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Resumen

Hoy en día, en muchas aplicaciones del mundo real relacionadas con la industria, finan-
zas y otras ramas se requiere el optimizar múltiples objetivos al mismo tiempo. Los
problemas de optimización multi-objetivo(POM) representan tales problemas donde
múltiples objetivos deben optimizarse de forma concurrente. Además, existen ciertos
tipos de problemas relacionados con aplicaciones del mundo real donde además de
optimizar múltiples objetivos se requiere considerar el efecto de parámetros externos
dentro del proceso de optimización. Estos parámetros externos pueden represen-
tar por ejemplo las condiciones del ambiente como el clima, temperatura o viento.
Para este caso en particular la condiciones ambientales no pueden ser optimizadas
ni tampoco ignoradas dado que pueden afectar a los objetivos si un cambio se llega
a presentar. Un problema de optimización multi-objetivo dependiente de parámet-
ros (POMP) consiste en un POM donde adicionalmente algunos parámetros externos
λ ∈ Rl no pueden ser incluidos dentro del diseño de un objeto (por ejemplo, el viento
no puede ser incluido dentro del diseño de un carro óptimo). Durante la última dé-
cada los algoritmos evolutivos multi-objetivo (AEMOs) se volvieron populares para
el tratamiento de POMs. Entre los diversos AEMOs, hay una tendencia reciente
dentro del diseño de estos algoritmos de incluir indicadores de desempeño dentro del
mecanismo de selección o como estimadores de densidad. Estos indicadores de de-
sempeño son herramientas que miden la calidad de un aproximación producida por
un AEMO, por lo tanto, al incluir los indicadores de desempeño dentro del proceso
de optimización se mejora la calidad de la aproximación generada de acuerdo al in-
dicador seleccionado. Varias ventajas de estos algoritmos incentivan su uso para el
tratamiento de POMs, sin embargo, también existen ciertas desventajas al utilizarlos.
Por ejemplo, generalmente los AEMOs tienden a converger lentamente, lo que es una
desventaja severa para este tipo de algoritmos. Este problema provoca el uso de un
alto número de evaluaciones de función del POM para obtener una representación
adecuada del conjunto de interés. Como posible solución a este problema, se propuso
el uso de estrategias meméticas donde un AEMO es combinado con una técnica de
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búsqueda local para mejorar su desempeño. Finalmente, como se menciono anteri-
ormente, existen una gran variedad de AEMOs para el tratamiento de POMs, sin
embargo, para el caso de los POMPs existe una escasez de técnicas especializadas
diseñadas para obtener un conjunto de soluciones del problema completo.

A lo largo de este trabajo de tesis, nos enfocaremos en el tratamiento numérico
de POMs y POMPs. Primeramente, presentaremos dos técnicas de búsqueda local el
método de búsqueda dirigida basado en hypervolumen (MBDH) y el método de New-
ton basado en hypervolumen (MNH). Ambas técnicas incorporán el uso del indicador
del indicador de desempeño hypervolumen para mejorar la convergencia y la calidad
de las aproximaciones generadas bajo este indicador. Una característica importante
de ambas técnicas es que fueron diseñadas para conjuntos y no solamente para un
mejorar un solo punto. Dicha característica convierte ambas técnicas en candidatos
perfectos para ser combinados junto con un AEMO. Posteriormente, presentaremos
dos estrategias meméticas las cuales integran tanto al MBDH como al MNH. Las
estrategias meméticas desarrolladas muestran alcanzar de forma más rápida el con-
junto solución y de igual formar mejorar el valor del indicador hypervolume de la
aproximación final. Lo anterior incluso es realizado utilizando un número menor de
evaluaciones de función. Por último, para contribuir a reducir la falta de técnicas
para el tratamiento de POMPs, presentaremos un algoritmo evolutivo basado en de-
scomposición. Esta técnica incluirá observaciones hechas en un estudio presentado
dentro de esta tesis sobre el comportamiento de la búsqueda local estocástica dentro
de los POMPs. El algoritmo demuestra ser capaz de obtener una aproximación del
conjunto de solución completo explotando la interacción existente entre los elementos
de la población actual inclusive si ellos pertenecen a un valor de λ diferente.
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Abstract

Nowadays, many real world applications related to industry, medicine, finance,
among others require optimizing multiple objectives at the same time. A multi-
objective optimization problem (MOP) represents such a problem of optimizing not
only one but multiple objectives concurrently. Even more, there is a certain type of
problems related also to real world applications in which furthermore of optimizing
multiple objectives one has to consider the effect of external parameters on the opti-
mization process. These external parameters can represent for instance environment
conditions such as weather, temperature or side wind. In this case, environment con-
ditions cannot be optimized nor neglected since they can affect the objectives if a
change is presented. A parameter dependent multi-objective optimization problem
(PMOP) consists of a MOP where in addition several external parameters λ ∈ Rl

cannot be influenced for the design of an object (e.g., the side wind in the design
of an ‘optimal’ car). During the last decade, multi-objective evolutionary algorithms
(MOEAs) has become very popular for the treatment of MOPs. Among them, there
is a recent trend in the design of algorithms which consist in including performance
indicators into the selection mechanism or as a density estimator. These performance
indicators are tools to measure the quality of the approximation set produced by a
MOEA, then by including them into the optimization process one, can improve the
quality of our approximation according to the selected indicator. Many advantages of
these algorithms encourage their use for the treatment of MOPs, however, they still
have drawbacks. For instance in general, MOEAs tend to converge slowly, what is a
severe drawback of this kind of algorithms. This drawback leads to use a relatively
high number of function evaluations to obtain a suitable representation of the set of
interest. As a possible remedy, researchers have proposed the use of memetic strate-
gies where a MOEA is hybridized with a local search technique in order to improve
its performance. Finally, as we mentioned before, there is a big variety of MOEAs
which address the treatment of MOPs, nevertheless, in the case of PMOPs, there is
still a lack of specialized techniques designed for solving them as a whole.
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Throughout this thesis work, we aim for the numerical treatment of both multi-
objective and parameter dependent multi-objective optimization problems. First, we
present two different local search techniques the hypervolume based directed search
(HVDS) and the hypervolume Newton method (HNM). Both techniques incorporate
the use of the hypervolume performance indicator to improve the convergence and also
the quality of the approximation according to this indicator. A remarkable property
of both techniques is that they are designed for sets and not exclusively for a single
point which makes them the perfect candidates to be coupled with a MOEA. Next,
two memetic strategies are presented which integrate HVDS and HNM, respectively.
The presented memetic strategies show to reach faster the solution set of a MOP
and also to improve the hypervolume indicator value of the produced approximation,
even using fewer function evaluations. Finally, in order to fill the gap of evolutionary
algorithms to tackle PMOPs as a whole, we present the PMOEA/D. This technique
incorporates observations made over stochastic local search within PMOPs presented
in this thesis work. The algorithm shows to be able to compute an approximation of
the whole solution set by exploiting the interactions between all the elements in the
current population even if they belong to a different λ value.
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1 | Introduction

In many real world applications, several conflicting objectives have to be considered
concurrently leading to a multi-objective optimization problem (MOP). For instance,
consider the performance of a vehicle over a test road with respect to the speed and the
energy consumption. Both objectives have to be optimized, however, there exists a
clear conflict between them which negatively affects one if the other is optimized. This
leads to the fact that there is typically an entire set of different optimal solutions. The
solution set Px of a MOP, the Pareto set, typically forms a (k−1)−dimensional object,
where k is the number of objective functions involved in the problem. The image of
the Pareto set Pf is called the Pareto front. In certain cases, external parameters
modify the solution set of a MOP. For instance, the performance of the vehicle can be
affected by weather conditions (e.g., side wind, rain) or road conditions (e.g., sliding
friction). Such external parameters cannot be optimized neither neglected but, they
have to be considered when solving the problems. The parameter dependent multi-
objective optimization problems (PMOPs) consider this extended case when external
parameters come into play. The solution set PxΛ

of a PMOP forms a (k − 1 +

l)−dimensional object, where l is the dimension of Λ and k the number of objective
functions.

In order to measure the quality of an approximation set for both kind of problems
(MOPs and PMOPs), one can use certain performance indicators [2–9]. Such perfor-
mance indicators can transform a MOP into a scalar optimization problem (SOP),
which can be advantageous at least when one solves the problem. The hypervolume
indicator is one the most widely used indicator in the field of multi-objective optimiza-
tion. One of its remarkable features is that it is Pareto compliant, however, certain
drawbacks such as its high complexity when it is computed in higher dimension with
respect to the objective functions caused that many researchers look for alternatives.

