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The time will come when diligent research over long periods will bring to
light things which now lie hidden. A single lifetime, even though entirely de-
voted to the sky, would not be enough for the investigation of so vast a subject.
And so this knowledge will be unfolded only through long successive ages.
There will come a time when our descendants will be amazed that we did not
know things that are so plain to them. Many discoveries are reserved for ages
still to come, when memory of us will have been effaced. Our universe is a
sorry little affair unless it has in it something for every age to investigate. Na-
ture does not reveal her mysteries once and for all.

- Seneca, Natural Questions,
Book 7, first century

We do not ask for what useful purpose the birds do sing, for song is their
pleasure since they were created for singing. Similarly, we ought not to ask why
the human mind troubles to fathom the secrets of the heavens The diversity of
the phenomena of Nature is so great, and the treasures hidden in the heavens
so rich, precisely in order that the human mind shall never be lacking in fresh
nourishment.

- Johannes Kepler, Mysterium Cosmographicum





Dedico esta tesis a la memoria de mi madre, Tirsa,
a mi padre, Antonio, y a mis hijos, Adriana y Alfredo (Aristo).





A B S T R AC T

Optimization problems in many industrial applications are complex and a time
consuming engineering process, that involves the requirement of meeting sev-
eral design objectives and/or constraints. Most of the times this process is it-
erative. Optimal design in aeronautical/aerospace engineering is, by nature, a
multiobjective-multidisciplinary and highly difficult problem. Aerodynamics,
structures, propulsion, acoustics, manufacturing and economics, are some of
the disciplines involved in this type of problems. Even if a single discipline
is considered, many design problems have competing objectives. Advances in
areas such as computational modeling, offer the possibility of accelerating and
improving the design cycle by using automated design procedures. In conse-
quence, during the last three decades, the process of aeronautical/aerospace
engineering design has been clearly improved because of the dominant role
that computational simulations have played in these areas (e.g., Computational
Fluid Dynamics (CFD) simulations to perform aerodynamic analysis, Compu-
tational Structural Dynamics/Mechanics (CSD/M) through the use of the Finite
Element Method (FEM) to process structural analysis).

Additionally, Multi-Objective Evolutionary Algorithms (MOEAs) have gai-
ned popularity in recent years as optimization methods in aeronautical/aeros-
pace engineering design, mainly because of their simplicity, their ease of use
and their suitability to be coupled to specialized numerical simulation tools. In
spite of the considerable amount of research currently available on the use of
MOEAs for solving these types of problems, there exists a continuous need to
develop new MOEA techniques that can reduce the computational cost, mea-
sured in terms of the number of objective function evaluations, required for
solving the complex type of problems commonly found in these disciplines.

This thesis addresses the key issue of efficiency of MOEAs when used for
solving real-world multi-objective optimization problems, in particular for ae-
ronautical engineering optimization problems, such as the aerodynamic shape
optimization of two-dimensional airfoil sections, and/or wing section geome-
tries, or turbine blades. We present several techniques in this regard.

In a first approach, we proposed a novel MOEA based on the use of Differ-
ential Evolution, which is a metaheuristic with very good convergence proper-
ties that has been found to be very effective and efficient when solving single-
objective optimization problems, and that has been scarcely explored in the
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context of aeronautical/aerospace multi-objective optimization problems
(MOPs), as indicated from a corresponding review of the field. In our proposed
extension of Differential Evolution to solve MOPs, we incorporated two mech-
anisms for improving both the convergence towards the Pareto front and the
uniform distribution of nondominated solutions along the Pareto front. These
mechanisms correspond to the concept of local dominance and the use of an en-
vironmental selection based on a scalar function. Based on the experimental ev-
idence, we conclude that our proposed approach outperforms several state-of-
the-art MOEAs in solving numerical MOPs as well as in solving aerodynamic
shape optimization multi-objective problems (ASO-MOPs). Our approach was
also able to outperform an indicator-based MOEA with respect to the perfor-
mance indicator, used in its selection process.

In a second approach, we have designed and implemented a parallel ver-
sion of the first approach. The parallel implementation was based on the is-
land paradigm. This parallel approach was assessed using different numerical
MOPs and ASO-MOPs, and their results were compared against the corre-
sponding results obtained with its serial counterpart. From the experimental
results, we conclude that our proposed parallel approach is able to improve
efficiency in terms of its execution time, i.e., it is able to attain similar Pareto-
front approximations, with respect to those attained by its serial counterpart, in
less computational time.

Finally, and in order to further improve the efficiency of the two previously
proposed approaches, we designed and implemented in a third approach, a
surrogate-based multi-objective evolutionary optimization technique. This ap-
proach makes use of multiple surrogate models which operate in parallel with
the aim of combining their features when solving a costly multi-objective opti-
mization problem. Our proposal was tested in five ASO-MOPs from a defined
benchmark defined. From the results of this experimental study, we conclude
that this approach can produce a substantial reduction in the number of ob-
jective function evaluations performed, reaching savings of up to 75% with
respect to the same MOEA but not using surrogates.
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R E S U M E N

Los problemas de optimización en muchas aplicaciones industriales, son com-
plejos y requieren de un proceso de ingeniería que consumen mucho tiempo,
e involucran el satisfacer los requerimientos de múltiples objetivos y/o restric-
ciones. En muchas ocasiones, este proceso es iterativo. El diseño óptimo en
las áreas de ingeniería aeronáutica y aeroespacial, es de manera natural, un
problema multi-objetivo y multidisciplinario y muy difícil. Aerodinámica, es-
tructuras, propulsión, acústica, manufactura y economÃa, son algunas de las
disciplinas involucradas en este tipo de problemas. Aún y cuando se considere
una sola disciplina, muchos problemas de diseño poseen objectivos en con-
flicto. Los avances en áreas como el modelado por computadora, ofrecen la
posibilidad de acelerar y mejorar el ciclo de diseño, mediante el uso de pro-
cedimientos automatizados. En consecuencia, durante las últimas tres décadas,
el proceso de diseño en la ingeniería aeronáutica y aeroespacial, ha sido clara-
mente mejorado, debido al rol dominante que juegan las simulaciones por com-
putadora en estas áreas (por ejemplo las simulaciones de la Dinḿica de Flui-
dos Computacional (DFC) para realizar análisis aerodinámicos, y ls Dinámi-
ca/Mecánica Estructural Computacional (D/MEC) para la realización de análi-
sis estructurales).

Adicionalmente, los Algoritmos Evolutivos Multi-Objetivo (AEMOs) han
ganado popularidad en los últimos años como métodos de optimización em-
pleados en tareas de diseño en la ingeniería aeronáutica y aeroespacial debido,
principalmente, a su simplicidad, facilidad de uso, y su capacidad de ser fácil-
mente acoplados con herramientas de simulación numérica especializadas. A
pesar de la considerable cantidad de investigación disponible actualmente, so-
bre el uso de los AEMOs para la solución de este tipo de problemas, existe una
necesidad continua de desarrollar nuevas técnicas de AEMOs, que permitan re-
ducir el costo computacional, medido en términos del número de evaluaciones
de la función objetivo, requeridos en la solución de problemas complejos, en-
contrados comúnmente en estas disciplinas.

En esta tesis se aborda la mejora de la eficiencia de los AEMOs, cuando son
empleados en la solución de problemas de optimización multi-objetivo que se
presentan en el mundo real, en particular en problemas de optimización en la
ingeniería aeronáutica, tales como la optimización de formas aerodinámicas en
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perfiles aerodinámicos y/o secciones de ala, y geometrías de álabes de turbina.
En esta tesis se proponen varias técnicas en este sentido.

En un primer enfoque, se propuso un nuevo AEMO basado en el uso de
la metaheurística denominada Evolución Diferencial, la cual posee excelentes
propiedades de convergencia, además de haber mostrado ser bastante eficiente
y efectiva cuando se emplea en la solución de problemas de optimización con
un solo objetivo. Adicionalmente, como lo indicó la revisión del estado del
arte realizada, esta metaheurística ha sido poco explorada en el contexto de
la solución de problemas de optimización multi-objetivo en las áreas de dis-
eño en ingeniería aeronáutica y aeroespacial. En nuestra propuesta de exten-
sión de Evolución Diferencial, para la solución de problemas de optimización
multi-objetivo, se incorporaron dos mecanismos tendientes a mejorar, por una
parte, la tasa de convergencia hacia el frente de Pareto, y por la otra, a obtener
una buena distribución de soluciones a lo largo de la aproximación del frente
de Pareto. Estos mecanismos corresponden al concepto de dominancia local
y al uso de una selección de ambiente basada en funciones de escalarización.
Derivado de las evidencias experimentales, podemos concluir que nuestro en-
foque propuesto supera a varios AEMOs del estado del arte, en la solución
de problemas de optimización multi-objetivo numéricos, así como en la solu-
ción de problemas de optimización multi-objetivo de formas aerodinámicas.
Nuestro enfoque también es capaz de superar a un AEMO del estado del arte
que emplea un indicador de desempeño en su proceso de selección, cuando el
rendimiento de ambos algoritmos se mide con respecto a dicho indicador.

En un segundo enfoque, se diseñó e implementó la versión paralela del
primer algoritmo. Esta implementación se basó en el paradigma paralelo de is-
las. Este enfoque paralelo fue evaluado empleando diferentes problemas multi-
objetivo numéricos, así como de optimización de formas aerodinámicas, y sus
resultados fueron comparados contra los obtenidos con la versión serial del al-
goritmo. Derivado de los resultados experimentales, concluimos que nuestro
enfoque paralelo propuesto es capaz de mejorar la eficiencia en términos del
tiempo de ejecución, es decir, es capaz de alcanzar aproximaciones del frente
de Pareto similares a las obtenidas con la versión serial, pero en un tiempo de
cómputo inferior.

Finalmente, y con el fin de mejorar aún más la eficiencia de los dos en-
foques anteriores propuestos, se diseñó e implementó, en un tercer enfoque,
una técnica de optimización evolutiva multi-objetivo basada en el uso de meta-
modelos. Este tercer enfoque hace uso de múltiples meta-modelos, los cuales
operan en paralelo con el objetivo de combinar sus cualidades y ventajas, cuan-
do se emplean en la solución de problemas de optimización multi-objetivo que
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tengan un alto costo computacional. Este enfoque fue evaluado en cinco prob-
lemas de optimización multi-objetivo de formas aerodinámicas del conjunto
de problemas definido en esta tesis. Derivado de los resultados obtenidos en
este estudio experimental, concluimos que nuestro tercer enfoque propuesto es
capaz de producir una reducción sustancial en el número de evaluaciones de
la función objetivo, alcanzado ahorros de hasta un 75% con respecto al mismo
AEMO que no hace uso de meta-modelos.
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1
I N T RO D U C T I O N

1.1 P RO B L E M S TAT E M E N T

Optimization, by itself, is an important paradigm. It is also an essential part
of research, both in science and engineering. In these areas, there are many
cases where a research goal can be translated into an optimization problem. In
all engineering disciplines we are always trying to optimize a figure of merit.
i.e., whether to minimize the production cost and energy consumption for a
product, or to maximize its profit, output performance and efficiency. We can
state that in today’s engineering practice, resources are limited, and designs are
subject to many environmental and industrial constraints. In consequence, opti-
mization has become more relevant. The optimal use of the available resources
of any sort, requires a paradigm shifting in scientific thinking. This is due to
the fact that current real-world applications have far more complicated and in-
teracting factors and/or parameters that substantially affect the whole system
performance.

Environmental and industrial demands, have by large transformed the actual
process of design in science and engineering. The introduction of massive com-
puting power, as well as the advances of the computational modeling paradigm,
have motivated a shift from paper-based analytical system design towards dig-
ital models and computer simulations. Computer-aided design optimization is
now involved in a wide range of design applications ranging from micro elec-
tromechanical systems (MEMS) to large commercial airplanes and space sys-
tems. Computational modeling is considered as a third paradigm of modern
sciences, complementing the theoretical and experimental studies to problem
solving. When coupled to good search algorithms, computational modeling can
bring great benefits, leading to a successful optimization process.

With the development of ever increasing powerful optimization technique-
s, the research community is continually seeking new optimization challenges
and is trying to solve increasingly more complicated problems. In real-world
engineering problems, there are many areas in which designers are trying to
achieve several goals or objectives simultaneously. For instance, in the aero-
nautical/aerospace industry, given an aircraft’s mission and their respective de-
sign environmental operating conditions, some common objectives or goals to

1
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be minimized include aircraft’s weight, cost, and fuel consumption. While all
of these objectives are aimed to be minimized, at the same time, aircraft’s per-
formance and safety are goals or objectives to be kept at a maximum. From the
above, it can be observed that engineers are continuously solving the problem
of making trade-offs and producing designs that will satisfy as many require-
ments as possible, while industry, commercial and ecological standards are at
the same time getting ever tighter. This example clearly shows the concept of
Multi-Objective Optimization (MOO).

Even when many real-world optimization problems can be reduced to the
single-objective optimization case, very frequently it is difficult to capture all
aspects of the problem at hand when adopting a single objective. In contrast
to this latter approach, defining the optimization problem with multiple objec-
tives, very often helps designers to have a better idea of the engineering opti-
mization problem. Multiobjective optimization problems have been available
for more than two decades, and the Operations Research community has de-
veloped a variety of approaches to deal with them. However, such approaches
normally rely on specific assumptions and features of the problem, and in many
cases they are only applicable to continuous objective functions and constraints.
When dealing with complex real-world problems having, for example, very
large and accidented search spaces, it is necessary to use alternative techniques,
such as Evolutionary Algorithms (EAs).

MOO provides designers with trade-off solutions to choose from, in situa-
tions in which we aim to fulfill several (conflicting) objectives. The trade-off
solutions that are obtained by multi-objective optimization techniques are re-
ferred to as the Pareto optimal set and their corresponding objective function
values form the so-called Pareto front [41]. This sort of approach contrasts with
traditional design optimization techniques, which only produce one (the best
possible) solution without providing alternative choices to the designer.

Optimal design in aeronautical/aerospace engineering is, by nature, a multi-
objective-multidisciplinary and highly difficult problem. Aerodynamics, struc-
tures, propulsion, acoustics, manufacturing and economics, are some of the
disciplines involved in this type of problems. Even if a single discipline is con-
sidered, many design problems have competing objectives (e.g., to optimize a
wing’s lift and drag or a wing’s structural strength and weight). During the last
three decades, the process of aerospace engineering design has been clearly
improved because of the dominant role that computational simulations have
played in this area [133] (e.g., Computational Fluid Dynamics (CFD) simula-
tions to perform aerodynamic analysis [97, 101], and Computational Structural
Dynamics/Mechanics (CSD/M) through the use of the Finite Element Method
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(FEM) to process structural analysis [66, 234]). The increasing demand for op-
timal and robust designs, driven by economic and environmental constraints,
along with an increasing computing power, has improved the role of compu-
tational simulations, from being just analytical tools until becoming design
optimization tools.

In spite of the fact that gradient-based numerical optimization methods have
been successfully applied in a variety of aeronautical/aerospace design prob-
lems [140, 249, 148, 162, 90, 219] 1, their use is considered a challenge due to
many difficulties found in practice: The design space is frequently multimodal
and highly non-linear; evaluating the objective function (performance) for the
design candidates is usually time consuming; the complexity of the sensitivity
analysis in multidisciplinary design optimization increases as the number of
disciplines involved becomes larger; among many others.

Based on the previously indicated difficulties, designers have been moti-
vated to use alternative optimization techniques such as (EAs) [157, 169, 132,
54, 55, 178]. Multi-Objective Evolutionary Algorithms (MOEAs) have gained
an increasing popularity as numerical optimization tools in aeronautical and
aerospace engineering during the last few years [170, 171, 178, 7, 133]. These
population-based methods mimic the evolution of species and the survival of
the fittest, and, compared to traditional optimization techniques, they present
the following advantages: They are robust, provide multiple solutions per run,
are easy to parallelize and to hybridize, and, in some cases, are able to find
novel solutions.

1.2 M OT I VAT I O N

In spite of the considerable amount of research currently available on the use
of MOEAs for solving aeronautical/aerospace engineering optimization pro-
blems [10], there exists a continuous need to develop new MOEA techniques
that can reduce the computational cost, measured in terms of the number of ob-
jective function evaluations, required for solving the complex type of problems
commonly found in these disciplines.

The motivation of this research work arises from the need to solve in an ef-
ficient way, real-world multi-objective optimization problems (MOPs), in par-
ticular for aeronautical engineering optimization problems, such as the aero-
dynamic shape optimization of two-dimensional airfoil sections, and/or wing

1 It is worth noting that most of the applications using gradient-based methods have adopted
them to find global optima or a single compromise solution for multi-objective problems.
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section geometries, or turbine blades. The main interest in this particular type
of problems is that they are considered very important in the design of any
aircraft and propulsion systems, and are frequently coupled to optimization
problems on other areas such as structural optimization.

The main motivation of this thesis was precisely to design and implement
a new multi-objective evolutionary algorithm with an emphasis on efficiency.
Efficiency here refers to obtaining the highest possible quality of solutions, at
the expense of the lowest possible number of objective function evaluations.
In this regard, our research focuses on the use of Differential Evolution, which
is a metaheuristic with very good convergence properties that has been found
to be very effective and efficient when solving single-objective optimization
problems.

1.3 W O R K I N G H Y P OT H E S I S

From the previous paraghraphs, the main hypothesis for this research work is
the following:

A new multi-objective evolutionary algorithm can be designed and im-
plemented for its application in solving, more efficiently, aeronautical en-
gineering problems, namely, aerodynamic shape optimization problems.
In the design and implementation of this new MOEA, the use of efficient
metaheuristics, such as Differential Evolution or Evolution Strategies, as
well as the design of evolutionary operators and mechanisms, leading
to a more efficient design space exploration; will allow a reduction of
the computational cost associated with the number of objective function
evaluations, in the type of problems indicated above.

1.4 M A I N A N D S P E C I F I C G O A L S O F T H E R E S E A R C H W O R K

This thesis deals with the design of efficient MOEAs and their application to
the solution of real-world MOPs commonly found in aeronautical/aerospace
system design, namely aerodynamic shape optimization problems. We present
next the general and specific goals of this thesis.

1.4.1 Main goal

The main goal of this research work is to advance the state-of-the-art with
respect to the efficiency of MOEAs for solving real-world MOPs commonly
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found in the aeronautical/aerospace engineering disciplines. Particularly, we
are interested in solving aerodynamic shape optimization problems, but the
proposed approach can be extended to other areas of aeronautical/aerospace
engineering, and other engineering areas as well.

1.4.2 Specific goals

The specific goals of this thesis are the following:

• To gain a deep knowledge of the application of MOEAs when used for
solving aeronautical engineering problems. The aim is to identify possi-
ble improvements that lead us to the design of a new MOEA, which is
more efficient than state-of-the-art MOEAs used in this research field.

• To advance knowledge within evolutionary multi-objective optimization
by developing efficient search schemes, based on metaheuristics, having
good convergence properties, and by developing search techniques and
strategies for better exploring the design search space, present in aero-
nautical engineering problems.

• To design and implement a new MOEA that is robust and efficient
in solving aeronautical engineering problems, particularly aerodynamic
shape optimization problems. The aim of the proposed approach, is
that it will produce better Pareto front approximations than state-of-the-
art MOEAs, for a fixed and reduced number of objective function evalu-
ations.

• To validate the performance of the proposed approach. This validation
will be done with benchmarks taken, both, from the available test suites
in evolutionary multi-objective optimization, and from well known aero-
dynamic shape optimization problems found in the specialized literature.
Performance will be assessed using measures usually adopted in the evo-
lutionary multi-objective optimization literature.

1.5 D O C U M E N T O R G A N I Z AT I O N

This thesis is organized in 9 chapters. Besides this introductory chapter, the
next two chapters are used to present general and background concepts, re-
quired, on the one hand, to make this document self-contained, and, on the
other hand, to support the contents of the following chapters.
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In Chapter 2 we include a general introduction to MOO, and we present the
formal definition of Pareto dominance and Pareto optimality. In the second part
of Chapter 2 we give a brief description of common approaches used to solve
MOPs.

In the first part of Chapter 3, we present general concepts of MOEAs and we
give a brief description of the main characteristics of several state-of-the-art
MOEAs. They are classified as non Pareto-based, Pareto-based, and Indicator-
based MOEAs. Also, we present other metaheuristics that can be considered
MOEAs and that have been recently developed. In the second part of Chap-
ter 3 we present general concepts of parallel MOEAs. We include this section
because in one of our proposals we make use of the island-based parallel ap-
proach.

In Chapter 4 we present a description of the design process, as implemented
in aeronautical/aerospace engineering. Next, we present a review on the use
of MOEAs, when applied to the design process of aeronautical/aerospace en-
gineering problems. In this review we highlight the type of MOEAs used, the
type of MOPs solved, as well as the operators commonly used. In the final
part of this chapter we present some remarks on the use of MOEAs, identi-
fying five main types of approaches when implementing MOEAs in aeronauti-
cal/aerospace engineering: (1) surrogate-based optimization, (2) hybrid MOEA
optimization, (3) robust design optimization, (4) multidisciplinary design-opti-
mization, and (5) data-mining and knowledge extraction.

Chapter 5 is devoted to present our proposed MOEA approaches. In this
chapter we present two approaches. The first, called MODE-LD+SS, is a MO-
EA that adopts the evolutionary operators from differential evolution. Addition-
ally, the proposed algorithm incorporates two mechanisms for improving both
the convergence towards the Pareto front and the uniform distribution of non-
dominated solutions along the Pareto front. These mechanisms correspond to
the concept of local dominance and the use of an environmental selection based
on a scalar function. The second approach corresponds to pMODE-LD+SS,
which is a parallel MOEA, based on the serial version of MODE-LD+SS, and
on the island pMOEA paradigm.

Next, in Chapter 6, we describe the experimental setup used to evaluate the
performance of our proposed approaches. In this experimental setup we de-
scribe the test MOPs used from the available literature, and we provide the
definition of seven aerodynamic shape optimization problems, similar to those
found in the aeronautical engineering literature. Additionally, we also describe
the quality indicators selected for assessing the performance of our proposed
approaches and for comparing them with respect to state-of-the-art MOEAs.
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In Chapter 7 we present the results of applying the different proposed MOEA
approaches, namely MODE-LD+SS and pMODE-LD+SS, for solving the se-
lected test MOPs defined in Chapter 6. We also apply them to the aerodynamic
shape optimization MOPs previously defined. In all cases, the performances
obtained with our approaches are compared to those obtained by state-of-the-
art MOEAs.

In Chapter 8, we present a third proposed approach consisting of a surro-
gate method, which is designed to be used in the context of MOEAs. The
proposed approach is evaluated, by solving five different aerodynamic shape
multi-objective optimization problems defined in Chapter 6. Its performance
and its results are compared against those obtained with the serial version of
our proposed MODE-LD+SS.

Finally, Chapter 9 provides the main conclusions of this thesis, as well as
some possible paths for future research.
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2
M U LT I - O B J E C T I V E O P T I M I Z AT I O N

2.1 I N T RO D U C T I O N

Optimization is a common task in many engineering and scientific disciplines.
We conceive optimization as a search process in a problem, by means of which,
we are willing to attain the best result for it, given some figure of merit or
performance, prescribed operating conditions and/or constraints. For example
in engineering design, common goals are to minimize the production cost or to
maximize the desired benefit. It is usual in any optimization process to define
the problem in terms of some decision variables, which comprise the vector of
decision variables ~x, or the decision vector.

~x = [x1, x2, · · · , xn]
T (1)

Then the goal or objective can be defined in terms of this decision vector
f(~x). Thus, optimization can be defined as the process of finding the condi-
tions in the problem, i.e. the set of values in the decision vector, that give the
minimum value for the goal or objective, measured by the objective function
f(~x) 1.

Global optimization is the process of finding the global minimum within
some search space. The single-objective global optimization problem is for-
mally summarized in the following definition:

Definition 1 Global minimum: Given a function f : X ⊆ IRn → IR, X 6= ∅,
for ~x ∈ X the value f∗ = f(~x∗) is called a global minimum if and only if:

∀~x ∈ X : f(~x∗) 6 f(~x) (2)

Then, ~x∗ is the global minimum solution, i.e. the optimal solution, f∗ =

f(~x∗) is the corresponding objective function, and the set X is the search space.

1 Without loss of generality, minimization is assumed in the following definitions, since any
maximization problem can be transformed into a minimization one, simply multiplying the
objective function by −1.

9
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The problem of determining the global minimum solution is called the global
optimization problem.

However, there are many real-world problems that involve the simultaneous
optimization of multiple objectives or goals, which are often incommensurable
and in conflict among them. While in single-objective optimization problems
(SOP) the optimal solution is clearly defined, this same condition does not hold
for the Multi-Objective Optimization Problem (MOP). Different to the single-
objective optimization case, where a single optimum is searched for, in Multi-
Objective Optimization (MOO), there is rather a set of alternative trade-offs, to
search for. This set of solutions are generally known as Pareto-optimal solu-
tions [13, 88]. Next, some basic concepts for multiobjective optimization are
presented. This is followed by a brief description of some common approaches
used to solve MOPs.

2.2 M U LT I - O B J E C T I V E P RO B L E M D E F I N I T I O N

MOPs, contrary to single-objective optimization ones, might present a possi-
ble infinite set of solutions, defined by combinations of values in the decision
vector, and when are evaluated, produce vectors of objective functions, whose
components represent the trade-offs in the objective space. From this set of so-
lutions, a decision maker (DM), chooses a solution or a set of them based on
some preferences for the problem at hand.

A MOP, can be mathematically defined as follows:

Definition 2 Multiobjective optimization problem: A general MOP, considers
a decision vector ~x ∈ X (X being the decision space) with n parameters or
decision variables, a set of k objective functions, and a set of q = m+ p con-
straints, m of which are inequality constraints, and p are equality constraints.
Objective functions and constraints are functions of the decision variables. A
MOP solution minimizes the components of a vector ~f(~x). Formally,

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fk(~x)] (3)

subject to:

gi(~x) 6 0 , i = 1, 2, . . . ,m (4)
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hi(~x) = 0 , i = 1, 2, . . . ,p (5)

Evaluating the objective functions in a MOP f : X → Z , maps decision
variables vectors ~x ∈ X onto vectors in the objective function space Z ⊆ IRk.
This situation is illustrated in Figure 1 for the case of n = 2, and k = 2.

Figure 1: Mapping between decision variables space and objective function space.

Considering the constraints defined in a MOP, next we present the definition
for the feasible set.

Definition 3 Feasible set: The feasible set Xf ⊆ X is defined as the set of
decision vectors ~x that satisfy the constraints

Xf = {~x ∈ X|g(~x) 6 0∧ h(~x) = 0} (6)

The image of Xf gives the corresponding feasible region in the objective space
and is denoted as Zf = f(Xf) =

⋃
x∈Xf{f(~x)}

One major characteristic in a MOP is that objectives measure different per-
formances in the problem, and can be dependent or independent and non-co-
mmensurable, i.e. they are measured in different units and scales. What makes
a MOP difficult is the common situation when the individual optima, corre-
sponding to the distinct objective functions, are sufficiently different. Then
the objectives are conflicting and cannot be optimized simultaneously. In fact,
“perfect” MOP solutions, where all decision variables satisfy the defined con-
straints in the MOP, and the objective functions attain a global minimum, may
not even exist. The above condition, makes clear that a new notion of optimal-
ity is required for MOPs.
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2.3 PA R E T O D O M I N A N C E

In single-objective optimization, the feasible set is completely (totally) ordered
according to the objective function f: for two solutions ~x,~y ∈ Xf either f(~x) 6
f(~y) or f(~y) 6 f(~x). The goal is to find the solution (or solutions) that gives the
minimum value of f. However, when several objectives are involved, the situa-
tion changes: Xf is, in general, not totally ordered, but partially ordered [186].

A
B

C D
E

Figure 2: Illustration of the Pareto dominance concept.

This is illustrated in Figure 2. The solution represented by point B is better
than the solution represented by pointC; it provides better performance in both
objectives f1 and f2. In any MOP, since trade-offs are searched for, it would
be even preferable if it would only improve one objective, as is the case for
solutions C and D. In this case, both solutions perform equally in objective
function f2, but solution C provides better performance than D in objective
function f1. In order to express this situation, we present next the definition of
Pareto Dominance.

Definition 4 Pareto dominance: A vector of decision variables ~x ∈ IRn domi-
nates another vector of decision variables ~y ∈ IRn, (denoted by ~x ≺ ~y) if and
only if ~x is partially less than ~y, i.e., ∀i ∈ {1, . . . ,k} : fi(~x) 6 fi(~y)∧ ∃i ∈
{1, . . . ,k} : fi(~x) < fi(~y).

Using the notion of Pareto dominance illustrated in Figure 2, it holds that
B ≺ C, C ≺ D, and, as a consequence, B ≺ D. However, when comparing
solutions B and E, neither can be said to be superior, since B ⊀ E and E ⊀ B.
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Although the solution associated with E is better than B in objective f1, it
provides higher value in the objective f2 than the solution represented by B.
Therefore, two decision vectors ~x , ~y can have three possibilities within MOPs,
regarding the Pareto-dominance relation (≺):

~x ≺ ~y ( ~x dominates ~y ) ~y ≺ ~x ( ~y dominates ~x ) ~x ⊀ ~y and ~y ⊀ ~x ( ~x is

indifferent to ~y )

From the latter condition, we present next the definition for nondominated
vector:

Definition 5 Nondominated vector: A vector of decision variables ~x ∈ X ⊂
IRn is nondominated with respect to X, if there does not exist another ~x ′ ∈ X

such that ~f(~x ′) ≺ ~f(~x).

A
B

C D
E

          IS
DOMINATED

DOMINATES

Figure 3: Illustration of Pareto dominance regions in a MOP.

In Figure 3, the shaded rectangle contains the region in objective space that is
dominated by the decision vector represented by B; any solution in this region
will be dominated by solution B. The clear rectangle contains the objective
vectors whose corresponding decision vectors dominate the solution associ-
ated with B, as is the case of solution A. All solutions for which the resulting
objective vector is in neither rectangle are indifferent or nondominated with
respect to the solution represented by B.
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2.4 PA R E T O O P T I M A L I T Y

Once we have defined the concepts of Pareto dominance and nondominated
vector, we can introduce the optimality concept for a MOP. From Figure 3 we
can say that solution A is nondominated with respect to solutions B, C, D
and E. If we consider all the solutions in the figure, we can also conclude that
solution A is nondominated with respect to all of them. This condition means
that solution A is optimal in the sense that it can not be improved by any other
solution, in any objective, without causing a degradation in at least one of them.
Therefore all such solutions are denoted as Pareto optimal. Next we present its
formal definition.

Definition 6 Pareto optimality: A vector of decision variables ~x∗ ∈ Xf ⊂ IRn

(Xf is the feasible region) is Pareto-optimal if it is nondominated with respect
to the other vectors in Xf.

In Figure 3, the circle points represent the Pareto optimal solutions for the
MOP, i.e., they are nondominated to each other. Now, the difference in optimal-
ity between the single-objective and the MOP must be clear. In a MOP, there is
no single optimal solution, but a set of them, which represent the best possible
trade-offs among the objectives. No point in this set can be said to be superior
to any other in the same set. It is up to the decision maker to select one or a
subset of them, based on some preference information for the problem at hand.
With this definition of optimality, we present next the corresponding definition
for Pareto optimal set.

Definition 7 Pareto optimal set: The Pareto optimal set P∗ is defined by:

P∗ = {~x ∈ Xf|~x is Pareto-optimal}

The Pareto optimal set contains the globally optimal solutions (i.e., all the
global nondominated solutions). Similar to the case of single-objective opti-
mization, where local optima can exist in the search space, in the case of MOPs
it is possible to have local Pareto optimal sets. Finally, we present the definition
of Pareto front.

Definition 8 Pareto front: The Pareto front PF∗ is defined by:

PF∗ = {~f(~x) ∈ IRk|~x ∈ P∗}
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From this definition and from its representation in Figure 4 (the right subfig-
ure), all Pareto optimal solutions lie on the boundary of the feasible objective
space.

When solving a MOP the goal is determining the Pareto optimal set from the
set Xf of all the decision variable vectors that satisfy (4) and (5). Thus, we aim
to find not one, but the set of solutions representing the best possible trade-offs
among the objectives (the Pareto optimal set).

PARETO OPTIMAL SET PARETO FRONT

Figure 4: Illustration of the Pareto-optimal Set and its mapping to the Pareto front in
objective space.

2.5 A P P RO AC H E S T O S O LV E M O P S

The notion of Pareto-optimality and other concepts presented in previous sec-
tions, are only the first steps towards solving a multiobjective problem. With
this notion, we are able to classify the set of Pareto-optimal solutions, but in
some cases we are only able to have an approximation of it. Since in general,
MOPs provide a set solutions, in practice the solution of a MOP requires the
selection of only one solution among the above set. This is known as the deci-
sion making process [88]. Depending on how the computation and the decision
processes are combined in the search for compromise solutions, three broad
classes of multiobjective problem solution approaches can be identified [42]:

• A priori articulation of preferences: The decision maker expresses
preferences in terms of an aggregating function which combines indi-
vidual objective values into a single utility value, and ultimately makes
the problem single-objective, prior to optimization.
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• A posteriori articulation of preferences: The decision maker is pre-
sented by the optimizer with a set of candidate nondominated solutions,
before expressing any preferences. The compromise solution is chosen
from that set.

• Progressive articulation of preferences: Decision making and optimi-
zation occur at interleaved steps. At each step, partial preference infor-
mation is supplied by the decision maker to the optimizer, which, in turn,
generates better alternatives according to the information received.

In these approaches, preferences refer to a decision-maker’s opinions con-
cerning points in the objective space. With approaches that involve a posteriori
articulation of preferences, the decision-maker imposes preferences directly
on a set of potential solution vectors. Then, theoretically the final solution re-
flects the decision-maker’s preferences accurately. On the other hand, with a
priori articulation of preferences, one must quantify opinions before actually
viewing points in the objective space. In this sense, the term preference often
is used in relation to the relative importance given to different objective func-
tions. Nonetheless, this articulation of preferences is fundamentally based on
opinions concerning anticipated points in the objective space.

Next, we describe some common methods in each of these approaches. Most
of them can be viewed as traditional methods that make use of single objective
optimization techniques, and which have been extended to the multiobjective
optimization case.

2.5.1 A priori articulation of preferences

Under this approach, the most commonly adopted methods correspond to: (a)
linear aggregating functions, (b) lexicographic ordering, and (c) goal program-
ming methods.

(a) Linear aggregating functions. For this method, the MOP is converted into
a single objective optimization problem defined by the following scalar
function:

f̄ =

k∑
i=1

ωifi(x) (7)

where ωi > 0, i = 1, 2, . . . ,k are the weighting factors representing the
decision maker’s opinion for each objective (i.e., objective importance).
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It is usually assumed that the objectives are normalized, since they can
be incommensurable. It is also normally assumed that:

∑k
i=1ωi = 1.

-w1/w2 

A

B

C

D

Figure 5: Illustration of the weighted approach method.

One major drawback of this approach is that it can not generate all Pareto
optimal solutions in cases where the Pareto front is non-convex. This
condition is illustrated in Figure 5. For fixed weights ω1 and ω2, a so-
lution is sought to minimize f̄ = ω1f1(x) +ω2f2(x), which defines a
line with slope −ω1

ω2
and intercepts f̄

ω2
in objective function space (solid

line in Figure 5). Graphically, the optimization process corresponds to
moving this line downwards until no feasible objective vector is below it
and at least one feasible vector is on it, in this case two points: A and D.
However, points B and C will never minimize f̄.

In order to tackle the previous drawback, the weighted Tchebycheff mo-
del can be used instead. This approach uses a reference point z∗ which
must be beyond the ideal point (this point corresponds to that in objective
space, having as components, the minimum for each objective function
when considered separately). The weighted Tchebycheff model is given
by:

f̄ = min maxi[ωi|fi(x) − f
∗
i |] (8)

The Tchebycheff technique is shown in Figure 6 where the reference
point z∗ is the origin. The linear aggregating function approach is easy
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to implement but it is less common than Pareto-based approaches in the
current literature.

A

B

C

D

Z*

Ideal Point

Figure 6: Illustration of the Tchebycheff approach method.

(b) Lexicographic ordering. In this method, the decision maker ranks the
objectives in order of importance. Afterwards, the optimum solution is
obtained by minimizing the objective functions in sequence from the
higher rank objective to the lower rank objective, i.e., the problem is
formulated as:

min fi(~x)

x ∈ Xf

subject to : fj(~x) 6 fj(~x∗),
j = 1, 2, . . . , i− 1, i > 1, i = 1, 2, . . . ,k

(9)

Here, i represents a function’s position in the preferred sequence, and
fj(~x) represents the optimum for the jth objective function, found in the
jth iteration. The optimal value found for each objective is now consid-
ered as a constraint for subsequent or inferior objective optimizations. In
cases in which the decision maker can not rank the importance of the
objectives, they can be chosen in a random manner.

(c) Goal programming method [32]. This is one of the earliest techniques
specifically designed to deal with multiobjective optimization problems.
For this method, the decision maker has to assign targets or goals that



2.5 A P P RO AC H E S T O S O LV E M O P S 19

wishes to achieve for each objective. These values are incorporated in
the problem as additional constraints. The optimizer tries to minimize
the absolute deviation from the targets defined for each objective. The
simplest form of this method can be formulated as:

min f̄ =

k∑
t=1

|fi(x) − Ti| subject to x ∈ Xf (10)

where Ti denotes the target or goal set by the decision maker for the
objective function fi(x).

2.5.2 A posteriori articulation of preferences

The most common methods associated to this sort of approach correspond to (a)
linear aggregating functions, (b) ε-constraint method, and (c) normal boundary
intersection (NBI).

(a) Linear aggregating functions. In this case, this method corresponds to an
extension of the previous one presented in the case of a priori articulation
of preferences, but now, the optimizer systematically varies the weight
vectors to sample the Pareto front, and instead of only one solution, a
set of Pareto optimal solutions is presented to the decision maker. From
this set he/she chooses only one solution. The drawbacks of using linear
aggregating functions in the previous case, extrapolates to this approach,
i.e. no Pareto-optimal solutions are obtained in non-convex regions of
the Pareto front. However if the weighted Tchebycheff model is used,
the method can be applied to non-convex Pareto fronts.

(b) ε-constraint method. For this method, k− 1 out of k objectives are trans-
formed into constraints. One important aspect for this technique is that is
not biased towards convex regions of the Pareto front. The optimization
problem, stated for the remaining objective h becomes:

min fh

subject to : fi 6 εi (1 6 i 6 k, i 6= h)
and x ∈ Xf

(11)
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A

B

C

D

Feasible Infeasible

Figure 7: Illustration of the ε-Constraint method.

The upper bounds εi are the parameters that are varied by the optimizer
in order to find multiple Pareto-optimal solutions. As illustrated in Fig-
ure 7, the ε-constraint method is able to obtain solutions associated with
non-convex parts of the Pareto front. Setting h = 2 and ε = ε1 (solid
line in Figure 7) makes the solutions represented by A and B infeasible
regarding the constraints set, while the solution C minimizes f2 among
the remaining solutions. One drawback of the method is that if the con-
straint ε is not chosen appropriately, as when ε = ε3 in Figure 7, the
feasible set might be empty, i.e., no solution exists for the optimization
problem. The decision maker must know suitable ranges of the objective
functions for the problem at hand, in order to avoid this latter condition.

(c) normal boundary intersection (NBI) method. It was proposed by Das
and Dennis [48] and Das [47] as a response to the defficiencies in the
weighted sum approach. The NBI method provides means for obtaining
an even distribution of Pareto-optimal points for a consistent variation of
a user supplied parameter. One of its advantages is that it works in non-
convex Pareto fronts. The method assumes that the global minima f∗i ,
i = 1, 2, . . . ,k are known. With these, the convex hull of the individual
minima (CHIM) is established. Figure 8 shows the case for a two objec-
tive MOP. The basic idea of the algorithm is to find the intersection of
the boundary of the feasible vector space, and a direction normal to the
CHIM. The algorithm provides an easy mechanism for giving an evenly
spread set of points on the Pareto front, by directing the search from
points evenly distributed along the CHIM. However if the Pareto front
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has a very complex shape, the method might identify non Pareto-optimal
solutions, and may even find local Pareto-optimal solutions.

C H I M
 

Figure 8: Illustration of the NBI method.

2.5.3 Progressive articulation of preferences

These methods work in three main phases:

1. Find a nondominated solution, given some initial preferences provided
by the decision maker.

2. Present this solution to the decision maker and get feedback from
him/her regarding the quality of the solution, and modify the preferences
accordingly, and

3. Repeat steps (1) and (2) above, until the decision maker is satisfied or no
further improvement in the solution can be obtained.

These methods are generally referred to as interactive methods. They are
designed under the hypothesis that the decision maker is unable to indicate a
priori preference information either, because of the complexity of the problem
or because of the lack of knowledge about it. During the interactive process,
the decision maker learns about the problem as he/she is confronted to different
possible solutions to it.

Drawbacks of these approaches are that solutions depend on how well the
decision maker can articulate his/her preferences, and a higher effort is required
from him/her during the whole search process.

