to the system by checking the presence
of the X-Lam-Message header) from the user email account.

o getEmailFields. This method helps for extracting the required fields for every mes-
sage retrieved from the email account. Specifically, it extracts the from, subject and
body fields.

o deleteEmail. It performs the delete action over a selected e-mail. This is necessary
since every message processed by the scheme is not useful anymore.

SmtpServerConn class

This is a tiny but useful class employed for sending all the messages that take place
during the execution of the different methods in the whole system. Basically, it sets
the headers from, subject, body and also the X-Lam-Message new header. Then, it per-
forms all the steps needed to communicate with the SMTP server and finally sends the
message.

CHAPTER 6. THE IMPLEMENTATION OF THE SCHEME 65

GaloisFieldArithmetic class

This class has been implemented for performing arithmetic operations in binary fields,
which are needed for cryptographic functions like the MAC algorithms required by
the protocols in the limited access model. This class has the following useful methods:

e binaryAddition. The basic binary addition is performed by this method, taking as
input parameters the two operands as binary strings and giving as output the
resulting addition.

e int2bin. This method convert an integer value into its binary representation.

o karatsubaOfmanMultiplier. Since the information theoretically secure MAC algo-
rithm employed in our development calls for polynomial multiplications with co-
efficients in the binary field, then we have implemented the renowned Karatsuba-
Ofman multiplier. It takes two operands each of 128 bits long and gives as a re-
sult the corresponding multiplication. Also for the computation of foot prints
performed by the Poly function, it takes operands of 32 bits long each and gives
the result of the multiplication.

o polynomialReduction. Since the multiplication will output an element outside the
desired extension field (GF[2'%%]) then a reduction must be done. In our imple-
mentation, this is performed by using the irreducible polynomial 2% + 27 + 2% +
x + 1 for computing Poly, ().

CryptographicTools class

This class implements the secure MAC and the Diffie-Hellman protocol. The secure
MAC makes use of the arithmetic provided by the GaloisField Arithmetic class explained
above. In the case of the key-exchange protocol, it performs exponentiations in the
prime field arithmetic by using the add and multiply method.

6.4 Testing the system

The user client application was run in many laptops and desktop in which many users
provided an e-mail account, and the prototypical implementation was tested by send-
ing and receiving e-mail messages. The goal was to use and test the different appli-
cation features described in the previous section. The application was run in the local
area network (LAN) of our Computer Science Department.

66 6.4. TESTING THE SYSTEM

We observed and measured the time required by the whole system to deliver the e-
mail messages sent among the users. This is an interesting aspect to analyze since in
the performance of the model there are many entities involved (i.e. the PSNs, the run
of protocols and algorithms, etc.) as we shown before. This complex structure of the
protocol can have a dramatic impact on the amount of time needed to encrypt and de-
crypt an e-mail message with the scheme. For example, for messages of 12, 000 bytes it
took on average between 4 and 5 minutes to get delivered by the other communicating

party.

We are aware that these timings are not efficient and of course they will increase as
the size of the e-mail messages increase. But the performance of the system can be
improved significantly with the following ideas:

e Changing the programming language for the implementation. Instead of using
the interpreted language python we can use the more efficient C language.

e Itis possible to improve the Poly and MAC functions which are widely use in the
page reconciliation protocol, by not only implementing better algorithms for the
tinite fields operations but also by codifying in assembly code.

e Perform the parallelization of some operations (like the request of pages to the
PSNs in every round, where n pages are requested to n different servers).

The last idea has been implemented in our case, by using python threads. Still, we
know there are other parallelization options that work more efficiently than threads.
We also tested the security of the system in the scenario where a fraction of PSNs were
compromised, delivering dangerous data to the users posing a threat to the system.
These PSNs were virtualized in another machine, acting as available PSNs to the users.
The servers were receiving request, and they served different pages to the users so they
would not be able to reconciliate properly, and so decreasing the number of commonly
shared pages. We had tests in which 25 PSNs were running and 5 of them were com-
promised, following the limited access model assumption. In this regard, we could
practically notice how the system still worked out well even when some of the servers
were injecting compromised data in the network.