1



2 Chapter 1

There are more other performance indicators such as e.g. the averaged Hausdorff
distance ∆p, R2, IGD+, among others.

For the treatment of MOPs especially the use of multi-objective evolutionary al-
gorithms (MOEAs) have caught the interest of many researchers. Among MOEAs,
there is a recent trend in the design of algorithms that are based on a particular per-
formance indicator, the so-called indicator-based evolutionary algorithms. It is known
that MOEAs in general tend to converge slowly, what is a severe drawback of this
kind of algorithms. This drawback leads to use a relatively high number of function
evaluations to obtain a suitable representation of the set of interest. As a possible
remedy, researchers have proposed memetic strategies. These memetic algorithms
consist in hibridizing MOEAs with local search strategies based on mathematical
techniques in order to improve the algorithm performance or even the quality of the
final approximation.

The aim of this thesis project is to develop algorithms which push the state-of-
the-art for the numerical treatment of MOPs and PMOPs. In particular, we aim to
develop memetic strategies based on the hypervolume performance indicator to tackle
MOPs. Then, a new evolutionary algorithm to tackle PMOPs based on the stochastic
local search observations will be presented in order to produce an approximation of
the whole family of Pareto sets and fronts for a given PMOP.

1.1 Motivation

Usually, the solution set of both types of problems MOPs and PMOPs cannot be
obtained analytically. Then, the necessity of efficient methods to compute a suitable
finite size approximation of the solution set arises. In the case of MOPs faster and
reliable procedures are desired to generate an approximation of the solution set, while
for PMOPs it is expected to obtain algorithms that are able to compute a discretiza-
tion of the entire family of Pareto sets and fronts in one single run. As a remedy,
we intend to hybridize evolutionary algorithms based on indicators using novel local
search strategies. In the case of the treatment of PMOPs the lack of methods to
generate a complete approximation of the solutions set gives us a clear opportunity
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to develop new evolutionary strategies able to perform this task. Finally, in most of
the cases, performance indicators are used to assess the produced approximation by
algorithms, even some algorithms include them in their selection operators. There-
fore, we have to consider the given performance indicator inside the search processes
when new local search techniques, evolutionary approaches, and memetic strategies
are designed.

1.2 The Problem

The design of evolutionary and memetic algorithms for improving performance indi-
cators values which push the state-of-the-art for the treatment of MOPs and PMOPs.

1.3 Hypothesis

(i) It is expected that memetic algorithms improve the performance of an evolutionary
approach when solving a MOP. In particular, by hybridizing evolutionary approaches
with local search techniques based on the hypervolume gradient (∇H). (ii) Further-
more, in the case of PMOPs, it is expected that by tackling the problem using an
evolutionary approach which considers the complete external parameter space, an
approximation of the whole solution set can be produced.

1.4 General and Particular Objectives

General Objective

To design evolutionary and memetic algorithms for the numerical treatment of multi-
objective and parameter dependent multi-objective optimization problems.

CINVESTAV Computer Science Department



4 Chapter 1

Particular Aims

1. To develop a memetic strategy for MOPs where the local search technique is
based on the directed search method.

2. To consider the hypervolume gradient inside a local searcher within memetic
algorithms and as standalone algorithm.

3. To investigate the convergence properties of the methods based on the hyper-
volume gradient.

4. To develop memetic strategies for MOPs based on the hypervolume indicator.

5. To develop local search techniques that consider mechanism for constraint han-
dling.

6. To investigate the behavior of the simple neighborhood search over PMOPs.

7. To design an evolutionary approach for the non-sequential treatment of a given
PMOP.

1.5 Final Contributions

Algorithms

• Local search algorithms for the treatment of MOPs:

– The Hypervolume based Directed Search for general MOPs (HVDS).

– The Hypervolume Newton Method for bi-objective optimization problems
(HNM).

– The Hypervolume Newton Method for inequality constrained bi-objective
optimization problems.

– The Hypervolume Newton Method for equality constrained bi-objective
optimization problems.

• Memetic strategies for the treatment of MOPs:

CINVESTAV Computer Science Department



INTRODUCTION 5

– The memetic version of the SMS-EMOA using HVDS for k = 2, 3.

– The memetic version of the SMS-EMOA using HNM for k = 2.

• Stochastic techniques for the treatment of PMOPs:

– Simple Neighborhood Search for PMOPs.

– PMOEA/D for PMOPs.

Conference Papers

• Víctor Adrián Sosa Hernández, Oliver Schütze, Michael Emmerich: Hypervol-
ume Maximization via Set Based Newton´s Method. In EVOLVE - A Bridge
between Probability, Set Oriented Numerics, and Evolutionary Computation V
Advances in Intelligent Systems and Computing Volume 288, Springer, Beijing,
China, 2014, pp 15-28.

• Víctor Adrián Sosa Hernández, Oliver Schütze, Heike Trautmann, Günter Rudolph:
On the Behavior of Stochastic Local SearchWithin Parameter Dependent MOPs.
In the Evolutionary Multi-Criterion Optimization: 8th International Conference
(EMO), Springer, Guimares, Portugal, 2015, pp 126-140.

Book Chapters

• Víctor Adrián Sosa Hernández, Adriana Lara, Heike Trautmann, Günter Rudolph,
and Oliver Schütze: The Directed Search Method for Unconstrained Parame-
ter Dependent Multi-objective Optimization Problems. In O. Schütze et al.
(eds.), Numerical and Evolutionary Optimization - NEO 2015, Springer, 2016,
pp 281-330.

Journal Papers (JCR)

• Oliver Schütze, Víctor Adrián Sosa Hernández, Günter Rudolph, and Heike
Trautmann: The Hypervolume based Directed Search Method for Multi-Objective
Optimization Problems. Journal of Heuristics, June 2016, Volume 22, Issue 3,
pp 273-300.
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• Víctor Adrián Sosa Hernández, Oliver Schütze, Hao Wang, André Deutz, and
Michael Emmerich: The Set-Based Hypervolume Newton Method for Bi-Objective
Optimization. Submitted to the IEEE Transactions on Cybernetics, August
2017.

Collaboration Papers

• Sergio Alvarado, Adriana Lara, Víctor Adrián Sosa Hernández and Oliver Schütze:
An effective mutation operator to deal with multi-objective constrained prob-
lems: SPM. In the 13th International Conference on Electrical Engineering,
Computing Science and Automatic Control (CCE), Mexico City, Mexico, 2016,
pp. 1-6.

• Saúl Zapotecas Martínez, Víctor Adrián Sosa Hernández, Hernán Aguirre, Kiyoshi
Tanaka, and Carlos Artemio Coello Coello: Using a Family of Curves to Ap-
proximate the Pareto Front of a Multi-Objective Optimization Problem. In
the International Conference on Parallel Problem Solving from Nature (PPSN),
Springer, Ljubljana, Slovenia, 2014, pp 682-691.

• Adriana Lara, Sergio García, Lourdes Uribe, Víctor Adrián Sosa Hernández, H.
Wang, and Oliver Schütze: On the Choice of Neighborhood Sampling to Build
Effective Search Operators for Constrained MOPs. Submitted to the Memetic
Computing Journal.

1.6 Organization of this work

The remainder of this thesis work is organized as follows: in Chapter 2, we state
some theoretical background to understand the presented work. Furthermore, we re-
view some mathematical programming and stochastic techniques for the treatment of
optimization problems. Also, we present the related work to local search strategies.
Chapter 3 is used to present a new version of the HVDS for general number objectives.
We design a new region division for MOPs with several objectives, then the HVDS is
coupled with an evolutionary strategy to create a novel memetic algorithm. Numeri-
cal results show the advantages of integrating our local search strategy. In Chapter 4,
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we firstly investigate the behavior related to the hypervolume gradient flow in several
benchmark functions. Also, we present the hypervolume Newton method (HNM) as
a local search strategy for unconstrained and constrained (equality and inequality
constrained) problems. We present the integration of the HNM into an evolutionary
approach to create a new memetic algorithm for refine final approximations. Nu-
merical results will show the performance of our method against other MOEAs. An
investigation of the effect of stochastic neighborhood search (SLS) in the context of
PMOPs is presented in Chapter 5. Then, we present an evolutionary technique based
on decomposition to compute an approximation of the whole family of solution sets
of a given PMOP. Results show the advantage of integrating the obtained knowledge
by the investigation of SLS into the evolutionary technique. Finally, we draw some
conclusions and give some future paths for continuing our research.
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2 | Background

This chapter presents the basic concepts and definitions related to this thesis project.
The aim is to ensure that the reader has a better understanding of the content of this
work. First, we start by stating the theoretical background, and then we discuss the
related state-of-the-art.