Common methods that correspond to this type of approach include (a) the
STEM method, and (b) Steuer’s method.
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(a) STEM method: This method was proposed by Benayoun et al. [14], and
operates using the opinion of the decision maker, in order to reduce the
solution space successively. The general optimization problem is restated
as a Lp-norm problem (min-max formulation) and uses bounded and
weighted objectives:

min f̄ =
{∑k

i=1

(
ωhi
(
fi(~x) − f

∗
i

))p} 1p
subject to : x ∈ Xhf

ωhi > 0,
∑k
i=1ω

1
i = 1

(12)

In the above expression, h is an iterate counter, p is the parameter in the
Lp-norm. The weights are required for solving the min-max formulation,
and for equalizing the magnitude of the different objectives. They are not
crucial to the outcome of the optimization process, as the final solution
depends on the bounds for the objectives, rather than on the variation
of the weights. The solution of the optimization problem f̄ is compared
with the ideal solution f∗. If some components of f̄ are acceptable, but
some others are not, the decision maker must decide relaxing at least one
of the objectives. Then, the upper bound of the jth objective is adjusted
to f̄j + ∆fj. The solution space Xh+1 is reduced by the new constraint
fj 6 f̄j + ∆fj. The weighting of the jth objective is set to zero, and
the optimization problem is solved again, now in the reduced solution
space. After the second iteration, the decision maker might be satisfied
with the obtained solution, or he/she prefers to relax the boundaries of
another function, and the process starts over. In summary, the algorithm
progressively reduces the solution space by introducing new constraints
on the different objectives.

(b) Steuer’s method. This method is based on progressively sampling small
subsets of the nondominated set by using progressively changing weights
in a weighted sum approach. One example of this type of method is pre-
sented by Steuer and Choo [226]. In this method, and for each iteration,
the decision maker has to choose between P alternative nondominated so-
lutions. Typically, the number of iterations t is taken as the same number
of objectives k in the problem, and |P| & k. For the algorithm, first the
ideal solution f∗ is obtained, then it proceeds by minimizing a weighted
Tchebycheff metric of the distance between a set of proposed solutions
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and the ideal solution. For the weightings, a diverse set of weight vectors
ω ∈ Ω are used:

Ω =
{
ω ∈ Rk|ωi ∈

[
lhi ,uhi

]}
(13)

During the solution process, the iteration counter h increases, and the
range

[
lhi ,uhi

]
in which the weight vector ω is selected, decreases. In

this way, the algorithm progressively focuses on a subset of the nondom-
inated set. The decision maker interacts with the algorithm to guide it
towards a portion of the nondominated set that he/she prefers.

2.6 R E M A R K S F O R M U LT I O B J E C T I V E O P T I M I Z AT I O N

What makes attractive to traditional approaches for solving MOPs, like the
ones presented in the previous sections, is that any well-designed and robust
algorithm for solving single-objective optimization problems, can be easily
adapted and implemented to work with them. Also in the context of global
optimization, and during the 60’s and 70’s, many heuristic methods were de-
veloped to be capable of dealing with several complexities and nonlinearities in
the fitness landscapes of large scale problems commonly found in real-world
engineering optimization. These heuristic-based methods were easy to incor-
porate in the traditional approaches to solve MOPs. However, many developed
techniques were sensitive to the shape of the Pareto-optimal front and/or re-
quired previous knowledge of the problem being solved, which in many cases
might not be available. Moreover, traditional methods have in common that
they need to perform several independent runs to obtain an approximation of
the Pareto-optimal set. Thus, synergies can not be exploited, causing high com-
putation overhead.

Recently, Evolutionary Algorithms (EAs) have become an alternative to tra-
ditional optimization methods, by means of which, large search spaces can be
explored and due to their population-based nature, multiple trade-off solutions
for MOPs can be generated in a single run when using them. In the next chap-
ter we present a review of these techniques in the context of the solution of
multi-objective optimization problems.
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M U LT I - O B J E C T I V E E VO L U T I O NA RY A L G O R I T H M S

3.1 I N T RO D U C T I O N

Most real-world optimization applications are hard to solve. Algorithms to
solve this type of problems can be so specialized, that they can only be ap-
plied to a small range of problems, or they can be instead, more general, but
rather inefficient. Some general search heuristics might require high computa-
tion time and will eventually fail if the problem’s search space is very large,
i.e., large scale problems considering the decision variable space. Also, hill-
climbing algorithms face problems in searching for optimal solutions when the
problem space is multimodal1, since in such cases, they will get stuck in local
optima most of the time.

In order to tackle difficult optimization problems with large, multimodal
and accidented search spaces, a number of metaheuristics have been proposed.
From the many metaheuristics currently available, Evolutionary Algorithms
(EAs) are perhaps the most popular [41]. EAs are inspired by nature and one
of its major advantages, as compared to other methods, is that they only need
little problem specific knowledge and can, therefore, be applied to a broad
range of problems. EAs need a fitness function Φ defined for the problem at
hand, which represents the figure of merit that we wish to optimize. Because of
their stochastic nature, EAs can be applied to discontinuous, non-differentiable
and possibly noisy and/or highly nonlinear search spaces. Because of their
flexibility and ease of use, EAs have been used in a wide range of applica-
tions [59, 163]. The following are some of the reasons, for which EAs are well
suited for complex optimization problems:

• They are improvement-driven. In all cases EAs are designed to continu-
ously improve the fitness function defined in the problem.

• EAs are inherently quantitative, therefore they are well suited for param-
eter optimization.

1 Multimodal search spaces contain not only one global optimum but many suboptima, which
might deceive a simple search algorithm.

25
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• EAs allow the incorporation of a wide variety of extensions and con-
straints than cannot be provided in traditional methods.

• EAs are robust, balancing at the same time efficiency and efficacy.

• EAs are easily coupled to other optimization techniques. For example the
use of memetic algorithms allows the combination of global and local
search processes.

• EAs can naturally be extended to multi-objective optimization problems
[41, 248].

EAs are stochastic search and guided optimization heuristics derived from
natural principles, namely from evolutionary theory. The basic idea is that if
only the fittest individuals of a population can reproduce, and the other indi-
viduals die, the whole population will improve (in terms of fitness), and we
will eventually converge to very fit individuals (which correspond to the global
optimum or a very good approximation of it). If an additional mechanism such
as mutation is added, the population can also explore the search space and new
individuals are likely to be generated with an increased selection probability
and they can inherit this property to their descendants. In summary, the pop-
ulation dynamics follows the basic rule of Darwinian evolutionary theory, as
stated next:

As many more individuals of each species are born than can possibly survive;
and as, consequently, there is a frequently recurring struggle for existence, it
follows that any being, if it varies however slightly in any manner profitable
to itself, under the complex and sometimes varying conditions of life, will have
a better chance of surviving, and thus be naturally selected (On the Origin of
Species by Means of Natural Selection, 1859)

The above statement can be described in short as the “survival of the fittest”
principle from Darwin’s evolutionary theory.

To solve optimization problems with an EA, the individuals of a population
have to represent a possible solution (in terms of some decision variables vec-
tor ~x = [x1, x2, . . . , xn]) for a given problem and its selection probability is
set proportional to the quality of the represented solution using the objective
function f(~x) defined in the problem at hand, i.e., the quality of the represented
solution is expressed in terms of a fitness functionΦ for the individual. An EA
follows the basic scheme shown in Algorithm 1.

In the first step, a population of random solutions is created, and then the EA
generational loop is entered. At each generation, the individual’s fitness Φi is
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Algorithm 1 Basic EA Algorithm
1: t← 0

2: Generate an initial population P(t = 0)
3: while Stopping criterion not met do
4: Evaluate the fitnessΦi for each individual in P(t)
5: Compute the probability selection pi for each individual in P(t) based

on its fitness valueΦi.
6: Select the fittest P ′(t) as parents from P(t)
7: Apply the Evolutionary Operators (EVOPs) of crossover and mutation

to create an offspring population P(t+ 1).
8: Apply elitism
9: t← t+ 1

10: end while

obtained which is further used to assign a probability of selection pi. Individ-
uals with higher fitness values will receive higher selection probabilities, and
will be able more times to participate in the creation of offspring (descendants)
for the next generation. From the selected parents, an offspring population is
created by applying the Evolutionary Operators (EVOPs), namely crossover
and/or mutation. In all EAs, descendants can be imperfect clones of the parents
with small variations (this corresponds to the naturally occurring mutations in
nature), or the descendants are a combination of multiple parents (this corre-
sponds to the sexual reproduction in nature) or both. Finally, a form of elitism
must be introduced to avoid losing good individuals, through the use of EVOPs.
Elitism passes the best individual(s) in the population intact to the following
generation.

An important advantage of EAs is that they don’t start the search from a sin-
gle solution but depart, instead, of a whole population of (randomly generated)
solutions. The use of a population makes EAs more resistant to premature con-
vergence towards a local optima in multimodal search spaces. However, the
stochastic nature makes it hard to guarantee convergence to the global opti-
mum, except for very specific cases. Nevertheless, their population-based na-
ture and their stochastic operators make EAs good candidates to solve complex
(mainly nonlinear) MOPs. Next we present some basic characteristics required
for the design of multi-objective evolutionary algorithms, and give a brief de-
scription of some representative MOEAs created since the early days of this
research area.
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3.2 M U LT I - O B J E C T I V E E VO L U T I O N A RY A L G O R I T H M S

It is worth indicating that traditional EAs require some modifications in order
to deal with multi-objective optimization problems. The main two are the fol-
lowing:

1. All the nondominated solutions should be considered equally good by
the selection mechanism. This means that a different notion of fitness
is required for dealing with multi-objective optimization problems. The
most popular mechanism to deal with this problem is called Pareto rank-
ing and was introduced by Goldberg [75]. This approach assigns a rank
to each solution based on its Pareto dominance, such that nondominated
solutions are all sampled at the same rate. However, in the early days
of MOEAs, several mechanisms not based on Pareto optimality were
adopted with EAs [41].

2. EAs tend to converge to a single solution if run long enough, because of
stochastic noise [75]. Therefore, a mechanism to maintain diversity is re-
quired. This component is known as the density estimator. Fitness shar-
ing [76] was the earliest density estimator, but many others have been
proposed over time, including clustering [272], entropy [64], adaptive
grids [127] and crowding [51], among others.

MOEAs can be classified in several ways [41]. However, for the purposes
of this work, we decided to adopt a simple high-level classification that con-
siders only three types of MOEAs: (a) Non-Pareto-based, (b) Pareto-based,
and (c) Indicator-based. The first group contains MOEAs that do not adopt
the concept of Pareto optimality in their selection mechanism, whereas the
second comprises those MOEAs that adopt Pareto optimality in their selec-
tion mechanism. Finally, the third group considers more recently developed
MOEAs which adopt a performance measure in their selection process.

3.2.1 Non-Pareto based algorithms

Some of the most popular non-Pareto-based MOEAs are the following:

• Lexicographic method: The user ranks the objectives of the problem in
a decreasing order and the optimization proceeds from higher to lower
order objectives, one at a time. Once an objective is optimized, the aim
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is to improve as much as possible the following objective(s) without de-
creasing the quality of the previous one(s) [41]. This sort of approach
normally generates a single nondominated solution, but if instead of us-
ing a fixed objective as the most important, it is randomly chosen, several
solutions can be generated in one run.2

• Aggregating functions: All the objectives are added up into a single
(scalar) value which constitutes the objective to be optimized. Since ob-
jectives tend to be defined in very different ranges, a normalization is
normally required. Also, weights tend to be assigned to each objective in
order to define preferences from the user [41]. Varying the weights dur-
ing the run allows, in general, the generation of different nondominated
solutions in one run [111, 81].

• Population-based methods: A number of sub-populations (usually as
many as the number of objective functions of the problem) are gener-
ated from a main population of an EA. Each sub-population optimizes
a single objective function and then all the sub-populations are merged
and mixed. The aim is that, when performing crossover, individuals that
are good in one objective will recombine with individuals that are good
in another one [215]. This sort of approach produces several nondomi-
nated solutions in a single run, but it typically misses good compromises
among the objectives because of the way in which individuals are se-
lected in each population [41].

3.2.2 Pareto based algorithms

Among the Pareto-based methods, there are two sub-classes: the non-elitist
MOEAs and the elitist MOEAs. Non-elitist MOEAs do not retain the nondom-
inated solutions that they generate and could, therefore, lose them after apply-
ing the evolutionary operators. Elitist MOEAs retain these solutions either in
an external archive or in the main population.

The most representative non-elitist MOEAs are the following:

• Nondominated Sorting Genetic Algorithm (NSGA): It was proposed
by Srinivas and Deb [225]. It is based on several layers of classifica-
tions of the individuals. Before selection is performed, the population is

2 The reader can find similarities with the approach described in the previous chapter. However
in that chapter, the discussion was related to the use of approaches in which traditional mathe-
matical programming methods are used, and in this case the use of evolutionary algorithms is
implied. The same comment applies to the aggregating function described in this chapter.
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ranked on the basis of nondomination: all nondominated individuals are
classified into one category (with a dummy fitness value, which is pro-
portional to the population size, in order to provide an equal reproductive
potential for these individuals). To maintain the diversity of the popu-
lation, these classified individuals are shared with their dummy fitness
values. Then this group of classified individuals is ignored and another
layer of nondominated individuals is considered. The process continues
until all individuals in the population are classified. Since individuals in
the first front have the maximum fitness value, they always get a higher
selection probability than the rest of the population. Figure 9 illustrates
the Pareto ranking and sharing mechanisms used in NSGA. The σshare
value is a parameter defined by the user. Consequently, the algorithm’s
performance is strongly dependent on the choice of it, sometimes result-
ing in less efficient performance of NSGA.

Figure 9: Illustration of the Pareto Ranking and Sharing mechanisms used in NSGA

• Niched-Pareto Genetic Algorithm (NPGA): Proposed by Horn et al.
[89]. It uses a tournament selection scheme based on Pareto dominance.
The basic idea of the algorithm is the following: Two individuals are ran-
domly chosen and compared against a subset from the entire population
(typically, around 10% of the population). If one of them is dominated
(by the individuals randomly chosen from the population) and the other
is not, then the nondominated individual wins. When both competitors
are either dominated or nondominated (i.e., there is a tie), the result of
the tournament is decided through fitness sharing [76].
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• Multi-Objective Genetic Algorithm (MOGA): This algorithm was pro-
posed by Fonseca and Fleming [68]. For this approach, the rank of a
certain individual corresponds to the number of individuals in the cur-
rent population by which it is dominated plus one. All nondominated
individuals are assigned the lowest possible rank (i.e., one), while domi-
nated ones receive as rank the number of individuals that dominate them
plus one, i.e. rank(i) = 1+ qi where qi is the number of individuals
that dominate individual i in the objective space. Also in this algorithm,
fitness sharing is implemented and applied in the objective space in or-
der to obtain a good distribution of solutions along the Pareto front. One
important aspect in the sharing mechanism is that MOGA calculates its
value depending on the population size and on the current maximum
and minimum values of the objectives. Figure 10 illustrates the ranking
mechanism used in MOGA.
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Figure 10: Illustration of the ranking mechanism used in MOGA

Among the most popular Pareto-based elitist MOEAs, we have the follow-
ing:

• Strength Pareto Evolutionary Algorithm (SPEA): Zitzler and Thiele
introduced this MOEA in [272]. It uses an archive containing nondom-
inated solutions previously found (the so-called external nondominated
set). At each generation, nondominated individuals are copied to the ex-
ternal nondominated set, removing the dominated solutions. For each in-
dividual in this external set, a strength value is computed. This strength
is similar to the ranking value of MOGA [68], since it is proportional
to the number of solutions to which a certain individual dominates. The
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fitness of each member of the current population is computed accord-
ing to the strengths of all external nondominated solutions that dominate
it. The fitness assignment process of SPEA considers both closeness to
the true Pareto front and even distribution of solutions at the same time.
Thus, in SPEA, instead of using niches based on distance (as MOGA
and NPGA), Pareto dominance is adopted to ensure that the solutions are
properly distributed along the Pareto front. Although this approach does
not require a niche radius, the effectiveness of this approach relies on the
size of the external nondominated set, since such a set participates in the
selection process of SPEA. In fact, since the external nondominated set
participates in the selection process of SPEA, if its size grows too large,
it might reduce the selection pressure, thus slowing down the search. Be-
cause of this, the authors decided to adopt a technique that prunes the
contents of the external nondominated set so that its size remains below
a certain threshold. The approach adopted for this sake was a clustering
technique called “average linkage method” [164].

• Strength Pareto Evolutionary Algorithm 2 (SPEA2): It was proposed
by Zitzler et al. [274] and has three main differences with respect to
its predecessor [272] : (1) it incorporates a fine-grained fitness assign-
ment strategy which, for each individual, takes into account both the
number of individuals to which it dominates and the number of individ-
uals that dominate it; (2) it uses a nearest neighbor density estimation
technique which guides the search more efficiently, and (3) it has an
enhanced archive truncation method that guarantees the preservation of
boundary solutions.

• Pareto Archived Evolution Strategy (PAES): This algorithm was intro-
duced by Knowles and Corne [129]. PAES consists of a (1+1) evolution
strategy (i.e., a single parent that generates a single offspring) in combi-
nation with a historical archive that records the nondominated solutions
previously found. This archive is used as a reference set against which
each mutated individual is being compared. Such a historical archive is
the elitist mechanism adopted in PAES. However, an interesting aspect
of this algorithm is the procedure used to maintain diversity which con-
sists of a crowding procedure that divides objective space in a recursive
manner. Each solution is placed in a certain grid location (see Figure 11)
based on the values of its objectives (which are used as its “coordinates”
or “geographical location”). A map of such grid is maintained, indicat-
ing the number of solutions that reside in each grid location. Since the
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procedure is adaptive, no extra parameters are required (except for the
number of divisions of the objective space). The archive is fixed in size,
and once its upper bound is reached, a new generated solution is inserted
and the archive is pruned, by deleting individuals in the most crowded
grid cells.

1         2        3         4        5
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2
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5

Figure 11: Illustration of the grid archive used in PAES

• Nondominated Sorting Genetic Algorithm II (NSGA-II): This appro-
ach was proposed by Deb et al. [51] as an improved version of the
NSGA. In the NSGA-II, solutions are ranked using a nondominated sort-
ing scheme, and the density of solutions surrounding a particular solu-
tion in the population is estimated by computing the average distance
of two points on either side of this solution along each of the objectives
of the problem. This value is the so-called crowding distance (see Fig-
ure 12). During selection, the NSGA-II uses a crowded-comparison op-
erator which takes into consideration both the nondomination rank of
an individual in the population and its crowding distance (i.e., nondomi-
nated solutions are preferred over dominated solutions, but between two
solutions with the same nondomination rank, the one that resides in the
less crowded region is preferred). The NSGA-II does not use an exter-
nal memory as the other MOEAs previously discussed. Instead, the eli-
tist mechanism of the NSGA-II consists of combining the best parents
with the best offspring obtained (i.e., a (µ + λ)-selection). Due to its
clever mechanisms, the NSGA-II is much more efficient (computation-
ally speaking) than its predecessor, and its performance is so good, that
it has become very popular in the last few years, becoming a landmark
against which other MOEAs have to be compared [266].
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d1

d2 Crowding=d1+d2

Figure 12: Illustration of the crowding mechanism used in NSGA-II

3.2.3 Indicator-based algorithms

In the multi-objective optimization scenario the main goal is to find a good
approximation of the Pareto-optimal solutions, however no formal definition
exists for what a good approximation means. From the previous descriptions
of several developed MOEAs we can distinguish two main characteristics at-
tained in the approximation to the Pareto-optimal set, namely: (i) To minimize
the distance to the true Pareto-optimal set, which in many real-world MOPs,
is not known; and (ii) to maximize the diversity along the Pareto-optimal set.
Both these characteristics by themselves can be considered a MOP with two
objectives [50, 41]. In most popular MOEAs, they are solved in terms of Pareto
ranking of the individuals for the first characteristic, and in terms of some den-
sity information such as niching and crowding for the second characteristic.

However, for each MOEA and depending on their implemented mechanisms,
different user preferences are implicitly assigned to each characteristic. Since
different MOEAs might give also different outcomes, i.e. different approxima-
tions to the Pareto-optimal set, their comparison is based on different perfor-
mance measures proposed in the specialized literature [79, 273, 124, 275]. In
this sense, more recently designed MOEAs have considered the use of a perfor-
mance measure or indicator during the evolution process, more precisely either
in their mating selection mechanism and/or in their environmental selection
mechanism. Here we refer to this type of MOEAs as Indicator-based MOEAs.
Next we describe two algorithms (IBEA and SMS-EMOA) belonging to this
class.
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• Indicator-Based Evolutionary Algorithm (IBEA): It was proposed by
Zitzler and Künzli [270]. The main idea of this algorithm is to first de-
fine the optimization goal in terms of a binary performance measure or
indicator, and then to directly use this measure in the selection processes.
This MOEA can be considered as a general indicator-based one, since
any binary indicator can be used in the fitness assignment function for
each one of the solutions in the current population. The fitness function
definition is:

Fitness(~x) =
∑

~y∈P\{~x}
−e−I({~x},{~y})/κ (14)

In equation (14), P is the actual population and κ is a scaling factor which
needs to be defined by the user and depends on the problem being solved.
Also, this fitness function definition requires that the binary quality indi-
cator I({~x}, {~y}) be dominance preserving3. Next, we present the formal
definition for a dominance preserving binary quality indicator.

Definition 9 A binary quality indicator I({~x}, {~y}) is denoted as dom-
inance preserving if (i) ~x ≺ ~y ⇒ I({~x}, {~y}) < I({~y}, {~x}), and (ii)
~x ≺ ~y⇒ I({~z}, {~x}) > I({~z}, {~y}) for all ~x , ~y , ~z ∈ X.

With this condition, the fitness assignment scheme is also Pareto-do-
minance compliant [275]. The fitness assignment mechanism tries to
rank the population members according to their usefulness, regarding the
reformulated optimization goal, i.e., to maximize/minimize the perfor-
mance measure or indicator. In summary, the proposed fitness function
measures the “loss in quality” in the binary quality indicator if solution
~x is removed from the actual population.

In the basic algorithm, IBEA performs binary tournaments for mating se-
lection, and implements environmental selection by iteratively removing
the worst individual from the population, in terms of the binary quality
indicator measure, and updating the fitness values of the remaining indi-
viduals in the population. In their proposed approach, authors make use
of the binary addition ε-indicator Iε+ and the Hypervolume inidicator
IHV . One particular aspect of IBEA is that for both, mating selection and
environmental selection processes, comparisons are made in a pairwise

3 Some binary quality indicators with this property can be found in [275].
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sense, reducing in consequence the computational overhead in comput-
ing the binary indicator values.

• S-Metric Selection - Evolutionary Multi-Objective Algorithm (SMS-
EMOA): It was proposed by Beume et al. [17]. For this algorithm the
hypervolume (or S-Metric) contribution is used in the environmental se-
lection process. SMS-EMOA is a steady state algorithm in which only
one solution is created at a time and inserted into the actual population
for performing the environmental selection. Then, for each solution in
the extended population, its contribution to the hypervolume measure is
computed as the difference of the hypervolume measure with and with-
out it. This difference is assigned as fitness to each solution in the popu-
lation:

Fitness(~x) = IHv(P) − IHv(P\{~x}) (15)

In equation (15), P corresponds to the extended population, i.e., includ-
ing the newly generated solution. Since the maximization of the hyper-
volume measure attains both goals of convergence towards the Pareto-
optimal solutions and a good distribution of solutions along the Pareto-
front approximation [67, 130], the solution with the less contribution to
the Hv measure is then discarded. In Figure 13, the basic ranking mech-
anism of solutions used in SMS-EMOA is illustrated. In this figure the
number close to each solution corresponds to its rank, based on the hy-
pervolume contribution, which is depicted as the shaded area to the right
of each solution. Also, in this figure it can be observed that the Pareto
extreme solutions receive the first k higher ranks (k is the number of
objectives in the MOP) in order to avoid losing them.

At the beginning of the evolutionary process, many solutions in the cur-
rent population can be dominated and, therefore, they do not contribute
to the hypervolume measure of the Pareto-front approximation. For these
cases, the SMS-EMOA algorithm relies on the Pareto ranking approach
used in the NSGA-II algorithm, and the hypervolume measure contribu-
tion is computed for each rank layer of solutions. In consequence, the
discarded solution will be selected as the less contributing in the hyper-
volume measure but in the highest rank layer.
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Figure 13: Illustration of the ranking mechanism of solutions based on the hypervol-
ume contribution used in SMS-EMOA.

3.3 OT H E R M E TA H E U R I S T I C S

There are several other multi-objective metaheuristics available. Next, three of
them are briefly discussed:

• Particle Swarm Optimization (PSO): This metaheuristic is inspired on
the choreography of a bird flock which aim to find food [121]. It can be
seen as a distributed behavioral algorithm that performs (in its more gen-
eral version) a multidimensional search. The implementation of the algo-
rithm adopts a population of particles, whose behavior is affected by ei-
ther the best local (i.e., within a certain neighborhood) or the best global
individual. PSO has been successfully used for both continuous nonlin-
ear and discrete binary optimization [63]. For extending PSO to deal with
MOPs, the main issues are: (1) how to select particles (to be used as lead-
ers) in order to give preference to nondominated solutions over those that
are dominated?, (2) how to retain the nondominated solutions found dur-
ing the search process in order to report solutions that are nondominated
with respect to all the past populations and not only with respect to the
current one?, and 3) how to maintain diversity in the swarm in order to
avoid convergence to a single solution? Normally, mechanisms very sim-
ilar to those adopted with MOEAs (namely, Pareto-based selection and
external archives) have been adopted in multi-objective particle swarm



38 M U LT I - O B J E C T I V E E VO L U T I O N A RY A L G O R I T H M S

optimizers (MOPSOs). However, the addition of other mechanisms (e.g.,
a mutation operator) is also relatively common in MOPSOs. An impor-
tant number of multi-objective versions of PSO currently exist (see for
example [201]), and this remains as a very active research area.

• Differential Evolution (DE): This metaheuristic was proposed by Ken-
neth Price and Rainer Storn [227, 189] to optimize problems over contin-
uous domains. The core idea is to use vector differences for perturbing a
vector population, and it aims to estimate the gradient in a region (rather
than in a point). DE performs mutation based on the distribution of the
solutions in the current population. In this way, search directions and
possible step sizes depend on the location of the individuals selected to
calculate the mutation values. Several DE variants are possible, and they
differ in the way in which the parents are selected and in the form in
which recombination and mutation takes place (see [189] for more in-
formation on DE). The high success of DE in single-objective optimiza-
tion has made it an interesting candidate for solving MOPs. The main
issues for extending DE to multi-objective optimization are very similar
to those of PSO (i.e., how to select parents, how to store nondominated
solutions and how to maintain diversity in the population). As with MOP-
SOs, very similar mechanisms to those adopted by MOEAs have been
used with multi-objective differential evolution (MODE). A variety of
MODE approaches currently exist (see for example [161]), and this also
remains as a very active research area . It is worth noting that MODEs
are often considered MOEAs [41].

• MOEA based on Decomposition (MOEA/D): The multiobjective evo-
lutionary algorithm based on decomposition [266] is a recent multiob-
jective evolutionary algorithmic framework. It is based on conventional
aggregation approaches where a MOP is decomposed into a number of
scalar objective optimization problems (SOPs). The objective of each
SOP, also called subproblem, is a (linearly or nonlinearly) weighted ag-
gregation of the individual objectives. Neighborhood relations among
these subproblems are defined based on the distances between their ag-
gregation weight vectors. Subproblem i is a neighbor of subproblem j if
the weight vector of subproblem i is close to that of subproblem j. Each
subproblem is optimized in MOEA/D by using information mainly from
its neighboring subproblems. In a simple version of MOEA/D, each indi-
vidual subproblem keeps one solution in its memory, which could be the
best solution found so far for the subproblem. It generates a new solution
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by performing genetic operators on several solutions from its neighbor-
ing subproblems, and updates its memory if the new solution is better
than the old one for the subproblem. A subproblem also passes its newly
generated solution on to some (or all) of its neighboring subproblems,
which will update their current solutions if the received solution is better.
A major advantage of MOEA/D is that scalar objective local search can
be used in each subproblem in a natural way since its task is optimizing
a scalar objective subproblem.

Although many other MOEAs exist (see for example [40, 265]), it is not the
intention of this chapter to be comprehensive. The interested reader may refer
to [41, 50, 268] for more information on this topic. The main advantages of
MOEAs are their generality, ease of use and the fact that they require little or
no specific domain information to operate. Also, they are less susceptible to the
specific features of the problem (e.g., shape or continuity of the Pareto front)
than traditional mathematical programming techniques [41].

3.4 PA R A L L E L M U LT I - O B J E C T I V E E VO L U T I O N A RY A L G O R I T H M S

Since MOEAs can solve hard MOPs, they have become increasingly popular
in this research area, and many research efforts are continuously conducted
both, for solving mathematical and real-world optimization problems [41, 38].
Once the abilities of MOEAs for generating multiple tradeoff solutions have
been made evident, researchers have become interested in improving their effi-
ciency and their effectiveness, in terms of how fast or cheaply the MOP can be
solved. This natural aim in reducing the execution time or the computational
resources needed by the MOEA, automatically lead researchers to consider
MOEA parallelization and distributed processing in solving MOPs.

A major computational bottleneck in many MOEA applications to real-world
design MOPs is the excessive amount of time required to evaluate both, the ob-
jective functions as well as the constraints defined in the MOP. This condition
is aggravated when considering the population-based nature of any MOEA. In
consequence, MOEA parallelization might be one of several possible alterna-
tives for improving their computational efficiency. With this sort of technique,
“expensive” (in terms of CPU time) objective/constraint function evaluation
can be completed in less wall clock time if the computational load is distributed
over several processing units. On the other hand, if some fixed computational
time is allowed, parallel processing might also help to evaluate more solutions
in the MOEA, i.e. improving its effectiveness and resulting in a better (possibly
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larger and higher fidelity) Pareto-optimal set approximation. This later condi-
tion is beneficial in any MOP solving, since the aim is to identify a possible
large set of Pareto-optimal solutions. Therefore, a parallel MOEA or pMOEA,
for short, might be the preferred choice of implementation for solving complex
real-world applications where computationally intensive objective/constraint
functions are the bottleneck.

3.4.1 pMOEA motivation

In designing pMOEAs for complex real-world applications, one option is to
apply parallel function decomposition techniques, or an approach in which the
MOEA population is decomposed or distributed spatially across a given set
of processors. The first approach refers to the case of evaluating the objective
function(s) in parallel and using several processors. This case is very common
in many scientific and engineering areas, where the problem is so complex that
a parallel simulation code is used in order to have solutions in a reasonable time
frame. Finally, the reader can anticipate that in some cases the combination of
both approaches might also be used.

In order to fully benefit from a pMOEA design, one must first identify the
MOEA components that can be concurrently executed and, in consequence, are
subject to be parallelized. In the parallelization approaches referred above, par-
allelizing the objective function evaluation(s) is a simple and potentially useful
idea, but in this case only the MOEA efficiency is improved by reducing the
execution time. However, effectiveness improvement is another issue that can
be considered in any pMOEA design. Although some pMOEAs are more effec-
tive than their serial counterpart, this effectiveness improvement does not come
without a cost, which may be in some cases an increased execution time. These
are tradeoffs researchers must have to consider when designing a pMOEA.

In summary, the motivation behind a pMOEA design, is to find as good or
better MOP solutions in less time than its serial MOEA counterpart, use less
resources, and/or search more of the solution space, i.e., increasing both effi-
ciency and effectiveness. With these considerations in mind, we describe next
three main pMOEA computational paradigms commonly used and that cor-
respond to: (a) master-slave, (b) island, and (c) diffusion. Some authors [246,
154] consider a fourth paradigm, namely “hierarchical” or “hybrid”, which may
sometimes be seen as a combination of the other three.
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3.4.2 Master-slave pMOEA paradigm

In this paradigm, objective function evaluations are distributed among several
slave-processors, while there exists a master-processor which is in charge of
executing tasks such as applying EVOPs, Pareto-ranking, mating and envi-
ronmental selection, distributing/collecting of subpopulations, etc. This can be
seen as the simplest pMOEA paradigm and is also fairly simple to implement.
However, its search and exploration abilities are identical to the case of its
corresponding serial MOEA. In this paradigm, the number of slave-processors
used has a direct influence only in the execution time, as long as the time com-
munication for transferring data between processes is very small as compared
to the corresponding time needed in the objective/constraint function evalua-
tion. The scheme of this paradigm is graphically illustrated in Figure 14.
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- Apply EVOPs
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Figure 14: Example of the master-slave pMOEA paradigm

As indicated before, the master-process is in charge of controlling and or-
chestrating the global pMOEA process execution, and distributing the objec-
tive evaluations and finally gathering their results. Nonetheless, this master
process can also participate in performing some objective function evaluations.
It is important to note that in this paradigm, if the objective function evalua-
tions are complex and time consuming, a substantial computational speedup
can be obtained. Also in this paradigm, the objective function distribution can
be implemented in three different ways:

(1) The pMOEA population is evenly distributed in the slave processors and
all of them evaluate the k objectives and the q constraint functions.

(2) The pMOEA population is evenly distributed by sets of members in the
population, across k sets of slave processors to perform one of the k
objective function evaluations, and,
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(3) For each member of the pMOEA, evenly distribute each objective func-
tion evaluation across multiple processors.

In using the master-slave paradigm for a pMOEA design, a detailed analy-
sis of the objective/constraint function evaluation time is required since, other-
wise, there is a risk of arriving to a poor load balancing across different slave-
processors, with a considerable detriment in pMOEA efficiency. Finally, in this
sense, we can say that efficiency is the main and only objective searched for in
this paradigm.

3.4.3 Island pMOEA paradigm

This paradigm is inspired on the phenomenon of natural populations evolv-
ing in relative isolation, such as in the case of ocean island chains with lim-
ited migration. Since this paradigm is frequently implemented on distributed
memory computers, it is also referred to as distributed pMOEAs (also called
multiple-population or multiple-demes pMOEAs). For this paradigm, different
communication topologies can be implemented (for example ring, mesh, torus,
triangle, hypercube, etc.). Evidently different population dynamics, and in con-
sequence, different population models will result, as a consequence of the dif-
ferent communication topologies used. Figure 15 illustrates some examples for
the island pMOEA paradigm.

RING TOPOLOGY STAR TOPOLOGY

ISLAND POPULATION

Figure 15: Example of the island pMOEA paradigm

The pMOEA island paradigm can be seen as an overall population divided
into a number of independent and separate subpopulations or demes. An alter-
native view is to see this paradigm as a set of multiple MOEAs executing simul-
taneously with a small population size each. Also in this paradigm, migration
of individuals can occur at certain intervals or epochs in the evolutionary pro-
cess. Then, the pMOEA design using this paradigm must accordingly identify
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migration and replacing policies, the number of individuals that will migrate,
the migration policies (i.e., who will migrate and who will be replaced) as well
as the interval or epoch at which the migration will take place. The selection of
these parameters will allow a thorough gene mixing within each deme or island,
but will also restrict/permit gene flow between different islands. By now, it can
be anticipated that the island pMOEA paradigm is very attractive, since the use
of different EVOPs, MOEA parameters, random number generators and seeds,
and even the use of multiple MOEAs, can enhance the search process in the
MOP design space. In this regard, four different island pMOEA schemes can
be identified:

(1) Homogeneous island pMOEA. In this case all islands execute identical
MOEA/parameters,

(2) Heterogeneous island pMOEA. For this situation, all island execute dif-
ferent MOEA/parameters,

(3) Each island evaluates different objective functions subsets, and

(4) Each island can represent and/or search different regions of the genotype
or phenotype domains.

3.4.4 Diffusion pMOEA paradigm

In this paradigm, each processor holds only one or very few MOEA solutions
as a population. The diffusion term for this paradigm comes from the neigh-
borhood communication structure between processes. In this case EVOPs are
applied only within these defined neighborhoods, which in some cases can
overlap, and their geometry and/or communication topology can be a square,
a rectangle, a cube or other shape depending on the number of dimensions
associated with the pMOEA topological design. The philosophy behind this
paradigm is that when good solutions appear in different areas or regions of the
local topology, their genetic information is spread or slowly diffused through
the entire population due to the overlapping and/or communication in the neigh-
borhoods defined.

This pMOEA paradigm is illustrated in Figure 16 where a grid communica-
tion topology is used and the neighborhood is defined on a square with four
processors (in the left), and with a diamond shape neighborhood with five pro-
cessors (in the right). In this paradigm there is no migration like in the island
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paradigm but genetic information is shared in the neighborhood. Also, the com-
munication, depending on the topology, can be very costly within a neighbor-
hood, since in some cases, the genetic information required for the EVOPs
cannot be retrieved directly from an adjacent processor, but has to be obtained
through another processor. Similar to the island pMOEA, different communi-
cation topologies can be devised in this case such as ring, torus, etc.

NEIGHBORHOOD NEIGHBORHOOD

PROCESSOR

Figure 16: Example of the diffusion pMOEA paradigm.
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In aeronautical/aerospace engineering there is always a trend for designing
and building more complex systems/designs, which can be attributed to ever
increasing technology improvements. Simultaneously to this trend, there is
also a pressure for developing aeronautical/aerospace systems/designs which
are environment friendly, faster, and which are also available at competitive
prices, and meet high quality standards. In order to satisfy these market re-
quirements and/or constraints, aeronautical/aerospace manufacturing compa-
nies are focusing their efforts on the product development processes. In this
sense, one major aim has been to improve the efficiency of the development
process itself, and many methods have been implemented to analyze and to
manage the design process [118, 177, 205]. Another issue has been to develop
tools and techniques that efficiently supports the design of these complex sys-
tems/designs, which has produced a wealth and sophisticated computerized
engineering tools [99, 120, 204, 71]. As the computational capacities of com-
puters increase, the fidelity of the simulations and numerical optimization, and
their common use in the process of new design efforts, also increases.

In spite of the advantages of using computer simulations and numerical op-
timizations, as indicated above, a great part of the design process remains intu-
itive and the participation of a human decision-maker is still needed. For this
decision making process, analytical techniques, simulation models, and numer-
ical optimizations, are nowadays of great value and allow to obtain substantial
improvements in many aeronautical/aerospace designs, in a timely fashion and
with less costs, as compared to the same practice of aeronautical/aerospace
engineering design 30 years ago.

Aeronautical/aerospace engineering design is an iterative process where new
design proposals are generated and evaluated. The iterative part of the design
process or design cycle (cf. Figure 17) consists of: synthesis, analysis, and de-
cision [199, 25]. In this iterative design process, the current design(s) is(are)
evaluated, i.e., its (their) expected performance(s) is(are) obtained using either
analytical tools, numerical simulations or experiments, which are then com-
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SYNTHESIS
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Figure 17: Principal activities in the design cycle

pared to the requirements of the proposed system design. If the proposed de-
sign(s) does(do) not meet the requirements, it is (they are) modified and evalu-
ated again in search for the best possible design(s). Figure 18, reproduced from
Raymer [199] and defined as the “design wheel”, clearly shows the iterative de-
sign process, commonly used by aeronautical/aerospace companies.

    SIZING AND
TRADE STUDIES

    DESIGN
CONCEPT(S)

       DESIGN
REQUIREMENTS

  DESIGN
ANALYSIS

Figure 18: Iterative design process or “design wheel” [199].

The aeronautical/aerospace engineering design process comprises three ma-
jor phases: (i) conceptual design, (ii) preliminary design, and (iii) detailed de-
sign [199, 25]. In each of these phases (see Figure 19), design concepts are
analyzed to determine their compliance with the performance requirements,
as well as their manufacturability and economical viability. As previously indi-
cated, the design process cannot be considered as serial, but as a cyclic process,
in which many design iterations are required. This iterative process is mainly
executed between the first two phases where numerical optimization has its
greatest impact, and where the goal of optimization is to refine the design,
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prior to the detailed design phase in which design production is initiated. Next,
we give a brief description of the characteristics of these three phases.

• Conceptual design: Being the conceptual design phase the earliest one
in the design process, it has an emphasis on finding the best design
concepts, ensuring designers that they are heading into the correct de-
sign path, guaranteeing to meet all design performance requirements
and a minimal development cost. A key aspect of this phase is that is
a very fluid process, and the general design layout is continuously be-
ing changed, both to incorporate knowledge of the design problem, ob-
tained from the analysis of the starting concept(s) and to evaluate poten-
tial improvements to the current design. In this phase, tradeoff studies
are very important to balance the aeronautical/aerospace systems perfor-
mance and/or constraints, because the design(s) substantially evolves in
a short period of time. Also important in this design phase is that a finite
number of possible designs, instead of only one, are studied to determine
which design approach will be preferred. The optimization methods used
during the conceptual design phase focus on tradeoffs studies and on the
overall design characteristics rather than in finer details of the concept.
Due to the evolving nature of the design in the conceptual design phase,
the use of sophisticated analysis tools is precluded, mainly because of the
time and computational requirements of them. Instead, robust classical
analysis methods are used.