Chapter 7

Conclusions

The one unchangeable certainty is that nothing
is certain or unchangeable.

John F. Kennedy

In this chapter we point out the achieved results in our work and the conclusions re-
garding the analysis of our implementation. Moreover, we propose some directions
for future work.

7.1 Conclusions

This work presented the analysis regarding a practical implementation of a crypto-
system that can provide information theoretic security in the limited access model. We
were interested in exploring how to overcome the natural drawbacks of information
theoretically secure schemes, by analyzing and modifying the components involved in
the limited access model toward a realistic implementation.

The importance of the project lies in the possibility of a practical provably unbreakable
encryption scheme in which we are neither making any assumptions regarding the
computational capabilities of an adversary nor the computational complexity of any
mathematical problem as modern schemes used nowadays do.

The prominent contribution of this work is the precise description of every entity and
algorithm associated with an encryption scheme in the limited access model, such that
they are amenable for a prototypical implementation of a practical crypto-system with
the appeal of everlasting secrecy characteristic.

Even though there exist a previous attempt of a practical implementation [2], that work
presents many gaps with many interesting parts left open for possible improvements
or redefinements. Thus, we took the implementation in [2] as a starting point and filled
many of these gaps developing a working prototype of the system.

67

68 7.2. FUTURE WORK

Furthermore, we showed modifications in the page reconciliation protocol which is an
important component of the system and proposed reasonable values for the various
parameters involved in the model, improving in the security of the system. This also
resulted in a dramatic decrease of the initial key length.

We also argued regarding the security of the scheme, pointing out possible vulnera-
bilities and pitfalls that can be exploited by an adversary and then presented counter-
measures of how our system can protect itself against those vulnerabilities, justifying
the various choice of parameters made previously.

Additionally, we described the design of a simple but efficient random number gen-
erator which plays an important role in the system, since this generator is supposed
to be embedded in every Page Server Node for providing the required randomness
to the users. Finally, we presented the prototypical implementation of our encryption
scheme in the limited access model.

Our work can be seen as a step forward towards a practical system in the limited ac-
cess model. Though we claim improvements over [1] and [2] but we still do not claim
that this scheme can be widely deployed and replace existing schemes. Computational
security as provided by modern cryptographic algorithms are in most practical cases
sufficient and there are various kinds of crypto-systems which till date are considered
secure. The model and the encryption scheme described in this thesis is no doubt
much more complicated than popular existing schemes and has characteristics which
are very different from existing schemes. Though the security of the scheme does not
depend on computational assumptions but it does depend on a strong assumption on
the existence of the PSN network and the inability of the adversary to control the whole
network. Though this seems to be a feasible assumption given the current state of tech-
nology but this assumption is far less studied than the assumption that "factorization
is hard". So, to conclude we think we have made a significant advance in analyzing
a non-conventional crypto-system and have shown evidence of the practicality of the
limited access model and the encryption scheme under the model.

7.2 Future work

We note down below some directions of future works in the area of the thesis:

1. A deep cryptographic analysis of the cryptosystem is required to find out vulner-
abilities present in the system. We have pointed out certain vulnerabilities but
there may exist more which we failed to detect.

2. A unified security definition of the protocol is missing. If such a definition can be
given then one can try to work out a security proof for the whole protocol. Such a

CHAPTER 7. CONCLUSIONS 69

proof would increase our confidence over the scheme and additionally may help
to refine the parameters involved.

3. The implementation that we did is purely prototypical. We chose python as
our target language to reduce the over-head of development thus sacrificing ef-
ficiency. We believe that a much more efficient implementation of the protocol is
possible which we would like to attempt in future.

70

7.2. FUTURE WORK

Appendix A

The PSN Implementation

In n this appendix we show the code we have written for our Page Server Node im-
plementation. The PSN program has been written in the python programming lan-

guage.