2.1 Theoretical Background

2.1.1 Single-objective Optimization

A general single-objective optimization problem (SOP) is defined as the process to
minimize (or maximize) an objective function f according a decision vector x. The
problem is formulated as follows:

min
x∈Rn

f(x) (2.1)

s.t gi(x) ≤0 i = 1, . . . , p

hj(x) =0 j = 1, . . . , q,

where f : S ⊆ Rn → R is the objective function, x = (x1, ..., x2)
T ∈ Rn is a vector of

decision variables and n defines the dimension of the decision space. The functions
gi and hi represent the inequality and equality constraints, respectively. The feasible
region S is implicitly given by the constraints:

S := {x | gi(x) ≤ 0 i = 1, ..., p and hj(x) = 0 j = 1, ..., q}. (2.2)

9
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If the function f is continuous and twice differentiable, its gradient at x can be defined
as:

∇f(x) =

(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)T
∈ Rn, (2.3)

where ∂f(x)
∂xi

denotes the partial derivative of the function f with respect to the variable
xi. The Hessian matrix can be expressed as follows:

∇2f(x) =


∂
∂x1

(
∂f(x)
∂x1

)
. . . ∂

∂x1

(
∂f(x)
∂xn

)
... . . . ...

∂
∂xn

(
∂f(x)
∂x1

)
. . . ∂

∂xn

(
∂f(x)
∂xn

)
 ∈ Rn×n, (2.4)

where ∂
∂xi

(
∂f(x)
∂xj

)
represents the second partial derivative of the function f with re-

spect to the variables xi and xj.

In the following, we introduce some definitions related to the solution when solving
SOPs. A global minimizer is defined as follows:

Definition 1. A point x∗ ∈ S is a global minimizer of the problem stated in Equa-
tion (2.1) if

f(x∗) ≤ f(x) for all x ∈ S. (2.5)

In most of the cases, to find a global minimizer is a difficult task since we cannot
explore the whole decision space. In general, the mathematical methods which tackle
SOPs tend to find local solutions, however, for certain cases these solutions can satisfy
the needs of a decision maker (even if they are not global). The definition of a local
minimizer is as follows:

Definition 2. A point x∗ ∈ S is a local minimizer of the problem stated in Equa-
tion (2.1) if for a certain neighborhood N (x∗), f(x∗) ≤ f(x) for all x ∈ N (x∗).

The neighborhood N (x∗) can be represented by an open ball B(x∗, γ) with center
x∗ and radius γ > 0,

N (x∗) = B(x∗, γ) := {x ∈ Rn| ||x∗ − x|| < γ}. (2.6)
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Figure 2.1 depicts a graphical example of a SOP, the figure contains both a global
minimizer (circle) and a local minimizer (triangle) that is not globally optimal.

x
-3 -2 -1 0 1 2 3

f
(x
)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

global minimizer
local minimizer

Figure 2.1: Example of local and global minimizers of a SOP.

In order to identify if x∗ is a local minimizer, it is needed to examine all the points
inside the neighborhood N (x∗) which seems to be a difficult task. However, under
certain conditions there is a more efficent and practical process. When f is continuous
and twice differentiable, we can determine if x∗ is a local minimizer or not by examin-
ing its gradient and Hessian matrix. The optimality conditions developed by Karush,
Kuhn, and Tucker [10,11] allow us to state the necessary condition for optimality.

Theorem 1 (KKT necessary condition). Let x∗ be a local minimizer of a SOP as
stated in Equation (2.1); then there exist constants κ1, . . . , κp and %1, . . . , %q that
satisfy:

∇f(x∗) −
p∑
i=1

κi∇gi(x∗)−
q∑
j=1

%j∇hj(x∗) = 0

gi(x) ≤ 0 i = 1, . . . , p

hj(x) = 0 j = 1, . . . , q

κigi(x) = 0 i = 1, . . . , p

κi ≥ 0 i = 1, . . . , p.

(2.7)
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The scalar quantities κi and %j stated in Equation (2.7) are called the Lagrange
multipliers for the constraints [12]. In the case that p = 0 and q = 0 the problem
stated in Equation (2.1) is an unconstrained SOP of the following form:

min
x∈Rn

f(x) (2.8)

For that case, the necessary condition is reduced to ∇f(x∗) = 0.

2.1.2 Multi-Objective Optimization

In many problems it is required that more than one objective function has to be
minimized (or maximized) concurrently, leading to a multi-objective optimization
problem (MOP). Formally, a continuous MOP can be defined as follows:

min
x∈Rn

f(x), (2.9)

s.t gi(x) ≤0 i = 1, . . . , p

hj(x) =0 j = 1, . . . , q,

where f(x) = (f1(x), . . . , fk(x))T is a vector of k objective functions, fi : S ⊆ Rn →
R, i = 1, . . . , k, is the i-th objective function, x ∈ Rn is a vector of decision variables
and n defines the dimension of the decision space. The inequality and equality con-
straints are given by the functions gi and hi, respectively. S represents the feasible
region as defined above in Equation (2.2). Throughout this work, it is assumed that
each objective function is continuous and twice differentiable almost everywhere in
the decision space.

Pareto Optimality

In the following, the concept of optimality is defined for MOPs based on the work of
Pareto [13] and Edgeworth [14].

Definition 3. (a) Let v, w ∈ Rk. Then the vector v is less than w (v <p w), if
vi < wi for all i ∈ {1, 2, . . . , k}. The relation ≤p is defined analogously.
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(b) A vector y ∈ Rn is dominated by a vector x ∈ Rn (x ≺ y) with respect to the
definition of a MOP if

f(x) ≤p f(y) and f(x) 6= f(y),

else x is called non-dominated by y.

(c) A point x ∈ S is called (Pareto) optimal or a Pareto point if there exists no y ∈ S
which dominates x.

If all the objectives f1(x), f2(x), . . . , fk(x) and constraints g1(x), ..., gp(x), h1(x), ..., hq(x)

are differentiable, the following theorem of Kuhn and Tucker [10, 11] states the nec-
essary condition for Pareto optimality for unconstrained MOPs.

Theorem 2 (KKT necessary condition). Let x∗ ∈ S be a Pareto point of a MOP
as stated in Equation (2.9); then there exists constants α1, . . . , αk, κ1, . . . , κp and
%1, . . . , %q that satisfy:

k∑
i=1

αi∇fi(x∗)−
p∑
j=1

κj∇gj(x∗)−
q∑

m=1

%m∇hm(x∗) = 0

gj(x) ≤ 0 j = 1, . . . , p

hm(x) = 0 m = 1, . . . , q

k∑
i=1

αi = 1

αi ≥ 0 i = 1, . . . , k

κjgj(x) = 0 j = 1, . . . , p

κj ≥ 0 j = 1, . . . , p.

(2.10)

Similar to the SOP case the scalar values κj and %m denote the Lagrange multi-
pliers for the constraints. If the problem has no constraints (p = 0 and q = 0) then
the problem stated in Equation (2.9) is an unconstrained MOP of the following form:

min
x∈Rn

f(x) (2.11)

then, the following theorems hold for this case.

CINVESTAV Computer Science Department



14 Chapter 2

Theorem 3. Let x∗ ∈ S be a Pareto point of a MOP as stated in Equation (2.11);
then there exists a vector α ∈ Rk with αi ≥ 0, i = 1, . . . , k, and

∑k
i=1 αi = 1 such

that

k∑
i=1

αi∇fi(x∗) = 0. (2.12)

The theorem claims that the vector of zeros can be written as a convex combination
of the gradients of the objectives at every Pareto point. Equation (2.12) is not a
sufficient condition for Pareto optimality, but points which satisfy Equation (2.12)
are certainly ’Pareto candidates’.

Definition 4. Given an unconstrained MOP as stated in (2.11), a point x ∈ S is
called a Karush-Kuhn-Tucker point (KKT point) if there exist scalars α1, α2, . . . , αk ≥
0 such that

∑k
i=1 αi = 1 and that Equation (2.12) is satisfied.

The set of all Pareto points is called the Pareto set, denoted by Px and its image
Pf = f(Px) the Pareto front. As example consider the following bi-objective problem
MOP1 ( [15]) whose Pareto front is convex:

f1, f2 : R2 → R

f1(x) = (x1 − 1)2 + (x2 − 1)2

f2(x) = (x1 + 1)2 + (x2 + 1)2.

(2.13)

In Figure 2.2, we show both sets of interest (Pareto set and front) of the Problem
(2.13).