• Preliminary design: The preliminary design phase can be said to start
when major changes in the designs are done. i.e., concept(s) were found
to meet all the requirements and constraints established for the design of
the aeronautical/aerospace system; or the design requirements have been
updated to attain a feasible design in terms of the present/near-future
technology availability and/or development costs. The design configura-
tion arrangement of the aeronautical/aerospace system can be expected
to remain about as shown on current design drawings, although minor
revisions may occur. At some point late in the preliminary design phase,
even minor changes are stopped when a decision is made to frozen the
aeronautical/aerospace system configuration. It is during the preliminary
design phase where specialists of the individual disciplines such as aero-
dynamics, structures, control, propulsion, etc. will design and analyze
their respective portion of the aeronautical/aerospace system. The ulti-
mate goal of the preliminary design phase is to prepare the company for
the detailed design phase, also called the full scale development.
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The preliminary design phase is characterized by a maturation of the
selected design approach. During this phase, which takes the longest
time from the whole design process, the design evolves with an ever-
increasing level of understanding, as well as an ever-increasing level of
design and analysis detail, giving designers a stronger confidence that
the design will work. It is also during this phase when, specialists who
are experts in the various design disciplines and aeronautical/aerospace
subsystems are given the overall design concept and are asked to evalu-
ate and to optimize the design concept in their areas of expertise. Being
aeronautical/aerospace systems complex designs, during this phase of
the design, it is common to find modifications to the proposed design, as
defined in the conceptual design phase, requiring further iterations and
refinements of the design concept. Following such revisions, the design
optimization must be redone because any change to the design layout
will likely affect the inputs and hence the outputs for any optimization
process.

• Detailed design: This phase in the aeronautical/aerospace design pro-
cess begins with the design of the actual pieces to be fabricated. This last
part of the design process is characterized by a large number of designers
preparing detailed drawings or CAD files with actual fabrication geome-
tries and dimensions. Also during this last phase, thousands of small
pieces not considered in the two preceding design phases are designed
and built. Every small piece of the whole aeronautical/aerospace system
must be designed in detail, hence the name of this last design phase. An-
other important aspect of the detailed design is called production design.
In this process, specialists define how the aeronautical/aerospace system
will be fabricated, considering the smallest and simplest subassemblies
and building up to the final assembly processes. It can happen at this
phase that production designers wish to modify the design for ease of
manufacture, having in consequence a major impact on system’s per-
formance and/or cost. Compromises are inevitable, but the design must
still meet the original requirements. In order to produce satisfactory de-
signs, a common practice is to use a systems thinking and design ap-
proaches [30], or a design for manufacture approach [44, 23, 57].
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4.2 O P T I M I Z AT I O N P RO C E S S I N A E RO N AU T I C A L / A E RO S PAC E E N -
G I N E E R I N G D E S I G N U S I N G M O E A S

Based on the previous paragraphs, it could be seen that aeronautical/aerospace
engineering design is essentially an optimization process. In order to automate
and therefore to speed up the whole design process, the optimization tasks
need to be formalized and the use of an optimization algorithm needs to be
introduced into the design process. Design search and optimization is the term
used to describe the application of formal optimization methods to the problem
of engineering design. It is important to recognize that ’search’ indicates that
along with the aim for optimal designs, the design activity is in many cases
an exploratory process where there are no fixed endpoints and no obviousl
optimal solutions to the complex problem being dealt with in any aeronauti-
cal/aerospace engineering system.

Optimal design in aeronautical and aerospace engineering is, by nature, a
multiobjective, multidisciplinary and highly difficult problem. Aerodynamics,
structures, propulsion, acoustics, manufacturing and economics, are some of
the disciplines involved in this type of problems. In fact, even if a single disci-
pline is considered, many design problems in aeronautical/aerospace engineer-
ing have conflicting objectives (e.g., to optimize a wing’s lift and drag or a
wing’s structural strength and weight). Motivated by industrial and economi-
cal demands, the process of engineering design in aeronautics has undergone a
major transformation, and during the last three decades, this process has been
clearly improved because of the dominant role that computational simulations
have played in this area [133] (e.g., Computational Fluid Dynamics (CFD)
simulations to perform aerodynamic analysis and design [97, 98, 100, 101]
and Computational Structural Dynamics/Mechanics (CSD/M) through the use
of the Finite Element Method (FEM) to process structural analysis [66, 234]).
The increasing demand for optimal and robust designs, driven by economics
and environmental constraints, along with the advances in computational intel-
ligence and the increasing computing power, have improved the role of com-
putational simulations, from being just analysis tools until becoming design
optimization tools.

In spite of the fact that gradient-based numerical optimization methods have
been successfully applied in a variety of aeronautical/aerospace design prob-
lems,1 [140, 249, 148, 162, 90, 219] their use is considered a challenge due to
the following difficulties found in practice:

1 It is worth noting that most of the applications using gradient-based methods have adopted
them to find global optima or a single compromise solution for multi-objective problems.
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1. The design space is frequently multimodal and highly non-linear.

2. Evaluating the objective function (performance) for the design candi-
dates is usually time consuming, due mainly to the high fidelity and high
dimensionality required in the simulations.

3. By themselves, single-discipline optimizations may provide solutions
which not necessarily satisfy objectives and/or constraints considered in
other disciplines.

4. The complexity of the sensitivity analyzes in Multidisciplinary Design
Optimization (MDO2) increases as the number of disciplines involved
becomes larger.

5. Unlike single-discipline optimization, in MDO no unique solution is ob-
tained. Instead, a set of trade-off solutions are searched for.

Based on the previously indicated difficulties, designers have been motivated
to use alternative optimization techniques such as EAs [157, 169, 132, 54, 55,
178]. MOEAs have gained an increasing popularity as numerical optimization
tools in aeronautical and aerospace engineering during the last few years [170,
171, 178, 7, 133]. These population-based methods mimic the evolution of
species and the survival of the fittest, and compared to traditional optimization
techniques, they present the following advantages:

(a) Robustness: In practice, they produce good approximations to optimal
sets of solutions, even in problems with very large and complex de-
sign spaces. Instead of a single-point search with gradient information,
MOEAs use a population of design candidates (i.e., they perform a multi-
point search) and are less prone to get trapped in local optima. Addition-
ally, they can manage non-differentiable, mixed real-discrete and highly
non-linear objective functions/fitness landscapes.

(b) Multiple solutions per run: As MOEAs use a population of candidates,
they are designed to generate multiple trade-off solutions in a single run.
Evidently, the generation of more solutions also involves a higher compu-
tational time when dealing with expensive applications. Thus, the num-
ber of solutions to be generated by a MOEA in the applications discussed
in this chapter tends to be low, unless surrogate models are adopted.

2 Multidisciplinary Design Optimization, by its nature, can be considered as a multi-objective
optimization problem, where each discipline aims to optimize a particular performance metric.
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(c) Easy to parallelize: The design candidates in a MOEA population, at
each generation, can be evaluated in parallel using different paradigms.
This can be useful in problems involving objective functions that are
costly to evaluate (something common in aeronautical and aerospace ap-
plications).

(d) Simplicity: MOEAs use only the objective function values for each de-
sign candidate. They do not require a substantial modification or com-
plex interfacing for using a CFD (Computational Fluid Dynamics) or
CSD/M (Computational Structural Dynamics/Mechanics) code. This sit-
uation substantially reduces the cost related to code writing and tuning
every time a new application is envisaged. Furthermore, designers can
easily make use of in-house developed and/or commercial codes previ-
ously validated.

(e) Easy to hybridize: Along with the simplicity previously stated, MOEAs
also allow an easy hybridization with alternative methods, e.g., memetic
algorithms, which additionally introduce specifities to the implementa-
tion, without significantly affecting the simplicity of MOEAs.

(f) Novel solutions: In many cases, gradient-based optimization techniques
converge to designs which have little variation even if produced with
very different initial setups. In contrast, the inherent explorative capa-
bilities of MOEAs allow them to produce, some times, novel and non-
intuitive designs.

An important volume of information has been published on the use of MO-
EAs in aeronautical and aerospace engineering applications (mainly motivated
by the advantages previously addressed). In this chapter, we provide a review
of some representative works. From this review, we can observe the variety of
design stages and diverse problems in which MOEAs have been used.

4.2.1 Use of MOEAs for conceptual design optimization

Traditionally, the aeronautical/aerospace conceptual design phase has been con-
ducted with the help of databases, statistics, and regression/low-order engineer-
ing models as well as company’s/designer’s accumulated experience. The main
outcome of this design phase has been to determine a few promising design
concepts to be further analyzed in the preliminary design phase, in which nu-
merical simulations or experimental setups are developed to verify and refine
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the design. Additionally, tradeoff analyzes are performed in order to identify
unreasonable or conflicting requirements. This latter task has been limited be-
cause of the large design spaces that needs to be explored, and a holistic (mul-
tidisciplinary) vision of the design is required when multiple disciplines are
involved in the design. Nowadays, with the increasing computing power avail-
able, low-cost/fidelity numerical simulations have spread toward the concep-
tual design phase, making it possible to benefit from the exploration of large
design spaces with reduced time and low computational cost. Additionally, it is
possible to envision performing trade-off analysis of the multi-objective and/or
multidisciplinary designs. Both of these characteristics are inherent in the use
of MOEAs for the class of applications reported next:

- Oyama and Liou [180, 182] addressed the conceptual design of rocket
engine pumps, for a centrifugal single and multi-stage pump design. In
both cases two objectives were defined: (i) maximization of total head
in the pump, and (ii) minimization of the pump input power. Side con-
straints were considered for the design variables range, defining the
pump geometry. An additional operating constraint was imposed for the
static pressure at the rotor tip in order to detect the inception of cav-
itation, being crucial to prevent this condition for the optimal design.
The authors adopted MOGA with fitness sharing [76], blended crossover
(BLX-α) and uniform random mutation. Conceptual designs were eval-
uated using a one dimensional meanline pump flow-modeling method,
which provides a fast modeling of turbopumps for rocket engines at very
low computational cost. For the first conceptual design case, a total of
498 different nondominated solutions were obtained, while 660 were
found in the second case. Authors noted that improvements in the ob-
jective functions were within 1% in both objectives with respect to a
reference design.

- Buonanno and Mavris [29] addressed the conceptual design of a small
supersonic aircraft, considering seven objectives: (i) weight, (ii) range,
(iii) takeoff balanced field length, (iv) loudness, (v) overpressure, (vi)
flight Mach number, and (vii) cabin size. Some of them were minimized,
while others were maximized. An application example presented by the
authors comprised a set of up to 64 design variables (both continuous
and discrete variables were considered), describing the aircraft geometry
and the mission requirements. The authors used a parallel hybrid sub-
jective/quantitative MOEA, in which the fitness of an individual was a
combination of both quantitative and qualitative metrics, with the lat-
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ter being defined by a human evaluator. A parallel-MOEA) (pMOEA),
based on the injection island genetic algorithm [58], was adapted for
this MOP. The strategy consisted on assigning one objective function
per island and solving a two-objective optimization problem. The sec-
ond objective for each island was constructed as a goal attainment met-
ric based on the mission requirements for the aircraft. In this way, each
island obtained a set of solutions excelling in its assigned objective and
representing a trade-off with respect to the project goals. After a cer-
tain number of generations, the nondominated solutions from the islands
were sent to a central island which solved the seven-objective problem
formulated as a goal attainment problem. Each island used SPEA2. The
nondominated solutions from the central island were transferred back to
each of the islands and the process was repeated until satisfactory solu-
tions were obtained. The authors used physics-based analysis tools for
performance prediction. Low-order/fidelity models were used for the in-
volved disciplines: aerodynamics, propulsion, stability and control, eco-
nomics, aeroelasticity, manufacturing and acoustics, along with modules
for weight estimation and geometry parameterization.

- Valliyappan and Simpson [245] solved a conceptual design optimization
for a general aviation aircraft product family of small propeller driven
GAA (General Aviation Aircraft) to be scaled around the 2, 4, and 6 seats
configurations, and which can cruise from 150 to 300 knots and have a
range from 800 to 1000 miles. The aim of this study was to explore the
design space in order to find the trade-off between platform commonality
and individual product performance within the aircraft family. The MOP
comprised four objective functions which were defined by means of a
goal programming formulation, where the deviations of each goal from
their targets were minimized. For this sake, a set of 7 goals (aspiration
levels), and a set of 7 constraints were defined. The first two objectives
measured the technical and economical related goals within the family,
respectively. The third objective measured the total constraint violation
for the whole family. Finally, objective four measured the variance index
or degree of commonality in variables within the product family. De-
sign candidates were defined with a set of 14 continuous/discrete design
variables, and the evaluation of the aircraft performance was done via
NASA’s GASP (General Aviation Synthesis Program). The authors used
the NSGA-II. A special encoding was adopted in order to contain a set
of commonality controlling genes (one gene per variable), followed by a
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concatenation of genes defining the design variables of each product in
the product family.

- Rajagopal et al. [194] investigated an Unmanned Aerial Vehicle (UAV)
conceptual design. Two objectives were considered: (i) the maximiza-
tion of the endurance (the time an airplane can fly given a payload and
a given fuel weight) and (ii) the minimization of the wing weight. Six
design variables were used, four of them being wing-geometry related
parameters (aspect ratio, wing loading, taper ratio, thickness to chord
ratio) and the other two being UAV’s operational parameters (loiter ve-
locity and altitude). Additionally, constraints were imposed on the perfor-
mance parameters of the UAV design. These included: (1) wing weight,
(2) rate of climb, (3), stall speed, and (4) maximum speed at sea level
condition. NSGA-II with real-numbers encoding and the SBX crossover
operator was adopted. This MOEA was coupled to Raymer’s RDS soft-
ware, which is based on the design methods described in [199], in order
to evaluate the performance of each design candidate. The authors re-
ported that a Pareto front was obtained with a total of 11 solutions.

- Kuhn et al. [134] developed a multidisciplinary conceptual design me-
thodology for its application to hybrid airship design (aerostatic lift and
aerodynamic lift). Two objectives were considered: (i) minimization of
the total mass, and (ii) maximization of the payload. Thirteen constraints
were imposed, related to stress levels in the components. A set of 18
mixed real/discrete variables were used to represent the geometry of
the airship and its structural properties. The optimization tool adopted
was a MOEA called GAME (Genetic Algorithm for Multicriteria Engi-
neering) [143], which is based on Evolution Strategies (ES). The evalua-
tion of the objective functions was done with models varying in fidelity,
ranging from interpolation models to FEM models. The latter was used
for the structural analysis using a FEM commercial software. A Hybrid
Universal Ground Observer (HUGO) airship demonstrator was designed,
with a total of 10,000 design candidates being evaluated.

- Jing and Shuo [112] presented the conceptual design of an air-breathing
hypersonic cruise vehicle. Five design objectives were considered: (i)
maximization of the lift-to-drag ratio, (ii) minimization of the stagnation
temperature, (iii) maximization of the thrust-to-drag ratio, (iv) maximiza-
tion of the airframe volume, and (v) minimization of the Radar Cross
Section (RCS). Constraints were imposed on variables ranges, flow flux
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and Mach number at inlet conditions, trimmed angle of attack and rolling
angle, and static stability and maneuverability margins as well. 21 design
variables were used to define the geometry of the design candidates. The
authors adopted MOGA with the following features: real numbers encod-
ing, arithmetic crossover, Gaussian mutation, steady-state reproduction
and fitness sharing. Constraint handling was done by an accurate penalty
strategy. Additionally, for further improvement of the solutions, a sim-
ulated annealing algorithm3 was adopted as a local search engine. The
objectives were evaluated using simplified models with reduced compu-
tational cost. Only three globally nondominated solutions could be gen-
erated. Such solutions were further evaluated and compared against a
reference design. The authors noted that these solutions were better in
all the objectives than the reference design (i.e., they dominated it).

- Xiaoqing et al. [261] evaluated the multiobjective optimization of hyper-
sonic waverider shape generation. Three objectives were considered: (i)
lift-to-drag ratio, (ii) vehicle’s volume, and (iii) vehicle’s volumetric ra-
tio. No information is given, concerning constraints, thus it is assumed
that only side constraints on variable ranges are considered. The base
section of the waverider was defined by means of analytical shape func-
tions (i.e., fourth-order polynomials), keeping to a minimum the number
of design variables. The authors explored two different techniques: (a)
cone derived waverider, and (b) osculating cone derived waverider. The
authors adopted the NSGA-II with an improved crowding mechanism.

- Theisinger and Braun [235] identified hypersonic entry aeroshell shapes
in order to find trade-off designs with increased landed mass capabili-
ties. Three objectives were considered: (i) drag-area, (ii) static stability
and (iii) volumetric efficiency. This particular spacecraft design prob-
lem was driven by planetary entry-descent-landing performance require-
ments and thermal/structural limitations, which are naturally conflicting.
All objectives were maximized and two constraints were imposed to

3 Kirkpatrick et al. [123] pointed out the analogy between an “annealing” process and optimiza-
tion: a system state is analogous to the solution of an optimization problem. The free energy
of the system (to be minimized) corresponds to the cost of the objective function to be opti-
mized; the slight perturbation imposed on the system to change it to another state corresponds
to a movement into a neighboring position (with respect to the local search state); the cool-
ing schedule corresponds to the control mechanism adopted by the search algorithm; and the
frozen state of the system corresponds to the final solution generated by the search algorithm
(using a population size of one). These analogies led to the development of the so-called simu-
lated annealing algorithm.
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the volumetric efficiency and on the lift-to-drag ratio. Side constraints
were applied to the design variables in order to obtain designs fitting
with the current launch systems. Aeroshell shape was described by a
bi-parametric, cubic by quadratic, non-uniform rational B-spline 3D sur-
face, allowing them to define the optimization problem with 20 design
variables, including the aeroshell angle of attack. The authors adopted
the version of the NSGA-II available in the iSIGHT commercial soft-
ware. Additionally, the objective function evaluations were performed
with the estimated flow field around the aeroshell using a physics-based
simulation, namely the Newtonian impact theory. The Mars Science Lab-
oratory Aeroshell was adopted as a reference design. The authors found
several design candidates that performed better than the reference design
in the three objectives under consideration.

Analysis of the use of MOEAs in conceptual design

Table 1 summarizes the application of MOEAs in conceptual design opti-
mization problems. From this table and the previous review, it can be observed
that NSGA-II is the most frequently adopted approach. The common use of
Pareto-based approaches seems to corroborate the hypothesis from some au-
thors regarding the suitability of Pareto optimality to drive the search at the
preliminary stages of design [254]. It should be clear that the use of MOEAs is
computationally expensive, which is the reason why analytic and/or low-order
engineering models are adopted in most cases. Only in a few applications, re-
searchers seem to rely on low-order physics-based models [29], and variable-
fidelity physics-based models [134]. Nevertheless, we believe that in the near
future, MOEAs will become a standard practice, as the computing power avail-
able continues to increase each year. It is also worth noting that MOEAs are
flexible enough as to allow their coupling to both engineering models and low-
order physics-based models without major changes. They can also be easily
parallelized, since MOEAs normally have low data dependency. Finally, it is
worth indicating the advantage of incorporating a subjective evaluation scheme
for cases in which the search must be controlled, disallowing the generation of
impractical design solutions as reported by Buonanno and Mavris [29].

An aspect that is important to emphasize is the poor scalability of Pareto-
based MOEAs as we increase the number of objectives [128]. Many of the
applications previously described considered a low number of conflicting ob-
jectives (two or three in most cases). Although MOEAs can still be used in
high-dimensional objective spaces, it is required to use mechanisms different
from the traditional Pareto-based selection [96]. This issue, however, does not
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seem to be a major concern in most of the applications reviewed above. A re-
markable exception is the work reported in [29] in which the authors deal with
a problem having seven objectives. The authors adopt in this case a parallel
MOEA based on the concepts of co-evolution of multiple populations. This
approach seems to produce acceptable results in this high-dimensional search
space. Another issue that seems to be a common concern in this first group of
applications is the encoding of the decision variables. Since this sort of appli-
cation normally has mixed decision variables (e.g., discrete and continuous),
authors tend to propose their own ad-hoc encodings, which also require spe-
cialized crossover and mutation operators associated to them. It should also
be evident that in this first type of applications, authors paid little or no atten-
tion to the fine-tuning of parameters of their MOEAs. This may be due to the
obvious difficulties to perform a careful statistical analysis when dealing with
very expensive objective functions. However, other possible alternatives such
as self-adaptation or on-line adaptation have not been properly addressed by
researchers in this area yet [239]. If such self-adaptation and on-line adapta-
tion mechanisms are unaffordable, at least the use of relatively high mutation
rates is suggested, combined with a plus selection mechanism that combines
the population of parents with the population of offspring and retains the best
half. This will increase the selection pressure but will maintain enough diver-
sity as to avoid premature convergence. Finally, it is worth mentioning the use
of external files (or archives) as a viable alternative to reduce objective function
evaluations and perform a more accurate search. This sort of mechanism can
be particularly useful when combined with relaxed forms of Pareto dominance
such as ε-dominance [144], which allows to regulate convergence, and has not
been adopted by researchers working in this first group of applications.

4.2.2 Use of MOEAs for 2D geometries and airfoil shape optimization

Aeronautic and aerospace systems are, in general, complex engineering sys-
tems. Their analysis and design is a very complex task. There exist, however,
many engineering design cases where this complexity can be tackled by ana-
lyzing basic components of the complete system, on which reduced/simplified
models can be used as the basis for analyzing the whole system. Examples
of these conditions are the design of 3D complex shapes such as wings and
turbine blades, where the analysis of their 2D building sections (airfoils) is fre-
quently performed prior to the analysis of the complete 3D geometry. In other
cases, the geometry for the system can be such that its operating conditions
can be estimated by analyzing its sectional properties. Examples of this latter
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condition are the aircraft engine inlets/nozzles, where the flow can be assumed
as two-dimensional or axisymmetrical. In this section, some applications of
MOEAs for these types of problems are presented.

- Yamaguchi and Arima [263] dealt with the optimization of a transonic
compressor stator blade in which three objectives were minimized: (i)
pressure loss coefficient, (ii) deviation outflow angle, and (iii) incidence
toughness. The last objective function can be considered as a robust con-
dition for the design, since it is computed as the sum of the pressure loss
coefficients at two off-design incidence angles. The airfoil blade geome-
try was defined by twelve design variables. The authors adopted MOGA
with real-numbers encoding, fitness sharing and intermediate crossover.
Aerodynamic performance evaluation for the compressor blade was done
using Navier-Stokes CFD simulations. The optimization process was par-
allelized, using 24 processors in order to reduce the computational time
required. In order to promote diversity, during the first few generations,
parents were selected from individuals with the first two lowest rank val-
ues (i.e., dominated individuals were also selected) and later on, only
nondominated individuals were selected.

- Benini and Toffolo [16] addressed the development of high-performan-
ce airfoils for its application in axial flow compressors. They minimized
two objectives: (i) nondimensional pressure ratio, and (ii) the pressure
loss coefficient reduced from the unit value. Constraints were imposed
on the design conditions, and were evaluated at 5 different flow-field
points, in order to obtain airfoils being at least equal in performance to
the reference airfoils adopted by the authors. The airfoil geometry was
defined using three Bézier curves. In total 9 designs variables were used
to define the airfoil geometry, its length, pitch, and incidence. A special
procedure was used to avoid generating either useless or invalid airfoil
geometries. The MOEA used by the authors is based on an elitist (µ+µ)
evolution strategy, which adopted binary encoding. In their implementa-
tion, µ offspring were generated using crossover and were mutated with a
random-based mechanism. Repeated solutions (clones) were replaced by
randomly-generated individuals. In the selection process, the combined
population of parents and offspring were Pareto-ranked but considering
also a diversity metric defined as a function of the minimal normalized
Euclidean distance (in decision variable space) of each individual to its
closest neighbor. The best µ individuals were retained as members of the
following generation. The evaluation of the objective functions was done
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by means of CFD simulations with a high computational cost. The non-
dominated solutions generated by the authors were found to be superior
in performance to the reference airfoils, using NACA 65 family airfoils.

- Naujoks et al. [165] addressed an airfoil design problem in which ex-
treme Pareto optimal solutions were defined for two operational design
points (two competing objectives): one for high lift performance at low
speed condition and the other one for low drag performance at high speed
condition. The airfoil was represented by two Bézier curves, and a to-
tal of 12 design variables were adopted. No constraints were defined,
other than side constraints (upper and lower limits for the design vari-
ables). The authors used an approach called MODES (Multi Objective
De-randomized Evolution Strategy). In this case, a (1+10)-DES (De-
randomized Evolution Strategy) was adopted, which means that only one
parent was used to produce the offspring. The aerodynamic evaluation of
the design candidates is performed using a CFD Navier-Stokes simula-
tion with a high computational cost. It is worth noting, however, that for
the examples presented by the authors, a budget of only 1000 evaluations
was considered. Although this was a very small number of objective func-
tion evaluations, the authors reported the generation of good approxima-
tions of the Pareto front. In a further paper, Naujoks et al. [166] proposed
to use a (20+20)-MODES strategy, along with a selection mechanism
inspired on the NSGA-II. The results presented with this additional se-
lection mechanism were very similar to those obtained before, both in
terms of quality of the Pareto approximation and in terms of the spread
of the nondominated solutions along the Pareto front.

- Beume et al. [17] proposed the SMS-EMOA (SMS stands for S-metric4

selection) strategy. The approach was used to solve a multi-objective air-
foil design problem. As in the previous case, Pareto extreme solutions
were defined by three operational conditions for lift, drag and pitching
moment coefficients. The optimization problem was to find trade-off so-
lutions minimizing the drag values for the three flow conditions, while
not losing lift and keeping the pitching moment within a 2% range from
the reference design points. Additionally, geometrical constraints were

4 The hypervolume (also known as the S metric or the Lebesgue Measure) of a set of solutions
measures the size of the portion of objective space that is dominated by those solutions col-
lectively. It has been proved that the maximization of this performance measure is equivalent
to finding the Pareto optimal set [67], and this has also been empirically verified by some
researchers [61].
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included for the airfoil shape. These last constraints were treated in a
direct manner, discarding all infeasible solutions, previous to a CFD sim-
ulation. Results for this application were presented and compared with
those obtained by using NSGA-II, in both cases with a limited budget of
1,000 function evaluations.

- Rai [193] dealt with the robust optimal aerodynamical design of a tur-
bine blade airfoil shape, taking into account the performance degradation
due to manufacturing uncertainties. Two objectives were considered: (i)
to minimize the variance of the pressure distribution over the airfoil’s
surface, and (ii) to maximize the probability of constraint satisfaction.
Only one constraint was considered, related to the minimum thickness
of the airfoil shape. The constraint-handling technique adopted was the
one developed by the same author and reported in [192]. The airfoil
shape parameterization consisted of eight decision variables but in the
experiments presented, only two of them were used for perturbing one
airfoil side (the pressure side). The author adopted a multi-objective dif-
ferential evolution (MODE) approach [189]. Its main features included
a mechanism to reduce the set of nondominated solutions in case its size
exceeded a certain (pre-defined) threshold. This was done to promote
diversity in the population. It also adopted an intermediate population
whose size was twice as large as the original and which was Pareto
ranked so that only the first half was retained for the next generation.
The author used a high-fidelity CFD simulation on a perturbed airfoil
geometry in order to evaluate the aerodynamic characteristics of the air-
foil generated by MODE. The simulation follows a probability density
function that is observed for manufacturing tolerances. This process re-
quired a high computational cost, which the author attempted to reduce
by using an artificial neural network [216] Response Surface Model.

- Ray and Tsai [197] considered an airfoil shape design optimization prob-
lem with two objectives to be minimized: (i) the ratio of the drag-to-lift
squared coefficients, and (ii) the squared moment coefficient. Constraints
were imposed on the flow Mach number and angle of attack. Airfoil
shapes were defined by the PARSEC representation [223]. This airfoil
representation allowed to define the geometry of an airfoil with 11 de-
sign variables which are more related to its aerodynamic performance
than in other type of airfoil representations. The optimizer used is a multi-
objective particle swarm optimizer (MOPSO) [4]. A particular feature of
this application was that the particle swarm scheme was based on move-
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ments for the particles of one position to another in the design space,
rather than on an update of an individual’s velocity as done in the stan-
dard particle swarm optimization algorithm. The aim of this scheme was
a reduction in the number of user-defined inputs. The flow solver utilized
corresponds to an Euler code which was able to capture nonlinearities in
the flow such as shock waves. In their results, the authors obtained a set
with 32 nondominated solutions. In a related work, Ray and Tsai [198]
presented a parallel implementation of this MOPSO for airfoil shape opti-
mization. This approach was also hybridized with a gradient-based algo-
rithm. Contrary to standard hybridization schemes where gradient-based
algorithms are used to improve the nondominated solutions obtained
(i.e., as a local search engine), in this approach the authors used the gradi-
ent information to repair solutions not satisfying the equality constraints.
This repairing algorithm was based on the Marquardt-Levenberg algo-
rithm [156, 147]. During the repairing process, a subset of the design
variables was used, instead of the whole set, in order to reduce the di-
mensionality of the optimization problem to be solved.

- Obayashi et al. [173] studied the aerodynamic design of cascade airfoils
shapes. The problem considered three objective functions: (i) pressure
rise, (ii) flow turning angle, and (iii) total pressure loss. The first two ob-
jectives were maximized and the third one was minimized. The authors
used a real-coded MOGA. Objective evaluation was performed using a
2D Navier-Stokes code for flow evaluation. The same MOEA was also
used for the design of a four-stage compressor [181, 173]. In this sec-
ond application, two objective functions were maximized: (i) total pres-
sure ratio and (ii) isentropic efficiency. The MOP consisted of 80 design
variables, and one constraint on the flow conditions, in order to avoid
designs with flow separation. The evaluation was done using flow simu-
lations based on the streamline curvature method in which solutions are
obtained iteratively, causing a high computational cost even when an en-
gineering model is used. The nondominated solutions obtained by the
authors outperformed a baseline design in both objective functions by an
amount of 1%.

- D’Angelo and Minisci [46] solved a subsonic airfoil shape optimiza-
tion problem, in which two objective functions were minimized: (i) drag
force coefficient, and (ii) lift force coefficient difference with respect to
a reference value. The airfoil geometry was parameterized using Bézier
curves both for its camber line and for its thickness distribution. Five de-
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sign variables were used and constraints were imposed on the extreme
values of the objective functions. The authors adopted MOPED (Multi-
Objective Parzen-based Estimation of Distribution) [45], which uses the
Parzen method to build a probabilistic representation of the nondomi-
nated solutions, with multivariate dependencies among the decision vari-
ables. The authors included three modifications to improve MOPED: (a)
the use of a Kriging model by which solutions were evaluated without re-
sorting to costly computational simulations, (b) the use of evolution con-
trol to keep the evolution from converging to false Pareto fronts, and (c)
the hybridization of the algorithm with some mechanisms from NSGA-II
(selection and ranking of solutions). Aerodynamic evaluations were per-
formed by using a CFD simulation code, tailored for aerodynamic airfoil
analysis. The authors indicated that this subsonic airfoil shape optimiza-
tion problem presented difficulties associated to more complex problems:
The true Pareto front was discontinuous and partially converged solu-
tions (when divergence was detected, the iterative process was stopped)
from the aerodynamic simulation code introduced irregularities in objec-
tive function space. The approximation model reduced the number of
objective function evaluations in a significant manner (to one sixth of
their original value).

- Bing et al. [19] presented the aerodynamic shape optimization for a 2D
Hypersonic inlet and 2D SERN (Single-Expansion-Ramp Nozzle) used
in scramjet engines. Two applications were presented, one with two ob-
jectives and the other with three objectives. For the first optimization
example a 2D Hypersonic engine inlet was considered, and the aim was
to maximize the two following objectives: (i) pressure recovery, and (ii)
static pressure rise. Constraints on the design variables, inlet geometry
and flow condition at exit, were imposed. The inlet geometry was de-
fined using four decision variables. The evaluation of the design perfor-
mance required high fidelity CFD Navier-Stokes simulations since the
flow physics was highly nonlinear for the operating flow conditions in-
dicated. The results of both the NSGA-II and the Neighborhood Culti-
vation Genetic Algorithm (NCGA) [255] were compared. The second
problem considered the same inlet design previously defined, with the
additional objective of minimizing the inlet drag coefficient. From the
results presented by the authors, in both cases, the NCGA algorithm per-
formed better than NSGA-II, obtaining more nondominated solutions
with a better spread along the Pareto front.
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- Brown et al. [27] addressed the optimization design of a scramjet inlet
considering two objectives: (i) total pressure recovery factor, and (ii) vari-
ation of pressure recovery factor for a± 5% change in free stream Mach
number. The first objective was maximized, while the second was min-
imized. According to the design problem, geometric constraints were
defined in order to remove physically unrealistic solutions. Addition-
ally, operational flow constraints were considered to guarantee the auto-
ignition in the engine. This condition required a certain range for pres-
sure, temperature and Mach number in the flow at specific locations. The
inlet was considered as a 2-D geometry and consisted of three flat ramps
and a cowl at the combustion chamber inlet. In this case, 12 design vari-
ables were adopted. The MOEA adopted used a selective breeding pro-
cess that ranked solutions according to the constraints, and also on the
basis of the desirability of the values of the objectives (according to the
user’s preferences). The objective functions consisted of hypersonic flow
conditions in which strong shock waves were present. The authors did
not report the cardinality of the set of nondominated solutions that they
obtained, but they reported the generation of a considerably high number
of nondominated solutions.

- Congedo et al. [43] dealt with the airfoil shape optimization for tran-
sonic flows of Bethe-Zel’dovich-Thompson (BZT) fluids. In this case,
two design conditions were explored, both for a non-lifting airfoil, and
for a lifting airfoil. In the second case, the MOP considered two design
objectives: (i) maximization of lift at BZT subcritical conditions, and
(ii) minimization of wave drag while maximizing lift for supercritical
BZT flow conditions. The geometry of the airfoil shape was represented
with a Bézier curve with 16 2D control points, i.e., 32 decision variables,
from which 10 are constants used to control the leading edge and trailing
edge positions as well as the leading edge slope. Thus, the problem con-
sisted of 22 variables. The only constraint included was the thickness to
chord ratio of the airfoil, which was adjusted to its specified value, once
a design was generated, and prior to the flow solution. The authors used
the NSGA with a sigma-share formula given in [191], which takes into
account the population size and the number of objectives. They chose
parameters in such a way that less than 1,000 objective function evalu-
ations were performed. The authors reported that all the solutions that
they obtained outperformed the baseline design as well as the designs
obtained using traditional design methods.
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- Shimoyama et al. [222] developed a novel optimization approach for ro-
bust design. In their approach, a design for multi-objective six-sigma
(DFMOSS) [221] was applied for the robust aerodynamic airfoil design
of a Mars exploratory airplane. The core of the design methodology was,
on the one hand, the concept of Robust Design5 and, on the other, its
multi-objective nature. The idea of the DFMOSS methodology was to
incorporate a MOEA to simultaneously optimize the mean value of an
objective function, while minimizing its standard deviation due to the un-
certainties indicated above. The airfoil shape optimization problems con-
sidered two cases: a robust design of (a) airfoil aerodynamic efficiency
(lift-to-drag ratio), and (b) airfoil pitching moment constraint. In both
cases, only the variability in the flow Mach number was taken into ac-
count. The authors adopted MOGA. The airfoil geometry was defined
using Bézier curves both for the upper and for the lower surfaces. 6 con-
trol points were used, resulting in 12 design variables. The aerodynamic
performance of the airfoil was evaluated by CFD simulations using the
Favre-Averaged compressible thin-layer Navier-Stokes equations. Eigh-
teen robust nondominated solutions were obtained in the first test case.
From this set, almost half of the population attained the 6σ condition. In
the second test case, more robust nondominated solutions were found,
and they satisfied a sigma level as high as 25σ.

- Szöllös et al. [229] addressed the aerodynamic shape optimization of the
airfoil geometry of a standard-class glider, considering three objectives:
(i) maximize gliding ratio at high flight speed, (ii) maximize gliding ratio
at average weather conditions, and (iii) minimize sink rate at low turn-
ing speeds. All these objectives are specified in terms of airfoil’s aero-
dynamic lift and drag coefficients as well as flight operating conditions
in terms of the Reynolds number (Re) and the Mach number (M). Con-
straints are considered for: (a) airfoil’s maximal lift coefficient at landing
flight conditions, (b) maximum airfoil’s thickness to chord ratio, (c) trail-
ing edge thickness, and (d) pitching moment coefficient (Cm) which is
required not to be worse than a reference airfoil design. The authors in-
troduced a new MOEA called multi-objective micro-genetic algorithm
with range adaptation, based on ε-dominance or εµARMOGA. This
approach is inspired on the Adaptive Range Multi-Objective Genetic Al-
gorithm (ARMOGA) [208]. ARMOGA incorporates two archiving tech-

5 Robust design deals with the idea of designing and/or developing a product that has minimal
variance in its characteristics and meets the exact performance desired.
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niques: a global archive, which stores all the best solutions obtained so
far, and a recent archive, which stores the best solutions of the past pre-
vious generations. Solutions from the second archive participate in the
parent selection process. εµARMOGA introduces two additional mech-
anisms. The first corresponds to the use of a small population size (i.e.
the use of a micro-genetic algorithm as in [131, 40]), coupled with the
use of an external file for storing the nondominated solutions obtained so
far. The second mechanism corresponds to the use of the concept of ε-
dominance [145], which is a relaxed form of Pareto dominance that has
been used as an archiving strategy that allows to regulate convergence.
The authors initialized the population using a Latin Hypercube Sampling
(LHS) technique, and the main population was reinitialized at every cer-
tain number of generations, based on the average and standard deviation
of the decision variables. The objective functions were evaluated using
a CFD simulation code. The authors obtained feasible solutions with im-
provements on the order of 10%, 8% and 7-10% for the first, second and
third objectives, respectively, with respect to a reference airfoil design.

Analysis of the use of MOEAs in 2D geometries and airfoil shape optimiza-
tion

Table 2 summarizes the application of MOEAs in 2D geometries and air-
foil shape optimization problems. From this table and the previous discussion,
we can see that, as before, a wide variety of Pareto-based elitist MOEAs have
been used in this domain. It is also worth noting the use of MOEAs in robust de-
sign, in which solutions are evaluated with off-design operating conditions and
manufacturing tolerances. Such solutions are thus representing more realistic
designs. Several authors report improved designs when adopting MOEAs, but
unsuccessful cases have also been reported. The cases in which MOEAs fail
to produce improved designs seem to be associated to situations in which the
baseline design had been already improved in a significant manner, or when the
search space is so highly constrained that it is difficult to move to better regions.
Again, the high computational cost associated to the use of MOEAs is evident.
In spite of the advantages of Pareto-based MOEAs, it is also evident that, when
dealing with expensive objective functions such as those of the above applica-
tions, the use of careful statistical analysis of parameters is unaffordable. Thus,
the parameters of the MOEAs discussed in this section were simple guesses
or taken from values suggested by other researchers. It is also important to
note that some researchers have suggested clever approaches that allow the
use of very small population sizes, although surrogate models have also been
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employed, as in the previous section. Nevertheless, the use of other simpler
techniques such as fitness inheritance or fitness approximation [200] seems to
be uncommon in this domain and could be a good alternative when dealing
with high-dimensional problems. Additionally, the authors of this group of ap-
plications have relied on very simple constraint-handling techniques, most of
which discard infeasible individuals. Alternative approaches exist, which can
exploit information from infeasible solutions and can make a more sophisti-
cated exploration of the search space when dealing with constrained problems
(see for example [159]) and this has not been properly studied yet. Finally, it is
worth emphasizing that, in spite of the difficulty of these problems and of the
evident limitations of MOEAs to deal with them, most authors report finding
improved designs when using MOEAs, even when in all cases a fairly small
number of fitness function evaluations was allowed. This clearly illustrates the
high potential of MOEAs in this domain.

4.2.3 Use of MOEAs for 3D complex physics/shape optimization

Sophisticated aeronautical/aerospace systems possess in most cases, complex
three-dimensional shapes and/or are designed to operate in complex physi-
cal environments. Examples of such complex three-dimensional shapes are
those of turbine/propeller blades, and complete aircraft configurations. Com-
plex three-dimensional physics are present for high speed flow over wings and
turbine/propeller blades, in which shock waves can arise, affecting the design
performance. For these cases, the MOP cannot be simplified by the use of
reduced models, such as two-dimensional simulations, as done in the applica-
tions of the previous section. Next, we will discuss applications of MOEAs
in which their authors deal with these 3D complex physics/shape optimization
problems.

- Sasaki et al. [209] and Obayashi et al. [172] solved a multi-objective
aerodynamic wing shape optimization problem in which they minimized
three objectives: (i) drag coefficient for transonic cruise, (ii) drag coef-
ficient for supersonic cruise, and (iii) bending moment at the wing root
for supersonic cruise condition. The set of constraints comprised lift co-
efficient at both transonic and supersonic cruise conditions, wing area
and maximum airfoil thickness. The variables for this design were 66 in
total, and defined the wing planform shape, airfoil chord and thickness
distribution at several wing stations, as well as wing twist angles at the
same airfoil locations. The authors adopted MOGA and the design can-
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didates were evaluated by a high-fidelity Navier-Stokes CFD flow sim-
ulation. The evaluation process was parallelized using the master-slave
paradigm. In a further paper, Sasaki et al. [210] used the same algorithm
for the aerodynamic optimization of a supersonic transport wing-body
configuration. In this application, two objectives were considered: (i)
drag coefficient and (ii) difference in Darden’s equivalent area distribu-
tion. Constraints on the lift coefficient were imposed during the optimiza-
tion, and on the length and volume of the fuselage. The aim of the second
objective was to achieve low sonic boom characteristics. For this prob-
lem, the number of variables increased to 131, as the fuselage geometry
was added in this case. The aerodynamic evaluation for the first objec-
tive was performed by an Euler CFD simulation to considerably reduce
the computational time with respect to the use of a Navier-Stokes CFD
simulation. Nonetheless, the optimization process was parallelized us-
ing the master-slave paradigm. Two test cases were considered, each one
having different upper/lower limits for the section nearby the wing-body
intersection.