#!/usr/bin/python
—x— coding: iso —8859—-1 —x—

#

psn.py

#

Implementation for a Page Server Node using a

physical true random number generator, via serial port.
#

Rene E. Henriquez G.

29/03/2010

#

import socket
import struct
import threading
import datetime
import sched
import time

class PSNEngine:

nmmnn

mmon

71

dbPages = {}
randSource = None
maxDbSize = 1000
timeFrame = {}

def __init__(self):

mnn

mnn

self .randSource = open(’/dev/ttyUSBO’", ’r”)
tep = threading.Thread(target=self.evictPagesDaemon)
tep.start ()

def genNewRandPage(self):

mnn

mnn

v

newPage =
randomness =
randomness = self.randSource.read (4096)
for rbyte in randomness:

newPage += chr(struct.unpack(’B’, rbyte)[0])

77

return newPage

def evictStalePages(self):

mnn

mnn

tempDict = dict(map(lambda item: (item[1], item[O]),
self .timeFrame.items ()))
timeList = sorted (tempDict. keys())
currentTime = datetime.datetime .now ()
for arrivedTime in timeList:
if (currentTime — arrivedTime).days >= 1:
keyPage = tempDict[arrivedTime]
del self.dbPages[keyPage]
del self.timeFrame[keyPage]
else:
break

def evictPagesDaemon(self):

mnn

APPENDIX A. THE PSN IMPLEMENTATION 73

mnn

scheduler = sched.scheduler (time.time, time.sleep)
time . time ()
scheduler.enter (90000, 1, self.evictStalePages, ())
while 1:

scheduler.run()

time.sleep (10)

scheduler.enter (90000, 1, self.evictStalePages, ())

def serveRandPage(self , keyPage):

mnn

reqPage = self.dbPages.pop(keyPage, None)
if reqPage is None:
self.dbPages[keyPage] = reqPage = self.genNewRandPage ()
self .timeFrame[keyPage] = datetime.datetime .now ()
if len(self.dbPages) > self.maxDbSize:
self .dbPages.popitem ()

else:
del self.timeFrame[keyPage]
print "served and destroyed"

return reqPage

class PSNListener:

mnmmon

psnPort = 17078
psnlp = 7’
def listenOnPort(self):

mnn

mnn

print "Initializing psn resources..."
psnDb = PSNEngine ()

s = socket.socket(socket.AF_INET, socket.SOCK STREAM)
s.setsockopt(socket .SOL_SOCKET, socket.SO REUSEADDR, 1)

74

if

__name__ == ’'__main__

s.bind ((self.psnlp, self.psnPort))
s.listen (5)

print "Psn ready! Listening through port 17078..."

while 1:
(conn, addr) = s.accept()

try:
cKey = conn.recv(4)
rndData = psnDb.serveRandPage (cKey)
for i in range(128):
conn. sendall (rndData[i*32:(i%32)+32])
conf = conn.recv (2)
except:
conn. close ()
s.close ()
s = socket.socket(socket.AF_INET, socket.SOCK STREAM)
s.setsockopt(socket .SOL_SOCKET, socket.SO REUSEADDR, 1)
s.bind ((self.psnlp, self.psnPort))
s.listen (5)
continue

s 7.

server = PSNListener ()
server.listenOnPort ()

Bibliography

[1] Michael O. Rabin. Provably unbreakable hyper-encryption in the limited access
model. IEEE Information Theory Workshop on, pages 34-37, Oct. 2005.

[2] Jason K. Juang. Practical Implementation and Analysis of Hyper-Encryption.
Master of engineering in electrical engineering and computer science, Mas-
sachusetts Institute of Technology, Department of Electrical Engineering and
Computer Science, 2009.

[3] C. E. Shannon. Communication theory of secrecy systems. Bell System Technical
Journal, 28:656-715, 1949.

[4] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure randomized
cipher. J. Cryptology, 5(1):53-66, 1992.