CINVESTAV Computer Science Department



BACKGROUND 15

x1

-1.5 -1 -0.5 0 0.5 1 1.5

x
2

-1.5

-1

-0.5

0

0.5

1

1.5

Pareto set (Px)

(a) Desicion space

f1

0 2 4 6 8 10

f
2

-1

0

1

2

3

4

5

6

7

8

9

10

Pareto front (Pf )

(b) Objective space

Figure 2.2: Example of the sets of interest (Pareto set and front) of a MOP.

2.1.3 Parameter Dependent Multi-Objective Optimization

In some real-world applications the solution set of a MOP depends on external pa-
rameters λ ∈ Rl. The external parameter λ cannot be optimized but it has to be
considered when the solution set is being computed. For instance, the speed and fuel-
consumption are two objectives which are in conflict when engineers design a car.
In this case, engineers want to achieve the best trade-off between these objectives,
however, they have to be aware of considering external parameters such as side-wind,
humidity, heat, among others when both objectives are measured. The influence of
these external parameters will affect the solution set of the given problem leading to
the parameter dependent multi-objective optimization problems (PMOPs) which can
be defined as follows:

min
x∈Rn

fλ(x), (2.14)

where fλ is defined as a vector of objective functions that depends on an external
parameter λ ∈ Λ and

fλ : S ⊆ Rn → Rk,

fλ(x) = (f1(x, λ), . . . , fk(x, λ))T .
(2.15)

Λ ⊆ Rl specifies the subspace where the external parameter is defined. Note that for
every fixed value of λ the problem stated in Equation (2.14) can be seen as a classical
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MOP. Thus, the solution set, unlike MOPs, consists of an entire family of Pareto sets
defined as follows:

Pxλ := {(x, λ) ∈ Rn+l|x is a Pareto point of fλ and λ ∈ Λ}. (2.16)

The according family of Pareto fronts is denoted by Pfλ . As a general example, we
consider here the following parameter dependent multi-objective optimizatio problem
PMOP1 ( [16]):

fλ : R2 → R2

fλ(x) := (1− λ)f1(x) + λf2(x),
(2.17)

where λ ∈ [0, 1] and f1, f2 : R2 → R2,

f1(x1, x2) =

(
(x1 − 1)4 + (x2 − 1)2

(x1 + 1)2 + (x2 + 1)2

)
,

f2(x1, x2) =

(
(x1 − 1)2 + (x2 − 1)2

(x1 + 1)2 + (x2 + 1)2

)
.

This problem is a convex homotopy of the MOPs f1 and f2 which have both convex
Pareto fronts. Figure 2.3 depicts both families of the Problem (2.17) .

(a) Decision space (b) Objective space

Figure 2.3: Example of the solution sets (families of Pareto sets and fronts) of a
PMOP.
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2.1.4 Convergence Rates

Here, we include definitions related to the types of convergence. Let {xi} be a se-
quence in Rn that converges to x∗.

• The convergence is linear if there is a constant c ∈ (0, 1) such that

||xi+1 − x∗||
||xi − x∗||

≤ c, (2.18)

for all i sufficiently large.

• The convergence is superlinear if

lim
i→∞

||xi+1 − x∗||
||xi − x∗||

= 0. (2.19)

• The convergence is quadratic if there is a constant c not necessarily less than 1
such that

||xi+1 − x∗||
||xi − x∗||2

≤ c, (2.20)

for all i sufficiently large.

2.2 Mathematical Programming Techniques for Op-

timization

To give a brief insight into the developments related to the numerical treatment of
SOPs and MOPs. This section describes some available methods based on mathe-
matical programming techniques to find optimal solutions for a given optimization
problem (SOP or MOP).

2.2.1 Mathematical Techniques for SOPs

There are two classes of mathematical programming algorithms: line search and trust
region methods. Throughout this work, we will only address line search strategies.
For a thorough description of trust region methods we refer for instance to [12].
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Line search methods for solving SOPs require a starting point, here denoted by x0.
Once the starting point is given the algorithms perform a sequence of iterations that
finalizes when no improvement is reached. Each iteration of the line search method
computes a search direction νi and then decides how far to move along that direction.
The iteration is given by

xi+1 = xi + tiνi, (2.21)

where ti > 0 is called the step size. The success of this class of methods lies on
the correct choice of both the direction (νi ∈ Rn) and the step size (ti > 0). A
simple stopping condition for line search algorithms is the reduction of f , that is,
f(xi + tiνi) < f(xi), however, it is not sufficient to guarantee convergence toward
x∗. A popular inexact line search condition stipulates that ti should first of all give
sufficient decrease in the objective function f , as measured by the following inequality:

f(xi + tiνi) ≤ f(xi) + c1ti∇f(xi)
Tνi, (2.22)

for some constant c1 ∈ (0, 1). This means that the reduction in f should be
proportional to both the step size ti and the directional derivative ∇f(xi)

Tνi. Equa-
tion (2.22) is called the Armijo condition. The sufficient decrease condition is not
enough by itself, then to ensure the algoritm performs a reasonable progress it is
introduced another requirement called the curvature condition which requires ti to
satisfy

∇f(xi + tiνi)
Tνi ≥ c2∇f(xi)

Tνi, (2.23)

for some constant c2 ∈ (c1, 1), where c1 is the constant of Equation (2.22). The
sufficient decrease and curvature conditions are known collectively as the Wolfe con-
ditions. Algorithm 1 represents the general framework for descent methods using line
search.

Steepest Descent Method

A natural choice for a search direction is

ν := −∇f(x). (2.24)

This is because among all the directions we could move xi, it is the one along which
f decreases most rapidly [12] at least for small step sizes. The computation of ti
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Algorithm 1 General descent method
Require: A given starting point x0 ∈ Rn.
Ensure: A candidate solution xf for a given SOP.
1: Set i := 0

2: do

3: Determine a descent direction νi ∈ Rn.
4: Choose a step size ti ∈ R+.
5: Set xi+1 := xi + tiνi

6: Set i := i+ 1.
7: while stopping criterion is satisfied
8: return xf = xi−1

can be done in different ways, for instance via exact or backtracking line search. One
advantage of this method is that it only requires the gradient of the function. However,
for difficult problems the method can be very slow [12]. We can take the norm of
the gradient ||∇f(x)||2 ≤ tol as a stopping criterion where tol is a small and positive
value. By using the general framework in Algorithm 1, we can use Equation (2.24)
to determine νi.

The Newton Method

One of the most important search directions within line search strategies is the Newton
direction which is derived from a second-order Taylor series approximation. Newton
method assumes that f is twice continuously differentiable within Rn. Given an
unconstrained SOP a Newton step (or the Newton function) is defined as follows:

N :Rn → Rn

N(x) : = x−∇2f(x)−1∇f(x).
(2.25)

The Newton direction for the current point x is given then by

νN = −∇2f(x)−1∇f(x). (2.26)

Thus, the Newton method is defined as

x0 ∈ Rn

xi+1 = N(xi), for i = 0, 1, 2, . . . .
(2.27)
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Unlike the steepest descent direction, a natural step size associated to the Newton
direction is ti = 1, since it is accepted by the Wolfe conditions for all large i (see [12]
for more a detailed explanation). Nevertheless, a possible adjustment can be done.
In most of the cases Newton’s method will provide fast rates than local convergence,
typically quadratic. However, its main disadvantage is that it requires the computa-
tion of the Hessian ∇2f(x) in each step. This is due to the process to compute this
matrix, that in most of the cases can be computationally expensive.

2.2.2 Mathematical Programming Techniques for MOPs

In the following, we describe some mathematical programming techniques applied to
the context of MOPs. Similar to SOPs these techniques need also a starting guess.
The aim is to find points over the set of interest which is given by the Pareto set/front.

Scalarization Methods

One common way to solve MOPs is via scalarization methods, i.e., to transform the
original problem (defined in Equation (2.9)) into a SOP of the form:

min
x∈S

fα(x), (2.28)

where fα : S → R and α ∈ Rk is an external parameter. Note that for a given value
of α the solution of Equation (2.28) is typically a single point rather than a (k − 1)-
manifold. In order to produce a finite size approximations of the sets of interest
(Pareto set and front) one can solve a sequence of optimization problems [17–21]. In
other words, one has to solve Equation (2.28) for a suitable set A := {α(1), . . . , α(m)} ⊂
Rk of external parameters where m defines the size of the approximation (see [22]).