- Sasaki and Obayashi [212] solved a problem similar to the previous one
[210] and obtained analogous results, but in this case, the ARMOGA
algorithm was used. Also, and in order to incorporate constraints, an ex-
tended Pareto ranking method based on constraint-dominance was used
[69].

- Ng et al. [168] addressed a multiobjective wing platform and airfoil
shape optimization problem. The MOP aimed to redesign the reference
ONERA M6 wing minimizing two objectives: (i) W/Wo, which is the ra-
tio for the design wing weight with respect to the reference ONERA M6
wing weight, and (ii) CD/CDo, which is the ratio of the design wing drag
coefficient with respect to that of the reference wing. The first objective
was evaluated using a semi-empirical equation, while the second was ob-
tained from a multigrid Euler CFD simulation. Constraints were imposed
on the flow Mach number and constant lift coefficient. No special con-
straint handling technique was used, but the CFD code was instructed to
vary the angle of attack, subjected to a tolerance, in order to satisfy this
equality constraint. This technique can be seen as a mechanism to repair
solutions. The wing platform was represented by 5 design variables: (a)
taper ratio, (b) wing sweep angle, (c) twist angle, (d) aspect ratio, and (e)
thickness-to-chord ratio. The airfoil used for the wing corresponded to
the symmetric airfoil used in the ONERA M6 wing, and was the same
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across the wing. The optimizer used was based on the PSO algorithm
described in Ray et al. [197]. The authors presented results for two test
cases: the first with 4 steps and the second with 8 steps. In the first case
10 nondominated solutions were obtained, while 11 were found in the
second case. In both cases, all the nondominated designs were better in
the first objective function compared to the reference wing, and for the
second objective, almost half of the population were better while the
rest were worse, with respect to the reference wing. An Adaptive Search
Space Operator (ASSO) technique was used by the authors to give the
algorithm the possibility of adapting decision variables bounds by shrink-
ing/expanding the boundaries of the design space.

- Lian and Liou [150] addressed the optimization of a three-dimensional
rotor blade, namely the redesign of the NASA rotor 67 compressor blade,
a transonic axial-flow fan rotor, which was the first of a two-stage com-
pressor fan. Two objectives were considered in this case: (i) maximiza-
tion of the stage pressure rise, and (ii) minimization of the entropy gen-
eration. Constraints were imposed on the mass flow rate to have a differ-
ence less than 0.1% between the new one and the reference design. The
blade geometry was constructed from airfoil shapes defined at four span
stations, with a total of 32 design variables. The authors adopted MOGA.
The optimization process was coupled to a second-order RSM, which
was built with 1,024 design candidates using the Improved Hypercube
Sampling (IHS) algorithm. 12 design solutions were selected from the
RSM-Pareto front obtained, and such solutions were verified with a high
fidelity CFD simulation. The objective function values slightly differed
from those obtained by the approximation model, but all the selected so-
lutions were better in both objective functions than the reference design.
Similar work was presented by Lian and Liou [151] but minimizing the
blade weight instead of the entropy generation. Similar performance re-
sults were obtained with lighter blades. More recently, Kim and Liou
[122] presented the design of three new MOEAs, including additional
mechanisms to the basic MOGA algorithm indicated before. Such mech-
anisms included: an elite-preserving approach (EP-MOGA), a modified
sharing function (EP-MOGAS), and a gradient-based directional opera-
tor (EP-MOGAS-D).

- Holst [86] presented the aerodynamic optimization of a wing-body con-
figuration in which two objective functions were maximized: (i) lift-to-
drag ratio, and (ii) configuration volume. Constraints were imposed on
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the operating flow condition at transonic Mach number and at a fixed
lift. The problem had 66 decision variables which controlled the wing
geometry, its position along the fuselage and the section shape of the
fuselage at some specified fuselage stations. The author adopted MOGA.
The proposed approach was able to reduce the fuselage cross section in
the vicinity of the wing-fuselage juncture, which is a common practice
in aerodynamic design for the transonic flow regime.

- Sasaki et al. [211] solved an aerodynamic MOP for a turbine compressor
stage. The main aim was to improve three aerodynamic objectives, by
identifying the trade-offs among them in the baseline condition: (i) isen-
tropic efficiency, (ii) blockage, and (iii) flow loss. Equality constraints on
the design were imposed, intended mainly to maintain the flow and oper-
ating conditions similar to those of the baseline geometry: Stage loading,
mass flow rate, stage exit whirl angle and pressure ratio. Such equality
constraints were transformed into inequalities, and thresholds were re-
duced as the optimization proceeded. The three-dimensional shape of
the blade was re-designed from the baseline geometry, by defining pa-
rameters that allowed: (a) axial movement of sections along the engine
axis, (b) circumferential movement of sections, (c) solid body rotation of
sections based on trailing edge position, and (d) control on the number
of blades. In total, 28 design variables were used per compressor stage.
The authors adopted ARMOGA. The aerodynamic evaluation was per-
formed with high fidelity Reynolds-Averaged Navier-Stokes CFD tools
to analyze a compressor stage. The CFD analysis comprised the rotor/sta-
tor interaction. The authors presented two application examples, the first
of which had a fixed number of rotor/stator blades. The optimization pro-
cess was able to improve the baseline design while 8 designs satisfied all
the constraints. Efficiency was improved within 1%, even when infeasi-
ble solutions were considered. After analyzing the trade-off among the
objectives from the first test case, a second test case was proposed, con-
sidering the number of rotor/stator blades as an additional variable, and
changing the approximation function in the radial direction. In this case,
a B-spline function was used instead of the cubic-spline adopted in the
previous case. Results from this second test case achieved an efficiency
improvement of 1.5%. In this case, 14 feasible designs were generated,
from which only 4 were nondominated.

- Benini [15] extended a previous work from Benini and Toffolo [16] for a
three-dimensional transonic compressor rotor design optimization prob-
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lem in which two objective functions were maximized: (i) total pressure
ratio, and (ii) adiabatic efficiency. Constraints were imposed on the de-
sign conditions as to obtain the mass flow of a reference design, the
NASA Rotor 37. The blade geometry used in the transonic compressor
rotor was parameterized by Bézier curves defining the mean camber line
and the thickness distribution. Three profiles along the blade span were
defined: at hub, midspan and tip. A total of 23 decision variables defined
the 3D compressor rotor geometry. The author used the MOEA described
in [16], which is based on evolution strategies. The performance evalua-
tion of the designs was done using high fidelity Navier-Stokes CFD sim-
ulations. The authors noted that the nondominated solutions produced
were clustered around the reference design point, due to a tight constraint
imposed on the flow mass rate, which did not allow the algorithm to ex-
plore a wider region of the search space. Nevertheless, the author was
able to obtain improvements in both objective functions using the pro-
posed approach.

- Chiba et al. [33] explored the trade-offs among four aerodynamic ob-
jective functions in the optimization of a wing shape for a Reusable
Launch Vehicle (RLV). The objective functions were: (i) the shift of
the aerodynamic center between supersonic and transonic flight condi-
tions, (ii) pitching moment in the transonic flight condition, (iii) drag
in the transonic flight condition, and (iv) lift for the subsonic flight con-
dition. The first three objectives were minimized while the fourth was
maximized. These objectives were selected for attaining control, sta-
bility, range and take-off constraints, respectively. The RLV definition
comprised 71 design variables to define the wing platform, wing posi-
tion along the fuselage and airfoil shape at prescribed wingspan stations.
The authors adopted ARMOGA, and the aerodynamic evaluation of the
RLV was done with a Reynolds-Averaged Navier-Stokes CFD simula-
tion. A trade-off analysis was conducted with 102 nondominated indi-
viduals generated by the MOEA.

- Song and Keane [224] performed the shape optimization of a civil air-
craft engine nacelle. The primary goal of the study was to identify the
trade-off between aerodynamic performance and noise effects associated
with various geometric features for the nacelle. For this, two objective
functions were defined: i) scarf angle, and ii) total pressure recovery.
The nacelle geometry was modeled using 40 parameters, from which 33
were considered design variables. The authors adopted the NSGA-II with
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a commercial CFD software for evaluating the three-dimensional flow
characteristics. Due to the large size of the design space to be explored,
as well as the simulations being time consuming, a Kriging-based surro-
gate model was adopted in order to keep the number of designs being
evaluated with the CFD tool to a minimum. The authors reported diffi-
culties in obtaining a reliable Pareto front (there were large discrepancies
between two consecutive Pareto front approximations). They attributed
this behavior to the large number of variables in the design problem, and
also to the associated difficulties to obtain an accurate Kriging model for
these situations. In order to alleviate this situation, they performed an
analysis of variance (ANOVA) test to find the variables that contributed
the most to the objective functions. After this test, they presented results
with a reduced surrogate model, employing only 7 decision variables.
The authors argued that they obtained a design similar to a reference
one, but requiring a lower computational cost because of the use of this
reduced Kriging model.

- Jeong et al. [107] investigated the improvement of the lateral dynamic
characteristics of a lifting-body type re-entry vehicle in transonic flight
condition. Two objectives were minimized: (i) the derivative of the yaw-
ing moment, and (ii) the derivative of the rolling moment. The MOP
involved four design variables, and two solutions were sought: The first
one without constraints, and the second one constraining the lift-to-drag
ratio for the lifting-body type re-entry vehicle. The authors adopted the
Efficient Global Optimization for Multi-Objective Problems (EGOMOP)
algorithm developed by Jeong et al. [104]. This algorithm was built upon
the ideas of the EGO and ParEGO Algorithms from Jone et al. [113] and
Knowles et al. [125], respectively. For the exploration of the nondomi-
nated solutions, the authors adopted MOGA. Due to the geometry of the
lifting body and the operating flow condition of interest, namely high
Mach number and strong vortex formation, the evaluation of the objec-
tives was done by means of a full Navier-Stokes solver. Since the ob-
jectives were actually derivatives, multiple flow solutions were required
to determine their values in a discrete manner, considerably increasing
the total computational time due to a large number of calls of the CFD
code. The authors were able to find better geometry configurations than
the baseline one, with better lateral dynamic characteristics, both for the
unconstrained and for the constrained instances.
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- Lee et al. [146] presented the robust design optimization of an ONERA
M6 wing shape. The robust optimization was based on the concept of the
Taguchi method in which the optimization problem is solved considering
uncertainties in the design environment, in this case, the flow Mach num-
ber. The problem had two objectives: (i) minimization of the mean value
of an objective function with respect to variability of the operating con-
ditions, and (ii) minimization of the variance of the objective function
of each candidate solution, with respect to its mean value. In the sample
problems, the wing was defined by means of its planform shape (sweep
angle, aspect ratio, taper ratio, etc.) and of the airfoil geometry, at three
wing locations (each airfoil shape was defined with a combination of
mean lines and camber distributions), using a total of 80 design variables
to define the wing designs. Geometry constraints were defined by upper
and lower limits of the design variables. The authors adopted the Hier-
archical Asynchronous Parallel Multi-Objective Evolutionary Algorithm
(HAPMOEA) [77], which is based on evolution strategies, incorporating
the concept of Covariance Matrix Adaptation (CMA). The aerodynamic
evaluation was done with a CFD simulation. It is worth noting that HAP-
MOEA uses, during the evolutionary process, a hierarchical set of CFD
models, varying the grid resolution of the solver (three levels are used),
as well as different population sizes (depending on the grid resolution).
The authors presented two solutions, with and without uncertainties. In
the latter case the problem considered two design points (at two differ-
ent operating conditions), and the algorithm found the trade-off solutions
between these two design points. For the case of the design with uncer-
tainties, the optimization problems found the trade-off solutions consid-
ering the minimization for the mean value of the objective function (the
inverse of the lift-to-drag ratio for the wing) and its variance with respect
to the mean value. From the results presented by the authors, the Pareto
fronts were continuous and exhibited a concave geometry for the trade-
off solutions. 12 solutions were obtained in the robust design of the wing
and all the nondominated solutions presented a shock-free flow both at
the upper and at the lower surface of the wing. Additionally, the non-
dominated solutions showed a better behavior, in terms of aerodynamic
performance (lift-to-drag ratio) with a varying Mach number, as com-
pared to the baseline design. In these examples, the authors used three
grid-levels (model resolution): fine, intermediate, and coarse. During the
evolutionary process, the individuals were moved from the coarse to the
fine levels and viceversa. A total of 1100 individuals were evaluated.
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- Oyama et al. [183] applied a design exploration technique to extract
knowledge information from a flapping wing MAV (Micro Air Vehicle).
The flapping motion of the MAV was analyzed using multi-objective de-
sign optimization techniques in order to obtain nondominated solutions
which were analyzed with Self Organizing Maps (SOMs) in order to ex-
tract knowledge about the effects of the flapping motion parameters on
the objective functions. The conflicting objectives considered were: (i)
maximization of the time-averaged lift coefficient, (ii) maximization of
the time-averaged thrust coefficient, and (iii) minimization of the time-
averaged required power coefficient. The problem had five design vari-
ables and the geometry of the flying wing was kept fixed. Constraints
were imposed on the averaged lift and thrust coefficients so that they
were positive. The authors adopted MOGA. Due to the nature of the
complex flow in this problem, the objective functions were obtained by
means of CFD simulations, solving the unsteady incompressible Navier-
Stokes equations. Objective functions were averaged over one flapping
cycle. The purpose of the study was to extract trade-off information
from the objective functions and the flapping motion parameters such
as plunge amplitude and frequency, pitching angle amplitude and offset,
and phase difference. In order to minimize the turnaround computational
time, the evaluation of the objective functions was parallelized using a
cluster of workstations. From the results obtained, the authors extracted
extreme nondominated solutions which were further analyzed to under-
stand their flow physics for each objective in particular.

- Arabnia and Ghaly [8] presented the aerodynamic shape optimization
of turbine stages in three-dimensional fluid flow, so as to minimize the
adverse effects of three-dimensional flow features on the turbine perfor-
mance. Two objectives were considered: (i) maximization of isentropic
efficiency for the stage, and (ii) minimization of the streamwise vortic-
ity. Additionally, constraints were imposed on: (1) inlet total pressure
and temperature, (2) exit pressure, (3) axial chord and spacing, (4) in-
let and exit flow angles, and (5) mass flow rate. The blade geometry,
both for rotor and stator blades, was based on the E/TU-3 turbine which
is used as a reference design to compare the optimization results. The
multi-objective optimization consisted of finding the best distribution of
2D blade sections in the radial and circumferential directions. For this, a
quadratic rational Bézier curve, with 5 control points was used for each
of the two blades. The authors adopted NSGA. Both objective functions
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were evaluated by using a 3D CFD flow simulation. The authors adopted
an artificial neural network (ANN) based RSM. The ANN model with
backpropagation, contained a single hidden layer with 50 nodes, and
was trained and tested with 23 CFD simulations, sampling the design
space using the LHS technique. The optimization process was under-
taken by using the ANN model to estimate both the objective functions,
and the constraints. Finally, the nondominated solutions obtained were
evaluated with the actual CFD flow simulation. The authors indicated
that they were able to obtain design solutions which were better than the
reference turbine design.

- Tani et al. [233] solved a rocket engine turbopump blade shape optimiza-
tion design which considered three objective functions: (i) shaft power,
(ii) entropy rise within the stage, and (iii) angle of attack of the next stage.
The first objective was maximized while the others were minimized. The
design candidates defined the turbine blade aerodynamic shape and con-
sisted of 58 design variables. The authors adopted MOGA. The objec-
tive function values were obtained from a CFD Navier-Stokes flow sim-
ulation. The authors reported solutions that were better than a baseline
design turbopump blade shape. Indeed, improvements on the three ob-
jective functions were of 8%, 30% and 40%, respectively, as compared
to the baseline design.

Analysis of the use of MOEAs in 3D complex physics/shape optimization

Table 3 summarizes the application of MOEAs in 3D complex physics/shape
optimization problems. For this group of applications, a common point is that
3D complex shapes and/or complex physics models are considered, which re-
quires, in most cases, the use of high dimensional design space and/or sophisti-
cated simulation tools. For both cases, the design optimization search becomes
highly computationally expensive (some authors report times in the order of
days or even months for the problems that they solved). Such applications re-
quire approaches that can minimize their high computational cost. Some au-
thors relied on parallelization techniques for this sake (see for example [209]).
An interesting parallel approach is the one reported by Lee et al. [146], in
which the evaluation of the objectives is done in an asynchronous manner,
with a scheme that resembles an island model [41]. Such asynchronous par-
allel MOEAs are uncommon in the specialized literature, in spite of their high
potential in the sort of applications reported in this section. Another alterna-
tive is the use of surrogate models, which are adopted by a number of works
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reported in this section. For example, Lian and Liou [150, 151], used a sec-
ond order RSM, Song and Keane [224] used a Kriging-based model, Lee et al.
[146] adopted hierarchical CFD models (i.e., models with varying mesh sizes,
which produce approximations at a reduced computational cost), and Arabnia
and Ghaly [8] adopted an artificial neural network. The use of approximate
models can be seen as an advantage, but also presents drawbacks, for example,
for large dimensional design spaces, as indicated by Song and Keane [224].
Another alternative is to adopt simpler approximation mechanisms such as fit-
ness inheritance [160] and fitness approximation [230]. Another aspect worth
emphasizing is that most authors adopted MOEAs with real-numbers encod-
ing, rather than with binary encoding. This is relatively common when dealing
with engineering applications having a high number of decision variables. The
lack of modern diversity maintenance approaches such as archiving techniques
(see for example [144, 83, 218]) is also evident within the applications of this
section, although there are some interesting exceptions. For example, Sasaki
and Obayashi [212] adopted two external archives for their MOEA. Also inter-
esting is the proposal of Holst [86] of using “bins” (this approach is similar in
its operation to the adaptive grid adopted in PAES [129]). However, it is worth
noting that both, Sasaki & Obayashi’s and Holst’s approaches quickly degrade
their performance as the number of objectives increases.

An interesting area worth exploring is the design of mechanisms that allow
a better (i.e., more intelligent) exploration of the search space. For example,
Sasaki [208], and Ng et al. [168] use statistics gathered from the population in
order to guide the search. Such approach, however, requires a good diversity
maintenance mechanism in order to avoid an excessive selection pressure that
would produce premature convergence.

In spite of the large number of constraint-handling techniques currently avail-
able for evolutionary algorithms [39, 159], in most of the works reported in this
section there is a noticeable lack of them. The use of good constraint-handling
techniques is particularly useful when the optimum solutions lie on the bound-
ary between the feasible and the infeasible regions, which is normally the case
in multi-objective optimization [41]. Their use can contribute to a better (i.e.,
more efficient and effective) exploration of the search space in the presence of
constraints.
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4.3 C O M M E N T S O N D I F F E R E N T O P T I M I Z AT I O N A P P RO AC H E S

In the previous section we have reviewed several applications of MOEAs for
different aeronautical/aerospace engineering problems. This review comprises
the main two design phases of conceptual design and preliminary design, as
defined in the first section of this chapter. From this review we can also identify
the following common optimization approaches used:

• Surrogate-based optimization,
• Hybrid MOEA optimization,
• Robust design optimization,
• Multidisciplinary design-optimization, and
• Data-mining and knowledge extraction.

4.3.1 Comments on surrogate-based optimization

Surrogate models are built to approximate computationally expensive func-
tions. The main objective in constructing these models is to provide a rea-
sonably accurate approximation to the real functions, while reducing by sev-
eral orders of magnitude the computational cost. Surrogate models range form
Response Surface Methods (RSM) based on low-order polynomial functions,
Gaussian processes or Kriging, Radial Basis Functions (RBFs), Artificial Neu-
ral Networks (ANNs), to Support Vector Machines (SVMs). A detailed de-
scription of each of these techniques is beyond the scope of this chapter, but
the interested reader is referred to Jin [109] for a comprehensive review of
these and other approximation techniques.

The accuracy of the surrogate model relies on the number and on the dis-
tribution of samples provided in the search space, as well as on the selection
of the appropriate model to represent the objective functions and constraints.
One important fact is that Pareto-optimal solutions based on the computation-
ally cheap surrogate model do not necessarily satisfy the real objective function
evaluation. So it is necessary to verify the whole set of Pareto-optimal solutions
found from the surrogate, which can render the problem very time consuming.
If discrepancies are large, this condition might attenuate the benefit of using
a surrogate model. The verification process is also needed in order to update
the surrogate model. This latter condition raises the question of how often in
the design process it is necessary to update the surrogate model. There are no
general rules for this, and many researchers rely on previous experiences and
trial and error guesses.
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4.3.2 Comments on hybrid MOEA optimization

One of the major drawbacks of MOEAs is that they are very time demand-
ing, due to the relatively high number of objective function evaluations that
they typically require. This has motivated a number of approaches to improve
their efficiency. One of them consists in hybridizing a MOEA with a gradient-
based method. In general, gradient-based methods converge quickly for simple
topologies of the objective functions but will get trapped in a local optimum if
multi-modal objective functions are considered. In contrast, MOEAs can nor-
mally avoid local minima and can also cope with complex, noisy objective
function topologies. The basic idea behind this hybridization is to resort to
gradient-based methods, whenever the MOEA convergence is slow.

Experience has shown that hybridizing MOEAs with gradient-based tech-
niques can, to some extent, increase their convergence rate. However, in the ex-
amples presented above, the gradient information relies on local and/or global
surrogate models. For this, one major concern is how to build a high-fidelity
surrogate model with the existing designs in the current population, since, their
distribution in the design space can introduce some undesired bias in the surro-
gate model. Additionally, there are no rules for choosing the number of points
for building the surrogate model, nor for defining the number of local searches
to be performed. These parameters are empirically chosen.

4.3.3 Comments on robust design optimization

In aeronautical/aerospace engineering optimization, uncertainties in the envi-
ronment must be taken into account. For example, the operating velocity of an
aircraft may deviate from the normal condition during the flight. This change
in velocity can be so high that it changes the Mach and/or Reynolds number for
the flow. The variation of these parameters can substantially change the aerody-
namic properties of the design. In this case, a robust optimal solution is desired,
instead of the optimal solution found for ideal operating conditions. By robust-
ness, it is meant in general that the performance of an optimal solution should
be insensitive to small perturbations of the design variables or environmental
parameters. In multiobjective optimization, the robustness of a solution can be
an important factor for a decision maker in choosing the final solution. Search
for robust solutions can be treated as a multiobjective task, i.e., to maximize
the performance and the robustness simultaneously. These two tasks are very
likely conflicting, and therefore, MOEAs can be employed to find a number of
trade-off solutions.
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Robust solutions can be achieved in evolutionary optimization in different
ways. One simple approach is to add perturbations to the design variables or
environmental parameters before the fitness is evaluated, which is known as
implicit averaging [240]. An alternative to implicit averaging is explicit aver-
aging, which means that the fitness value of a given design is averaged over
a number of designs generated by adding random perturbations to the original
design. One drawback of the explicit averaging method is the number of ad-
ditional quality evaluations needed, which can turn the approach impractical.
In order to tackle this problem, metamodeling techniques have been consid-
ered [176, 184]. A slightly different approach is to find the solution with the
maximal allowed deviation given the allowed performance deterioration [153].
One potential advantage of this method is that no assumptions need to be
made concerning the noise distribution (as needed in the averaging based ap-
proaches). Interested readers are referred to Jin and Branke [110] for a more
detailed discussion on evolutionary search for robust solutions.

4.3.4 Comments on multidisciplinary design optimization

Multi-disciplinary design optimization (MDO) aims at incorporating optimiza-
tion methods to solve design problems, considering not only one engineer-
ing discipline, but a set of them. This latter condition is frequently faced by
aeronautical/aerospace engineering designs, where aerodynamics, structural
dynamics, propulsion, acoustics, among others, are present. MDO allows de-
signers to incorporate all relevant disciplines (through their interactions) simul-
taneously. The optimum of a multidisciplinary problem might be a compromise
solution from the multiple disciplines involved. In this sense, multi-objective
optimization is well suited for this type of problems, since it can exploit the
interactions between the disciplines, and can help to find the trade-offs among
them.

The increasing complexity of engineering systems has raised the interest in
multidisciplinary optimization, as can be seen from the examples presented in
this chapter. For this task, MOEAs facilitate the integration of several disci-
plines, since they do not require additional information other than the evalua-
tion of the corresponding objective functions, which is usually done by each
discipline and by the use of simulations. Additionally, an advantage of the use
of MOEAs for MDO, is that they can easily manage any combination of vari-
able types, coming from the involved disciplines i.e., from the aerodynamic
discipline, the variables can be continuous, but for the structural optimization,
it can happen that the variables are discrete. Kuhn et al. [134] presented an
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example of this condition for the multi-disciplinary design of an airship. How-
ever, one challenge in MDO is the increasing dimensionality attained in the
design space, as the number of disciplines also increases.

4.3.5 Comments on data mining and knowledge extraction

So far we have presented some applications of MOEAs aeronautical/aerospa-
ce engineering design optimization. In the majority of the examples, the re-
searchers’ aim was to find trade-offs among the conflicting objectives. This
information is valuable for the decision making process. Additionally, by ob-
taining Pareto optimal solutions of a multi-objective problem, one can obtain
useful design information such as which objective functions are conflicting/in-
dependent, which design parameters are sensitive/insensitive to the objective
functions, which design parameters are dependent/independent, etc. Such in-
formation is useful for designers because it helps them to design and develop
real-world products. A multiobjective optimization usually results in tenths
(sometimes hundreds) of Pareto optimal solutions, each of which has multi-
ple objective function values, constraint function values, and design parameter
values. Thanks to rapid improvement in computational speed, the number of
Pareto-optimal solutions we can obtain is increasing. One important aspect
in practical multi-objective shape optimization is, thus, how to understand the
hundreds of Pareto optimal solutions obtained and how to extract useful knowl-
edge from them.

Data mining tools, along with data visualization using graphical methods,
can help to understand and extract information from the data contained in
the Pareto optimal solutions found using any MOEA. However some graph-
ical techniques are limited to a maximum number of objective functions. In
this sense, Multi-Objective Design Exploration (MODE), proposed by Jeong
et al. [105] is a framework to extract design knowledge from the obtained
Pareto optimal solutions such as trade-off information between contradicting
objectives and sensitivity of each design parameter to the objectives. In the
framework of MODE, Pareto-optimal solutions are obtained by a MOEA and
knowledge is extracted by analyzing the design parameter values and the objec-
tive function values of the obtained Pareto-optimal solutions using data mining
approaches such as Self Organizing Maps (SOMs) and analysis of variance
(ANOVA). They also propose to use rough sets theory to obtain rules from the
Pareto optimal solutions.
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4.4 R E M A R K S F O R M O E A S I N A E RO N AU T I C A L / A E RO S PAC E E N G I -
N E E R I N G

We have reviewed the application of MOEAs used for solving a diversity of
aeronautical/aerospace engineering problems. From this review we identified
that many of the existing applications rely on the use of state-of-the-art MOEAs
such as: NSGA, NCGA, MOGA, SPEA2, NSGA-II. Most of them are Pareto-
based MOEAs which use genetic algorithms as their search engine. More re-
cently, there have been attempts to use other types of MOEAs, based on differ-
ent search operators such as evolution strategies, in algorithms such as: GAME,
(µ+ µ)-ES, (1+ 10)-MODES, and HAPMOEA; and particle swarm optimiza-
tion (MOPSO). Additionally, the use of indicator-based MOEAs such as the
SMS-EMOA is also reported in the specialized literature. In the context of aero-
dynamic shape optimization problems, there are two MOEAs that were specifi-
cally designed for dealing with them: ARMOGA and εµ-ARMOGA. These two
latter algorithms are based on MOGA, and make use of range adaptation for the
design variables in both cases, and a µ-GA and ε-dominance in the latter case.
We also identified that the use of other metaheuristics with good convergence
properties, such as differential evolution, has been scarce in this domain.

In spite of the considerable amount of research currently available on the
use of MOEAs for solving these types of problems, there exists a continu-
ous need to develop new MOEA techniques that can reduce the computational
cost, measured in terms of the number of objective function evaluations, re-
quired for solving the complex type of problems commonly found in these
disciplines. We conclude that the use of MOEAs in aeronautical/aerospace en-
gineering optimization is a mature area and that the use of metaheuristics such
as differential evolution is a promising research path in these engineering fields.
This condition motivated us to design an algorithm based on this metaheuris-
tic. Also, many of the applications reviewed, rely on the concept of Pareto
dominance for its selection process, and crowding mechanisms for distribution
of solutions along the Pareto front. These mechanisms has proven to be very
effective, but as indicated by Goel et al. [241], due to the finite size of the popu-
lation, some of the good solutions make way for the other solutions. If the lost
solutions are the Pareto optimal solutions, the loss may not be repaired and
sub-Pareto optimal solutions are obtained as the final solution. This problem is
named as Pareto drift. In order to avoid this condition, in our approaches we ex-
plore the use of different selection mechanisms such as the use of scalarization
functions.
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5.1 I N T RO D U C T I O N

In this chapter, we present a novel MOEA called MODE-LD+SS, which adopts
differential evolution (DE) [190] as its global search engine. Our main motiva-
tion to use DE was that MOEAs based on this search engine have been found
to be very effective, outperforming those based on genetic algorithms [242].
Our proposed approach incorporates two additional mechanisms to those nor-
mally found in a MOEA. The first (local dominance) is used to improve the
convergence rate towards the Pareto front, while the second (a selection mech-
anism based on a scalarization function) is used to find nondominated solutions
covering the entire Pareto front.

Also, we have developed two different parallel schemes for improving the
performance of the basic MODE-LD+SS. The first is designed for improving
effectiveness (i.e., for better approximating the Pareto front), while the second
is designed for improving efficiency (i.e., for reducing the execution time by
using small population sizes in each sub-population). Either approach (or both)
can be of interest in solving real-world engineering MOPs. The two proposed
parallel schemes are based on the island paradigm, and use the multi-objective
differential evolution algorithm MODE-LD+SS as their search engines. These
parallel schemes will also be described in this section.

5.2 D I F F E R E N T I A L E VO L U T I O N

DE is a simple and powerful evolutionary algorithm that has been found to
outperform genetic algorithms in a variety of numerical single-objective op-
timization problems [190]. DE encodes solutions as vectors and uses opera-
tions such as vector addition, scalar multiplication and exchange of compo-
nents (crossover) to construct new solutions from the existing ones. DE oper-
ates as follows: a newly created solution, also called candidate, is compared
to its parent. If the candidate is better than its parent, it replaces the parent in
the population; otherwise, the candidate is discarded. Being a steady-state al-
gorithm, it implicitly enforces elitism, i.e., no solution from the population can

85
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be deleted unless a better solution is created. DE was originally proposed to be
used with real-numbers encoding.

The above indicated process is described as follows:
For each current vector Pi ∈ {P}, three parents (mutually different among

them) ~u1, ~u2, ~u3 ∈ {P} (~u1 6= ~u2 6= ~u3 6= Pi) are randomly selected for
creating a mutant vector ~v using the following mutation operation (Figure 20
graphically shows this process):

~v← ~u1 + F · (~u2 − ~u3) (16)

Parameter vectors in 
current population

Figure 20: Differential evolution mutation process

F > 0, is a real constant called scaling factor which controls the amplifica-
tion of the difference (~u2 − ~u3). Using this mutant vector, a new offspring P

′
i

(also called trial vector in DE) is created by crossing over the mutant vector ~v
and the current solution Pi (cf. Figure 21), in accordance to:

P
′
j =

vj if (randj(0, 1) 6 CR or j = jrand

Pj otherwise
(17)

In the above expression, the index j refers to the jth component of the de-
cision variables vectors. CR is a positive constant and jrand is a randomly
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selected integer in the range [1, . . . ,D] (where D is the dimension of the so-
lution vectors) ensuring that the offspring is different at least in one compo-
nent with respect to the current solution Pi. The above DE variant is known as
rand/1/bin.

j = 0

     1

     2

     3

     4

     5

     6

j = 0

     1

     2

     3

     4

     5

     6

j = 0

     1

     2

     3

     4

     5

     6

Figure 21: Differential evolution recombination, rand/1/bin scheme

5.3 M U LT I - O B J E C T I V E D I F F E R E N T I A L E VO L U T I O N

DE has been adopted to solve MOPs in several ways. In the earlier approaches
(PDE [1] and GDE [141]), only the concept of Pareto dominance was used
to compare individuals. The parent was replaced only if it was dominated by
the candidate, and it was discarded otherwise. Many subsequent approaches
(PDEA [155], MODE [262], NSDE [94], GDE2 [135], DEMO [202], GDE3
[136] and NSDE-DCS [95]), use nondominated sorting and/or the crowding
distance metric to evaluate the fitness of the individuals. Only recently, new
algorithms that do not follow the environmental selection of NSGA-II were
proposed, such as ε−MyDE [207], DEMORS [82], ε−ODEMO [31], and
MOEA/D-(DE) [149]. The first three algorithms of this last group, make use of
the ε-dominance concept, as proposed by Laumanns et al. [145]. ε-dominance
is adopted for spreading the solutions in a uniform manner without resorting
to any crowding distance metric. Finally the MOEA/D-(DE) algorithm [149]
is based on the MOEA/D of Zhang and Li [267], but using the differential
evolution operators. A comprehensive review of some of these multi-objective
differential evolution approaches can be found in [161].
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5.4 M O D E - L D + S S

The MOEA we propose is called MODE-LD+SS, and adopts the evolutionary
operators from differential evolution. Additionally, the proposed algorithm in-
corporates two mechanisms for improving both the convergence towards the
Pareto front and the uniform distribution of nondominated solutions along the
Pareto front. These mechanisms correspond to the concept of local dominance
and the use of an environmental selection based on a scalar function. Below,
we explain these two mechanisms in more detail. Algorithm 2 shows the de-
scription of our proposed MODE-LD+SS.

In Algorithm 2, the solution vectors ~u1, ~u2, ~u3, required for creating the
trial vector ~v (in equation (16)), are selected from the current population, only
if they are locally nondominated in their neighborhood ℵ. Local dominance is
defined as follows:

Definition 6. Pareto local dominance Let ~x be a feasible solution, ℵ(~x) be a
neighborhood structure for ~x in the decision space, and ~f(~x) a vector of objec-
tive functions.

- We say that a solution ~x is locally nondominated with respect to ℵ(~x) if
and only if there is no ~x

′
in the neighborhood of ~x such that ~f(~x

′
) ≺ ~f(~x)

The neighborhood structure is defined as theNB closest individuals to a par-
ticular solution. Closeness is measured using the Euclidean distance between
solutions. The major aim of using the local dominance concept, as defined
above, is to exploit good individuals’ genetic information in creating DE trial
vectors, and the associated offspring, which might help to improve the MOEA
convergence rate toward the Pareto front. Figures 22 and 23 show, in decision
and objective function space, respectively, the solutions satisfying the local
dominance criteria; in this case a neighborhood size of 4 is used. From this
subset of solutions, the offspring will be created (cf. Figure 24).

From Algorithm 2, and Figures 22 to 24, it can be noted that this mechanism
has a stronger effect during the earlier generations, when the portion of non-
dominated individuals is low in the global population, and progressively weak-
ens, as the number of nondominated individuals grows during the evolutionary
process. This mechanism is automatically switched off, once all the individuals
in the population become nondominated, and has the possibility to be switched
on, as some individuals become dominated. Additionally, the diversity of the
created offspring can be controlled by the local dominance neighborhood size
NB. Low values of NB will increase the diversity of offspring, and viceversa.
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Algorithm 2 MODE-LD+SS
1: INPUT:
N = Population Size
F = Scaling factor
CR = Crossover Rate
λ[1, . . . ,N] = Weight vectors
NB = Neighborhood Size
GMAX = Maximum number of generations

2: OUTPUT:
PF = Pareto front approximation

3: Begin
4: g← 0

5: Randomly create Pgi , i = 1, . . . ,N
6: Evaluate Pgi , i = 1, . . . ,N
7: while g < GMAX do
8: {LND} = {�}
9: for i = 1 to N do

10: DetermineLocalDominance(Pgi ,NB)
11: if Pgi is locally nondominated then
12: {LND}← {LND}∪ Pgi
13: end if
14: end for
15: for i = 1 to N do
16: Randomly select ~u1, ~u2, and ~u3 from {LND}

17: ~v← CreateMutantVector(~u1, ~u2, ~u3)
18: P

g+1
i ← Crossover(Pgi , v)

19: Evaluate Pg+1i
20: end for
21: Q← Pg ∪ Pg+1
22: Determine z∗ for Q
23: for i = 1 to N do
24: P

g+1
i ← MinimumTchebycheff(Q, λi, z∗)

25: Q← Q\P
g+1
i

26: end for
27: PF← {P}g+1

28: end while
29: Return PF
30: End
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Figure 22: Locally nondominated solutions in design space

Figure 23: Locally nondominated solutions in objective space
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Figure 24: DE rand/1/bin recombination process using locally nondominated solutions

The second mechanism that we introduced is called selection based on a
scalar function, and is based on the Tchebycheff scalarization function given
by:

g(~x|λj, z∗) = max
16i6m

{λ
j
i|fi(x) − z

∗
i |} (18)

In the above equation, λj, j = 1, . . . ,N represents the set of weight vectors
used to distribute the solutions along the entire Pareto front (see Figure 25).
In this work, this set is calculated using the procedure described in Zhang and
Li [267]. z∗ corresponds to a reference point, defined in objective space and
is determined with the minimum objective values of the combined population
Q, consisting on the current parents and the created offspring. This reference
point is updated at each generation, as the evolution progresses. The procedure
MinimumTchebycheff(Q, λi, z∗) finds, from the set Q, (the combined popula-
tion consisting on the current parents and the created offspring), the solution
vector that minimizes equation (18) for each weight vector λi and the reference
point z∗. Figure 26 illustrates this process.
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Figure 25: Distribution of the weight vectors

5.5 P M O D E - L D + S S

Multi-objective evolutionary algorithms (MOEAs) have been found to be very
suitable for solving a wide variety of engineering optimization problems, be-
cause of their generality, ease of use and relatively low susceptibility to the
specific features of the search space of the problem to be solved [41]. Nonethe-
less, they are normally computationally expensive due to several reasons: (1)
real-world optimization problems typically involve high-dimensional search
spaces and/or a large number of objective functions, (2) they require finding a
set of solutions instead of only one, often requiring, in consequence, large pop-
ulation sizes, and (3) frequently, the task of evaluating the objective functions
demands high computational costs (e.g., complex computer simulations are re-
quired). All these factors decrease the utility of serial MOEAs when applied
to real-world engineering Multi-objective Optimization Problems (MOPs). In
order to reduce the execution time required to solve these problems two main
types of approaches have been normally adopted1: (1) Enhance the MOEA’s
design, namely improving its convergence properties, so that the number of
objective function evaluations can be reduced, and, (2) Use of parallel pro-
gramming techniques, i.e., to adopt a parallel or distributed MOEA.

1 Our discussion here is focused exclusively on MOEAs that use exact objective function val-
ues, but fitness approximation schemes and surrogate models can also be used to deal with
expensive MOPs [109, 126].
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Figure 26: Selection process in MODE-LD+SS
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Based on the above, two different parallel schemes were developed for im-
proving the performance of the serial version of MODE-LD+SS. The first is
designed for improving effectiveness (i.e., for better approximating the Pareto
front), while the second is designed for improving efficiency (i.e., for reduc-
ing the execution time by using small population sizes in each sub-population).
Either approach (or both) can be of interest in solving real-world engineer-
ing MOPs. The two proposed schemes are based on the island paradigm, and
use the multi-objective differential evolution algorithm MODE-LD+SS as their
search engine.

5.5.1 MOEA parallelization

MOEAs, being population-based approaches, are very suitable for paralleliza-
tion because their main operations (i.e., crossover, mutation, and, particularly,
objective function evaluation) can be applied independently on different indi-
viduals and/or groups of them. A pMOEA can be useful to solve problems
faster, but also for generating novel and more efficient search schemes i.e., a
pMOEA can be more effective than its sequential counterpart, even when is
executed in a single processor machine [231]. From the specialized literature,
four major pMOEA paradigms are commonly used [41, 246]. These are (i)
master-slave, (ii) island, (iii) diffusion, and (iv) hierarchical or hybrid. A com-
prehensive review of these paradigms can be found in [41, 246]. It is important
to note that each paradigm can be implemented in either a synchronous or in an
asynchronous manner. Synchronous means that all communication processes
are synchronized at previously-defined check points. On the other hand, asyn-
chronous implementations consider inter-processor communications occurring
at random and with no warranty of delivering messages to their intended desti-
nations. We are interested here in the island model, which is detailed next.