[5] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution
and coin tossing. In Proceedings of the IEEE International Conference on Computers,
Systems, and Signal Processing, Bangalore, India, pages 175-179. IEEE Computer So-
ciety Press, 1984.

[6] Yonatan Aumann, Yan Zong Ding, and Michael O. Rabin. Everlasting security in
the bounded storage model. IEEE Transactions on Information Theory, 48(6):1668—
1680, 2002.

[7] Erkay Savas and Berk Sunar. A practical and secure communication protocol in
the bounded storage model. In Pascal Lorenz and Petre Dini, editors, ICN (2),
volume 3421 of Lecture Notes in Computer Science, pages 707-717. Springer, 2005.

[8] Michael O. Rabin. Hyper encryption and everlasting secrets. In Rossella Petreschi,
Giuseppe Persiano, and Riccardo Silvestri, editors, CIAC, volume 2653 of Lecture
Notes in Computer Science, pages 7-10. Springer, 2003.

[9] Danny Harnik and Moni Naor. On everlasting security in the hybrid bounded
storage model. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo
Wegener, editors, ICALP (2), volume 4052 of Lecture Notes in Computer Science,
pages 192-203. Springer, 2006.

75

76 BIBLIOGRAPHY

[10] Chi-Jen Lu. Encryption against storage-bounded adversaries from on-line strong
extractors. J. Cryptology, 17(1):27-42, 2004.

[11] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chapman
& Hall/Cre Cryptography and Network Security Series). Chapman & Hall/CRC, 2007.

[12] http://en.wikipedia.org/wiki/One-time_pad.

[13] Yan Zong Ding and Michael O. Rabin. Hyper-encryption and everlasting security.
In Helmut Alt and Afonso Ferreira, editors, STACS, volume 2285 of Lecture Notes
in Computer Science, pages 1-26. Springer, 2002.

[14] Stefan Dziembowski and Ueli M. Maurer. Optimal randomizer efficiency in the
bounded-storage model. . Cryptology, 17(1):5-26, 2004.

[15] Stefan Dziembowski and Ueli M. Maurer. On generating the initial key in the
bounded-storage model. In Christian Cachin and Jan Camenisch, editors, EURO-
CRYPT, volume 3027 of Lecture Notes in Computer Science, pages 126-137. Springer,
2004.

[16] Seymour Lipschutz and Marc Lipson. Schaum’s outline of Probability; 2nd Edition.
Schaum'’s outline. McGraw-Hill, New York, NY, 2000.

[17] Daniel J. Bernstein. The poly1305-aes message-authentication code. In Henri
Gilbert and Helena Handschuh, editors, FSE, volume 3557 of Lecture Notes in Com-
puter Science, pages 32-49. Springer, 2005.

[18] Wolfgang Killmann and Werner Schindler. A design for a physical rng with ro-
bust entropy estimators. In Elisabeth Oswald and Pankaj Rohatgi, editors, CHES,
volume 5154 of Lecture Notes in Computer Science, pages 146-163. Springer, 2008.

[19] Berk Sunar, William J. Martin, and Douglas R. Stinson. A provably secure true
random number generator with built-in tolerance to active attacks. IEEE Trans.
Computers, 56(1):109-119, 2007.

[20] Shashi Prashanth Karanam. Tiny True Random Number Generator. Master of
science, George Mason University, Department of Electrical and Computer Engi-
neering, 2006.

[21] http://www.cryogenius.com/hardware/rng/.

[22] C.E.Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27:379-423,623-656, July, October 1948.

[23] Bruce Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and source code
in C, on page 425. John Wiley & Sons, Inc., New York, NY, USA, 1995.

BIBLIOGRAPHY 77

[24] A. Rukhin,]J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo. A statistical test suite for
random and pseudo-random number generators for cryptographic application.
NIST Special Publication 800-22, May 2001.

[25] http://www.python.org/.
[26] http://www.virtualbox.org/.

[27] http:/ /www.riverbankcomputing.co.uk/news.