The general advantage of the use of scalarization methods is that they can be
tackled by any SOP solver. Nevertheless, scalarization methods only produced one
single solution. In the following, some scalarization methods are introduced:

Weighted Sum Method. Probably, the first proposed scalarization method is the
Weighted Sum Method [17, 18]. The underlying idea is to assign to each objective a
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certain weight ωi ≥ 0, and to minimize the resulting weighted sum. Given a problem
of the form of Equation (2.9), the weighted sum problem can be stated as follows:

min
x∈S

k∑
i=1

ωifi(x), (2.29)

where ωi ≥ 0 for all i = 1, . . . , k and
∑k

i=1 ωi = 1 [23].

Several theoretical results are presented concerning Equation (2.29):

Theorem 4 ( [17,18]). The solution of the problem stated in Equation (2.29) is weakly
Pareto optimal.

Theorem 5 ( [17,18]). The solution of the problem stated in Equation (2.29) is Pareto
optimal if the weighting coefficients are positive, that is ωi > 0 for all i = 1, ..., k.

The weakness of this method is that only if the Pareto front is convex all points
on this set can be reached by solving Equation (2.25) for a particular value of ω. In
other cases optimal solutions x∗ where f(x∗) lies on a concave portion of the Pareto
front, can be difficult to find.

Weighted Tchebycheff Method. The method proposed in [19] finds a point
whose image is as close as possible to a given reference point z ∈ Rk. For the
distance assignment the weighted Tchebycheff metric is mostly used: let ω ∈ Rk with
ωi ≥ 0, i = 1, . . . , k, and

∑k
i=1 ωi = 1, and let z = [z1, . . . , zk]

T , then the Weighted
Tchebycheff Method reads as follows:

min
x∈S

max
i=1,...,k

ωi|fi(x)− zi|. (2.30)

Note that the solution of Equation (2.30) depends on the choice of z as well as on ω.
The main advantage of the Weighted Tchebycheff Method is that by a proper choice
of these vectors every point on the Pareto front can be reached.

Theorem 6 ( [19]). The solution of Equation (2.30) is weakly Pareto optimal if
ω ∈ Rk

+.

Theorem 7 ( [19]). Let x∗ ∈ S be Pareto optimal. Then there exists ω ∈ Rk
+ such

that x∗ is a solution of Equation (2.30), where z is chosen as the utopian vector of
the MOP.
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The utopian vector f ∗ = [f ∗1 , . . . , f
∗
k ]T of a MOP consists of the minimal objective

values f ∗i of each function fi. On the other hand, the proper choices of z and ω might
also present delicate problems.

Normal Boundary Intersection Method. In 1998, an alternative scalararization
method was proposed by Das and Dennis [20], the Normal Boundary Intersection
method (NBI). The method computes a finite size approximation of the Pareto front
using the following two steps:

1. Compute the convex hull of individual minima (CHIM) which is the (k − 1)-
simplex connecting the objective values of the minima of each objective.

2. Select points yi from the CHIM and compute the point z∗i ∈ S such that the
image f(x∗i ) has the maximal distance from yi, in the direction normal to the
CHIM.

To be more precise, let x∗i be a global minimizer of the i-th objective, let f ∗i := f(x∗i ),
and denote

Φ := [f ∗1 , . . . , f
∗
k ] ∈ Rk×k. (2.31)

Then the CHIM is defined as

CHIM =

{
Φω : ω ∈ Rk :

k∑
i=1

ωi = 1, ωi ≥ 1, i = 1, . . . , k

}
. (2.32)

The optimization problem in the second step is called the NBI-subproblem. Given
an initial value Φω =

∑k
i=1 ωif

∗
i and the direction d ∈ Rk which is orthogonal to the

CHIM, the NBI-subproblem can be stated in mathematical terms as follows:

max
x,t

t (2.33)

s.t f(x0) + td = f(x)

x ∈ S.
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Descent Directions

A descent direction is defined as follows: given a point x ∈ Rn, a vector ν ∈ Rn is
called a descent direction if a search in that direction leads to an improvement of all
the objective values. This means, ν is a descent direction of a MOP at a point x ∈ Rn

if there exists a t̃ ∈ R+ such that

f(x + tν) <p f(x), ∀t ∈ (0, t̃). (2.34)

If all objectives of a MOP are differentiable, then Equation (2.34) is equivalent to

∇fi(x)Tν < 0, i = 1, . . . , k. (2.35)

Hence, if a descent direction ν is given for an initial point x, a solution xnew that
dominates x can be found by performing a line search, i.e.,

xnew = x + tν, (2.36)

where t ∈ R+ is a (sufficiently small) step size. In [24–27], some descent directions
have been proposed. In the following, we introduce two descent directions that are
important for this work.

Averaged Descent Direction. In [25], a descent direction is proposed for bi-
objective optimization problems (i.e., k = 2). The Average Descent Direction takes
advantage of the descent cone properties of a MOP (see [1]) and it reads as follows:

Theorem 8 ( [10]). Let x ∈ Rn, f1, f2 : Rn → R define a bi-objective unconstrained
MOP, and ∇fi 6= 0 for i = 1, 2. Then, the direction

ν = −1

2

(
∇f1(x)

||∇f1(x)||
+
∇f2(x)

||∇f2(x)||

)
, (2.37)

where || · || = || · ||2, is a descent direction at x for the MOP.

This descent direction needs only the gradient information unlike other approaches
that in most of the cases solve a linear quadratic optimization problem. Nonetheless,
the method still has a clear disadvantage namely that it cannot be generalized for
more than two objective functions and also it cannot (in its current form) manage
constraint information.
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Descent Direction of Schäffler, Schultz and Weinzierl. In [24], the authors
present an approach for the computation of a descent direction for unconstrained
MOPs. This descent direction is defined as follows:

Theorem 9 ( [24]). Let a given MOP as defined in Equation (2.9) and the map
q : Rn → R be defined by

q(x) =
k∑
i=1

α̃i∇fi(x), (2.38)

where α̃ is a solution of

min
α∈R


∥∥∥∥∥

k∑
i=1

αi∇fi(x)

∥∥∥∥∥
2

2

: αi ≥ 0, i = 1, . . . , k,
k∑
i=1

αi = 1

 . (2.39)

Then the following statements hold:

• Either q(x) = 0 or −q(x) is a descent direction.

• For each x̃ ∈ Rn, there exists a neighborhood N (x̃) and a constant Lx̃ ∈ R+
0

such that
||q(x)− q(y)||2 ≤ Lx̃||x− y||2, ∀x,y ∈ N (x̃). (2.40)

Note that if q(x) = 0, then x is a KKT point. While q is computed a test for
fulliling the first order necessary condition of optimality is being performed.

Directed Search Method

The Directed Search (DS) Method has been proposed for differentiable MOPs which
allows to steer the search process from a given point into a desired direction d in
objective space [28]. To be more precise, given a point x0 ∈ Rn, and d ∈ Rk repre-
senting the desired search direction in objective space, a search direction ν ∈ Rn in
parameter space is sought such that

lim
t→0

fi(x0 + tν)− fi(x0)

t
= di, i = 1, . . . , k. (2.41)

Equation (2.41) can be stated in matrix vector notation, therefore such a direction
vector ν solves the following system of linear equations:

J(x0)ν = d, (2.42)
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where J(x) denotes the Jacobian of f at x

J(x) =


∇f1(x)T

...
∇fk(x)T

 ∈ Rk×n. (2.43)

Since typically k << n, we can assume that the linear system in Equation (2.42) is
(highly) under-determined. Among the solutions of Equation (2.42), the one with the
least 2-norm can be viewed as the greedy direction for the given context what means
by using this direction we are going to obtain the maximum gain. This solution is
given by

ν+ := J(x)+d, (2.44)

where J(x)+ denotes the pseudo-inverse of J(x) (we refer e.g. to [12] for an efficient
computation of ν+). Assuming a given direction d ∈ Rk\{0} with di ≤ 0, i = 0, . . . , k,
a given point x0 ∈ Rn with rank(J(x0)) = k and that the image of f is bounded from
below. If one proceeds to a greedy search in direction d using Equation (2.44), this
leads to the numerical solution of the following initial value problem (starting from
solution x0 ∈ Rn):

x(0) = x0 ∈ Rn

ẋ(t) = J(x(t))+d, t > 0,
(2.45)

where t denotes the time. If d is a ‘descent direction’ (i.e., di ≤ 0 for all i = 1, . . . , k

and there exists an index j such that dj < 0), a numerical solution of Equation (2.45)
can be viewed as a downhill climber for MOPs.

The downhill climber described above shares many characteristics with the one
described in [27], where also possible choices for d are discussed.