5.5.2 Island pMOEA model

The island paradigm for pMOEAs is based on the phenomenon of natural pop-
ulations evolving independently. At each island, a serial MOEA is executed
for a predefined number of generations called epoch. At the end of an epoch,
communication between neighboring islands is allowed. During this commu-
nication process, individuals (or copies of them in the case of pollination) can
migrate from their current island to a different one according to a predefined
migration topology (see Figure 27), which determines the migration path along
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Figure 27: Examples of migration topologies. (a) linear/unidirectional, (b) linear/bidi-
rectional, (c) ring/unidirectional, (d) ring/bidirectional, (e) random/unidi-
rectional, (f) random/bidirectional

which individuals can move. For migration, not only one individual, but a set
of them, can migrate; the number of migrants is defined by the migration rate.
Additionally, the island model requires the definition of policies for selecting
migrants (migration selection policy) as well as selecting the individuals in a
subpopulation that will be replaced by migrants (replacement policy). The mi-
gration process allows gene mixing between different islands, which helps in
maintaining global population diversity. Also, different evolutionary operators
can be assigned to each island, allowing each subpopulation to search many
different regions of the whole search space. This condition can be amplified
if different random number generators and/or seeds are used in each island.
Finally, for the island model, four basic pMOEAs variants can be considered,
each one with a specific migration parameter set: (1) Homogeneous, where all
islands execute identical MOEAs/parameters, (2) Heterogeneous, where all is-
lands execute different MOEAs/parameters, (3) Each island evaluates different
objective function subsets, and (4) each island represents a different region of
the genotype or phenotype domains.
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5.5.3 Previous related work

In this section, we review approaches that use the island paradigm for develop-
ing pMOEAs.

Kamiura et al. [115] presented a pMOEA called MOGADES (Multi-Objecti-
ve Genetic Algorithm with Distributed Environment Scheme). In this pMOEA,
the population is divided into M islands, and in each of them the MOP is
converted into a scalar one, i.e., a different weight vector is assigned to each
island. The aim of this algorithm is that each island can capture a different
region of the Pareto front. One important aspect in this approach is that when
migration occurs, the weights for each island are varied. A major drawback for
this approach is that a good distribution of solutions cannot be guaranteed as it
depends on the dynamics of the evolutionary system, i.e., of the weight vector
variation.

Deb et al. [52] proposed a pMOEA based on the NSGA-II [51]. This ap-
proach attempts to distribute the task of finding the entire Pareto optimal front
among the several participating islands. All islands search on the entire de-
cision variable space, but for each of them, a different region of the Pareto
optimal front is assigned. For guiding the search, the approach uses a guided
domination concept defined by Branke et al. [26]. Additionally, the approach
requires the definition of a set of hyperplanes for dividing the entire Pareto
optimal front among the participating processes. A drawback of this approach
is that the shape and/or continuity of the Pareto front must be known a priori,
in order to define the search regions to be explored. Furthermore, the approach
described in this paper can only be applied to convex Pareto fronts.

Streichert et al. [228] proposed a pMOEA, which combines an island model
with the “divide and conquer” principle. This approach partitions the popula-
tion using a clustering algorithm (k-means), with the aim of assigning to each
island, the search task of a particular Pareto front region. In this approach,
at each epoch, the sub-populations are gathered by a master process for per-
forming the clustering/distributing process. The individuals in each island are
kept within their assigned Pareto front region using zone constraints. The main
drawback of this approach is that a priori knowledge of the Pareto front shape
is needed to define the zone constraints.

Zahaire and Petcu [264] developed the multi-population APDE (APDE s-
tands for Adaptive Pareto Differential Evolution). This approach consists of
dividing the main population into sub-populations (islands), each of equal size.
In each island, a serial version of the APDE is executed with its own set of ran-
domly initialized adaptive parameters, and is evolved for an epoch. Afterwards,
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a migration process is started. This process is based on a random connection
topology, i.e., each individual from each sub-population can be swapped (with
a given migration probability) with a randomly selected individual from an-
other randomly selected island.

5.5.4 Our proposed approach

Based on the serial version of MODE-LD+SS, previously described, we pre-
sent here two parallelization schemes. The first is designed for improving ef-
fectiveness2 and is called pMODE-LD+SS(A). The second is designed for im-
proving efficiency, and is called pMODE-LD+SS(B). Both of them share the
following characteristics:

• Use of a “random pair-islands” bidirectional migration scheme (cf. Fig-
ure 28). In this scheme, at each epoch, pairs of islands are randomly
selected. Then, the communication is performed between each pair of
islands. Migrants from one island are considered as immigrants in the
receptor island, and viceversa.

• Use of a pollination scheme, i.e., copies of selected migrants are sent,
while the original individuals are retained in their own population.

• The migration policy is based on randomly selected individuals.

• The replacement policy is based on the environmental selection mecha-
nism adopted in the serial version running in each island. In this case,
immigrants are added to the receptor island’s population, and the envi-
ronmental selection process is applied to this extended population.

The main difference between the two proposed approaches is on the
weight vectors distribution used. The pMODE-LD+SS(A) approach can be
seen as the serial version of MODE-LD+SS running in p processors and ex-
changing information among them. For this approach, the same weight vector
distribution (see Figure 25) is used in each island. For maintaining diversity
of the global population and to evolve each island in an independent manner,
different seed values are used in the islands’ random numbers generators. In
the second case, for the pMODE-LD+SS(B) approach, each island is also in-
structed to search for the whole Pareto front, but in this case, using a reduced

2 Here, effectiveness refers to the degree to which objectives are achieved and the extent to which
targeted problems are solved. In contrast to efficiency, effectiveness is determined without
reference to costs.
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Figure 28: Examples of the migration topology adopted in pMODE-LD+SS

Figure 29: Weight vectors distribution for pMODE-LD+SS(B)
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population and different weight vectors sets. It is important to note that all is-
lands contain weight vectors for searching the extreme Pareto solutions. The
main idea for the second parallel approach is that the combination of all islands’
weight vectors covers the whole Pareto front region. Figure 29 illustrates this
situation for the case of a bi-objective MOP with two islands participating in
the pMOEA.
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6
E X P E R I M E N TA L S E T U P

6.1 I N T RO D U C T I O N

The major aim in designing any new MOEA is that it can be used for solving
real-world multi-objective optimization problems with a high level of relia-
bility and efficiency. Nonetheless, a commonly encountered situation is that
real-world MOPs are very hard to solve and, in many cases, they require high
computational efforts. Additionally, the nature and characteristics of their fit-
ness landscapes are not totally understood, and even the optimal solutions are
not known a priori. These two situations make it difficult to evaluate how well
any MOEA has performed when applied to the solution of a particular real-
world MOP. For this purpose, there is a clear need to develop and design test
MOPs, or more generally, a test MOP suite, which might be helpful in assess-
ing, comparing, classifying, and improving MOEA performance, in terms of
their effectiveness and efficiency, before deciding to apply it to the solution of
any particular real-world MOP.

The MOEA community has created a variety of test MOPs and suites. In the
early days of MOEAs, several numeric MOP functions were adopted to assess
MOEA’s performance. For example, Schaffer’s study introduced two MOPs,
SCH1 and SCH2 [214, 215], being both single variable test problems, and
having two objective functions each. Kursawe’s test problem KUR [139], had
a scalable number of decision variables and has two objective functions. The
same conditions are present for Fonseca and Fleming’s test problem FON [70].
Poloni et al.’s test problem POL [188] used only two decision variables and
comprised two objective functions. Although the mathematical formulation of
the problem in the latter case, is nonlinear, the resulting Pareto-optimal front
corresponds to an almost linear relationship among the decision variables. Vi-
ennet’s test problem VNT [252] has a discrete set of Pareto-optimal fronts, and
was designed with three objective functions.

The solution of MOPs requires two main tasks: (1) to converge as close as
possible to the true Pareto-optimal front, and (2) to obtain as diverse a set of
solutions as possible, covering the entire Pareto-optimal front. In this sense any
MOP should be able to test a MOEA’s ability to overcome artificial difficulties

101
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or hurdles which might prevent and/or retard MOEAs’ progress in converging
towards the true Pareto-optimal front. This is achieved in numerical MOPs
by placing, for example, some local Pareto-optimal attractors. Additionally,
any MOP should also be able to test MOEA’s ability to find diverse sets of
solutions along the approximated Pareto front. For this sake, numerical MOPs
are designed with varied Pareto-optimal front geometries such as, non-convex,
disconnected, and having variable density of solutions along them.

More recently, research work has been conducted in designing test suites by
using systematic procedures to obtain MOPs presenting the following desired
features as indicated in [41, 53]:

1.- Controllable hindrance to converge to the true Pareto-optimal front and
also in finding a widely distributed set of Pareto-optimal solutions.

2.- Scalability in terms of the number of decision variables.

3.- Scalability in terms of the number of objective functions.

4.- Simplicity and diversity for the construction of test MOPs.

5.- Pareto-optimal front with a shape and location exactly known. (e.g., Pa-
reto fronts having a closed form)

6.- Test MOPs useful in practice, i.e., exhibiting difficulties similar to those
that can be present in most real-world MOPs.

A number of MOP test suites and test function generators currently exist.
The most commonly adopted in the specialized literature are the following:

• Zitzler-Deb-Thiele (ZDT) test functions: They were proposed by Zit-
zler et al. [273]. This suite comprises a set of six two-objective functions.
These MOPs do not scale in the number of objectives. The ZDT MOPs
are defined as follows:

Minimize F = f(f1(~x), f2(~x)) , where
f1 = f(x1, . . . , xm)
f2 = g(xm+1, . . . , xN)h(f(x1, . . . , xm),g(xm+1, . . . , xN))

(19)

where function f1 is a function of (m < N) decision variables and f2 a
function of all N decision variables. The function g is one of (N−m)
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decision variables which are not included in function f. The function h
is directly a function of f and g values. The f and g functions are also
restricted to positive values in the search space, i.e. f > 0, and g > 0. For
this test suite, their authors proposed several functions for f1, g, and h
[273], which then, can be mixed and matched to create different MOPs,
each one having different desired characteristics [41]. For this test suite
the f function controls the vector representation uniformity along the
Pareto front, g controls whether the MOP will be multifrontal or if it will
contain a single global Pareto front. h controls the MOPs’ characteristics
such as convexity, disconnectedness, etc.

• Deb-Thiele-Laummans-Zitzler (DTLZ) test functions: This test suite
was proposed by Deb et al. [49]. The MOPs generated in this case at-
tempt to define generic MOPs that are scalable to a user defined number
of objectives. Usually this set is used to test MOEAs in solving MOPs
with three or more objective functions. In Deb et al. [49] three main
methods are discussed for generating scalable MOPs. They are: (i) Mul-
tiple single-objective approach, (ii) Bottom-up approach, and (iii) Con-
strained surface approach. The first method, being the most intuitive has
been used implicitly by early MOEA researchers [214, 215, 139, 70, 188,
252]. The DTLZ test suite follows the two latter approaches.

In the bottom-up approach, a mathematical function describing the Pare-
to-optimal front is assumed in the objective space, and an overall search
space is constructed from this front to define the test problem. In an
early study, Deb [50] suggested a generic MOP test problem generator
in which, for M objective functions, with a complete decision variables
vector partitioned intoM non-overlapping groups

~x ≡ (x1, x2, . . . , xM−1, xM)T (20)



104 E X P E R I M E N TA L S E T U P

the following function structure was suggested [53]

Minimize f1(x1)

Minimize f2(x2)
...

Minimize fM−1(xM−1)

Minimize fM(x) = g(xM)h(f1(x1), f2(x2), . . . , fM−1(xM−1),g(xM))

subject to xi ∈ IR|Xi| for i = 1, 2, . . . ,M
(21)

Here, the Pareto-optimal front is described by solutions which are the
global minimum of g(XM) (with g∗). Thus, the Pareto-optimal front is
described as

fM = g∗h(f1, f2, . . . , fM−1) (22)

Since g∗ is a constant, the h function (with fixed g = g∗) describes the
Pareto-optimal surface.

Similar to the ZDT suite, the f, g, and h functions control the MOPs
characteristics (i.e., uniformity of solutions along the Pareto front, mul-
tifrontality and Pareto front’s shape). The advantage of using the above
defined bottom-up approach is that the exact form of the Pareto-opti-
mal surface can be controlled by the developer. The number of objec-
tives and the variability in density of solutions can all be controlled
by choosing proper g and h functions. Since the search space is con-
structed from identical functionals, the search space is also structured



6.1 I N T RO D U C T I O N 105

[49]. On the other hand, in the constrained surface approach, the MOP
test generator begins by predefining a simple overall search space:

Minimize f1(x),
Minimize f2(x),

...

Minimize fM(x),
Subject to : f

(L)
i 6 fi(x) 6 f

(U)
i for i = 1, 2, . . . ,M

(23)

It is intuitive, from the above problem definition, that the Pareto-opti-
mal set has only one solution, i.e., the solution with the lower bound
of each objective [f

(L)
1 , f(L)2 , . . . , f(L)M , ]T . The problem is then made more

interesting by adding a series of constraints (linear or non-linear):

gj(f1, f2, . . . , fM) > 0 for j = 1, 2, . . . , J (24)

Each constraint eliminates some portion of the original rectangular re-
gion in a systematic way. We can observe that in the constrained sur-
face approach for generating MOPs, the aim is to find the nondominated
portion of the boundary of the feasible search space. Difficulties can be
introduced by using varying density of solutions in the search space, i.e.,
by using non-linear functionals for fi within the decision variables. The
construction process in this latter approach is much simpler as compared
to the bottom-up approach. Using the constrained surface approach, dif-
ferent shapes (convex, non-convex, or discrete) can be generated for the
Pareto-optimal region [49].

The DTLZ test generator as proposed, is built using both the bottom-up
and the constrained surface approaches, and contains 9 test families of
MOP geometries, two of them being constrained MOPs.

• Okabe’s test functions: This MOP test function generator was proposed
by Okabe et al. [174], and is based on a different methodology which
considers the mapping of probability density functions, from the deci-
sion variable space to the objective function space. The basic idea in
generating a MOP in this test suite is to depart from a starting space,
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called S2 between decision variable space and objective function space,
and from there, the user constructs the corresponding decision variable
space and objective function space by applying transformations to S2. In
the proposed suite, the authors use the inverse of generation operation,
i.e., deformation, rotation and shift. For a detailed description of the con-
struction of these test MOPs, the reader is referred to [174, 41].

• Huband’s test functions:This MOP test function generator was pro-
posed by Huband et al. [91]. In this test suite the authors propose a set of
transformations which are sequentially applied to the decision variables.
The major aim in this suite is that each transformation adds a different
desired characteristic to the MOP. All the problems which are generated
in this suite follow the format:

Given z = [z1, . . . , zk, zk+1, . . . , zn]
Minimize fm=1:M(x) = DxM + Smhm(x1, . . . , xM−1)

where x = [x1, . . . , xM]

= [max(tpM,A1)(t
p
1 − 0.5) + 0.5, . . . ,

max(tpM,AM1)(t
p
M1 − 0.5) + 0.5, t

p
M]

tp = [tp1 , . . . , tpM]←[ tp−1 ←[ . . .←[ t1 ← [ z[0,1]
z[0,1] = [z1,[0,1], . . . , zn,[0,1]]

= [z1/z1,max, . . . , zn/zn,max]

(25)

where z is the vector of decision variables with 0 6 zi 6 zi,max, D,
A1:M−1 and S1:M are constants to modify the position and the scale of
the Pareto front. The flexibility for this MOP test suite lies on the h1:M
functions, and the transformations to obtain the transition vectors t1:p,
which keep desired characteristics of the problem as separate design de-
cisions. First, the h1:M functions define the shape of the Pareto front,
which can be linear, convex, concave, mixed (convex and concave), and
disconnected. For a detailed description of several functions proposed
for h1:M, the interested reader is referred to [91, 41].

Once the shape of the Pareto front is designed in the Huband’s MOP test
suite, the rest of the characteristics are added through a set of transforma-
tions. Huband et al. distinguish between three types of transformations,
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based on the characteristics they emphasize as being important when
designing MOPs. A bias transformation produces a bias in the fitness
landscape, and is used to produce polynomial bias, flat regions, or other
type of bias depending of the values of another variables; shift trans-
formations move the location of optimal values, and are used to apply
linear shift, or to produce deceptive and multimodal problems; and re-
duction transformations, which combines the values of several decision
variables into a single one. They are also used to produce inseparabil-
ity of the problem (dependencies among the decision variables). For a
detailed description of the proposed transformations proposed for this
MOP test suite, the interested reader is referred to [91, 41]. In these
references the definition of 9 test MOPs can also be found. The whole
approach proposed by Huband et al. [91] is very versatile, because it
can be easily used to design new test MOPs with desired properties and
difficulties.

The simplicity of construction, scalability to any number of decision vari-
ables and objectives, knowledge of the shape and location of the resulting
Pareto-optimal front, and introduction of controlled difficulties both, for con-
verging to the true Pareto-optimal front and for maintaining a widely distri-
buted set of solutions are the main features of the test problems generators
previously described. Because of these features they are very useful in vari-
ous MOEA research activities such as performance testing of a new MOEA
design, comparisons among different MOEAs, and better understanding of the
working principles of MOEAs.

The above MOP test functions generators were designed with characteris-
tics that are expected to be present when solving real-world MOPs. However
a MOEA that is able to solve any MOP test function or a set of them, has no
guarantee of continued effectiveness and efficiency when applied to real-world
MOPs. In this sense, and as suggested by Coello et al. [41], real-world appli-
cations should be considered for inclusion in any comprehensive MOEA test
suite.

Many applications of MOEAs are presented in [41]. The surveyed applica-
tions can be numeric, non-numeric or both, and usually have more constraints
than numeric MOP tests. It is important to note that many real-world applica-
tions, nowadays employ extensive computer simulation tools, i.e. fitness func-
tions are computationally evaluated by simulation codes, for example using
Computational Fluid Dynamics, (CFD), and Computational Structural Dynam-
ics/Mechanics (CSD/M), in the aeronautical engineering field. In this thesis,
we are interested in solving multi-objective aeronautical engineering problems
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with the use of MOEAs. We are also interested in designing MOEAs that are
more efficient and effective than state-of-the-art MOEAs, when applied to this
particular class of problems. For this reason, additional to selecting numerical
test MOPs for evaluating our proposed MOEA approaches, we will also select
some representative MOPs, which are commonly solved in the aeronautical
engineering design research area. In the following sections we give a brief de-
scription of the MOP test problems, that were selected for the work reported in
this thesis.

6.2 B E N C H M A R K A D O P T E D F RO M T H E AVA I L A B L E T E S T S U I T E S

From the different MOPs currently available, and for the purposes of evalu-
ating the convergence characteristics and distribution of solutions, as attained
by the different MOEAs proposed in this thesis, we adopted nine numerical
MOPs. Five of them are two-objective MOPs, taken from the ZDT test suite,
namely ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. It is important to note that
ZDT5, also from the ZDT test suite, is a binary MOP and is not considered
here because we are interested in solving continuous MOPs, i.e., MOPs hav-
ing real-valued decision variables. The other four MOPs contain three objec-
tives and are taken from the DTLZ test suite, namely DTLZ1, DTLZ2, DTLZ3,
and DTLZ4. These nine MOPs were selected because they encapsulate a wide
variety of characteristics, such as multi-frontality, non-convexity, and discon-
tinuities. All the mentioned characteristics are known to cause difficulties to
MOEAs. Also, some problems possess a disconnected Pareto front which make
it difficult for MOEAs to reach all regions of the true Pareto-optimal front.
An additional reason for choosing these MOPs is because they are commonly
adopted by the MOEA community. Next, we present a brief description of each
of the numerical MOPs that were selected for the work reported here.
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6.2.1 Definition of the ZDT test problems

• Test Problem ZDT1:

This MOP is defined by:

f1(x) = x1

f2(x, g) = g(x) ·
(
1−

√
f1(x)
g(x)

)
g(x) = 1+ 9

(n−1) ·
n∑
i=2
xi

(26)

The above MOP has a convex Pareto-optimal front and the number of
decision variables used is n = 30. Their ranges are xi ∈ [0, 1], i =

1, . . . , 30. The true Pareto front corresponds to g(x) = 1. Figure 30
shows the shape of the true Pareto front for this test problem.
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Figure 30: Shape of the true Pareto front for ZDT1.
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• Test Problem ZDT2:

This MOP is defined by:

f1(x) = x1

f2(x, g) = g(x) ·
(
1−

(
f1(x)
g(x)

)2 )
g(x) = 1+ 9

(n−1) ·
n∑
i=2
xi

(27)

The above MOP has a nonconvex Pareto-optimal front and the number
of decision variables used is n = 30. Their ranges are xi ∈ [0, 1], i =
1, . . . , 30. The true Pareto front corresponds to g(x) = 1. Figure 31
shows the shape of the true Pareto front for this test problem.
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Figure 31: Shape of the true Pareto front for ZDT2.
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• Test Problem ZDT3:

This MOP is defined by:

f1(x) = x1

f2(x, g) = g(x) ·
(
1−

√
f1(x)
g(x) −

f1(x)
g(x) · sin(10πx1)

)
g(x) = 1+ 9

(n−1) ·
n∑
i=2
xi

(28)

This MOP has a Pareto-optimal front that is convex but disconnected,
and having five segments. The number of decision variables adopted is
n = 30, and their ranges are xi ∈ [0, 1], i = 1, . . . , 30. The true Pareto
front corresponds to g(x) = 1. It is important to note that for this MOP,
the sin() function causes the disconnectedness for the Pareto-front in
the objective space, but such a discontinuity in the decision space is not
present. Figure 32 shows the shape of the true Pareto front for this test
problem.

-0.8

-0.4

 0

 0.4

 0.8

 0  0.2  0.4  0.6  0.8  1

f 2

f1

ZDT3 Test Problem: True Pareto-Front

Figure 32: Shape of the true Pareto front for ZDT3.
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• Test Problem ZDT4:

This MOP is defined by:

f1(x) = x1

f2(x, g) = g(x) ·
(
1−

√
f1(x)
g(x)

)
g(x) = 1+ 10 · (n− 1) +

n∑
i=2

(x2i − 10 · cos(4πxi))
(29)

This MOP has a Pareto-optimal front that is convex in shape an identical
to that of ZDT1. However, this MOP contains 219 local Pareto fronts
and therefore, is intended to test a MOEA’s ability to deal with multi-
frontality. The number of decision variables used for this test MOP is
n = 10, and their ranges are x1 ∈ [0, 1], and x2, . . . , xn ∈ [−5, 5]. The
global true Pareto-optimal front corresponds to g(x) = 1, while the best
local Pareto front corresponds to g(x) = 1.25. Figure 33 shows the shape
of the global true Pareto front for this test problem.
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Figure 33: Shape of the true Pareto front for ZDT4.
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• Test Problem ZDT6:

This MOP is defined by:

f1(x) = 1− exp(−4x1) · sin6(6πx1)

f2(x, g) = g(x) ·
(
1−

(
f1(x)
g(x)

)2 )

g(x) = 1+ 9 ·
[
1
9

(
n∑
i=2
xi

)]0.25 (30)

This MOP has a Pareto-optimal front that is nonconvex. It includes two
major difficulties caused by some defined nonuniformities in the search
space. The first difficulty comprises a bias of solutions towards the value
of one in f1. The second difficulty, comprises a difference in the den-
sity of solutions in the function fitness landscape, being the lowest near
the true Pareto front and highest away from the front. The number of
decision variables used is n = 10, and their ranges are xi ∈ [0, 1], i =
1, . . . , 10. The true Pareto front corresponds to g(x) = 1. Figure 34
shows the shape of the true Pareto front for this test problem.
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Figure 34: Shape of the true Pareto front for ZDT6.

In table 4, we summarize the definition of the ZDT test problems.
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6.2.2 Definition of the DTLZs test problems

The DTLZ test suite is generated by a systematic approach as defined in the
above paragraphs. For the following DTLZ test MOPs, we will present the
general definition and thereafter the particular MOP instantiation, considering
a three objective MOP instantiation.

• Test Problem DTLZ1:

This test MOP is generally defined by

Minimize f1(x) = 1
2x1x2 . . . xM−1(1+ g(xM)),

Minimize f2(x) = 1
2x1x2 . . . (1− xM−1)(1+ g(xM)),

...

Minimize fM−1(x) = 1
2x1(1− x2)(1+ g(xM)),

Minimize fM(x) = 1
2(1− x1)(1+ g(xM)),

subject to 0 6 xi 6 1, for i = 1, 2, . . . ,n

(31)

where

g(xM) = 100 ·

|xM|+
∑
xi∈XM

[
(xi − 0.5)2 − cos(20π(xi − 0.5))

]
(32)

The functional g(xM) requires |xM| = k variables, and the number of
variables in the MOP is related to the number of objectives M and k by
n = M+ k− 1. For a three objective MOP, M = 3, the instantiation
used as test MOP corresponds to

f1(x) = 1
2x1x2(1+ g(x)),

f2(x) = 1
2(1+ g(x))x1(1− x2),

f3(x) = 1
2(1+ g(x))(1− x1)

(33)
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and

g(x) = 100 ·

(
5+

n∑
i=3

[
(xi − 0.5)2 − cos(20π(xi − 0.5))

])
(34)

The Pareto-optimal solution for this MOP corresponds to the following
condition x∗i = 0.5 (xi ∈ XM) and the objective function values lie on

the linear hyperplane
M∑
m=1

f∗m = 0.5. Figure 35 shows the shape of the

true Pareto front for the instantiation of DTLZ1 using three objectives,
M = 3, and n = 7 decision variables (a value k = 5 has been used). Ac-
cording to the definition of the g(x) functional, this test MOP challenges
any MOEA to converge to the true Pareto front, since the search space
contains (11k − 1) local Pareto fronts.
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Figure 35: Shape of the true Pareto front for DTLZ1.
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• Test Problem DTLZ2:

This MOP is generally defined by

Minimize f1(x) = (1+ g(XM))cos(x1
π
2 ) . . . cos(xM−1

π
2 ),

Minimize f2(x) = (1+ g(XM))cos(x1
π
2 ) . . . sin(xM−1

π
2 ),

...

Minimize fM(x) = (1+ g(XM))sin(x1
π
2 ),

Subject to 0 6 xi 6 1, for i = 1, 2, . . . ,n,
where g(XM) =

∑
xi∈XM

(xi − 0.5)2

(35)

Also for this MOP the functional g(x) requires |xM| = k variables, and
the number of variables in it is related to the number of objectives M
by n = M + k − 1. For a three-objective MOP, M = 3, the DTLZ2
instantiation used as test MOP corresponds to

f1(x) = cos(x1
π
2 )cos(x2

π
2 )(1+ g(XM)),

f2(x) = cos(x1
π
2 )sin(x2

π
2 )(1+ g(XM)),

f3(x) = sin(x1
π
2 )(1+ g(XM))

(36)

and

g(XM) =

n∑
i=3

(xi − 0.5)2 (37)

In this test MOP a value of |XM| = k = 10 is used; therefore, the num-
ber of decision variables corresponds to n = 12. The Pareto-optimal
solution for this test MOP corresponds to the following condition x∗i =

0.5, (x∗i ∈ XM) and all objective function values must satisfy the con-

dition
M∑
m=1

(f∗m)
2 = 1 which corresponds to a Pareto-optimal front being

spherical in shape. Figure 36 shows the shape of the true Pareto front for
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the instantiation of the DTLZ2 test MOP using M = 3 objectives and
n = 12 decision variables.
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Figure 36: Shape of the true Pareto front for DTLZ2.

• Test Problem DTLZ3:

The definition of this test MOP is the same as that of DTLZ2, but using
a different g(XM) functional. The corresponding functional used in this
case is defined by

g(XM) = 100 ·

(
10+

n∑
i=3

[
(xi − 0.5)2 − cos(20π(xi − 0.5))

])
(38)

The reader might note that this functional resembles the one used in
DTLZ1. In this test MOP, a value for k = 10 is used, and, therefore,
the number of decision variables corresponds to n = 12. Analogous
to DTLZ1, the defined functional introduces multifrontality in the fit-
ness landscape. The defined DTLZ3 test MOP contains 3k − 1 local
Pareto fronts, which are parallel to the global true Pareto front, and
challenges any MOEA to deal with a multifrontality characteristic. The
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Pareto-optimal solutions for this test MOP correspond to the following
condition x∗i = 0.5, (x∗i ∈ XM) and all objective function values must

satisfy
M∑
m=1

(f∗m)
2 = 1. The true Pareto-optimal front for this test MOP is

identical to that of DTLZ2, whose shape is given in Figure 36.

• Test Problem DTLZ4:

The definition of this test MOP is the same as that of DTLZ2, but now, a
modified meta-variable mapping is used: xi 7→ xαi , α > 0. The param-
eter suggested in Deb et al. [49] is α = 100. This modification allows
a dense set of solutions to exist near the fM − f1 plane. Thus, this test
MOP is designed to validate the ability of any MOEA to maintain a good
distribution of solutions along the Pareto front approximation. The true
Pareto front shape is similar to that given for DTLZ2 and presented in
Figure 36.

In Table 5, we summarize the definition of the DTLZ problems MOPs se-
lected here.
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6.3 A E RO N AU T I C A L E N G I N E E R I N G P RO B L E M S

6.3.1 Introduction

In the previous section, we presented the selected numerical MOPs that are to
be used to benchmark and to assess the performance of the MOEA approaches
proposed in this thesis. As has been pointed out and recommended, for the
evaluation and assessment of any new MOEA, some real-world test MOPs
should also be included [41]. In this section, we present and describe some real-
world test MOPs, found in aeronautical engineering applications. In chapter 4,
we have surveyed some research works in the aeronautical engineering design
area, where MOEAs have been successfully applied. It is important to remark
that the number of applications in this engineering discipline is by far extense.
Many more applications of MOEAs are also highlighted in a related publica-
tion [10]. In this regard, from the universe of possible real-world applications
in aeronautical engineering, and for the purposes of this thesis, we have de-
fined some multi-objective aerodynamic optimization problems, namely multi-
objective Aerodynamic Shape Optimization (ASO) problems, dealing with the
multi-objective optimization of airfoil shape geometries.

Aerodynamics is the science that deals with the interactions of fluid flows
and objects. This interaction is governed by three basic conservation laws: con-
tinuity, momentum and energy. These conservation laws are mathematically
expressed by means of the Navier-Stokes equations [6, 5, 85], which comprise
a set of partial differential equations, being unsteady, nonlinear and coupled
among them. Aerodynamicists are interested in the effects of this interaction,
in terms of the aerodynamic forces and moments, which are the result of in-
tegrating the pressure and shear stresses distributions that the flow excerses
over the object with which it is interacting. In its early days, aerodynamic de-
signs were done by extensive use of experimental facilities. Nowadays, the use
of CFD technology to simulate the flow of complete aircraft configurations,
has made it possible to obtain very impressive results with the help of high
performance computers and fast numerical algorithms. At the same time, ex-
perimental verifications are carried out in scaled flight tests, avoiding many of
the inherent disadvantages and extremely high costs of wind tunnel technology.
Therefore, we can consider aerodynamics as a mature engineering science.

Current aerodynamic research focuses on finding new designs and/or im-
proving current ones, by using numerical optimization techniques. For this,
an automated computer-based search for optimal solutions with respect to a
given set of objective functions, is performed in the case of multi-objective
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optimization. In these cases, the objective functions are defined in terms of
aerodynamic coefficients and flow conditions. Additionally, design constraints
are included to render the solutions practical or realizable in terms of manu-
facturing and/or operating conditions. Optimization is accomplished by means
of a more or less systematic variation of the design variables which parame-
terize the shape to be optimized. A variety of optimization algorithms, rang-
ing from gradient-based methods to stochastic approaches with highly sophis-
ticated schemes for the adaptation of the individual mutation step sizes, are
currently available. From them, MOEAs have been found to be a powerful but
easy-to-use choice [7, 10, 132, 133].

Shape optimization is considered across a wide range of engineering disci-
plines. Modifications to existing or new geometries are performed iteratively
and in a systematic way, with the aim of obtaining the best performing shape
for given multiple- objectives and/or requirements. In the aerospace industry,
the process of aerodynamic shape optimization is critical during all phases of
design [199, 25, 238]. The recurring strategy in aerodynamic shape optimiza-
tion [172, 72, 77, 101, 102, 97] corresponds to the integration of three distinct
tasks:

1. Definition/selection of the geometry parameterization method,

2. Selection of the computational method for the objective function evalua-
tion,

3. Selection and application of an efficient search engine.

Of particular importance to aerodynamic design, are bodies for which, the
force parallel and opposite to the direction of motion (drag) is significantly
smaller in magnitude to the force component acting normal to the direction
of motion (lift). A discipline which has benefited greatly from optimization
theory in the recent past is airfoil shape design [120, 119]. Airfoils can be de-
fined as the cross-section of any three-dimensional lifting surface, such as the
main wing or a turbine engine blade. Figure 37 shows different airfoil geome-
tries. These geometries were selected to represent a wide range of applications,
ranging from low-speed to high-speed aircrafts, each one being efficient for a
different flight condition.

Aerodynamic forces and moments for airfoil sections arise from surface pres-
sure and shear stress distributions. Pressure distribution is originated by the
flow velocity variation as it traverses the airfoil surface. Shear stresses are pro-
duced by fluid viscosity and by the velocity gradients that are generated by
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Figure 37: Shape of the airfoils for different aeronautical applications.

the flow retard as it contacts the airfoil surface. In Figure 38, the aerodynamic
lift force (L) is mainly the result of integrating the flow pressure distribution
acting over the airfoil surface, in a direction normal to the fluid flow velocity
(V). Also in Figure 38, the aerodynamic drag force (D) is the result of inte-
grating, both the pressure and shear stress distributions, acting over the airfoil
surface, in a direction parallel to the fluid flow velocity (V). We can observe
that the pressure is not uniform over the the airfoil surface. Thus, additional
to the aerodynamic forces of lift and drag, an aerodynamic moment (M) will
also be present as a result of the aerodynamic interaction of the flow with the
airfoil shape. This aerodynamic moment governs the pitching motion of the
airfoil. The magnitude of the aerodynamic forces and moment are proportional
to the flow properties such as density, viscosity, velocity and angle of attack
(orientation angle of the flow velocity to the airfoil geometry).

For a given operating condition, variations in the airfoil geometry will re-
sult in different flow pressure and shear stress distributions, which in turn will
modify the aerodynamic forces and moment. From an aerodynamic point of
view, an algorithm in airfoil shape optimization is used to determine the opti-
mal shape in order to maximize/minimize the desired forces and/or objective
function. For a general aerodynamic problem, we can infer that one objective
will be to maximize the lift force. This condition will allow the aeronautical
system to increase its payload capacity. One second objective will be to reduce
the drag force, which in turn will reduce the required power for the aeronau-
tical system. Finally, a third objective will be to minimize the aerodynamic
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Figure 38: Aerodynamic forces and moments present in an airfoil shape.

moment, which will improve the longitudinal stability for the aeronautical sys-
tem. In aerodynamic design and analysis it is common to express these forces
and moment as scalar coefficients:

Coefficient of lift force = CL =
L

1
2ρV

2S
(39)

Coefficient of drag force = CD =
D

1
2ρV

2S
(40)

Coefficient of moment = CM =
M

1
2ρV

2Sc
(41)

where V is the flow velocity, ρ is the fluid density, c is a characteristic length,
which in this case corresponds to the airfoil length (or chord), and S is a charac-
teristic surface, which in this case is the airfoil length (or chord) times a unity
length (S = c · 1). It follows from aerodynamic theory that, for a geometrically
similar airfoil shape, at a given flow incidence angle (α), the lift (CL), drag
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(CD) and moment (CM) coefficients are a function of the Reynolds number
(Re) and Mach number (M).

[ Cl , Cd , Cm ] = f(α,Re,M) (42)

Re =
ρ · V · L
µ

(43)

M =
V

a
(44)

where µ is the fluid dynamic viscosity, and a is the speed of sound in the
fluid. The Reynold number (Re) is the ratio of the inertial to the viscous forces,
and quantifies their relative importance in the flow and the given operating
condition. The Mach number (M) is a measure of the ratio of the flow velocity
with respect to the speed of sound in the fluid, and gives a measure of the
compressibility effects in gas fluids such as air.

If we take an airplane as an example of an aeronautical system, for which
we are trying to optimize the airfoil shape that will be used as a wing’s cross
section, depending on the mission phase, either the aerodynamic forces or the
aerodynamic moment, or a combination of them, can be used as objectives
to optimize. For example, during cruise, designers will try to reduce the drag
coefficient at a prescribed lift coefficient in order to optimize fuel economy.
For airplanes that are to have a maximum range, the ratio of lift to drag co-
efficient (CL/CD is defined as the aerodynamic efficiency) needs to be max-
imized [203, 238, 220, 25, 158]. However there are other types of airplane
missions such as reconnaissance for which the designer wants to maximize
the endurance (endurance is the time an airplane can fly for a given payload
and fuel capacity); in this case the ratio C3L/C

2
D (defined as the aerodynamic

power efficiency) needs to be maximized [203, 238, 220, 25, 158]. Additional
to these objectives, designers will also try to maximize airplane stability, for
which, the optimization of the aerodynamic moment coefficient CM needs to
be considered. Finally, all these optimizations must be done at different oper-
ating conditions, posing some additional conditions and/or constraints on the
operating Reynolds (Re) and Mach (M) numbers.
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A design is normally optimized for one flight condition, but good designs
are those exhibiting optimal aerodynamic performances over a wide range of
flight conditions and different mission segments. This latter condition calls for
the application of a multi-objective optimization approach to evaluate the trade-
off among the different competing objectives and/or to find the best trade-off
design.

At this point we recall the reader that we are trying to define some real-world
MOPs, similar to the ones found in the aeronautical engineering discipline. The
main purpose of these test MOPs is to benchmark the MOEA approaches pro-
posed as part of the research done in this thesis. Numerical MOPs are easy to
construct since only analytical functions need to be considered and evaluated.
In the case of real-world MOPs these conditions are quite different. Therefore,
aerodynamic shape MOPs are defined similarly to those that were solved in
references [229, 17, 61, 167, 165, 166, 179, 157, 90, 197, 198, 191, 46, 256].
An effort has been made to present a diverse set of MOPs containing different
Pareto-front shapes, as well as to present different fitness landscapes. For this
reason, various combinations of parameters were selected. Among them, we
consider variations in the airfoil angle of attack (α), the operating flow condi-
tions in terms of Reynolds number (Re) and Mach number (M), as well as a
combination of the aerodynamic coefficients and relations of them, defined as
objective functions. For this benchmark, we have designated the test MOPs as
ASO-MOP1 through ASO-MOP7. From the seven ASO-MOPs defined, four of
them have two objective functions, and the other three contain three objective
functions. It is worth nothing that, two ASO-MOPs include constraints in the
operating conditions in terms of aerodynamic coefficients (i.e. aerodynamic
coefficient constraints).

Since the test ASO-MOPs deal with airfoil shape geometries, next we de-
scribe the geometry parameterization used in them, which in turn defines the
dimensionality of the search space. We also describe the CFD simulation used
to evaluate the objective functions in these ASO-MOPs. Finally, we give a brief
description of the ASO-MOPs definition, and present an approximation of the
shape of the Pareto front after a fixed number of objective function evaluations
using a MOEA proposed in this thesis. This situation contrasts with numerical
test MOPs where the true Pareto front shape is known. In this case, since we
do not know a priori the shape of the true Pareto front, we only present an
approximation of it.
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6.3.2 Geometry parameterization

Finding an optimum representation scheme for aerodynamic shape optimiza-
tion problems is an important step for a successful aerodynamic optimization
task. Several options can be used for airfoil shape parameterization. Techniques
commonly employed in this area are: Bezier curves or splines [65], Hicks-
Henne bump functions [84], and PARSEC airfoil representation [223]. A few
general criteria should be considered for an appropriate geometric representa-
tion:

(a) The representation used needs to be flexible to describe any general air-
foil shape.

(b) The representation also needs to be efficient, so that the parameterization
can be achieved with a minimum number of parameters. Inefficient rep-
resentations may result in an unnecessarily large design space which, in
consequence, can reduce the search efficiency of an evolutionary algo-
rithm.

(c) The representation should allow the use of any optimization algorithm
to perform local search. This requirement is important for refining the
solutions obtained by the global search engine in a more efficient way.

In this case, the PARSEC airfoil representation [223] is used. Figure 39 il-
lustrates the 11 basic parameters used for this representation:

• rle leading edge radius,

• Xup location of maximum thickness for the upper surface (extrados),

• Xlo location of maximum thickness for lower surface (intrados),

• Zup maximum thickness for upper surface,

• Zlo maximum thickness for lower surface,

• Zxxup curvature for upper surface, at maximum thickness location,

• Zxxlo curvature for lower surfaces, at maximum thickness location,

• Zte trailing edge coordinate,

• ∆Zte trailing edge thickness,
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• αte trailing edge direction, and

• βte trailing edge wedge angle.

For the present case, the modified PARSEC geometry representation adop-
ted allows us to define independently the leading edge radius, both for upper
and lower surfaces. Thus, 12 variables in total are used. Their allowable ranges
are defined in Table 6.