The solutions produced by solving the problem stated in Equation (2.45) are
characterized as follows: let Υ : [0, tf ]→ Rn be such a solution, where tf is the final
value, and let tc be the smallest value of t ≥ 0 such that

@ν ∈ Rn : J(x(t))ν = d. (2.46)

tc is called the critical value and Υ(tc) the critical point of the problem stated in
Equation (2.45). Υ can be divided into two parts: Υ([0, tc]) and Υ(tc, tf ). The first
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part f(Υ(t)) yields the desired decay in the direction d. From the critical point Υ(tc)

on a ’best fit’ is computed, i.e.,

ν+(x(t)) = J(x(t))+d = arg minν∈Rn||J(x(t))ν − d||. (2.47)

For the end point Υ(tf ) it holds J(Υ(tf ))
+d = 0. The end points are of particular

interest since they are KKT points with associated convex weight α = −d/||d||1,
however, the computation of Υ in [tc, tf ] might be computationally expensive the
problem stated in Equation (2.45) is stiff over this second part. Thus, the directed
search is restricted to detect points Υ(tc).

The directed search descent method uses as a stopping criterion the facts that
rank(J(x0)) = k (by assumption) and that the rank(J(x∗)) < k (by definition of the
critical point x∗). However, it is not possible to detect numerically a critical point
using the rank of a matrix, then one can compute

cond(J(x)) = ||J(x)|||J(x)+|| = σ1/σk, (2.48)

where σ1 and σk are the biggest and smallest singular values of J(x), respectively. So
the process can be stopped if

cond(J(xi)) ≥ tol, (2.49)

where tol ∈ R+ is a given (large) threshold. For a more thorough explanation we
refer to [28].

There exist the possibility to use the DS for performing a search along the Pareto
set in a predictor-corrector fashion and the method can even be adapted to be realized
gradient free. Different to the other approaches, the 2nd derivative information is not
necessary. For the predictor the method uses the orthogonal vector α to the Pareto
front which is the convex weight related with a given local Pareto point x such that∑k

i=1 αi∇fi(x) = 0 under the assumption that rank(J(x)) = k − 1. In this case α
is orthogonal to the Pareto front, i.e, α ⊥ Ty∂f(Rn) where Ty denotes the tangent
space of ∂f(Rn). Thus, the next idea is a search orthogonal to α, for that reason
the QR-factorization of α is necessary to obtain the orthonormal basis of the tangent
space. In this way, we obtain an orthogonal matrix Q = (q1, . . . , qk) ∈ Rk×k and qi,
i = 1, . . . , k, its column vectors, and R = (r11, 0, . . . , 0)T ∈ Rk×1 with r11 ∈ R\{0}.
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Since α = r11q1(i.e., α ∈ span{q1}) and Q is orthogonal, the vectors (q2, . . . , qk) form
the orthonormal basis of the orthogonal hyperplane to α.

Using
J(x)νi = qi, i = 2, . . . , k, (2.50)

we can obtain directions νi to have a predictor point without any second gradient
information. To perform the corrector step, we can use the predictor point p and
solve Equation (2.45). Other predictor-corrector methods to perform a search along
the solution set of a MOP given a local optima solution x∗ as starting point can be
found in [29–34].

2.2.3 Hypervolume Gradient

In the following, we introduce some notations for a better understanding of the hy-
pervolume gradient. Throughout this work, we consider approximation sets of size µ
to the efficient set Px by vectors X ∈ Rµ·n. Each of the points of the approximation
can be obtained as follows: the first point x(1) ∈ S is represented by the first n con-
secutive components of X and the second one by the n consecutive components, an
so on. The µ · n-vector X which contains the approximation set (or population) is
defined as follows:

X =
(
x(1)> ,x(2)> , . . . ,x(µ)>

)>
, x(i) ∈ S, i = 1, . . . , µ.

In addition, a mapping F : Rµ·n → Rµ·k is obtained from the objective function
vector f (which is defined in Problem (2.11)):

F(X) :=
(
f(x(1))>, f(x(2))>, . . . , f(x(µ))>

)>
. (2.51)

By defining Y := F(X), we can represent the image of the µ · n-vector X as:

Y := (y
(1)
1 , .., y

(1)
k , .., y

(i)
1 , .., y

(i)
k , .., y

(µ)
1 , .., y

(µ)
k )T ∈ Rµ·k. (2.52)

The hypervolume indicator H is defined as the Lebesgue measure on Rk, which is
the region of the dominated set in the reference space (see Equation (2.72)). Then,
for a given vector X representing the approximation set (or population) we define the
hypervolume indicator for vectors in Rµ·n as

HF(X) = H(F(X)). (2.53)
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In [35], the authors presented a definition of the hypervolume gradient, then in [36]
they extended the definition to dimensions k > 2 and provided efficient algorithms
for its computation for k ≤ 4. In both works, they stated that for the mapping HF

exists a gradient field ∇HF if all partial derivates with respect to HF are well defined
for a given µ · n-vector X and if one-sided derivatives are used in case of duplicate
coordinates in the objective space. The hypervolume indicator gradient ∇HF(X) of
the composition HF = H ◦ F is defined as:

∇HF(X) =

(
∂HF(X)

∂x
(1)
1

, ..,
∂HF(X)

∂x
(1)
n

, ..,
∂HF(X)

∂x
(µ)
1

, ..,
∂HF(X)

∂x
(µ)
n

)T
=

(
∂HF(X)

∂x(1)

>
, . . . ,

∂HF(X)

∂x(µ)

>)>

.

(2.54)

Note that each term in the right-hand-side of the above equation is called sub-gradient,
which is the local hypervolume change rate by moving only one decision vector in-
finitesimally. Moreover, the sub-gradients can be computed by applying the chain
rule [36, 37]:

∂HF(X)

∂x(i)
=

∂Y

∂x(i)

∂HF(X)

∂Y
=

k∑
z=1

∂HF(X)

∂fz(x(i))
∇fz(x(i)). (2.55)

In order to visualize the structure of this composition, we present the matrix
representation:







∂H
∂y

(1)
1...

∂H
∂y

(1)
k...

∂H
∂y

(µ)
1...
∂H
∂y

(µ)
k




(F(X))



T

︸ ︷︷ ︸
∇H(F(X))

·



∇f(x(1)) . . . 0

... . . . ...
0 . . . ∇f(x(µ))




︸ ︷︷ ︸
∇F(X)

. (2.56)

According to Equation (2.56), it is clear that the right hand side depends only on
the gradient of∇F at the sub-vectors x(1), . . . ,x(µ). Thus, if our MOP is differentiable,
the Jacobian matrix ∇F can be computed. In order to compute the left hand side
we present the following concepts (see also [36]):
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Definition 5. Let π1,...,m̃,...,k(y) ∈ Rk−1 denote the projection of a sub-vector y in the
multiset onto the coordinates 1, . . . , m̃, . . . , k, where m̃ means that m is omitted.

Definition 6. Let i ∈ {1, . . . , µ}. Let Hk−1 denote the hypervolume indicator for the
(k − 1)-dimensional space with reference space [π1,...,m̃,...,k(r,∞)]. Let Y <k

(i) denote the
multiset of projections π1,...,m̃,...,k(y(i)) of subvectors y(i) of a multiset Y with a lower
m-coordinate than the m-coordinate of the subvector y(i).

∂H
y
(i)
m

(Y ) = Hk−1(Y
<m
(i) ∪ {π1,...,m̃,...,k(y

(i))})−Hk−1(Y
<m
(i) ). (2.57)

The complexity of the computation of the hypervolume gradient is given by
O(µk + µlogµ) where µ represents the number of elements in X and k the num-
ber of objectives. The cost in terms of function evaluations is given by 5µ.

2.2.4 The Gradient-Ascent Hypervolume Method

The hypervolume gradient has been used in [35] as a gradient-ascent hypervolume
method (GAH). They described a population based algorithm which allows to perform
a steepest ascent procedure with backtracking line search. The method requires a
good starting point in order to reach the Pareto front. To be more precise, the
steepest ascent method takes as a starting point the final approximation given by the
evolutionary algorithm. Then it computes the gradient which represent the direction
toward each member of the population have to move. Such movement was used to
do a fine-tunning of the solutions.

2.3 Stochastic Search Techniques for Optimization

When gradient information is not available none of the previously described mathe-
matical programming techniques can be applied to the given optimization problem.
Stochastic algorithms are methods which use probabilistic transition rules can be a
suitable alternative to tackle SOPs, MOPs, and PMOPs without gradient informa-
tion. Among stochastic search techniques, evolutionary approaches which are inspired
in nature have demonstrated to solve a wide range of optimization problems. These
techniques evolve a population toward the solution or solution set. The process starts
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by generating a starting population. Then, evolutionary operators are performed to
generate and preserve better solutions in the population. The previous process is
made until a stopping criteria is reached or fulfilled.