Parameter Lower bound Upper bound

rleup 0.0085 0.0126
rlelo 0.0020 0.0040
αte 7.0 10.0
βte 10.0 14.0
Zte -0.0060 -0.0030
∆Zte 0.0025 0.0050
Xup 0.4100 0.4600
Zup 0.1100 0.1300
Zxxup -0.90 -0.70
Xlo 0.20 0.26
Zlo -0.0230 -0.0150
Zxxlo 0.05 0.20

Table 6: Parameter ranges for modified PARSEC airfoil representation

Figure 39: PARSEC airfoil parameterization
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The PARSEC airfoil geometry representation uses a linear combination of
shape functions for defining the upper and lower surfaces. These linear combi-
nations are given by:

Zupper =

6∑
n=1

anx
n−1
2 (45)

Zlower =

6∑
n=1

bnx
n−1
2 (46)

In the above equations, the coefficients an, and bn are determined as func-
tions of the 12 described geometric parameters, by solving the following two
systems of linear equations:

Upper surface:



1 1 1 1 1 1

X
1/2
up X

3/2
up X

5/2
up X

7/2
up X

9/2
up X

11/2
up

1/2 3/2 5/2 7/2 9/2 11/2

1
2X

−1/2
up

3
2X
1/2
up

5
2X
3/2
up

7
2X
5/2
up

9
2X
7/2
up

11
2 X

9/2
up

− 14X
−3/2
up

3
4X

−1/2
up

15
4 X

1/2
up

35
4 X

3/2
up

63
4 X

5/2
up

99
4 X

7/2
up

1 0 0 0 0 0





a1

a2

a3

a4

a5

a6



=



Zte + 1
2∆Zte

Zup

tan((2αte −βte)/2)

0

Zxxup

√
rleup



(47)

Lower surface:


1 1 1 1 1 1

X
1/2
lo X

3/2
lo X

5/2
lo X

7/2
lo X

9/2
lo X

11/2
lo

1/2 3/2 5/2 7/2 9/2 11/2

1
2X

−1/2
lo

3
2X
1/2
lo

5
2X
3/2
lo

7
2X
5/2
lo

9
2X
7/2
lo

11
2 X

9/2
lo

− 14X
−3/2
lo

3
4X

−1/2
lo

15
4 X

1/2
lo

35
4 X

3/2
lo

63
4 X

5/2
lo

99
4 X

7/2
lo

1 0 0 0 0 0





b1

b2

b3

b4

b5

b6



=



Zte − 1
2∆Zte

Zlo

tan((2αte +βte)/2)

0

Zxxlo

−
√
rlelo



(48)

It is important to note that the geometric parameters rleup/rlelo, Xup/Xlo,
Zup/Zlo, Zxxup/Zxxlo, Zte, ∆Zte, αte, and βte are the actual design variables
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in the optimization process, and that the coefficients an, bn serve as interme-
diate variables for interpolating the airfoil’s coordinates, which are used by the
CFD solver (we used the Xfoil CFD code [56]) for its discretization process.

6.3.3 Flow solver

The flow solver adopted in this case was the Xfoil CFD code1 [56] developed
at MIT by Mark Drela. It uses a steady potential panel method coupled with
a Karman-Tsien model of the viscous boundary layer. Both, a forced or a free
transition of the boundary layer may be specified, as well as varying Reynolds
and Mach numbers. The viscous flow solution proceeds by means of an iter-
ative Newton-like procedure that solves a linear system of equations in each
step. The size of the system is proportional to the discretization used to rep-
resent the upper and lower surfaces of the airfoil2. In this case a total of 201
points (comprising both lower and upper airfoil’s surfaces) are used to define
each design candidate. The CFD flow solution for this tailored airfoil simu-
lation code results in an orders-of-magnitude better performance than typical
CFD. The complete evaluation of a single airfoil, involving the solution of 3
flow states for a test MOP with three objectives, strongly depends on the airfoil
shape and the flow conditions, but typically requires less than 10 seconds on a
single processor. Under reasonably mild flow conditions (i.e., a flow around the
airfoil without laminar separation bubbles or large region of turbulent bound-
ary layer separation towards the trailing edge of the airfoil), the accuracy of
the computed airfoil characteristics (lift, drag and moment) using the XFOIL
CFD code, can compete with more sophisticated CFD codes, or even tunnel
measurements. These conditions are usually fulfilled when optimizing for drag,
because a well-behaved boundary layer is needed to achieve small drag.

It is important to note that XFOIL solves the flow equations in an iterative
manner. As a parameter, the user can define the maximum number of itera-
tions to try to find a CFD flow solution, given an airfoil shape that is being
evaluated. For this parameter, and in order not to use too much computational
time without having a guarantee of attaining a converged CFD flow solution,
we have defined a maximum of 500 iterations to be executed in the XFOIL

1 In this work, the source code of XFOIL, written in FORTRAN, was adapted for its execution
as a direct function call, from the main optimization process.

2 For the aerodynamic simulation process, XFOIL, uses a discretized airfoil shape. In this work,
this shape is provided, by a prescribed distribution of points, both, in the upper and lower
airfoil’s surfaces, i.e. by evaluating equations (45) and (46) in a uniform distribution of abcissae
in the range x ∈ [0, 1]
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simulation process. If the CFD code is able to solve the flow equations within
this number of prescribed iterations, the aerodynamic forces and moment as
reported by the CFD code, are used for evaluating the corresponding objective
functions defined in the test ASO-MOPs. It happens, with an certain rate that
the XFOIL CFD code is not able to solve the flow equations. In these cases the
aerodynamic forces and moment, as reported by the XFOIL CFD code, will
dramatically affect and mislead the search process (this can be considered as
a situation with a noisy environment) in the optimization. Therefore, we have
to check whether the CFD code has attained a converged solution, an we will
reject the evaluation for the airfoil shapes not satisfying a converged CFD so-
lution, by penalizing with a high value their corresponding objective functions.
The reader might realize that the simulation has to be performed before re-
jecting and penalizing any design. This situation presents a waste of objective
function evaluations for the MOEA.

6.3.4 Definition of the ASO-MOP test problems

• Test Problem ASO-MOP1:

ASO-MOP1 considers two objective functions: (i) to minimize the drag
force coefficient, and (ii) to maximize the lift force coefficient. Both ob-
jectives are evaluated at a fixed angle of attack (α), and at the same flow
conditions in terms of flow velocity, given by the Reynolds (Re) and
Mach (M) numbers. In this case, only one call to the CFD simulation
code is needed to evaluate both objectives. Note that all ASO-MOPs will
be mathematically defined as minimization MOPs (i.e., all objectives are
to be minimized, therefore the second objective function in this test case,
which is the maximization of the lift force coefficient, is reformulated as
a minimization problem, by substracting it from a constant3. This con-
stant can be selected as the maximum lift coefficient expected for this
type of aerodynamic problems. In this case, a value of 2.0 has been se-
lected). The mathematical definition for the ASO-MOP1 is:

min(Cd) @ α = 0.0o, Re = 4.0× 106,M = 0.2

min(2.0−Cl) @ α = 0.0o, Re = 4.0× 106,M = 0.2

3 Other option could be to multiply the value of the lift coefficient by −1, but in this case, the
objective function could have negative values. We have adopted a convention in the ASO-
MOPs definition by which the objective functions take only positive values
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Figure 40 shows an approximation of the Pareto front obtained by the
MODE-LD+SS MOEA proposed in this thesis, at a level in which 5,000
Objective Function Evaluations (OFEs) have been performed4. From this
figure, we can observe that the shape of the Pareto front has a mixed
convex-concave shape. Also and different to the case of the numerical
MOPs, where the shape of the Pareto front is continuous, in this ASO-
MOP, we can anticipate that the shape of the Pareto front is not contin-
uous, Nonetheless, we have used a line to connect every solution in the
approximation of the Pareto front to better appreciate its shape 5, but this
should not be interpreted as the Pareto front being continuous.
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Figure 40: Shape of the approximated Pareto front for ASO-MOP1.

• Test Problem ASO-MOP2:

4 It is important to remark that this number of OFEs is quite high for the type of real-world
problem considered here, since in most cases, on the order of 1,000 and up to 2,000 OFEs
are allowed in real industrial scenarios, where more sophisticated CFD simulation codes are
used, requiring in consequence, computational efforts that are several orders of magnitude
higher. An example of this situation is reported in [15], where on the order of 2000 hrs. of
computing time are used for the multi-objective re-design of a transonic turbine rotor blade, in
a four-processors workstation, using 2000 OFEs.

5 This also applies for the other bi-objective ASO-MOPs described in this section.
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ASO-MOP2 considers two objective functions: (i) to maximize the aero-
dynamic efficiency, i.e., the lift to drag forces ratio Cl/Cd, and (ii) to
minimize the absolute value for the aerodynamic moment coefficient.
Both objectives are evaluated at a fixed angle of attack (α), and at the
same flow conditions in terms of flow velocity, given by the Reynolds
(Re) and Mach (M) numbers. In this case, only one call to the CFD sim-
ulation code is needed to evaluate both objectives. Note also that for this
ASO-MOP, the first objective is reformulated to a minimization case,
by considering the inverse of the lift to drag forces ratio, i.e. by mini-
mizing the Cd/Cl ratio. Regarding the aerodynamic moment coefficient,
for some airfoil designs, being evaluated, it can happen that its value
could be negative. In this case, we consider the moment coefficient value
squared as the objective to minimize. The mathematical definition for the
ASO-MOP2 is:

min(Cd/Cl) @ α = 4.0o, Re = 2.0× 106,M = 0.1

min(C2m) @ α = 4.0o, Re = 2.0× 106,M = 0.1
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Figure 41: Shape of the approximated Pareto front for ASO-MOP2.

Figure 41 shows an approximation of the Pareto front obtained by the
MODE-LD+SS MOEA proposed in this thesis, at a level in which 5,000
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OFEs have been performed. From this figure, we can observe that the
shape of the Pareto front is convex. We can also anticipate that the shape
of the Pareto front is not continuous towards its lower right part. Nonethe-
less, we have used a line to connect every solution in the approximation
of the Pareto front to better appreciate its shape.

• Test Problem ASO-MOP3:

ASO-MOP3 considers two objective functions: (i) to maximize the aero-
dynamic efficiency, i.e., the lift to drag forces ratio Cl/Cd, and (ii) to
maximize aerodynamic power efficiency, i.e., C3l/C

2
d. In this case each

objective is evaluated at different operating flow conditions, in terms of
angle of attack (α), and flow velocity, given by the Reynolds (Re) and
Mach (M) numbers. The aim is to reflect a real case in which we try
to obtain the trade-off in this ASO-MOP at two different design condi-
tions. In consequence, for this case we will require, for each airfoil de-
sign candidate, to do two calls to the CFD simulation code, duplicating
the computational effort for the objective function evaluations. Note also
that for this ASO-MOP, both objective are reformulated to a minimiza-
tion case, by considering the inverse of the aerodynamic forces ratios.
i.e., by minimizing the Cd/Cl ratio, and by minimizing the C2d/C

3
l ratio.

The mathematical definition for the ASO-MOP3 is:

min(Cd/Cl) @ α = 1.0o, Re = 3.0× 106,M = 0.3

min(C2d/C
3
l ) @ α = 5.0o, Re = 1.5× 106,M = 0.15

Figure 42 shows an approximation of the Pareto front obtained by the
MODE-LD+SS MOEA proposed in this thesis, at a level in which 5,000
OFEs have been performed. It is important to note that in this case, the
number of OFEs should be interpreted as the number of different airfoil
designs being evaluated, since each objective function requires a call to
the CFD simulation code. From this figure, we can observe that the shape
of the Pareto front has a general convex shape, but there are some small
regions where the shape can be considered as concave. We can also an-
ticipate that the shape of the Pareto front is not continuous. Nonetheless,
we have used a line to connect every solution in the approximation of the
Pareto front to better appreciate its shape.

• Test Problem ASO-MOP4:
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Figure 42: Shape of the approximated Pareto front for ASO-MOP3.

ASO-MOP4 considers three objective functions: (i) to minimize the drag
force coefficient, (ii) to maximize the lift force coefficient, and (iii) to
minimize the absolute value for aerodynamic moment coefficient. All
three objectives are evaluated at a fixed angle of attack (α), and at the
same flow conditions in terms of flow velocity, given by the Reynolds
(Re) and Mach (M) numbers. In this case, only one call to the CFD sim-
ulation code is needed to evaluate the three objectives. Similar to the
cases for the maximization of the lift force coefficient in ASO-MOP1,
and the maximization of the absolute value for the aerodynamic moment
coefficient in ASO-MOP2, these objectives are reformulated in a similar
manner. The mathematical definition for ASO-MOP4 is:

min(Cd) @ α = 4.0o, Re = 3.0× 106,M = 0.3

min(2.0−Cl) @ α = 4.0o, Re = 3.0× 106,M = 0.3

min(C2m) @ α = 4.0o, Re = 3.0× 106,M = 0.3

Figure 43 shows an approximation of the Pareto front obtained by the
MODE-LD+SS MOEA proposed in this thesis, at a level in which 12,000
OFEs have been performed. From this figure, we can observe that the
shape of the Pareto front is convex.
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Figure 43: Shape of the approximated Pareto front for ASO-MOP4.

• Test Problem ASO-MOP5:

ASO-MOP5 also considers three objective functions: (i) to maximize the
aerodynamic efficiency, i.e., to maximize the Cl/Cd ratio, (ii) to maxi-
mize aerodynamic power efficiency, i.e., C3l/C

2
d at a first operating con-

dition, and (iii) to maximize aerodynamic power efficiency, i.e., C3l/C
2
d

at a second operating condition. In this case, each objective is evaluated
at different operating flow conditions, in terms of angle of attack (α),
and flow velocity, given by the Reynolds (Re) and Mach (M) numbers.
The aim is to reflect a real case in which we try to obtain the trade-off in
this ASO-MOP at three different design conditions. In consequence, for
this case we will require, for each airfoil design candidate, to do three
calls to the CFD simulation code, thus multiplying by three the compu-
tational effort. Note also that for this ASO-MOP, the three objective are
reformulated to a minimization case, by considering the inverse of the
aerodynamic forces ratios. i.e. by minimizing the Cd/Cl ratio for the
first objective, and by minimizing the C2d/C

3
l ratio fro the second and

third objectives. The mathematical definition for ASO-MOP5 is:

min(Cd/Cl) @ α = 1.0o, Re = 4.0× 106,M = 0.3
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Figure 44: Shape of the approximated Pareto front for ASO-MOP5.

Figure 44 shows an approximation of the Pareto front obtained by the
MODE-LD+SS MOEA proposed in this thesis, at a level in which 12,000
OFEs have been performed. From this figure, we can observe that the
shape of the Pareto front is convex.

• Test Problem ASO-MOP6:

ASO-MOP6 considers two objective functions: (i) to maximize the aero-
dynamic efficiency, i.e., to maximize the Cl/Cd ratio at given operating
condition and subject to a specified lift force coefficient, and (ii) to maxi-
mize the aerodynamic power efficiency, i.e., the C3l/C

2
d ratio at a second

operating condition, and subject also to a specified lift force coefficient.
In this case, each objective is evaluated at different operating flow condi-
tions, in terms of flow velocity, given by the Reynolds (Re) and Mach (M)
numbers. Unlike to the other ASO-MOPs previously defined, in which
the angle of attack has been defined a priori, in this case, instead, a lift
force coefficient is defined for each operating condition and objective,
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and then, the corresponding angle of attack needs to be calculated. This
latter condition indicates that this is a constrained problem. For this, the
flow solver, given the design candidate geometry, solves the flow equa-
tions with a constraint on the Cl value, i.e., it additionally determines the
operating angle of attack α. The aim of this ASO-MOP is to better reflect
a real case in which we try to obtain the trade-off in this ASO-MOP at
two different design conditions with constraints. In consequence, we will
require, for each airfoil design candidate, to do two calls to the CFD sim-
ulation code, thus duplicating the computational effort for the objective
function evaluations, but also increasing the computational cost, since
the flow solver treats the constraints on Cl by using an iterative process.
Note also that for this ASO-MOP, the two objectives are reformulated
to a minimization case, by considering the inverse of the aerodynamic
forces ratios. i.e., by minimizing the Cd/Cl ratio for the first objective,
and by minimizing the C2d/C

3
l ratio for the second objective. The mathe-

matical definition for the ASO-MOP6 is:

min (Cd/Cl) @ Re = 2.04 · 106,M = 0.12 and subject to Cl = 0.63,

min (C2d/C
3
l @ Re = 1.29 · 106,M = 0.08 and subject to Cl = 1.05

Figure 45 shows an approximation of the Pareto front obtained by the
MODE-LD+SS MOEA proposed in this thesis, at a level in which 5,000
OFEs have been performed. It is important to note that similar to ASO-
MOP3, the number of OFEs should be interpreted as the number of
different airfoil designs being evaluated, since each objective function
requires a call to the CFD simulation code. From this figure, we can ob-
serve that the shape of the Pareto front has a general convex shape, with
small concave portions, and a steepest tendency in the upper left part of
the approximated Pareto front. Note that we have used a line to connect
every solution in the approximation of the Pareto front to better appreci-
ate its shape.

• Test Problem ASO-MOP7:

ASO-MOP7 considers three-objective functions: (i) to maximize the ae-
rodynamic efficiency, i.e., to maximize the Cl/Cd ratio at a given op-
erating condition and subject to a specified lift force coefficient, (ii) to
maximize the aerodynamic efficiency, i.e., the Cl/Cd ratio a at a second
operating condition, and subject also to a specified lift force coefficient,
and (iii) to maximize the aerodynamic power efficiency, i.e., the C3l/C

2
d
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Figure 45: Shape of the approximated Pareto front for ASO-MOP6.

ratio at a third operating condition, and subject also to a specified lift
force coefficient. In this case, also each objective is evaluated at differ-
ent operating flow conditions, in terms of flow velocity, given by the
Reynolds (Re) and Mach (M) numbers. This is also a constrained pro-
blem The aim of this ASO-MOP is to better reflect a real case in which
we try to obtain the trade-off in this ASO-MOP at three different design
conditions with constraints. In consequence, we will require, for each
airfoil design candidate, to do three calls to the CFD simulation code,
multiplying by three the computational effort for the objective function
evaluations, and also increasing the computational cost, since the flow
solver treats the constraints on Cl by using an iterative process for each
objective function. Note also that for this ASO-MOP, the three objec-
tives are reformulated to a minimization case, by considering the inverse
of the aerodynamic forces ratios. i.e. by minimizing the Cd/Cl ratio for
the first objective, and by minimizing the C2d/C

3
l ratio for the second and

third objectives. The mathematical definition for the ASO-MOP7 is:

min (Cd/Cl) @ Re = 2.04 · 106,M = 0.12 and subject to Cl = 0.63,

min Cd/Cl @ Re = 1.63 · 106,M = 0.10 and subject to Cl = 0.86,
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min (C2d/C
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Figure 46: Shape of the approximated Pareto front for ASO-MOP7.

Figure 46 shows an approximation of the Pareto front obtained by the
MODE-LD+SS MOEA proposed in this thesis, at a level in which 12,000
OFEs have been performed. From this figure, we can observe that the
shape of the Pareto front is convex.

6.4 P E R F O R M A N C E M E A S U R E S

In order to perform a quantitative comparison of results between different
MOEAs, there are mainly two goals we want to measure: (1) MOEA’s ability to
obtain solutions as close to the Pareto optimal solutions as possible (closeness
to the true Pareto front) and (2) MOEA’s ability to obtain solutions as diverse
as possible along the Pareto front (good distribution of the solutions). We can
consider that these goals are independent from each other, and use different
performance measures to deal with one or both of the goals. In general, it does
not exist a single performance measure that can indicate the superiority of one
MOEA over another one in these two aspects. In consequence, there is a clear
need to have at least two performance measures for adequately evaluate both
goals (convergence and diversity) of a MOEA.
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In this work, two performance measures were adopted in order to assess our
results: Hypervolume (Hv) and Two Set Coverage (C-Metric). This choice was
driven, mainly, because in the ASO-MOPs we do not know, in advance, the ex-
act geometry and position for the true Pareto front, i.e., we lack of a reference
Pareto set to compare to, and this condition precludes, for the ASO-MOPs, the
use of the generational distance (GD), or the inverse generational distance
(IGD) measures, which are used commonly by the MOEA community, to as-
sess and compare MOEA results. A brief description of the selected measures
is presented next.

6.4.1 Hypervolume (Hv):

Given a Pareto approximation set PFknown, and a reference point in objective
space zref, this performance measure estimates the Hypervolume attained by
it. Such hypervolume corresponds to the non-overlapping volume of all the
hypercubes formed by the reference point (zref) and every vector in the Pareto
set approximation. This is mathematically defined as:

HV = {∪ivoli|veci ∈ PFknown}

veci is a nondominated vector from the Pareto set approximation, and voli
is the volume for the hypercube formed by the reference point and the nondom-
inated vector veci. Here, the reference point (zref) in objective space for the
2-objective MOPs was set to (1.05,1.05); for DTLZ1 it was set to (0.6,0.6,0.6),
and to (1.05,1.05,1.05) for DTLZ2, DTLZ3 and DTLZ4. This performance
measure is Pareto compliant [275, 271], and is used to assess both convergence
and spread of the solutions along the approximated Pareto front. High values
indicate that the solutions are closer to the true Pareto front and that they cover
a wider extension of it.

6.4.2 Two Set Coverage (C-Metric):

This performance measure is also Pareto compliant, and estimates the coverage
proportion, in terms of percentage of dominated solutions, between two sets.
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Given the sets A and B, both containing only nondominated solutions, the C-
Metric is mathematically defined as:

C(A,B) =
|{u ∈ B|∃v ∈ A : v dominates u}|

|B|

This performance measure indicates the portion of vectors in B being dom-
inated by any vector in A. In the present work this measure is used in two
different ways. In the first, the set A is the true Pareto front, which is known
for the ZDT and DTLZ test functions used; therefore, the C-Metric can be con-
sidered as a measure for the ability of the algorithm to find solutions that are
nondominated with respect to the Pareto optimal set (i.e., solutions that also be-
long to the Pareto optimal set). In the second way, sets A and B correspond to
two different Pareto approximations, as obtained by two different algorithms.
Therefore, the C-Metric is used for pairwise comparisons between the two al-
gorithms used. This performance measure is used for comparing all algorithms
used for solving the ZDTs, DTLZs, as well as the aerodynamic shape optimiza-
tion problems, in which the true Pareto front is unknown.
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In this chapter, we present the results of applying the two MOEAs proposed
in this thesis, namely MODE-LD+SS and pMODE-LD+SS, for solving the se-
lected test MOPs, defined in Chapter 6. Since in this chapter we are interested
in assessing the general performance of the proposed MOEAs, in all cases 32
independent runs were executed, from which statistics were gathered for the
performance measures selected. Additionally, and for comparison purposes,
other state-of-the-art MOEAs were used to compare their performance against
that of our proposed approaches.

7.1 A S S E S S M E N T O F M O D E - L D + S S W I T H N U M E R I C A L P RO B L E M S

In this section we present the application of MODE-LD+SS to the nine se-
lected numerical MOPs; ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, DTLZ1, DTLZ2,
DTLZ3, and DTLZ4. In this case we also present the comparisons with respect
to the results obtained by NSGA-II, SPEA2, and MOEA/D algorithms. These
three latter algorithms are considered as state-of-the-art MOEAs, and their
main characteristics were described in Section 3.2.2 (in page 29) for NSGA-
II and SPEA2, and in Section 3.3 (in page 37) for MOEA/D. The first two
algorithms correspond to Pareto-based MOEAs while the third is based on de-
composition. All of them have been successfully used to solve the numerical
test MOPs indicated before.

7.1.1 Parameter settings

The parameters used in the experiments for the different algorithms adopted
were set as follows. The common parameters for all algorithms comprise the
population size N and maximum number of generations GMAX. These were
set to N = 100 for all the bi-objective MOPs and N = 300 for all the MOPs
having three objectives. We adopted GMAX = 150 for all MOPs, except for
ZDT4 and DTLZ3, in which we used GMAX = 200. As for specific param-
eters of each algorithm, for both, the NSGA-II and the MOEA/D algorithms,
some common parameters used were: (a) crossover probability pc = 1.0; (b)
mutation probability pm = 1/NVARS (where NVARS corresponds to the

143
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number of decision variables in each numerical MOP as defined in previous
chapter); and, (c) distribution index for mutation ηm = 20. For the NSGA-II,
the distribution index for crossover ηc = 15; while for the MOEA/D, the dis-
tribution index for crossover ηc = 20. The previous choices are based on val-
ues reported in corresponding publications where the MOEAs were presented.
SPEA2 was taken from PISA [21, 22], and was used with the parameters de-
fined therein:

Parameter Value

individual_mutation_probability = 1.0
individual_recombination_probability = 1.0

variable_mutation_probability = 1/NVARS
variable_swap_probability = 0.5

variable_recombination_probability = 0.5
distribution index for crossover ηc = 15
distribution index for mutation ηm = 20

use_symmetric_recombination = 0

For our MODE-LD+SS, the parameter values to be used for F, CR, and
NB, were tuned by experiments with the ZDTs and DTLZs MOPs. For each
MOP, 32 different runs were executed for the following combination of pa-
rameter ranges: F ∈ [0.1, 0.9], CR ∈ [0.1, 0.9], in both cases increments of
0.1 were used, NB = 1, 3, 5, 10, 20, NP = 50, 100 and NP = 210, 300, for
two-objective and three MOPs respectively. Due to space limitations, results
from these experiments are not shown. The associated parameters that were
selected are the following1: Scaling factor F = 0.5 for all MOPs; crossover
rate CR = 0.5 for all MOPs, except for ZDT4 and DTLZ3, where we adopted
CR = 0.3; Neighborhood size NB = 5 for all MOPs, except for ZDT4, where
NB = 1 was used.

7.1.2 Results and discussion

Table 7 shows the results obtained for the hypervolume (Hv) measure for all nu-
merical MOPs, and for the four algorithms compared in this thesis. The statis-
tics presented for the hypervolume were obtained as average values from 32

1 This combination of parameters showed good performance for the hypervolume measure for
most of the ZDT and DTLZ MOPs.
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Test Function
ALGORITHM

NSGA SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean

(σ) (σ) (σ) (σ)

ZDT1 0.757357 0.761644 0.749964 0.763442
(0.000928) (0.000556) (0.009777) (0.000112)

ZDT2 0.422221 0.321971 0.387237 0.430358
(0.001263) (0.171286) (0.061361) (0.000141)

ZDT3 0.611480 0.615533 0.608377 0.616381
(0.008038) (0.000416) (0.015638) (0.000150)

ZDT4 0.217626 0.287359 0.745887 0.741770

(0.192914) (0.188726) (0.009983) (0.058697)

ZDT6 0.345949 0.392697 0.397720 0.411054
(0.008772) (0.002336) (0.002886) (0.000003)

DTLZ1 0.165918 0.191437 0.188726 0.187445

(0.026090) (0.000248) (0.000371) (0.000347)

DTLZ2 0.571146 0.590833 0.578679 0.581028

(0.001942) (0.000900) (0.001460) (0.001193)

DTLZ3 0.000000 0.467163 0.568895 0.581129
(0.000000) (0.148867) (0.007220) (0.003303)

DTLZ4 0.572327 0.590942 0.579301 0.578038

(0.002537) (0.000978) (0.001550) (0.001840)

Table 7: Comparison of the Hypervolume Metric (Hv) for all the algorithms used for
solving numerical MOPs

independent runs for each MOP and for each algorithm. The reference point
(zref) in objective space for computing the Hv performance measure was set to
(1.05,1.05) for all the 2-objective MOPs. For DTLZ1 it was set to (0.6,0.6,0.6),
and to (1.05,1.05,1.05) for DTLZ2, DTLZ3 and DTLZ4. High values of the hy-
pervolume indicate that the solutions are closer to the true Pareto front and that
they cover a wider extension of it. From Table 7, it can be observed that, with
respect to the Hv performance measure, MODE-LD+SS outperforms NSGA-II
and SPEA2, in all the bi-objective MOPs. It also outperforms MOEA/D in four
(ZDT1, ZDT2, ZDT3, and ZDT6) of five bi-objective MOPs. In the case of
the 3-objective MOPs, SPEA2 attains the best results for the Hv measure in
three MOPs (DTLZ1, DTLZ2, and DTLZ4), while MODE-LD+SS attains the
best result in DTLZ3. However, our proposed MODE-LD+SS obtained values
very close to those of SPEA2 in DTLZ1, DTLZ2 and DTLZ4 and better values
in DTLZ2 and DTLZ3, as compared to those of MOEA/D. In all cases, our
proposed approach significantly outperforms NSGA-II.
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As previously indicated, one important aspect of numerical MOPs is that
the shape and location of the true Pareto-front is known in advance. This con-
dition can be used to better evaluate the convergence of any MOEA solving
numerical MOPs. For evaluating the convergence of the MOEAs used in solv-
ing the test MOPs proposed, we use the C-Metric performance measure in two
different ways. In the first way we measure the convergence towards the true
Pareto-front, i.e., C-Metric(PFtrue,Algorithm). In this way we are measuring
the ability of any MOEA to generate Pareto optimal solutions which are non-
dominated with respect to the true Pareto front, and statistics are presented
based on the 32 independent runs executed. The second way of using the C-
Metric performance measure is for comparing the convergence performance
between pairs of MOEAs, i.e., C-Metric(Algorithm_A,Algorithm_B). In
this case, we are measuring the ability of any MOEA to generate Pareto opti-
mal solutions that are non-dominated by the solutions of the other MOEA we
are comparing against. For this latter case, statistics are obtained as average val-
ues of the comparison of all the independent runs from the first algorithm with
respect to all the independent runs from the second algorithm (i.e., statistics
are based on 322 = 1024 comparisons).

Tables 8 to 16 show the comparison matrices for the C-Metric values ob-
tained with the different algorithms and for all the MOPs used in the exper-
iments. The diagonal values of each matrix correspond to the C-Metric for
each algorithm, as evaluated with respect to the true Pareto front (i.e., C-Me-
tric(PFtrue,Algorithm)). The off-diagonal elements correspond to the compa-
risons between each pair of algorithms, in both ways (i.e., C-Metric(Algori-
thm_A,Algorithm_B), and C-Metric(Algorithm_B,Algorithm_A)).
From these tables, it can be observed that MODE-LD+SS significantly outper-
forms all other algorithms in terms of convergence. MODE-LD+SS is able to
converge closer to the true Pareto front in all MOPs, and to generate Pareto
front approximations, having fewer solutions (none in many cases) being dom-
inated by those generated by the other algorithms. Additionally, our propo-
sed MODE-LS+SS generated more solutions that dominate those generated by
the other algorithms. It is also important to note that for ZDT6, our proposed
MODE-LD+SS, was able to reach the true Pareto front in the 32 independent
runs performed.

For the case of DTLZ1 and DTLZ2, and regarding the C-Metric values pre-
sented in Tables 13 and 14, it can be observed that MODE-LD+SS is able to
converge very close to the true Pareto front as indicated by the correspond-
ing C-Metric measure. These results contrast with the Hv measure obtained by
SPEA2 for these same MOPs. The differences can be explained by the fact that
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C-Metric(A,B) NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean

NSGA-II 0.968750 0.000771 0.033167 0.000000
SPEA2 0.378115 0.895000 0.106198 0.000000

MOEA/D 0.299833 0.047767 0.883930 0.000000
MODE-LD+SS 0.589893 0.214844 0.274901 0.374333

Table 8: C-Metric(A,B) for ZDT1 using different MOEAs

C-Metric(A,B) NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean

NSGA-II 1.000000 0.000303 0.026203 0.000000
SPEA2 0.362813 0.985938 0.041712 0.004331

MOEA/D 0.450922 0.154067 0.393976 0.057031
MODE-LD+SS 0.702266 0.242832 0.110288 0.381057

Table 9: C-Metric(A,B) for ZDT2 using different MOEAs

C-Metric(A,B) NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean

NSGA-II 0.656875 0.002246 0.064717 0.000000
SPEA2 0.339297 0.389375 0.142818 0.000067

MOEA/D 0.221500 0.082778 0.389439 0.023824
MODE-LD+SS 0.377051 0.171533 0.299007 0.199554

Table 10: C-Metric(A,B) for ZDT3 using different MOEAs

C-Metric(A,B) NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean

NSGA-II 1.000000 0.301200 0.002571 0.000166
SPEA2 0.546084 1.000000 0.003022 0.000566

MOEA/D 0.977144 0.938814 0.952296 0.164757
MODE-LD+SS 0.988408 0.976602 0.689329 0.220064

Table 11: C-Metric(A,B) for ZDT4 using different MOEAs
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C-Metric(A,B) NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean

NSGA-II 0.986873 0.000000 0.001372 0.000000
SPEA2 1.000000 0.990000 0.040134 0.000000

MOEA/D 0.986999 0.615444 0.990552 0.000000
MODE-LD+SS 0.992119 0.990000 0.976816 0.000000

Table 12: C-Metric(A,B) for ZDT6 using different MOEAs

C-Metric(A,B) NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean

NSGA-II 0.655461 0.001915 0.000095 0.000000
SPEA2 0.707633 0.258360 0.012861 0.000000

MOEA/D 0.377986 0.019929 0.163130 0.0005383
MODE-LD+SS 0.611632 0.045080 0.263892 0.008116

Table 13: C-Metric(A,B) for DTLZ1 using different MOEAs

C-Metric(A,B) NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean

NSGA-II 0.354375 0.027106 0.000000 0.000000
SPEA2 0.044411 0.806858 0.000000 0.000000

MOEA/D 0.722926 0.071016 0.142447 0.005816
MODE-LD+SS 0.082272 0.078098 0.008309 0.074566

Table 14: C-Metric(A,B) for DTLZ2 using different MOEAs

C-Metric(A,B) NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean

NSGA-II 1.000000 0.000221 0.000000 0.000000
SPEA2 0.877437 0.798140 0.010756 0.001108

MOEA/D 0.418284 0.380625 0.639418 0.008286
MODE-LD+SS 0.977820 0.535140 0.370058 0.339882

Table 15: C-Metric(A,B) for DTLZ3 using different MOEAs
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C-Metric(A,B) NSGA-II SPEA2 MOEA/D MODE-LD+SS

Mean Mean Mean Mean

NSGA-II 0.361563 0.026370 0.000008 0.000000
SPEA2 0.043145 0.746696 0.000000 0.000000

MOEA/D 0.076018 0.067166 0.124613 0.009343
MODE-LD+SS 0.077891 0.077581 0.001519 0.107422

Table 16: C-Metric(A,B) for DTLZ4 using different MOEAs

SPEA2 obtained a better distribution of solutions. Thus, in this case, one algo-
rithm provided better convergence (MODE-LD+SS), while the other provided
a better spread of solutions (SPEA2) (see Figures 52 and 53). Figures 47 to
55 show the comparison of the obtained Pareto fronts by the four MOEAs and
for all the MOPs adopted in our study. From these figures we can observe that
our MODE-LD+SS approach obtains in general, for all numerical test MOPs,
Pareto-optimal solutions covering the entire true Pareto front region with a
good distribution along it.

7.2 A S S E S S M E N T O F P M O D E - L D + S S W I T H N U M E R I C A L P RO B L E M S

In this section, we present the results obtained by the proposed parallel ap-
proach pMODE-LD+SS. As a first step, the serial version of MODE-LD+SS is
compared with respect to NSGA-II, MOEA/D, and MOEA/D-DE 2. In this case,
using different parameter settings to those presented in the last section. Then,
the number of islands, value of an epoch and migration rate adopted in the par-
allel approach, are tuned by means of an empirical study, using the ZDT1 test
MOP. Finally, the results obtained with the parallel approach are presented and
compared to those of the serial version of MODE-LD+SS. These comparisons
are based on the average results from 32 independent runs executed by each
algorithm and for each MOP.

2 We have included MOEA/D-DE for comparison since this MOEA was published during the
research process of this thesis, and additional to the decomposition mechanisms as used in
its predecessor MOEA/D, it incorporates the Differential Evolution operators, similar to our
proposed MODE-LD+SS algorithm. Also, MOEA/D-DE was successfully tested in solving
complex MOPs having difficult Pareto-optimal sets [149].
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Figure 47: Pareto front approximation for ZDT1 using different MOEAs
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Figure 48: Pareto front approximation for ZDT2 using different MOEAs
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Figure 49: Pareto front approximation for ZDT3 using different MOEAs
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Figure 50: Pareto front approximation for ZDT4 using different MOEAs
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Figure 51: Pareto front approximation for ZDT6 using different MOEAs
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Figure 52: Pareto front approximation for DTLZ1 using different MOEAs
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Figure 53: Pareto front approximation for DTLZ2 using different MOEAs
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Figure 54: Pareto front approximation for DTLZ3 using different MOEAs
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Figure 55: Pareto front approximation for DTLZ4 using different MOEAs

7.2.1 Parameter settings for the MOEAs compared

The parameters used in the experiments for the different algorithms adopted
in this section are described next. The common parameters for all algorithms
comprise the population sizeN and maximum number of generations GMAX.
In this case they were set toN = 50 for all the bi-objective MOPs andN = 153

for all the MOPs having three objectives 3. The maximum number of genera-
tions was set to GMAX = 150 for all MOPs, except for ZDT4 and DTLZ3,
in which we used GMAX = 300. As for specific parameters of each al-
gorithm, the common parameters for NSGA-II, MOEA/D and MOEA/D-DE
were set to: (a).-Crossover probability pc = 1.0; (b).- mutation probability
pm = 1/NVARS (where NVARS corresponds to the number of variables

3 The reader should note that in this case we are using smaller population sizes as compared
to the ones used in the previous section, when we evaluated our proposed MODE-LD+SS.
Roughly, we are halving the population sizes in this case. The motivation for this reduction in
population size is twofold. On the one hand, we are willing to evaluate the performance of our
proposed MODE-LD+SS, using small population sizes, and on the other hand, our interest is
also in solving aerodynamic shape optimization problems having a high computational cost. In
this sense, we are interested in testing our approach in a real scenario where a reduced number
of objective functions will be allowed, to keep at a low level the computational cost.
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in each numerical MOP); (c).- distribution index for crossover ηc = 15; and
(d).- distribution index for mutation ηm = 20. For MOEA/D and MOEA/D-DE
the replacing neighborhood size was set as indicated in [267] and [149], re-
spectively. For the MODE-LD+SS algorithm, we used: F = 0.5 for all MOPs;
CR = 0.5 for all MOPs except for ZDT4, where CR = 0.3 was used; Neigh-
borhood size NB = 5 for all MOPs except for ZDT4, where we used NB = 1.

With these parameter settings, in Table 17 are presented the Hv performance
measures for the four MOEAs compared in this section, namely NSGA-II,
MOEA/D, MOEA/D-DE, and MODE-LD+SS. The reference point (zref) in ob-
jective space for computing the Hv performance measure was set to (1.05,1.05)
for all the 2-objective MOPs. In the case of the three-objective MOPs DTLZ1
to DTLZ4, the reference point was set to (5.0,5.0,5.0). This indicated refer-
ence point was chosen due to the fact that the NSGA-II presented, for some
runs, Pareto front approximations very far from the true Pareto front. As previ-
ously indicated, high values in the Hv performance measure indicate that the
solutions are closer to the true Pareto front and that they cover a wider exten-
sion of it. From the results presented in Table 17, it can be observed that our
proposed MODE-LD+SS using a reduced population size, obtains the best re-
sults in six of nine MOPs for the Hv performance measure. MOEA/D was the
algorithm that best performed in DTLZ1 and DTLZ4. However, taking a closer
look, the reader can observe that the results for these two MOPs, attained by
MODE-LD+SS, are very close to those attained by MOEA/D. Next, in Table 18
are presented the C-Metric performance measures for all the four MOEAs com-
pared in this section. The C-Metric indicated in Table 18 was computed with
respect to the true Pareto front, i.e., C-Metric(PFtrue,Algorithm). From this
table we can observe that MODE-LD+SS obtains the best results in eight of
nine MOPs when we consider the C-Metric performance measure. The results
obtained for both performance measures compared, clearly indicates that our
proposed MODE-LD+SS, in general, is able to converge faster and closer to-
wards the true Pareto front, as compared to the other MOEA algorithms, when
a reduced population size is used. Due to space limitations, we do not show fig-
ures of the obtained Pareto front approximations by the MODE-LD+SS with
these parameter settings, but the corresponding analysis also indicates that our
MODE-LD+SS approach, using a reduced population size, obtains, in general,
and for all numerical test MOPS, Pareto optimal solutions covering the entire
true Pareto front with a good spread along it.
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Test Function

Algorithm
NSGA-II MOEA/D MOEA/D-DE MODE-LD+SS

Mean Mean Mean Mean

(σ) (σ) (σ) (σ)

ZDT1 0.740382 0.716729 0.583847 0.757395
(0.003323) (0.024506) (0.076507) (0.000397)

ZDT2 0.377348 0.176615 0.082341 0.424895
(0.070194) (0.079320) (0.115367) (0.000331)

ZDT3 0.604214 0.585094 0.277813 0.613846
(0.003199) (0.023488) (0.111381) (0.000307)

ZDT4 0.073098 0.730980 0.450990 0.349325

(0.122631) (0.016966) (0.215977) (0.285549)

ZDT6 0.292164 0.375312 0.239793 0.407638
(0.020894) (0.007755) (0.084688) (0.000009)

DTLZ1 124.139600 124.969600 119.402900 124.967700

(1.113898) (0.000768) (7.771898) (0.000383)

DTLZ2 123.972600 124.397400 124.353700 124.397600
(0.124088) (0.001778) (0.027743) (0.003356)

DTLZ3 80.131930 124.338100 85.976200 124.396900
(39.091680) (0.250190) (54.287600) (0.003004)

DTLZ4 123.934300 124.400100 124.387900 124.393900

(0.125475) (0.002818) (0.003452) (0.002684)

Table 17: Comparison of Hv performance measure for different MOEAs using a re-
duced population size.

7.2.2 Parameter setting for the pMODE-LD+SS approach

For any pMOEA approach based on the island model, additional to the pa-
rameters required by its serial counterpart, in terms of population size, maxi-
mum number of generations, and crossover and mutation related parameters,
we have to define the number of islands, migration rate, and epoch period.
The choice of these parameters has a great influence in the performance of the
pMOEA and is problem dependent. For selecting a set of parameters to be used
in the present section, ZDT1 was selected to conduct an experimental study for
assessing how the parameters affected performance with respect to the serial
version. For this study, the following set of parameters was used:

• Number of Islands (NI) = 4, 6, and 8.

• Migration Rate (MR) = 0.1, 0.2, 0.3 and 0.5.

• Epoch = 10, 20, and 50 generations.



7.2 A S S E S S M E N T O F P M O D E - L D + S S W I T H N U M E R I C A L M O P S 157

Test Function

Algorithm
NSGA-II MOEA-D MOEA-D-DE MODE-LD+SS

Mean Mean Mean Mean

(σ) (σ) (σ) (σ)

ZDT1 0.994591 0.997234 1.000000 0.748125
(0.008785) (0.007463) (0.000000) (0.153569)

ZDT2 1.000000 0.208557 1.000000 0.586492

(0.000000) (0.140626) (0.000000) (0.100261)

ZDT3 0.931490 0.813861 1.000000 0.384729
(0.047844) (0.121330) (0.000000) 0.092223

ZDT4 1.000000 0.975157 1.000000 0.845625
(0.000000) (0.088624) (0.000000) 0.364496

ZDT6 0.975723 0.978242 0.989831 0.000625
(0.008476) (0.001639) (0.016529) (0.003536)

DTLZ1 0.535550 0.340389 0.807088 0.021434
(0.134412) (0.234715) (0.113710) (0.014189)

DTLZ2 0.447368 0.211798 0.678562 0.171215
(0.035370) (0.040208) (0.053395) 0.009018

DTLZ3 1.000000 0.725727 0.972366 0.160711
(0.000000) (0.179974) (0.063160) (0.007169)

DTLZ4 0.453536 0.205555 0.554462 0.156578
(0.058747) (0.036333) (0.051949) (0.008628)

Table 18: Comparison of C-Metric performance measure for different MOEAs using
a reduced population size.

All the combinations were tested. The parameters for maximum number of
generations GMAX, F, CR, and NB were set, for all the islands, to the same
values selected in the serial version previously described. However, it is impor-
tant to note that as the number of islands increases, the population size N in
each island is reduced accordingly, in order to have a global population similar
to that of the serial version of MODE-LD+SS.

Table 19 presents the results of the study regarding the C-Metric as evaluated
with respect to the true Pareto-front, i.e. C-Metric(PFtrue,Algorithm). Metric
improvement in this table is expressed as a percentage variation with respect
to the serial version values. Negative values represent a degradation in the per-
formance, which is explained by the algorithm’s reduction of its exploration
capabilities, due to the use of smaller populations, as the number of participat-
ing islands grows. From the results of this study, and regarding the C-Metric,
it was observed that high migration rates with shorter epoch periods produce
the best improvements with respect to the serial version. However, this can
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lead to higher communication costs. From the study, the final set of parameters
selected corresponds to the following:

• Number of Islands (NI) = 6.

• Migration Rate (MR) = 0.4.

• Epoch = 10 generations.

which will be used in assessing the parallel approach proposed here.

N Islands 4 6 8

MR/E 10 20 50 10 20 50 10 20 50

0.1 5.01 2.67 -6.18 1.84 6.27 -5.18 2.84 2.84 -5.68

0.2 9.19 6.18 -1.92 11.86 5.60 -2.09 4.76 10.36 -1.84

0.3 10.36 -0.58 -0.75 16.29 2.76 0.17 5.76 3.68 -0.58

0.5 17.71 10.19 3.68 22.47 16.04 1.92 24.64 16.29 2.59

Table 19: C-Metric improvement for ZDT1 study, varying migration rate, epoch and
number of islands

7.2.3 Results and discussion

Our proposed pMODE-LD+SS is based on the island pMOEA paradigm. In this
sense we can consider pMODE-LD+SS as having a given number of islands,
whose individuals (a certain proportion) will migrate to solve the MOP in a
collaborative manner. For the island paradigm and for our proposed pMODE-
LD+SS, we can consider two different parallel operating approaches. The first
one will be named pMODE-LD+SS for effectiveness improvement (pMODE-
LD+SS(A) for short). In this approach, we consider each island as being a
serial version of the MODE-LD+SS. Thus, the collaboration and exchange of
their individuals will help to solve the MOP more effectively, i.e., a better MOP
solution is expected due to the synergistic manner this approach behaves. The
second operating approach will be named pMODE-LD+SS for efficiency im-
provement (pMODE-LD+SS(B) for short). In this second operating approach,
the population of each island corresponds to a reduced one. By collaborating
and exchanging good individuals from each island, it will help to solve the
MOP more efficiently, i.e. a MOP solution is expected to be done in less time
than compared to the serial version of the MOEA. Next we present the results
for these two different operating pMODE-LD+SS approaches.
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pMODE-LD+SS for effectiveness improvement

Table 20 shows the results of the two proposed parallel operating approach-
es compared to the results obtained with the serial version of MODE-LD+SS.
From this table, it can be observed that the approach designed for effective-
ness improvement pMODE-LD+SS(A), produced better Hv values in 4 of the
9MOPs (ZDT1, ZDT3, ZDT4, and ZDT6), and at the same time improves the
C-Metric in 7 of the 9MOPs (ZDT1, ZDT4, ZDT6, DTLZ1, DTLZ2, DTLZ3,
DTLZ4). Both metrics were compared with respect to the serial version of
MODE-LD+SS. One important result to remark from this parallel operating ap-
proach, is its ability to reach the true Pareto front of ZDT4 and ZDT6 in the
32 runs performed, as indicated by the mean and standard deviations for the
C-Metric in these two MOPs.

pMODE-LD+SS for efficiency improvement

For this second operating approach, each island uses a reduced population
size of N = 10 for the 2-objective MOPs and of N = 28 for the 3-objective
MOPs. Since we used 6 islands, the global population consists of 60 individu-
als for the 2-objective MOPs, and of 168 individuals for the 3-objective MOPs.
Considering that the global population size grows, the maximum number of
generations used in pMODE-LD+SS(B) was reduced accordingly to obtain an
equivalent number of objective function evaluations as in the serial version. It
is remarked that once the islands’ populations are gathered and a global envi-
ronmental selection is performed, the maximum population size reported for
this approach is of 50 solutions for the 2-objective MOPs, and 153 for the
3-objective MOPs.

This latter condition is due to the fact that each island searches for the Pareto
extreme solutions (there are redundant solutions which are filtered out). The
parameters for F, and CR were set the same as in the serial version for all
islands. However, due to the reduction in island population size, the parameter
NB was set to 1 in all MOPs. In Table 20, the estimated average parallel speed-
up measure is reported for all the MOPs used. Also from this table, it can be
seen that the approach designed for efficiency improvement produced better
Hv values in three (DTLZ1, DTLZ2, and DTLZ4) of the nine MOPs adopted.
By taking a closer look to the results for the Hv metric for ZDT1, ZDT2, ZDT3
and ZDT6, it can be seen that pMODE-LD+SS(B) obtained values very close
to those of the serial version (MODE-LD+SS), even when each island was
using a small population size. These conditions confirm the expected behavior
for this operating approach, i.e., similar results are obtained with a reduced
computational time.
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7.3 A S S E S S M E N T O F M O D E - L D + S S I N A E RO N AU T I C A L E N G I N E E R -
I N G P RO B L E M S

In this section we present the application of MODE-LD+SS for the seven se-
lected aerodynamic shape optimization problems ASO-MOP1 to ASO-MOP7.
In this case, we also present the comparisons with respect to the results ob-
tained by the following MOEAs: MOEA/D, MOEA/D-DE, SMS-EMOA, AR-
MOGA, and εµARMOGA. All these MOEAs are considered as state-of-the-art.
The consideration of the three latter MOEAs, namely SMS-EMOA, ARMOGA,
and εµARMOGA is because they have been successfully used to solve aerody-
namic shape optimization problems similar to those we have defined as bench-
marks in this thesis. For completeness, we provide next a brief description of
the main characteristics for these three MOEAs:

• SMS-EMOA [17] is a steady-state algorithm based on two basic charac-
teristics: (1) non-dominated sorting is used as its ranking criterion and
(2) the hypervolume is applied as its selection criterion to discard that
individual, which contributes the least hypervolume to the worst-ranked
front. The basic algorithm starts with an initial population of µ individu-
als, and then a new individual is generated by means of randomized varia-
tion operators. Its authors adopted simulated binary crossover (SBX) and
polynomial-based mutation. The new individual will become a member
of the next population, if replacing another individual leads to a higher
quality of the population with respect to the hypervolume. In this way,
SMS-EMOA keeps those individuals which maximize the population’s
S-Metric value, which implies that the covered hypervolume of a popu-
lation cannot decrease as evolution progresses.

• ARMOGA [208] uses real-numbers encoding, Fonseca’s Pareto ranking [68],
fitness sharing, stochastic universal selection, Simulated Binary Crossover
(SBX), and polynomial-based mutation. ARMOGA incorporates two archiv-
ing techniques: a global archive, which stores all the best solutions ob-
tained so far, and a recent archive, which stores the best solutions of the
past previous P generations. Solutions from the second archive partici-
pate in the parent selection process. Also, a distinguishing characteristic
of ARMOGA, is that it adapts the decision variables ranges, based on the
statistics of the current nondominated solutions found so far. The range
adaptation in ARMOGA takes place at every M generations. When per-
forming this operation, a new range for decision variables is defined,
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based on the statistics of a set of design solutions. This set is formed
with solutions taken from the archives, and the current generation.

• εµARMOGA [229] called also multi-objective micro-genetic algorithm
with range adaptation, based on ε-dominance. As implied by its name,
is inspired on ARMOGA [208]. Additional to the characteristics inher-
ited from it, εµARMOGA introduces two additional mechanisms. The
first corresponds to the use of a small population size (i.e. the use of
a micro-genetic algorithm as in [131, 40]), coupled with the use of an
external file or archive for storing the nondominated solutions obtained
so far. The second mechanism corresponds to the use of the concept of
ε-dominance [145], which is a relaxed form of Pareto dominance that
has been used as an archiving strategy that allows to regulate conver-
gence. The main population is reinitialized at every certain number of
generations, based on the average and standard deviation of the decision
variables. No mutation operator is used (the reinitialization procedure is
considered to be the source of diversity in this case).

7.3.1 Parameter Settings

The parameters used in the experiments for the different algorithms adopted,
were set as follows. The common parameters for most of the algorithms com-
prise the population size N and maximum number of generations GMAX.
These were set to N = 50 for all the bi-objective MOPs and N = 105 for all
the MOPs having three objectives. We adopted GMAX = 100 for all MOPs4.
For the case of εµARMOGA the population size is set to 4, and the archive
size is set to 50 for all the bi-objective MOPs and 105 for all the MOPs having
three objectives. For εµARMOGA, the number of generations is adjusted to
have an equivalent number of objective functions evaluations for each MOP, as
compared to the other MOEAs. Most of the algorithms compared use SBX and
Polynomial-based mutation; their specific parameter settings are summarized
in Table 21.

For MOEA/D and MOEA/D-DE, a common parameter is the replacing niche
used in the decomposition approach adopted in both MOEAs. The size of this
niche was set, for both MOEAs, to 10 for the ASO-MOPs with two objectives

4 With these population sizes, the number of objective function evaluations will be 5,000 for
the ASO-MOPs with two objectives, and 10,500 for the ASO-MOPs with three objectives.
This number of objective function evaluations can be considered low for a common MOEA
practice. However, for real-world applications, this number can be considered high, due to the
computational cost associated to the calls of the CFD simulation code.
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and to 20 for the ASO-MOPs with three objectives. MOEA/D-DE uses two
additional parameters, one is the probability for selecting the mating parents
from the defined niche or from the whole population, and the second is the
maximum number of solutions to be replaced in the niche once a better solution
is found in the decomposition approach. Both parameters were used as the
values indicated in the source code, and are 0.9 and 2 respectively.

For ARMOGA, range adaptation is executed every 5 generations, while for
εµARMOGA, reinitialization occurs at every generation. In both algorithms,
the associated parameters for range adaptation, were used as those indicated in
the source code and in the configuration files provided by the authors. Finally
for the εµARMOGA, the ε-dominance factor used, was that given in the source
code. Finally, for our proposed MODE-LD+SS, the associated parameters were
the following: Scaling factor F = 0.5 for all MOPs; crossover rate CR = 0.5
for all MOPs; Neighborhood size NB = 2 for all MOPs with two objectives,
while NB = 5 for all MOPs having three objectives.

7.3.2 Results and discussion

Table 23 summarizes the results obtained for the Hv performance measure and
for all the algorithms used in this section. In these results, the reference point
(zref) in objective space for computing the Hv performance measure in each
ASO-MOP, was obtained by considering the attained region in objective space
for all the 32 independent runs of each MOEA compared. The specific val-
ues are summarized in Table 22. From this table we can observe that our pro-
posed MODE-LD+SS approach attains the best performance in five of seven
ASO-MOPs (ASO-MOP1, ASO-MOP3, ASO-MOP5, ASO-MOP6, and ASO-
MOP7). MOEA/D-DE attains the best performance in only one case (ASO-
MOP2), while SMS-EMOA attains the best performance in only one problem
(ASO-MOP4). From the above results presented, it is important to remark that
SMS-EMOA uses the hypervolume contribution in its selection process; in con-
sequence we would expect SMS-EMOA to be the best for this performance mea-
sure. Nonetheless, our proposed MODE-LD+SS is able, in most ASO-MOPs,
to perform better with respect to this performance measure. For the two ASO-
MOPs in which our approach was not the best performer, we can observe that
its Hv value is very close to that of the winner in these ASO-MOPs, and the
difference can be considered very small, on the order of 0.7% for ASO-MOP2,
and 0.12% percent for ASO-MOP4. In summary, we claim that our proposed
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MODE-LD+SS has very good convergence properties for solving this type of
aerodynamic shape MOPs.

Figures 56 to 62 show the approximated Pareto fronts obtained by all algo-
rithms used in this section, and for all the ASO-MOPs solved. Since these ASO-
MOPs correspond to real-world MOPs for which we do not know in advance
the shape and position of the true Pareto front, neither we have any knowledge
regarding their fitness landscapes, we have decided to plot for each ASO-MOP
and for each MOEA, the whole set of approximated Pareto fronts, i.e., the 32
obtained approximations. From these figures, we can observe that for most of
the ASO-MOPs, their fitness landscapes present some degree of roughness, as
indicated by the dispersion of solutions obtained by the different MOEAs. Also,
we can observe that our proposed MODE-LD+SS is the algorithm having the
lowest dispersion of solutions in almost all ASO-MOPs, confirming the good
convergence properties of our approach.

As it was previously indicated, from the parameter settings section, we are
using a reduced number of objective function evaluations, compared to the
standard MOEA practice, but we are using a high number of objective func-
tion evaluations, as compared to a real-world MOP solution scenario. In order
to better assess the convergence properties of our proposed MODE-LD+SS,
in Figures 63 and 64 we present the convergence history for the Hv perfor-
mance measure, normalized with respect to the highest value attained in each
ASO-MOP, for the different MOEAs. From these figures we can observe that
our proposed approach shows in general, very good convergence properties,
outperforming the corresponding convergence rate of the other MOEAs com-
pared. If a low number of objective function evaluations is allowed, it still ob-
tains good Hv values. For example, if we consider a budget of 1, 000 objective
function evaluations, we can expect to attain in four ASO-MOPs (ASO-MOP1
to ASO-MOP4) more than 90% of the Hv performance measure, as compared
to the results using 5000 objective function evaluations in the ASO-MOPs with
two-objectives, and those using 10, 500 objective function evaluations for the
three-objective ASO-MOPs.

One important aspect to highlight in ASO-MOP2 is the condition attained
by εµARMOGA. In this case, we can observe that on the order of 300 objec-
tive function evaluations were required for εµARMOGA to attain 95% of the
Hv performance measure, as compared to performing 5, 000 objective function
evaluations. We can conclude that for this particular ASO-MOP, the mecha-
nisms implemented in εµARMOGA are very useful.

Finally, in Tables 24 to 30 we present the C-Metric comparisons for the
Pareto front approximations obtained by MODE-LD+SS, SMS-EMOA, and
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MOEA/D-DE. Only these three algorithms were selected to be compared from
the whole set used in this section, since they are ranked from first to third (in
the order mentioned) with respect to the Hv performance measure presented
in Table 23. From these tables and regarding the C-Metric between approxi-
mations obtained by the three selected algorithms, we can observe that for all
ASO-MOPs, our proposed MODE-LD+SS approach outperforms by an ample
margin the corresponding results attained by SMS-EMOA and MOEA/D-DE.
MODE-LD+SS is able to converge closer to the true Pareto front in all MOPs,
and to generate Pareto front approximations, having very few solutions being
dominated by those generated by the other algorithms. Additionally, our pro-
posed MODE-LS+SS generated more solutions that dominate those generated
by the other algorithms.

7.4 A S S E S S M E N T O F P M O D E - L D + S S I N A E RO N AU T I C A L E N G I N E E R -
I N G P RO B L E M S

In this section, we present the results obtained by our proposed parallel ap-
proach pMODE-LD+SS when applied to solve the benchmark proposed for
aerodynamic shape optimization problems. The results obtained with it are pre-
sented and compared to those of the serial version of MODE-LD+SS. These
comparisons are based on the average results from 32 independent runs exe-
cuted by each algorithm and for each MOP.

7.4.1 Parameter settings for the pMODE-LD+SS approach

In Section 7.2, we have presented the tuning for the parameters used in our
island-based parallel approach, when it was used to solve the ZDTs and DTLZs
test problems. In this case, we will use the same parameters previously adopted
for the number of islands, migration rate, and epoch. These parameter values
are summarized next:

• Number of Islands (NI) = 6.

• Migration Rate (MR) = 0.4.

• Epoch = 10 generations.

As for specific parameters used by the pMODE-LD+SS approach, namely
population size per island N, maximum number of generations GMAX, scale
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Figure 56: Pareto front approximation for ASO-MOP1 by different MOEAs
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Figure 58: Pareto front approximation for ASO-MOP3 by different MOEAs
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Figure 59: Pareto front approximation for ASO-MOP4 by different MOEAs
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Figure 60: Pareto front approximation for ASO-MOP5 by different MOEAs
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Figure 61: Pareto front approximation for ASO-MOP6 by different MOEAs
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Figure 62: Pareto front approximation for ASO-MOP7 by different MOEAs
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Figure 63: HV convergence for different MOEAs solving ASO-MOPs
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Figure 64: HV convergence for different MOEAs solving ASO-MOPs (continued)

factor F, crossover rate CR, and neighborhood size NB, they were set as fol-
lows:

• N = 10 for each island when solving two-objective ASO-MOPs, and
N = 20 for each island when solving three objective ASO-MOPs.

• GMAX = 83 when solving two-objective ASO-MOPs, and GMAX =

87 when solving three objective ASO-MOPs.

• F = 0.5 for all ASO-MOPs.

• CR = 0.5 for all ASO-MOPs.

• NB = 2 for all ASO-MOPs.

It should be noted that with the combination of number of islands, popula-
tion size per island N, and the number of generations executed GMAX, we
are doing approximately the same number of objective function evaluations as
in the case of the serial version MODE-LD+SS. Also, it is remarked that once
the islands’ populations are gathered and a global environmental selection is
performed, the maximum population size reported for this approach is of 50
solutions for the two-objective ASO-MOPs, and 105 for the three-objective
ASO-MOPs. This latter condition is due to the fact that each island searches
for the Pareto extreme solutions (there are redundant solutions which are fil-
tered out). The above described conditions allows us to do a fair comparison
of results.
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Figure 65: Pareto front approximation for ASO-MOP1 by pMODE-LD+SS

7.4.2 Results and discussion

Different to the results in Section 7.2.3, where two operating approaches were
presented, in this case only the approach for efficiency improvement is reported.
Table 31 shows the results obtained in solving the ASO-MOPs and using our
proposed MODE-LD+SS and pMODE-LD+SS approaches. Also in this table
are reported the average execution times per run for each ASO-MOP and for
the serial version MODE-LD+SS. From this table we can observe that pMODE-
LD+SS is able to attain very close values for the Hv performance measure
in 6 of 7 ASO-MOPs, i.e., in all but ASO-MOP2. Surprisingly, for this lat-
ter ASO-MOP, pMODE-LD+SS was able to attain a higher Hv value. These
conditions confirm the expected behavior for this operating approach, i.e., sim-
ilar results are obtained with a reduced computing time. In the cases where
pMODE-LD+SS attains close values to its serial counterpart, these differences
are at best less than 1%, but not worse than 3%. With this condition and the
speed-up attained by using our proposed parallel approach, we can claim that
pMODE-LD+SS is efficient in solving the benchmark for the proposed aerody-
namic shape optimization MOPs.

Finally, Figures 65 to 71 show the approximation of the Pareto front ob-
tained by the proposed pMODE-LD+SS. Comparing these figures with the cor-
responding ones obtained by MODE-LD+SS, we can observe that they are very
similar and also, they show low variation among different runs, confirming the
good convergence properties of pMODE-LD+SS, even when smaller popula-
tions are used.
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Figure 66: Pareto front approximation for ASO-MOP2 by pMODE-LD+SS
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Figure 67: Pareto front approximation for ASO-MOP3 by pMODE-LD+SS
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Figure 68: Pareto front approximation for ASO-MOP4 by pMODE-LD+SS
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Figure 69: Pareto front approximation for ASO-MOP5 by pMODE-LD+SS
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Figure 70: Pareto front approximation for ASO-MOP6 by pMODE-LD+SS
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Figure 71: Pareto front approximation for ASO-MOP7 by pMODE-LD+SS
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Algorithm ηc Pc ηm Mut. Rate

MOEA/D 20 1.0 20 1/NVARS

MOEA/D-DE 20 1.0 20 1/NVARS

SMS-EMOA 15 1.0 20 1/NVARS

ARMOGA See note 1.0 See note 0.1

εµARMOGA 15 1.0 No mutation is used

Note: The source code of ARMOGA algorithm uses SBX and
polynomial-based mutation, but it was indicated to use a revised version. The

respective coded function was used without changing anything.

Table 21: Common parameters for MOEAs used in solving ASO-MOPs

Zref

ASO-MOP1 ( 0.0050 , 1.5000 )

ASO-MOP2 ( 0.0220 , 0.0400 )

ASO-MOP3 ( 0.0052 , 0.0085 )

ASO-MOP4 ( 0.0180 , 1.4000 , 0.0700 )

ASO-MOP5 ( 0.0054 , 0.0060 , 0.0090 )

ASO-MOP6 ( 0.0080 , 0.0054 )

ASO-MOP7 ( 0.0085 , 0.0062 , 0.0056 )

Table 22: zref for different algorithms in solving aerodynamic shape optimization
problems.
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C-M(A,B) MODE-LD+SS MOEA/D-DE SMS-EMOA

Mean Mean Mean

MODE-LD+SS 0.9015 0.7443
MOEA/D-DE 0.0139 0.1363
SMS-EMOA 0.0481 0.6682

Table 24: Comparison of the C-Metric(A,B) in ASO-MOP1
for different algorithms.

C-M(A,B) MODE-LD+SS MOEA/D-DE SMS-EMOA

Mean Mean Mean

MODE-LD+SS 0.7042 0.6034
MOEA/D-DE 0.0415 0.1966
SMS-EMOA 0.0542 0.4904

Table 25: Comparison of the C-Metric(A,B) in ASO-MOP2
for different algorithms.

C-M(A,B) MODE-LD+SS MOEA/D-DE SMS-EMOA

Mean Mean Mean

MODE-LD+SS 0.9003 0.8223
MOEA/D-DE 0.0231 0.2157
SMS-EMOA 0.0604 0.6033

Table 26: Comparison of the C-Metric(A,B) in ASO-MOP3
for different algorithms.

C-M(A,B) MODE-LD+SS MOEA/D-DE SMS-EMOA

Mean Mean Mean

MODE-LD+SS 0.2838 0.0261
MOEA/D-DE 0.0077 0.0056
SMS-EMOA 0.0499 0.2936

Table 27: Comparison of the C-Metric(A,B) in ASO-MOP4
for different algorithms.
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C-M(A,B) MODE-LD+SS MOEA/D-DE SMS-EMOA

Mean Mean Mean

MODE-LD+SS 0.6318 0.6138
MOEA/D-DE 0.0136 0.0667
SMS-EMOA 0.0570 0.5004

Table 28: Comparison of the C-Metric(A,B) in ASO-MOP5
for different algorithms.

C-M(A,B) MODE-LD+SS MOEA/D-DE SMS-EMOA

Mean Mean Mean

MODE-LD+SS 0.8994 0.8608
MOEA/D-DE 0.0278 0.1303
SMS-EMOA 0.0727 0.6989

Table 29: Comparison of the C-Metric(A,B) in ASO-MOP6
for different algorithms.

C-M(A,B) MODE-LD+SS MOEA/D-DE SMS-EMOA

Mean Mean Mean

MODE-LD+SS 0.6104 0.4430
MOEA/D-DE 0.0492 0.0943
SMS-EMOA 0.0710 0.3681

Table 30: Comparison of the C-Metric(A,B) in ASO-MOP6
for different algorithms.
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Test Problem
ALGORITHM

MODE-LD+SS pMODE-LD+SS

Mean Mean Average execution time

(σ) (σ) (hh:mm:ss) Speed-up

ASO-MOP1 5.9283e-04 5.8303e-04

(2.8857e-06) (2.7830e-06) 00:32:05 4.0020

ASO-MOP2 6.4060e-04 6.4286e-04
(7.1550e-06) (5.6052e-06) 00:41:47 3.9542

ASO-MOP3 3.9190e-06 3.8219e-06

(1.4313e-07) (2.0055e-07) 1:47:53 4.5360

ASO-MOP4 5.9361e-04 5.8820e-04

(3.1540e-06) (1.5115e-06) 2:20:28 4.9431

ASO-MOP5 1.6917e-08 1.6857e-08

(2.9378e-10) (1.1815e-10) 6:46:38 5.2604

ASO-MOP6 7.5111e-07 7.4219e-07

(1.1750e-08) (9.1472e-09) 1:25:45 4.4778

ASO-MOP7 1.4400e-09 1.4330e-09

(1.2175e-11) (1.4990e-11) 6:05:15 4.6737

Table 31: Comparison of the hypervolume performance measure (Hv) for MODE-
LD+SS and pMODE-LD+SS in solving aerodynamic shape optimization
problems.
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E VO L U T I O NA RY O P T I M I Z AT I O N

8.1 I N T RO D U C T I O N

In real-world engineering problems, there are many areas in which designers
are trying to achieve several goals or objectives simultaneously. For instance, in
the aeronautical engineering industry, given an aircraft’s mission and their re-
spective design environmental operating conditions, some common objectives
or goals to be minimized include aircraft’s weight, cost, and fuel consump-
tion. While all of these objectives are aimed to be minimized, at the same time,
aircraft’s performance and safety are goals or objectives to be kept at a max-
imum. From the above, it should be evident that engineers are continuously
aiming to produce good trade-offs and producing designs that satisfy as many
requirements as possible, while industry, commercial, and ecological standards
simultaneously add tighter constraints.

Multi-Objective Evolutionary Algorithms (MOEAs) have become a popular
search engine for solving multi-objective optimization problems in aeronau-
tical engineering [10, 41]. However, MOEAs normally require a significant
number of objective function evaluations in order to achieve a reasonably good
approximation of the Pareto front, even when dealing with problems of low
dimensionality. This is a major concern when attempting to use MOEAs for
real-world applications, like the ones we are interested in solving as part of
this thesis, since in many of them, we can only afford a fairly limited number
of fitness function evaluations.

In spite of these concerns, relatively few efforts have been reported in the
literature to reduce the computational cost of MOEAs, and several of them
only focus on algorithmic complexity (see for example [103]), in which little
else can be done because of the theoretical bounds related to nondominance
checking [138].

It has been until relatively recently, that researchers have developed tech-
niques to achieve a reduction of fitness function evaluations by exploiting
knowledge acquired during the search [126]. Knowledge of past evaluations
can also be used to build an empirical model that approximates the fitness
function to optimize. This approximation can then be used to predict promis-

183



184 M E TA M O D E L - A S S I S T E D M O E A S

ing new solutions at a smaller evaluation cost than that of the original prob-
lem [126, 109]. Current functional approximation models include Polynomi-
als (response surface methodologies [195, 74]), neural networks (e.g., multi-
layer perceptrons (MLPs) [87, 92, 187]), radial-basis function (RBF) networks
[175, 243, 259], support vector machines (SVMs) [217, 18], Gaussian pro-
cesses [244, 28], and Kriging [60, 196] models. Other authors have adopted
fitness inheritance [200] or cultural algorithms [142] for the same purposes.

In this chapter we propose a surrogate-based approach, which is designed
to be used in the context of multi-objective evolutionary optimization. The
proposed approach is evaluated by solving different aerodynamic shape multi-
objective optimization problems. Before presenting the proposed approach, we
provide a general overview of surrogate modeling.

8.2 G E N E R A L OV E RV I E W O F S U R RO G AT E M O D E L I N G

The use of MOEAs to solve multi-objective optimization problems usually con-
siders a large population size and a large number of generations. These two
conditions make MOEAs an unaffordable choice (computationally speaking)
in certain applications, even when parallelism is adopted. In general, MOEAs
can be unaffordable for an application when:

• The evaluation of the fitness functions is computationally expensive (i.e.,
it takes from minutes to hours, or even days to weeks as indicated on
some aeronautical engineering applications surveyed in Chapter 4).

• The fitness functions cannot be defined in an algebraic form (e.g., when
the fitness functions are generated by a simulator).

• The total number of evaluations of the fitness functions is limited by
financial constraints (i.e., there is a financial cost involved in computing
the fitness functions).

Jin et al. [109] presented a taxonomy of approaches which incorporate knowl-
edge into EAs (see Figure 72). From this taxonomy, we can distinguish three
main types of strategies or approaches to deal with expensive fitness functions:

problem approximation: This approach tries to replace the original state-
ment of the problem by one which is approximately the same as the
original problem but which is easier to solve. To save the cost of the
experiments, numerical simulations instead of physical experiments are
used to pseudo-evaluate the performance of a design.
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Knowledge 

Incorporation

Functional

 Approximation

(meta-models)

Fitness Inheritance

Clusters

Problem

 Approximation

Evolutionary

 Approximation

Simulations

Response Surface Methods

Gaussian Processes (Kriging)

Radial Basis Functions

Neural Networks

Support Vector Machines

Figure 72: A taxonomy of approaches for incorporating knowledge into evolutionary
algorithms

functional approximation: In this case, a new expression is constructed
for the objective function based on previous data obtained from the real
objective functions. The models obtained from the available data are of-
ten known as meta-models or surrogates.

evolutionary approximation: This approximation is specific for EAs
and tries to save function evaluations by estimating an individual’s fitness
from other similar individuals. Two popular subclasses in this category
are fitness inheritance and clustering.

In many practical engineering problems, we have black-box objective func-
tions whose algebraic definitions are not known. In order to construct an ap-
proximation function, it is required to have a set of sample points that help
us to build a meta-model of the problem. The objective of such meta-model
is to reduce the total number of evaluations performed on the real objective
functions, while maintaining a reasonably good quality of the results obtained.
Thus, such meta-model is used to predict promising new solutions at a smaller
evaluation cost than that of the original problem.

The accuracy of the surrogate model relies on the number of samples pro-
vided in the search space, as well as on the selection of the appropriate model
to represent the objective functions. There exists a variety of techniques for
constructing surrogate models (see for example [247]). Comparisons of sev-
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eral surrogate modeling techniques have been presented by Giunta and Watson
[73] and by Jin et al. [108].

In this thesis we are interested in solving multi-objective aeronautical prob-
lems. In this context, commonly used surrogate-based approaches include: (a).-
Response surface methods based on polynomial approximation [150, 151, 152,
241, 185], (b).- Gaussian process or Kriging [46, 224, 106, 253, 236, 237, 34,
36, 35, 137], (c).- Radial basis functions (RBFs) [37, 43, 93], and (d).- Artifi-
cial Neural Networks (ANNs) [193, 8, 3]. Next, we present a brief description
of these approximation approaches.

8.2.1 Response surface methods (RSM) based on polynomials

The response surface methodology comprises three main components: (1) re-
gression surface fitting, in order to obtain approximate responses, (2) design
of experiments in order to obtain minimum variances of the responses and (3)
optimizations using the approximated responses.

An advantage of this technique is that the fitness of the approximated re-
sponse surfaces can be evaluated using powerful statistical tools. Additionally,
the minimum variances of the response surfaces can be obtained using design
of experiments with a small number of experiments.

For most response surfaces, the functions adopted for the approximations
are polynomials because of their simplicity, although other types of functions
are, of course, possible. For the cases of quadratic polynomials, the response
surface is described as follows:

ŷ = (β0) +

n∑
i=1

(βi · xi) +
n∑

i,j=1,i6j

(βi,j · xi · xj) (49)

where n is the number of variables, and β0 and βi are the coefficients to
be calculated. To estimate the unknown coefficients of the polynomial model,
both the least squares method (LSM) and the gradient method can be used, but
either of them requires at least the same number of samples of the real objective
function than the βi coefficients in order to obtain good results.

8.2.2 Gaussian process or Kriging

An alternative approach for constructing surrogate models is to use a Gaussian
process model (also known as Kriging), which is also referred to as Design and
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Analysis of Computer Experiments (DACE) model [206] and Gaussian process
regression [258]. This approach builds probability models through sample data
and estimates the function values at every untested point with a Gaussian dis-
tribution.

In Kriging, the meta-model prediction is formed by adding up two different
models as follows:

y(−→x ) = a(−→x ) + b(−→x ) (50)

where a(−→x ) represents the “average” long-term range behavior and the ex-
pected value of the true function. This function can be modeled in various
ways, such as with polynomials or with trigonometric series such as:

a(−→x ) = a0 +
L∑
i=1

R∑
j=1

aij(xi)
j (51)

where R is the polynomial order with L dimensions and b(−→x ) stands for a
local deviation term. b(−→x ) is a Gaussian random function with zero mean
and non-zero covariance that represents a localized deviation from the global
model. This function represents a short-distance influence of every data point
over the global model. The general formulation for b(−→x ) is a weighted sum
ofN functions, Kn(~x) that represent the covariance functions between the nth

data point and any point ~x:

b(−→x ) =
N∑
n=1

bnK(h(x, xn)) and

h(x, xn) =

√
L∑
i=1

(
xi−xi,n

xmaxi −xmini

2
)

(52)

where xmini and xmaxi are the lower an upper bounds of the search space and
xi,n denotes the i− th component of the data point xn. However, the shape
of K(h) has a strong influence on the resulting aspect of the statistical model.
That is the reason why it is said that Kriging is used as an estimator or an
interpolator.
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8.2.3 Radial basis functions

Radial Basis Functions (RBFs) were first introduced by R. Hardy in 1971 [80].
Let’s suppose we have certain points (called centers) −→x 1, . . . ,−→x n ∈ Rd. The
linear combination of the function ϕ centered at the points −→x is given by:

ŷ : Rd 7→ R : −→x 7→
n∑
i=1

ωiϕ(
−→x −−→xi ) =

n∑
i=1

ωiϕ(‖−→x −−→xi‖) (53)

where ‖−→x −−→xi‖ is the Euclidean distance between the points −→x and −→x i.
So, ϕ becomes a function which is in the finite dimensional space spanned by
the basis functions:

ϕi :
−→x 7→ ϕ(‖−→x −−→xi‖)

Now, let’s suppose that we already know the values of a certain function
H : Rd 7→ R at a set of fixed locations −→xi , . . . ,−→xn. These values are named
ŷj = H(−→xj ), so we try to use the −→xj as centers in equation (53). If we want to
force the function f to take the values fj at the different points−→xj , then we have
to put some conditions on theωi. This implies the following:

∀j ∈ {1, . . . ,n} ŷj = ŷ(
−→xj ) =

n∑
i=1

(
ωi ·ϕ(‖−→xj −−→xi‖)

)
In these equations, only theωi are unknown, and the equations are linear in

their unknowns. Therefore, we can write these equations in matrix form:


ϕ(0) ϕ(‖x1 − x2‖) . . . ϕ(‖x1 − xn‖)

ϕ(‖x2 − x1‖) ϕ(0) . . . ϕ(‖x2 − xn‖)
...

...
...

ϕ(‖xn − x1‖) ϕ(‖xn − x2‖) . . . ϕ(0)

 ·

ω1

ω2
...

ωn

 =


y1

y2
...

yn

 (54)

Typical choices for the basis function ϕ(~x) include linear splines, cubic
splines, multiquadratics, inverse multiquadratics, thin-plate splines and Gaus-
sian functions as shown in Table 32.
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Type of Radial Function
LS linear splines r

CS cubic splines r3

MQS multiquadratics
√
r2 + σ2

IMQS inverse multiquadratics 1√
r2+σ2

TPS thin plate splines r2 ln(r)
GA Gaussian e−r

2/(2σ2)

Table 32: Radial basis function kernels

8.2.4 Artificial neural networks (ANN)

An ANN basically builds a map between a set of inputs and the correspond-
ing outputs, and are good to deal with nonlinear regression analysis with noisy
signals [20]. A multilayer feedforward neural network consists of an array of
input nodes connected to an array of output nodes through successive inter-
mediate layers. Each connection between nodes has a weight, which initially
has a random value, that is adjusted during a training process. The output of
each node of a specific layer is a function of the sum on the weighted signals
coming from the previous layer. The crucial points in the construction of an
ANN are the selection of inputs and outputs, the architecture of the ANN, that
is, the number of layers and the number of nodes in each layer, and finally, the
training algorithm.

The multi-layer perceptron (MLP) is a multilayered feedforward network
that has been widely used in function approximation problems, because it has
been found to provide compact representations of mappings in a variety of real-
world problems. An MLP is composed of neurons and the output (y) of each
neuron is thus:

y = φ

(
n∑
i=1

wi · ai + b

)

where ai are the inputs of the neuron, and wi is the weight associated with
the ith input. The nonlinear function φ is called the activation function as it
determines the activation level of the neuron.
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W W W

W = hidden layer

Y = output layer

Y Y Y Y

X X

X = input layer

Figure 73: A graphical representation of an MLP network with one hidden layer

In Figure 73, we show an MLP network with one layer of linear output neu-
rons and one layer of nonlinear neurons between the input and output neurons.
The middle layers are usually called hidden layers.

To learn a mapping Rn → Rm by an MLP, its architecture should be the
following: it should have n input nodes and m output nodes with a single or
multiple hidden layer(s). The number of nodes in each hidden layer is generally
a design decision.

8.3 M E TA M O D E L A S S I S T E D M U LT I - O B J E C T I V E E VO L U T I O N A RY

O P T I M I Z AT I O N I N A E RO N AU T I C A L E N G I N E E R I N G

In this section, we present some selected research work in which an aeronau-
tical/aerospace multi-objective engineering optimization problem was solved
using a MOEA coupled to a technique for reducing the computational cost in-
volved. In this type of engineering problems, designers commonly encounter:
High CPU time demand, high nonlinearities and, some times, also high di-
mensionality. All of these features are also common in other engineering opti-
mization problems, and we consider them representative of the main sources
of difficulty in engineering optimization in general. Among the problems iden-
tified in aeronautical/aerospace engineering, having costly evaluations are the
following:

• Aerodynamic Shape Optimization: This type of optimization problem
ranges from 2D to complex 3D shapes. Typical optimization applica-
tions for 2D problems comprise wing and turbine airfoil shape optimiza-
tion as well as inlet/nozzle design optimization, whereas for 3D prob-
lems, turbine blade, wing shape and wing-body configuration design op-
timizations are typical example applications.
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• Structural Optimization: The aeronautical/aerospace design philoso-
phy focuses on the design of structures with minimum weight that are
strong enough to withstand certain design loads. These two objectives
are conflicting in nature and, therefore, the aim of structural optimiza-
tion is to find the best possible compromise between them. Typical appli-
cations for this type of problems comprise structural shape and topology
optimization, robust structural design and structural weight optimization.

• Multidisciplinary Design Optimization: aeronautical/aerospace design
has a multidisciplinary nature, since in many practical design applica-
tions, two or more disciplines are involved, each one with specific per-
formances to accomplish. Typical applications for this type of problems
are the aeroelastic applications in which aerodynamics and structural en-
gineering are the interacting disciplines.

For all the optimization problems indicated above, the objective function
evaluations are routinarily done by using complex computational simulations
such as CFD (Computational Fluid Dynamics) in the case of aerodynamic prob-
lems, CAA (Computational Aero-Acoustics) for aero-acoustic problems, CSM
(Computational Structural Mechanics, by means of Finite Element Method
software) for structural optimization problems, or a combination of them in
the case of multidisciplinary design optimization problems. Because of their
nature, any of these computational simulations have a high computational cost
(since they solve, in an iterative manner, the set of partial differential equation
governing the physics of the problem) and evaluating the objective functions
for the kind of problems indicated above, can take from minutes to hours for a
single candidate solution, depending on the fidelity of the simulation.