2.3.1 Evolutionary Techniques to Tackle SOPs

Unlike mathematical programming techniques there are some approaches that have
also performed well over problems were gradient information is not available. These
techniques include knowledge from evolution, swarm intelligence, nature, among oth-
ers. Here, we mention several approaches which have been used to tackle SOPs.

EAs [38]. Evolutionary algorithms (EAs) are methods based on natural selection.
Such methods start from a given initial population which is evaluated according to a
given SOP. In every iteration, the algorithm produces new elements by using evolu-
tionary operators such as recombination and mutation. Then, the current and new
population are mixed in order to select the elements which as the best value according
the SOP. The process can be repeated until some stopping criterion is satisfied.

ESs [39, 40]. Evolutionary strategies (ESs) similar to EAs use mutation, recom-
bination, and selection operators applied to an individual or a complete population.
However, for ESs the mutation operator received more importance than recombina-
tion. The aim is to produced better candidate solutions in every iteration of the
algorithm by the effect of the evolutionary operators. There exist two basic configu-
rations, (i) (1 + 1)-ES and (ii) (µ+ 1)-ES, where µ represents the number of elements
in the population and the other parameter represents the number of new elements
produced by evolutionary operators.

PSO [41]. The particle swarm optimization method (PSO) optimizes a given can-
didate solution x with regard to a given SOP. The algorithm uses a population called
swarm of a certain number of particles. PSO solves the problem by moving the parti-
cles over a decision space according to a formula. This formula considers the particle’s
position and velocity. The performed movement for each particle is influenced by a
local best known position and also guided toward the best known positions within
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the decision space. The expected result is to move the particle to the region that
optimizes the SOP at hand.

DE [42]. The differential evolution (DE) method is an optimizer which seeks to
find a solution of a continuous SOP. The basic idea of DE is to perturb a gradient
search by a stochastic process. DE evolves a population of candidate solutions and
creates a new element using a formula which utilize some of the current elements of
the population. Then, the algorithm keep the solutions which has a better objective
value while the others are eliminated.

2.3.2 Evolutionary Techniques to Tackle MOPs

When solving a MOP, one has to perform a series of separate runs in the case of using
scalarization methods, as the given MOP is transformed into a series of SOPs. In con-
trast, subdivision techniques (see [25,43–51]) and evolutionary computing algorithms
can find several members of the Pareto set in a one single run of the algorithm. The
evolutionary computing algorithms that tackle MOPs, are called multi-objective evo-
lutionary algorithms (MOEAs) [22,52–54]. A multi-objective evolutionary algorithm
normally shares the structure and concepts analogous to its genetic counterparts.
Normally, a structure or individual is an encoded solution to some problem and the
set of individuals is called population. Within MOEAs there exist evolutionary op-
erators that act over the population generating solutions with higher fitness. This
fitness is going to determine which element will survive for the next generation. The
main operators are mutation, recombination and selection [22]. Similar to methods
for the treatment of SOPs such as evolutionary algorithms, evolutionary strategies,
particle swarm, and differential evolution adding decomposition and indicator based
algorithms have been used to tackle MOPs. In most of the cases the strategies use a
dominance strategy to select the points that will survive for the next iteration of the
method. On the other hand decomposition based algorithms divide the MOPs into
subproblems that are solved as a SOP. Finally, indicator based algorithms transform
the MOP into a SOP by using a performance indicator. In the following, we present
some of the most representative MOEAs.

CINVESTAV Computer Science Department



32 Chapter 2

NSGA-II The non-dominated sorting genetic algorithm II (NSGA-II) was proposed
in [55]. This algorithm generates in every step a new population from the current
one by using evolutionary operators. Then, both populations are combined to double
the original size. Next, NSGA-II performs a rank which divides the elements of
each population into s layers or sub-fronts. The first sub-front will contain the best
elements of the combination of both populations, and the final one the worst elements
with respect to the non-dominance grade. The elements that belong to the first fronts
will be considered for the next population. In the case that one sub-front has more
elements than needed to achieve the original size the crowding distance is computed
to select the elements which are distributed best over the Pareto front.

MOEA/D The multi-objective evolutionary algorithm based on decomposition
(MOEA/D) was introduced by Zhang et. al in [56]. The algorithm exploits the
idea of solving a MOP by decomposing it into some single objective sub-problems.
MOEA/D starts by assuming that under certain conditions it is possible to generate a
discretization of the Pareto front by solving several SOPs. The algorithm associates
every sub-problem to a neighborhood which contains some of the elements of the
whole population. In every iteration the algorithm will select a sub-problem and gen-
erate a new element by evolutionary operators. By using a scalarization function such
as Penalty Boundary Intersection method (included in [56]) or Tchebycheff, MOEA/D
updates the elements that belongs to the associated neighborhood in order to keep
the ones with the best fitness value. The optimization process will be repeated until
a stopping criteria is reached.

SMS-EMOA It is important to mentioned that the hypervolume is also called S-
metric. The S-metric selection evolutionary multi-objective algorithm (SMS-EMOA)
was proposed in [57] by Emmerich, Beume and Naujoks. This algorithm adapts an
evolutionary strategy to solve a given MOP. Over the algorithm the hypervolume
governs the selection operator, which allows to get at the end a good approximation
according to that performance indicator. The main idea is to integrate new points
in the population by replacing such elements whose contribution to hypervolume
is the worst. The algorithm starts with an initial population of µ elements. In
every iteration a new individual is generated by means of random variation operators
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’crossover’ and ’mutation’. The new element is added to the current population
population. The selection process starts by generating a non-dominating ranking as
is performed in NSGA-II [55]. This ranking separates the population into s different
fronts (G1, . . . , Gs). Finally, the algorithm computes the contribution of each element
that belongs to the worst front Gs according to the hypervolume and deletes the
element with the least hypervolume contribution. This process is repeated until a
certain number of iterations is reached. A pseudo-code of SMS-EMOA is shown in
Algorithm 2.

Algorithm 2 SMS-EMOA algorithm
Require: A given MOP.
Ensure: An approximation set P of the solution set of the given MOP.
1: Initialize randomly a population P ⊂ S with µ elements.
2: while the stopping-criteria is not reached do

3: Generate an offspring x ∈ S from P by variation.
4: Integrate x into the population P := P ∪ {x}.
5: Build the ranking of fronts G1, . . . , Gs from P .
6: Compute the hypervolume contribution for each point x′ ∈ Gh.
7: Find and discard from P the point x′∗ with the least hypervolume contribution
P := P\{x′∗}.

8: end while

9: return P .

2.3.3 Behaviour of Stochastic Local Search within PMOPs

Before introducing some evolutionary techniques for the treatment of a given PMOP,
we present an investigation of the behavior of stochastic local search (SLS) for con-
tinuous PMOPs developed in [58]. By utilizing a certain relation of SLS with line
search methods as used in mathematical programming we will see that—under cer-
tain (mild) assumptions on the model—both pressure toward and along the set of
interest (in objective space) is already inherent in SLS. Initial studies on a simple set
based method that includes SLS underline that the problem to compute a finite size
representation of the entire solution set via stochastic search methods such as evolu-
tionary algorithms (EAs) is a well-conditioned problem. The obtained results in [58]
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are valuable for the design of a specialized EAs included in this thesis work. The
results in particular suggest that it might make sense to integrate the entire λ-space
into the search which will allow to compute the desired approximation in one run of
the algorithm which is in contrast to the works included in the next subsection which
consider ’λ-slices’ in each run.

For our considerations it is advantageous to treat λ —at least formally— within
PMOPs as a ’normal’ parameter leading to the following problem:

F : Rn+l → Rk+l

F (x, λ) =


f1(x, λ)

...
fk(x, λ)

λ

 =


g1(x, λ)

...
gk+l(x, λ)

 ,
(2.58)

where gi : Rn+l → R, i = 1, . . . , k + l. The Jacobian is given by

J(x, λ) =


∇xf1(x, λ)T ∇λf1(x, λ)T

...
...

∇xfk(x, λ)T ∇λfk(x, λ)T

0 Il

 :=

(
Jx Jλ

0 Il

)
∈ R(k+l)×(n+l), (2.59)

where

Jx =


∇xf1(x, λ)T

...
∇xfk(x, λ)T

 ∈ Rk×n, Jλ =


∇λf1(x, λ)T

...
∇λfk(x, λ)T

 ∈ Rk×l, (2.60)

and where Il denotes the (l × l)-identity matrix.