Given the high computational cost required for the computer simulations
and the population based nature of MOEAs, the use of hybrid methods or
meta-models is a natural choice in order to reduce the computational cost of
the design optimization process, as indicated by some representative research
works that will be described next. It is important to recall to the reader that
from the universe of aeronautical/aerospace applications indicated above, our
main interest is in solving aerodynamic shape optimization problems like the
ones described in Chapter 6 where we defined a set of ASO-MOPs. Thus, we
will limit our discussion to the use of surrogate models in multi-objective ASO
problems, since that is the scope of this research work.
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8.3.1 Multi-objective aerodynamic shape optimization

In aeronautical systems design as well as in the design of propulsion system
components, such as turbine engines, aerodynamics plays a key role. Thus,
aerodynamic shape optimization (ASO) is a crucial task, which has been ex-
tensively studied and developed. By its nature, ASO is a MOP. With the cur-
rent state-of-the-art in computing power and the recent advances in CFD, this
discipline has become an integral part of the ASO process. CFD has been em-
ployed to cut aerodynamic design cost and time scales by reducing the number
of required experiments. This discipline has recently benefited from the use of
MOEAs, which have gained an increasing popularity in the last few years [10].
However, MOEA application to ASO problems still remains as a formidable
challenge because of the following reasons:

1. The flow field for some ASO applications, can be extremely complex.
Therefore, complex CFD Navier-Stokes computations (which are very
expensive, computationally speaking) are required.

2. The performance of aerodynamic shapes such as wing’s airfoils or tur-
bine airfoils blades, is very sensitive to the shape itself. Thus, an airfoil
must be modeled with a large number of decision variables. In addition,
the objective function landscape of an ASO problem is often multimodal
and nonlinear because the flow field is governed by a system of nonlinear
partial differential equations.

3. ASO problems are usually subject to several constraints and in some
cases, such constraints can be evaluated only after performing a CFD
simulation, turning it into a very expensive process (computationally
speaking). In cases where restrictions are geometrical ones, most re-
searches decide to continuously generate new solutions until a valid geo-
metric design is generated. However in other cases, constraints can only
be evaluated, after the CFD simulation is done. This latter condition can
render the constraint evaluation, also computationally intensive.

4. MOEAs require a considerable number of fitness function calls to the
CFD simulation code in order to conduct an appropriate search. This
may turn them impractical if the objective functions are too costly.

Considering that both, multi-objective optimization using evolutionary al-
gorithms, and CFD technology are mature areas, the challenges listed above
can be considered as technical hurdles. To tackle them, there is an evident
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need to have mechanisms that allow the solution of computationally expen-
sive problems in reasonably short periods of time, mainly by reducing the re-
quired number of objective function evaluations. A common approach is the
use of parallel processing techniques, which, however, may not be sufficient in
some cases. Examples of these conditions are presented by Benini [15], who
reported computational times of 2000 hrs. in the multi-objective re-design of
a transonic turbine rotor blade, using a population with 20 design candidates,
and 100 generations of evolution time, in a four-processors workstation. An-
other alternative that has been widely adopted in the engineering optimization
literature is the use of surrogates (also called metamodels), which use (com-
putationally cheap) approximate models of the problem which are periodically
adjusted (using real objective function evaluations).

8.3.2 Guidelines for design/using surrogate modeling approaches

We are interested in the use of surrogate models (metamodels) [24, 114, 206]
coupled to MOEAs for solving ASO MOPs. In this context, surrogate mod-
els [24] replace direct calls to any CFD simulation code. Figure 74 shows the
general flow in any surrogate-based optimization approach.

When designing and/or using a surrogate modeling approach several issues
need to be addressed [71]. Among them, we describe next four major issues to
be aware of:

1. Model to use: The first issue is to select which mathematical model will
be used for the surrogate. Several options are available: RSM based on
low-order polynomial functions, Gaussian processes or Kriging, RBFs,
ANNs, and SVMs, among others [109]. The interested reader is referred
to Jin [109] for a comprehensive review of these and other approximation
techniques, and their use in the context of EAs.

2. Global/local surrogate model: This choice encompasses a multi-objec-
tive decision problem. A global approximation model, associated with a
reduced accuracy can be designed with a better ability to reflect general
tendencies in the fitness landscape, allowing the designer to perform an
explorative design search in the whole design space in an efficient and
rapid manner. When a local surrogate model is adopted, the accuracy of
the approximation can be increased with a better ability to capture local
tendencies in the fitness landscape, but its region of validity is limited to
a predefined neighborhood in the design space, and the designers are able
to explore only small regions of it. This latter condition, in some cases,



194 M E TA M O D E L - A S S I S T E D M O E A S

P
H

A
S

E
 A

G
E

O
M

E
T

R
Y

P
A

R
A

M
E

T
E

R
IZ

A
T

IO
N

S
A

M
P

L
IN

G
 P

L
A

N

P
H

A
S

E
 B

C
F

D

C
F

D

C
F

D

C
F

D

C
F

D

IN
F

IL
L

IN
G

 C
R

IT
E

R
IA

N
E

W
 D

E
S

IG
N

(S
)

D
E

S
IG

N
 D

B

C
F

D
 B

U
D

G
E

T
 E

X
H

A
U

S
T

E
D

O
R

S
T

O
P

 C
R

IT
E

R
IA

R
E

P
O

R
T

P
A

R
E

T
O

 A
P

P
R

O
X

IM
A

T
IO

N

S
U

R
R

O
G

A
T

E
 M

O
D

E
L

     C
O

N
S

T
R

U
C

T
IO

N
O

P
T

IM
IZ

E
 F

O
R

 M
U

L
T

IO
B

JE
C

T
IV

E
 

D
E

S
IG

N
 U

S
IN

G
 T

H
E

 S
U

R
R

O
G

A
T

E

Figure
74:Surrogate-based

optim
ization

fram
ew

ork



8.3 M E TA M O D E L A S S I S T E D M O E A S I N A E RO N AU T I C A L E N G I N E E R I N G 195

might also hinder the ability of any optimization method in looking for
new and better designs.

3. Sample size and distribution for initial surrogate training: Indepen-
dently of the designer’s choice upon a local or a global surrogate model,
an issue is that the metamodel must first be trained using a number of
initial simulations, whose evaluation is costly (since the high cost CFD
simulation code will be used). These initial points are defined by a design
of experiments (DoE) technique [206], and must be kept to a minimum;
otherwise, the limited budget of calls to the CFD simulation code can be
exhausted only on the surrogate model initial training. Since, generally,
there is no prior knowledge of the shape of the fitness landscape, either
globally or locally, the same amount of computing effort is normally
applied via the evenly distribution of the initial simulations throughout
the design space region. Several initial point distributions have been pro-
posed. A relatively common approach is to use Latin Hypercube Sam-
pling (LHS) [206].

4. Infilling criterion: Once we have found answers to the previous issues,
we have arrived to a surrogate model on which we can perform an ef-
ficient multi-objective optimization, with a reduced computational cost
as compared to the use of the CFD simulation cost. The outcome of this
latter process will be a set of promising candidates to evaluate for find-
ing the trade-off among the competing objectives defined in the original
ASO problem. At this point, the designer/user will be required to de-
cide which (surrogate-obtained) optimal designs will be evaluated with
the real objective functions. These evaluations will be used to adjust
the model (aiming to reduce its approximation error). Clearly, these so-
called infill points, must be carefully selected (using a good infilling cri-
terion). A judicious selection of the aforementioned infill points is called
an infilling criteria, and require some additional information to make the
decision on. The reader must keep in mind that any surrogate model has
inherently an approximation error, which depends on their tuning param-
eters and on the training process used [251]. This will be of course the
primary information to look for. To define an infilling criterion is not
an easy task, since we aim not only at reducing the approximation errors,
but also at exploring as many different regions of the search space as pos-
sible. Thus, accuracy and diversity need somehow to be balanced within
our infilling criterion (this can be considered a multi-objective decision
problem presented to the designer). For example, regions of design space
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with lower approximation errors allow designers an exploitation of the
surrogate model. It must be clearly sound that exploitation of any surro-
gate model must be preceded of its accuracy improvement. This latter
condition calls for evaluating solutions when the surrogate model has
high approximation errors or in regions of the design space which have
been poorly explored, i.e., an exploration of the surrogate model needs
to be performed. But since we are interested in solving MOPs, the explo-
ration/exploitation processes must also consider the diversity of solutions
along the approximation of the Pareto Front, which can only be assessed,
once the costly CFD simulations are performed. With all these condi-
tions, we clearly see that a general rule in using any surrogate modeling
approach, is to judiciously select a good infilling criterion that balances
the exploration/exploitation of the surrogate model to perform the multi-
objective optimization with a limited budget on the calls to the CFD
simulation code.

The above list of issues is by far exhaustive, since many other practical im-
plications can be devised and in some cases are problem dependent. However,
it might be clear that in summary, any attempt in designing and/or using sur-
rogate modeling for ASO problems must try to tackle the above issues, and to
leverage their effects in a holistic manner.

8.3.3 Surrogate modeling in ASO problems

Next, we present a short review of some representative research work on the
use of surrogate modeling for solving ASO problems. The way in which the
issues indicated before are addressed in each paper is emphasized in our discus-
sion. We identify how the researchers have solved the above mentioned issues.

Mathematical model used:

From the different mathematical models available, RSM based on low or-
der polynomials are probably the most popular choice in the literature. For
example, Lian and Liou [151] presented the use of MOGA [68] coupled to a
second order polynomial based RSM, for solving the bi-objective ASO of a
turbine blade. This is probably a natural extension of methods that have been
found to be effective for the single-objective case. The main advantage of us-
ing polynomial based RSM is probably its generalization abilities. However,
its training cost is proportional to the number of sampling points, and a high
number of them is required for getting a good accuracy of the model. More
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recently, RSM based on low order polynomials have become less common,
probably due to their limitations for accurately representing fitness landscapes
which are very rough and with high nonlinearities. For such cases, some re-
searchers have relied on more elaborated surrogate models as in Karakasis et
al. [116], who presented the multi-objective optimization of a turbine engine
compressor blade using RBF surrogate models. RBFs are very powerful func-
tions to represent complex fitness landscapes, and for some kernel functions,
there exist some tuning parameters to control the accuracy of the approxima-
tion model. Emmerich et al. [62] and Keane [117] presented the application
of a Kriging-based metamodel for multi-objective airfoil shape optimization in
transonic flow conditions. Kriging has a strong mathematical basis, and is prob-
ably one of the most powerful interpolation methods currently available. Also,
kriging is able to provide an estimate of its associated accuracy, and it allows
the model to be tuned for an improved accuracy. However, its cost increases as
the dimensionality and the number of training points in the problem increase.

Globality/Locality of the surrogate model:

Concerning the globality/locality of the model, the RSM presented by Lian
and Liou [151] corresponds to a global one, while the model presented by
Karakasis et al. [116] corresponds to multiple local models. In this case, the
database containing the history of designs evaluated with the CFD tool, is sub-
divided into clusters, using a self-organizing map technique. This sort of tech-
nique aims at training local RBF surrogate models with small subpopulations,
but also guaranteeing that the whole design space is covered by allowing the
overlapping of the local RBF models. In the work of Emmerich et al. [62], the
model is also local, i.e., local kriging models in the neighborhood of the so-
lution are evaluated. In the work of Keane [117], the global kriging model is
adopted.

Sampling and distribution for initial surrogate training:

Regarding the initial sampling technique, most of the research works that we
reviewed use a DoE technique, based on either a particular LHS approach [151]
(Improved Hypercube Sampling (IHS) algorithm [12]), or the LPτ technique
[117]. The size of the initial population is mainly a choice based both on the
dimensionality of the problem, as well as on the number of CFD evaluations
available.

Infilling criteria:

Finally, regarding the infilling criterion, we identified the following options.
Lian and Liou [151], do not adopt an infilling criterion. In this case, the trained
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model, which comprised 1,024 design solutions, is used to obtain the approxi-
mation of the Pareto front. From this set, some candidate solutions are selected
to be evaluated with the CFD simulation code. This is probably the simplest
possible technique, but designers must rely on very accurate models in this case.
In the works of Karakasis et al. [116], and Emmerich et al. [62], the infilling cri-
terion corresponds to a prescreening technique. In this technique, the offspring
are evaluated with the local models and with this evaluation they are either
ranked based on Pareto dominance [116] or their Hypervolume contribution is
estimated [62]. In both cases, the most promising individuals are selected to
be evaluated with the CFD simulation code. One important aspect of the work
of Emmerich et al. [62] is that the evaluation of the hypervolume contribution
of each design includes the uncertainty in the objective function evaluation, as
provided by the kriging model used. Finally, in the work of Keane [117], the
infilling criterion corresponds to a multi-objective extension of a commonly
used technique for single-objective kriging models. This approach consists in
adopting a metric defined in terms of the probability of improvement, and on
the expected improvement which can be computed from the estimated accuracy
of interpolation given by the model. Again, this technique is, by far, the most
elegant and the most sound from the mathematical point of view. However as
previously indicated it suffers from a high computational cost for its evalua-
tion, specially when the dimensionality in the problem is very high and/or the
number of training points is also high.

8.4 O U R P RO P O S E D S U R RO G AT E M O D E L I N G A P P RO AC H

In this section we present a surrogate-based multiobjective evolutionary ap-
proach to optimize airfoil aerodynamic designs. Our approach makes use of
multiple surrogate models which operate in parallel, aiming to combine the
features of different approximation models in order to produce the combina-
tion that reduces, as much as possible, the computational cost of the MOEA
being used. The proposed approach is tested on a set of five multiobjective
ASO problems, defined from similar ones in the specialized literature. The ap-
plication problems illustrate the ability of the proposed approach to reduce in a
substantial manner, the computational cost in terms of the number of objective
function evaluations performed.

Our proposed surrogate-based multiobjective evolutionary approach has the
following features:
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(a).- Model: When a single surrogate is needed, it is common practice to train
several surrogate models and pick one based on their accuracy or their
cross-validation error [78]. Another option is to combine different sur-
rogate models into a single one by weighting their contribution [250].
In our case, and inspired by the notion of “blessing and curse of uncer-
tainty” in approximation models [269], we propose to use not only one
surrogate model, but a set of them. So, the idea is to train, in parallel, N
surrogate models (SM1,SM2,...SMN). Thus,N new solutions will be se-
lected for updating the database and to update the set of surrogate models
itself. The motivation behind this choice is also that, by using different
models, which are trained with the same data points, we can inherently
balance the exploration/exploitation required in any surrogate-based opti-
mization technique. Solutions selected from a surrogate model with high
accuracy will emphasize exploitation, while solutions selected from a
surrogate with low accuracy will emphasize exploration. Towards the
end of the evolutionary process, as more data points are available to train
the surrogate, it is expected that all surrogate models will have a high
accuracy and will, therefore, contribute more to the exploitation. Also,
by performing the search in parallel, we can reduce the computational
cost associated with the MOEA being used.

In our approach, the surrogate models can be any combination of the
options previously mentioned. Alternatively, it is also possible to use a
single surrogate model but with different tuning parameters which will
be tested in parallel. In the examples that we will present, we use a set of
RBF surrogate models each one with a different kernel function.

(b).- Globality/locality: In our proposed approach we decided to adopt a
global model, but this globality is defined in terms of the training points
in the database. Thus, the models are trained in the design space im-
plicitly defined by the database points. We propose to define an initial
number of training points NTPinit, and a maximum allowable number
of training points to hold in the databaseNTPmax. Once this upper limit
is reached, we still allow the insertion of new points, but the database
is pruned until reaching again the maximum allowable number of solu-
tions. The pruning technique adopted here is based on Pareto ranking
(i.e., individuals in the database with the highest Pareto ranks, which are
the worst in terms of Pareto optimality, are removed, until reaching the
upper limit allowed in the database). The motivation for defining a max-
imum number of points to be kept in the database, is to reduce the com-
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putational cost associated to the training process, and to adapt the model
in the neighborhood of the Pareto front approximation, as the evolution
progresses.

(c).- Initial sampling: In the experiments that we present here, we adopted a
sampling procedure based on the Halton distribution of points. Regard-
ing the initial database size NTPinit, this will depend on the budget of
CFD evaluations available and on the number of dimensions of the prob-
lem. We will provide guidelines for this, later on.

(d).- Infilling criterion: In our approach, we adoptN parallel surrogate mod-
els, each of which is searched in parallel for Pareto solutions using a
MOEA; and we extract one solution from each of them. Therefore, N
new solutions will be generated at each design cycle, which will also be
evaluated in parallel. For performing this selection, we first define a set of
weight vectors [λ1, λ2, . . . , λNP], where NP is the population size used
in the MOEA. This set can be ordered according to the weight vector
components λji to reflect an order in the tradeoffs among the objectives.
Next, and from each surrogate model, we select a (surrogate-based) so-
lution that minimizes a scalar function for a selected weight vector. For
that sake, we adopt the Tchebycheff scalarization function given by:

g(~x|λ, z∗) = max
16i6k

{λ
j
i|fi(x) − z

∗
i |} (55)

In the above equation, λj, j = 1, . . . ,NP represents the set of weight vec-
tors used to distribute the solutions along the Pareto front. z∗ corresponds
to a reference point, defined in objective space and determined with the
minimum objective values of the population used in the MOEA. In or-
der to cover the whole Pareto front, each surrogate model must choose a
different weight vector from the set. Additionally, in each design cycle,
a different weight vector must be selected. For doing this, we perform,
in each surrogate model, a sweeping in the set of weight vectors, and
start from a different weight vector. This process is illustrated in Fig-
ure 75. The indicated sweeping is done in a cyclic manner, i.e., once the
last weight vector is selected, the next one is picked from the beginning.
The aim of this technique is to guarantee the coverage of all regions of
the Pareto front. Evidently, once the N solutions are selected, they are
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evaluated with the CFD code and added to the database, and the approx-
imation of the Pareto front is updated.

Surrogate Model 1

Z*

Z*
Z*

Z*

Surrogate Model 2

Surrogate Model N

Infill Criteria

Figure 75: Infill criteria adopted by our proposed approach

8.5 E VA L UAT I O N O F T H E P RO P O S E D A P P RO AC H

In this section we present the evaluation of our proposed surrogate modeling
approach presented in the previous section. Since our main interest is in its ap-
plication to solve aerodynamic shape optimization problems, we report here its
application to five of seven ASO-MOPs defined in Chapter 6. The correspond-
ing ASO-MOPs used for validating our proposed surrogate modeling approach
are: ASO-MOP1 to ASO-MOP5. We use them to test the performance of the
present surrogate approach when dealing with this type of real-world applica-
tions. Next, and for prompt reference, we summarize the experimental setup
adopted.
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8.5.1 Experimental setup

From the five ASO-MOPs selected, three are bi-objective, and the other two
have three objectives each. We recall that we are interested in designing airfoil
shapes (AirfGeom), with optimal values in their aerodynamics forces and
moments, and for different operating conditions. In airfoil design and analysis,
it is common to define these forces and moments as scalar coefficients (see
Section 6.3.1). It follows that for an airfoil shape (AirfGeom) at a given flow
incidence angle (α), the lift (Cl), drag (Cd), and pitching moment (Cm) are a
function of:

[Cl,Cd,Cm]AirfGeom = f(α,Re,M) (56)

where the Reynolds number (Re) is the dimensionless ratio of the inertial
forces to viscous forces and quantifies their respective relevance for a given
operating condition. The Mach number (M) is a measure of the air velocity
against the speed of sound. The CFD solver adopted in this benchmark corre-
sponds to XFOIL [56]. These coefficients, as well as their ratio in some cases,
have different effects on aircraft performance. Thus, for the benchmark we de-
fined the following ASO MOPs, aiming at presenting different Pareto front
geometries, as well as different fitness landscapes.

ASO-MOP1:

min(Cd) @ α = 0.0o, Re = 4.0× 106,M = 0.2

min(2.0−Cl) @ same flow conditions.

ASO-MOP2:

min(Cd/Cl) @ α = 4.0o, Re = 2.0× 106,M = 0.1

min(C2m) @ same flow conditions.

ASO-MOP3:

min(Cd/Cl) @ α = 1.0o, Re = 3.0× 106,M = 0.3

min(C2d/C
3
l ) @ α = 5.0o, Re = 1.5× 106,M = 0.15
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ASO-MOP4:

min(Cd) @ α = 4.0o, Re = 3.0× 106,M = 0.3

min(2.0−Cl) @ same flow conditions.

min(C2m) @ same flow conditions.

ASO-MOP5:

min(Cd/Cl) @ α = 1.0o, Re = 4.0× 106,M = 0.3

min(C2d/C
3
l ) @ α = 3.0o, Re = 3.0× 106,M = 0.3

min(C2d/C
3
l ) @ α = 5.0o, Re = 2.0× 106,M = 0.3

8.5.2 Geometry parameterization

We adopt here the PARSEC airfoil representation [223]. Figure 76 illustrates
the 11 basic parameters used for this representation. In our case, a modified
PARSEC geometry representation was adopted, allowing us to define indepen-
dently the leading edge radius, both for upper and lower surfaces. Thus, 12
variables in total were used. Their allowable ranges are defined in Table 33.

Parameter Lower bound Upper bound

rleup 0.0085 0.0126
rlelo 0.0020 0.0040
αte 7.0 10.0
βte 10.0 14.0
Zte -0.0060 -0.0030
∆Zte 0.0025 0.0050
Xup 0.4100 0.4600
Zup 0.1100 0.1300
Zxxup -0.90 -0.70
Xlo 0.20 0.26
Zlo -0.0230 -0.0150
Zxxlo 0.05 0.20

Table 33: Parameter ranges for PARSEC airfoil representation
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Figure 76: PARSEC airfoil parameterization

The PARSEC airfoil geometry representation adopted here uses a linear com-
bination of shape functions for defining the upper and lower surfaces. These
linear combinations are given by:

Zupper =

6∑
n=1

anx
n−1
2 (57)

Zlower =

6∑
n=1

bnx
n−1
2 (58)

In the above equations, the coefficients an, and bn are determined as a func-
tion of the 12 described geometric parameters, by solving two systems of linear
equations (for a detailed description see Section 6.3.2).

For solving the above ASO-MOPs, we adopted our proposed MODE-LD+SS [9]
as the search engine. The details of this MOEA, which has been compared to
state-of-the-art MOEAs, can be found in Chapter 5. It is interesting to note that,
since this MOEA already uses a weight vector set in its selection mechanism,
coupling it to a surrogate model is straightforward by adopting the infilling
criterion described in Section 8.4. Since we were only interested in evaluating
the role of our performance modelling scheme, we only compared the results
obtained by our original MODE-LD+SS with respect to those of the version
that incorporates surrogate modelling.
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8.5.3 Performance measures

In the context of MOEAs, it is common to compare results on the basis of some
performance measures [41]. Next, and for performance assessment purposes,
we report the hypervolume (Hv) values attained by each of the two MOEAs
compared (with and without surrogate modelling). A definition of this perfor-
mance measure is given in Section 6.4, and is omitted here.

8.5.4 Parameters settings

Surrogate Model: As previously indicated, we used a set of surrogate models.
For this benchmark, we adopted five RBF models defined by the following
kernels:

• Cubic: ϕ(r) = r3

• Thin Plate Spline: ϕ(r) = r2ln(r)

• Gaussian: ϕ(r) = e−r
2/(2σ2)

• Multiquadratic: ϕ(r) =
√
r2 + σ2

• Inverse Multiquadratic: ϕ(r) = 1/
√
r2 + σ2

Above, r = ||x − ci||, ci, i = 1, 2, . . . ,h, is the center for the RBF, and
h is the number of hidden layers. The first two RBF models contain no tuning
parameters, while in the other three the σ parameter can be adjusted to improve
the model accuracy. All the models are trained with the points stored in the
actual database. For each model, the approximated function is defined by:

ŷSM = Σhj=1ωjϕj(x) (59)

We used a value of h = 20 for the number of hidden layers. ϕ(r) is the
kernel of the hidden layer, and ωj is the weighting coefficient. Since h is less
than the number of training points in the database, we adopted a K−means

clustering technique to obtain the respective center for each hidden layer. The
training process for each RBF model, required the determination of the weight-
ing parametersωj by means of:

[ω1,ω2, . . . ,ωp]T = (HTH)−1HTYS (60)
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where YS corresponds to the vector of the objective functions for the sample
points, and

H =


ϕ1(X1) ϕ2(X1) · · · ϕp(X1)

ϕ1(X2) ϕ2(X2) · · · ϕp(X2)

· · · · · · ... · · ·
ϕ1(XNTP) ϕ2(XNTP) · · · ϕp(XNTP)

 (61)

MOEA parameters: We used the following set of parameters.

Parameters for MODE-LD+SS without surrogate modelling:

F = 0.5, CR = 0.5, NB = 5, GMAX = 20 and NP = 100 for the bi-
objective problems. We only changed NP = 120 for the problems with three
objectives. We defined a budget of 2000 objective function evaluations (OFEs).
This was based on the OFEs commonly reported in the specialized literature
for the problems of our interest, which range from 1000 [62] to 2000 [151].

Parameters for MODE-LD+SS with surrogate modelling:

F = 0.5, CR = 0.5, GMAX = 100 and NP = 300 (a higher population
size is adopted, because the evolutionary process is performed on the surrogate
model, and, therefore, has a low computational cost) for both, the bi-objective
and the three objective cases. The number of cycles in the surrogate approach
was adjusted for performing a total of 2000 OFEs.

Weight vector index for the infilling criterion: The index was defined in terms
of the current iteration or generation (gen) using the following expression:

Weight_Index = (SMi − 1)×
NP

N
+ Shift× (gen− 1) (62)

From this expression, we can observe that each surrogate model starts the
infilling criterion at a different weight vector, and then the whole set of vectors
is swept during the evolutionary process. In this equation,NP is the population
size used for the MOEA when the surrogate model is searched for, N is the
number of surrogate models adopted, gen is the current generation number
and Shift is a constant used for the sweeping process defined in the infilling
criterion. In our experiments, this constant was set to 13 in order to minimize
the number of times that a weight vector is selected during the evolutionary
process.
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Initial and maximum training points in the database: We adopted: NTPinit =
200 and NTPmax = 300 for both, the bi-objective and the three objective
problems. Here we propose to set this parameter to approximately twice the
number of points corresponding to the population size of the MOEA, when
no surrogate model is used. The upper limit aims at reducing the training cost
associated to the RBF models, specially for those where the tuning parameters
are adjusted for improving their accuracy.

8.5.5 Results and discussion

Table 34 summarizes the results obtained for the five ASO MOPs adopted and
for each of the two MOEAs compared. In this table, the average HV mea-
sure, and its standard deviation are obtained from 32 independent runs for each
MOP. The Hv measures shown here correspond to a total of 2000 real objec-
tive function evaluations. From this table, we can observe that the surrogate
model approach consistently obtained better values than the approach not us-
ing it, both for the HV mean value and for their standard deviation. According
to a Wilcoxon rank-sum statistical test [257] with a significance level of 0.05,
for all the ASO-MOPs, the surrogate approach was significantly better.

MODE-LD+SS MODE-LD+SS w/s

MOP Hv Mean Std Dev Hv Mean Std Dev

ASO-MOP1 5.6593E-04 5.3074E-06 5.8790E-04 4.3753E-06

ASO-MOP2 6.3550E-04 6.2108E-06 6.4942E-04 2.1426E-06

ASO-MOP3 1.6747E-06 7.4601E-08 1.9076E-06 1.7524E-08

ASO-MOP4 4.3639E-04 3.4658E-06 4.4202E-04 2.5353E-06

ASO-MOP5 5.8814E-09 3.0200E-10 7.0975E-09 6.0863E-11

Table 34: Hypervolume performance measure obtained for the different ASO-MOPs,
without and with the proposed metamodel assisted approach.

In order to better analyze the impact of the proposed surrogate model ap-
proach, in Figures 77 through 81, we present, for all the test cases adopted,
the Hv measure convergence plots, and the Pareto fronts approximations ob-
tained after 1000 OFEs. From these convergence plots we can observe that, in
general, at the beginning of the evolutionary process, the proposed surrogate
model approach, has very good convergence properties. Considering as a first
stage the first 500 OFEs, a high improvement of the Hv measure is achieved by
the surrogate model approach. In fact, in all cases, except for the ASO-MOP4
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problem, the surrogate model approach attains a Hv measure similar to that ob-
tained after performing 2000 OFEs with the MOEA that does not incorporate
a surrogate approach. For the case of the ASO-MOP4 test problem, about 50
additional OFEs are required for attaining the same state. Thus, if we consider
the Hv measure improvement, we can estimate that our proposed surrogate-
based optimization approach can produce savings of about 75% in the number
of OFEs performed. This sort of savings can be considered as significant for
the type of application being analyzed, because it translates into very important
CPU time reductions.

Taking a closer look at the convergence plots for ASO-MOP1 and ASO-
MOP3, after approximately 350 and 400 OFEs, respectively, we can observe
that, prior to these points, the convergence rate clearly shows a tendency to
be substantially reduced and probably even to stagnate. However, after these
points, the convergence rate suddenly increases. This behavior can be explained
in part by the combined action of the exploration/exploitation abilities of the
different models incorporated in our approach. A more detailed analysis is,
however, required, to confirm our hypothesis. After performing 500 OFEs, our
proposed approach continues to show an improvement in the HV measure, but
the rate has considerably reduced. Nevertheless, our approach is still able to
consistently attain higher values than those achieved by the MOEA without
surrogate modelling.

Looking at the Pareto front approximations, compared at an intermediate
stage of 1000 OFEs, we can also observe that, in general, our proposed ap-
proach is able to, consistently, improve convergence towards the true Pareto
front, and to cover a wider area along it. The first condition is clearly exempli-
fied in the ASO-MOP3 problem, while the second condition is clearly seen on
the ASO-MOP1 and the ASO-MOP2 problems. These same conditions apply
to the problems with three objectives.
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Figure 77: Metamodel assisted Pareto front approximation for ASO-MOP1
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Figure 78: Metamodel assisted Pareto front approximation for ASO-MOP2
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Figure 79: Metamodel assisted Pareto front approximation for ASO-MOP3



210 M E TA M O D E L - A S S I S T E D M O E A S

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 4.4

 4.5

 0  250  500  750  1000  1250  1500  1750  2000

1
0

4
 *

 H
V

Number of Objective Function Evaluations

ASO-MOP4 w/o surrogate
ASO-MOP4 w/surrogate

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.004  0.005  0.006  0.007  0.008  0.009  0.01  0.011  0.012

2
.0

 -
 c

l

cd

PF Approx 1080 OFEs
Surrogate PF Approx 1080 OFEs

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.004  0.005  0.006  0.007  0.008  0.009  0.01  0.011  0.012

c
m

2

cd

PF Approx 1080 OFEs
Surrogate PF Approx 1080 OFEs

Figure 80: Metamodel assisted Pareto front approximation for ASO-MOP4
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Figure 81: Metamodel assisted Pareto front approximation for ASO-MOP5
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8.6 F I N A L R E M A R K S

In this chapter, we have presented a surrogate-based multiobjective evolution-
ary optimization approach. The main characteristic of our proposed approach
is that it uses not only one surrogate model, but a set of them. Unlike other
approaches in which only one model is picked up from a set of trained models,
or several models are combined by means of a weighting approach, here, each
model is searched for Pareto optimal solutions using a MOEA. From the solu-
tions obtained, some of them are selected to solve the MOP in parallel and in
a collaborative manner.

Our proposal was tested on five ASO MOPs. Our results indicated that our
proposal helps to speed up convergence and that it can produce a substantial
reduction in the number of objective function evaluations performed (reaching
savings of up to 75% with respect to the same MOEA not using surrogates).

We plan to add more combinations of surrogate models to the ones adopted
here. It would also be interesting to couple our surrogate-based approach to
other MOEAs and, more interestingly, to combinations of them. This would
allow a higher degree of variability during the search which could probably
lead to further reductions on the number of objective function evaluations per-
formed.
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9.1 C O N C L U S I O N S

The main goal of the research work reported in this thesis has been to design
a new multi-objective evolutionary algorithm and companion techniques, with
the aim of improving efficiency. The proposed approach was designed for be-
ing applied in the solution of aerodynamic shape optimization problems com-
monly found in aeronautical/aerospace engineering system design. In this case,
efficiency can be measured in terms of the number of objective functions per-
formed, i.e., our aim was to produce a better Pareto-front approximation than
other state-of-the-art MOEAs, for a fixed and reduced number of objective
function evaluations. In this context, efficiency can also be measured in terms
of CPU time, given a (pre-defined) number of objective function evaluations.

The main conclusions of this research work are the following:

• We have reviewed the application of MOEAs used for solving a diversity
of aeronautical/aerospace engineering problems (cf. Chapter 4). From
this review we have identified that many of the existing applications rely
on the use of state-of-the-art MOEAs such as: NSGA, NCGA, MOGA,
SPEA2, NSGA-II. Most of them are Pareto-based MOEAs which use ge-
netic algorithms as their search engine. More recently, there have been at-
tempts to use other types of MOEAs, based on different search operators
such as evolution strategies; and particle swarm optimization. Addition-
ally, the use of indicator-based MOEAs such as the SMS-EMOA is also
reported in the specialized literature. In the context of aerodynamic shape
optimization problems, there are two MOEAs that were specifically de-
signed for dealing with them: ARMOGA and εµ-ARMOGA. These two
latter algorithms are based on MOGA, and make use of range adapta-
tion for the design variables in both cases, and a µ-GA and ε-dominance
in the latter case. We also identified that the use of other metaheuris-
tics with good convergence properties, such as differential evolution, has
been scarce in this domain. We conclude that the use of MOEAs in aero-
nautical/aerospace engineering optimization is a mature area and that
the use of metaheuristics such as differential evolution is a promising

213
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research path in this engineering field. This condition motivated us to
design an algorithm based on this metaheuristic.

• Based on the previous survey and in the class of aerodynamic shape op-
timization problems we are interested in, we have defined a set of real-
world multi-objective test problems. In this set, seven problems were de-
fined and named ASO-MOP1 to ASO-MOP7 (cf. Section 6.3.4, page 131).
Four of these problems have two objectives and the other three have
three objectives. This set of ASO-MOPs, additional to the MOP suites
currently available in the literature, was used to test the performance of
our proposed approaches.

• We have designed a novel MOEA called MODE-LD+SS. This proposed
approach adopts the differential evolution operators as its search engine,
using the standard scheme DE/rnd/1/bin . Additionally, the proposed al-
gorithm incorporates two mechanisms for improving both the conver-
gence towards the Pareto front and the uniform distribution of nondomi-
nated solutions along the Pareto front. These mechanisms correspond to
the concept of local dominance and the use of an environmental selection
based on a scalar function.

• We have tested the performance of our proposed MODE-LD+SS using
benchmark functions taken from the specialized literature, and using two
performance measures, Hv and C-Metric. The performance results of
our approach, shown in tables 7 to 16 (pages 145–149), were compared
against those obtained by other state of the art MOEAs such as: NSGA-II,
SPEA2, and MOEA/D. Our comparative study showed that our proposed
MODE-LD+SS outperforms NSGA-II, SPEA2 and MOEA/D, with re-
spect to the hypervolume performance measure, in five of the nine MOPs
used. Our approach was also found to be competitive with respect to
SPEA2 and MOEA/D in other three MOPs from this benchmark. Regard-
ing the C-Metric, our proposed MODE-LD+SS outperformed NSGA-
II, SPEA2 and MOEA/D in the nine MOPs adopted. Based on these
results, we can conclude that our proposed approach has good conver-
gence properties. As indicated by the C-Metric, our proposed approach
is able to converge closer to the true Pareto-front than other state-of-the-
art MOEAs.

• We have tested the performance of our proposed approach MODE-LD+SS
using the aerodynamic shape optimization problems defined as part of
this research work. In this study we have compared its performance
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against other state-of-the-art MOEAs such as: MOEA/D, MOEA/D-DE,
SMS-EMOA, ARMOGA, and εµARMOGA. The performance measure
selected for comparison was the hypervolume attained. This compara-
tive study (cf. table 23 in page 179) showed that our proposed approach
MODE-LD+SS outperformed the other MOEAs in five of seven ASO-
MOPs. In the case of the other ASO-MOPs, their results were compet-
itive to those of MOEA/D-DE and SMS-EMOA. These results further
support the good convergence properties of our approach, since it is able
to outperform the SMS-EMOA, with respect to the Hv measure, even
when the SMS-EMOA makes use of this metric in its selection process.
Additionally, in this study, the convergence history of all algorithms was
analyzed, and we conclude that our proposed approach is able to con-
verge closer to the Pareto-front, than the other MOEAs, if on the order
of 1,000 to 2,000 objective function evaluations are allowed. This condi-
tion is important since in most of the applications surveyed, this is the
number of objective function evaluations commonly performed. With
this condition, we also conclude that differential evolution is a competi-
tive evolutionary approach for solving aerodynamic shape optimization
problems.

• We have designed a parallel approach called pMODE-LD+SS. It is based
on its serial counterpart MODE-LD+SS, inheriting its evolutionary oper-
ators and selection mechanisms. The design of this approach was moti-
vated by the aim of improving the efficiency of MODE-LD+SS, in terms
of the computational time required. Our proposed parallel approach is
based on the Island paradigm. Its main characteristics comprise: a “ran-
dom pair-islands” bidirectional migration scheme, use of a pollination
scheme, random migration policy, and a replacement based on the envi-
ronmental selection of MODE-LD+SS.

• We have tested the performance of our proposed pMODE-LD+SS, us-
ing the two benchmarks proposed in this research work (cf. Chapter 6 in
page 101). From these studies, and for both benchmarks, we conclude
that our proposed parallel approach is able to improve efficiency (with
respect to its serial counterpart) in terms of its execution time, i.e., it is
able to attain similar Pareto-front approximations, with respect to those
attained by its serial version MODE-LD+SS, but with a reduced com-
putational time, as indicated by the speed-up attained with the parallel
approach (cf. Table 20 in page 177, and Table 31 in page 182).
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• We designed and implemented a surrogate-based multi-objective evo-
lutionary optimization approach. This approach makes use of multiple
surrogate models which operate in parallel with the aim of combining
their features when solving a costly multi-objective optimization prob-
lem. Our proposal was tested in five ASO-MOPs from the benchmark
defined. The results of this study showed that our proposal helps to speed
up convergence and that it can produce a substantial reduction in the
number of objective function evaluations performed, reaching savings of
up to 75% with respect to the same MOEA not using surrogates. From
this results we conclude that our surrogate-based approach has obvious
advantages for dealing with expensive objective functions such as those
involved in aeronautical optimization problems.

9.2 F U T U R E W O R K

As part of the future work, derived from the present thesis, we consider the
following:

• Use of alternative DE schemes: In our proposals, which are based on
differential evolution, we have used the basic DE/rnd/1/bin scheme.
However, for this metaheuristic, it is possible to use other alternative
schemes. We plan to test and validate different schemes, which might re-
sult in an improved convergence rate for our proposed basic approaches.
The use of different schemes is more appealing, particularly in the paral-
lel version of our proposal, since having different schemes in each island,
will allow to promote diversity in the solutions searched.

• Parameter tuning for aerodynamic shape optimization problems: For
our proposals, we have tuned the F, CR, and NB parameters to be used
in MODE-LD+SS; and, the number of islands, migration rate, and epoch
to be used for the parallel approach pMODE-LD+SS. In both cases, the
ZDT and DTLZ MOPs were used for this process, then the tuned val-
ues were directly used in our approaches, when solving the aerodynamic
shape optimization problems. In this regard we plan to do a tuning pro-
cess, using the defined ASO-MOPs, aiming to better understand the be-
havior of our proposed approaches, to identify the sensitivity of solutions
with respect to the parametes.

• Use of different benchmarks: The main interest in this research work,
was the solution of aerodynamic shape optimization problems. This type
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of problem is evidently, only a particular class in the universe of multi-
objective problems found in aeronautical/aerospace engineering. We plan
to select and/or define other classes of problems such as structural and
aeroelastic multi-objective optimization, to test our proposed approaches
and to evaluate their performance in such cases.

• Use of alternative parallelization techniques: Due to the high com-
putational cost required by many aeronautical and aerospace engineer-
ing optimization problems, the use of parallelism is relatively common.
However, more elaborate parallelization techniques based, for example,
on co-evolution [232], cellular computing [2], GPU computing [260] and
asynchronous techniques [11] are still scarce in this area and more work
in that direction is expected in the next few years.

• Different surrogate approaches: In the surrogate-based approach pro-
posed in this research work, we have used a combination of metamodels
based on radial basis functions. However, we plan to test more combi-
nations of surrogate models. It would also be interesting to couple our
surrogate-based approach to other MOEAs and, more interestingly, to
combinations of them. This would allow a higher degree of variability
during the search which could probably lead to further reductions in the
number of objective function evaluations performed.

• Efficient constraint-handling techniques: There are many applications
in aeronautical/aerospace engineering that are subject to constraints. In
most cases, infeasible solutions are discarded and generated again, or a
simple external penalty function is adopted. However, many other con-
straint-handling approaches exist, which could be very useful in multi-
objective optimization, since they can explore the boundary between the
feasible and the infeasible region in a more efficient way than traditional
penalty functions (see for example [159, 213]). It would also be interest-
ing to design approaches that can efficiently deal with problems having
many nonlinear constraints.
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