To understand the behaviour of SLS it is advantageous to see its relation to line
search as it is used in mathematical programming: if a point z1 = (x1, λ1) is chosen
(at random) from a small neighbourhood of z0 = (x0, λ0), then z1 can be written as

z1 = z0 + 1(z1 − z0) = z0 + ||z1 − z0||
z1 − z0
||z1 − z0||

. (2.61)
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Thus, the selection of z1 can be viewed as a search in direction

v :=
(z1 − z0)
||z1 − z0||

. (2.62)

For infinitesimal steps in a direction ν ∈ Rn+l (in decision space) the related change
in objective space is given by J(x0, λ0)ν. To see this, consider the i-th component of
J(x0, λ0)ν:

(J(x0, λ0)ν)i = lim
t→0

gi((x0, λ0) + tν)− gi(x0, λ0)

t
= 〈∇gi(x0, λ0), ν〉,

i = 1, . . . , k + l.

(2.63)

For problem (2.58) this direction is given by

Jν =

(
Jx Jλ

0 Il

)(
νx

νλ

)
=

(
Jxνx + Jλνλ

νλ

)
, (2.64)

where J = J(x0, λ0) and ν = (νx, νλ) with νx ∈ Rn and νλ ∈ Rl.

Based on these considerations,one can consider different scenarios for SLS that
occur in different stages within an evolutionary algorithm.

(a) (x, λ) ’far away’ from Pxλ. Here we use an observation made in [1] for classical
MOPs namely that the ’objectives gradients’ may point into similar directions when
the decision point (x, λ) is far from the Pareto set. We assume here the extreme case
namely that all gradients point into the same direction. For this, let u := ∇xfi(x, λ)

and assume that
∇xfi(x, λ) = µiu, i = 1, . . . , k, (2.65)

where µi > 0 for i = 1, . . . , k. Then

Jxνx =


∇xf1(x, λ)Tνx

...
∇xfk(x, λ)Tνx

 = uTνx


µ1

...
µk

 . (2.66)

That is, the movement is 1-dimensional regardless of νx which is n-dimensional. Since
Jxνx = 0 iff νx ⊥ u, the probability is one that for a randomly chosen νx either
dominated or dominating solutions are found (and in case a dominated solution is
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Figure 2.4: SLS for a point that is ’far away’ from Pxλ using νλ = 0.

found, the search has simply to be flipped to find dominating solutions).
Thus, for νλ = 0, which means that the value of λ is not changed in the local search,
we obtain for µ = (µ1, . . . , µk)

T

Jν =

(
uTνxµ

0

)
. (2.67)

For νλ 6= 0, i.e., in the case that the value of λ is changed within the local search, no
such physical meaning exists to the best of our knowledge. Nevertheless, the investi-
gation of this problem is still undone.

As an example, consider PMOP1 (2.17). Figures 2.4 and 2.5 show the behavior of
SLS for 100 uniformly randomly chosen points near (x, λ) = (10, 45.2, 0.7) for νλ 6= 0

and νλ = 0. As neighbourhood the authors chose the infinity norm with radius rx = 2

in x-space and rλ = 0.3 (respectively rλ = 0) in λ-space. For the case νλ = 0 a clear
movement toward/against Pfλ can be observed while this is not the case for νλ 6= 0.
Thus, it may make sense to exclude the change of the value of λ in early stages of the
search process where the individuals of the populations are supposed to be far away
from the set of interest.

(b) (x, λ) ’near’ to Pxλ. Consider again the extreme case, namely that x is a
Karush-Kuhn-Tucker (KKT) point of F . That is, assume that there exists a convex
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Figure 2.5: SLS for a point that is ’far away’ from Pxλ using νλ 6= 0.

weight α ∈ Rk such that
k∑
i=1

αi∇xfi(x, λ) = JTx α = 0. (2.68)

It can be shown ( [59]) that the normal vector to the linearized set Pfλ at (x, λ) is
given by

η =

(
α

−JλTα

)
. (2.69)

One obtains

〈Jν, η〉 = 〈ν, JTη〉 = 〈ν,

(
JTx 0

JTλ Il

)(
α

−JλTα

)
〉 = 〈ν,

(
JTx α

JTλ α− JTλ α

)
〉 = 0. (2.70)

That is, it is either (i) Jν = 0 or (ii) Jν is a movement orthogonal to η and thus
along the linearized set at F (x, λ). If we assume that the rank of Jx is k − 1, then
the rank of J is k − 1 + l and the dimension of the kernel of J is n − k + l. Hence,
for a randomly chosen ν the probability is 1 that event (ii) happens.
Equation (2.70) tells us that the movement is orthogonal to the normal vector, but
it remains to investigate in which direction of the tangent space the movement is
performed. For this, let

η = QR = (q1, q2, . . . , qk+l)R (2.71)

be a QR factorization of η. Then, the vectors q2, . . . , qk+l form an orthonormal basis
of the tangent space. If we assume again that the rank of Jx is k − 1, then the rank

CINVESTAV Computer Science Department



38 Chapter 2

−1
−0.5

0
0.5

1
1.5

−1

−0.5

0

0.5

1

0

0.5

1

1.5

 

x2

x1

PS,Λ

 

λ
−
sp
a
ce

Nx(x, λ)
(x, λ)

(a) Decision space

0

10

20

30

0

5

10

0

0.5

1

1.5

 

F(PS,Λ)

f1f2
 

λ
−
sp
a
ce

F (Nx(x, λ))
F (x, λ)

(b) Objective space

Figure 2.6: SLS for a point that is ’near’ to Pxλ .

of J is k − 1 + l. Since by Equation (2.70) η is not in the image of J , there exist
vectors νq, . . . , νk+l such that Jνi = qi, i = 2, . . . , k + l. Thus, a movement via SLS
can be performed in all directions of the linearized family of Pareto fronts (i.e., both
in x- and λ-direction). Figure 2.6 shows an example for (x, λ) = (0.44, 0.47, 0.84)T

and rx = rλ = 0.2. Again, by construction, no structure in decision space can be
observed, but a clear movement along the set of interest can be seen in objective
space.

(c) (x, λ) ’in between’. Apparently, points (x, λ) do not have to be far away from
nor near to the set of interest but can be ’in between’. In this case, no clear preference
of the movement in objective space can be detected. However, this ’opening’ of the
search compared to the 1-dimensional movement in early stages of the search is a
very important aspect since it allows in principle to find (in the set based context
and given a suitable selection mechanism) and spread the solutions. In this case
for finding multiple connected components. Figure 2.7 depicts such a scenario for
(x, λ) = (1,−1, 0.5)T and rx = rλ = 0.2.
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Figure 2.7: SLS for a point that is ’in between’ using νλ 6= 0.

2.3.4 Evolutionary Techniques to Tackle PMOPs

Many optimization approaches have been used for the treatment of PMOPs, among
all of them the evolutionary approaches have proven to be suitable for finding an
approximation of the set of interest (family of Pareto sets and fronts) of a given
PMOP (see [9]). In general, the evolutionary algorithms to tackle PMOPs include
one or more of the following mechanisms to produce an approximation of the solution
set : multi-population schemes ( [60]) , co-evolution strategies ( [60]), change detection
mechanisms ( [61–64]), parallel approaches ( [65]), diversity based techniques ( [61,
66,67]), predictive techniques ( [68–70]), and so on. Most of these approaches react to
the changes of the external parameter, then when a change is detected the algorithms
apply a certain mechanism such as a re-initialization process, in order to compute the
new solution set. Algorithm 3 shows a general MOEA framework to tackle a given
PMOP in a sequential way. The basic idea of this general framework is to select a
given MOEA to evolve a certain population toward the solution set while there is
no change detection. In the case that the algorithm detects a change of the external
parameter λ it stores the last population and it applies a certain mechanism such as
maintain memory, MOEA parameter tuning or a reinitialization process to start once
again the optimization process. The process is repeated until the discretized space is
covered.
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Nevertheless, none of the algorithms which use Algorithm 3 as foundation, con-
siders to treat a PMOP as a whole, instead of waiting for possible changes. In this

Algorithm 3 General scheme to tackle a given PMOP in a sequential way
Ensure: A final approximation P (final) of the family of Pareto sets and fronts of a

given PMOP.
1: Set Λ := {λ1, . . . , λs}.
2: Set m := 1, i.e., consider (MOP) for λ := λm = λ1.
3: Set t := 0.
4: Initialize Pm,t ⊂ Rn.
5: while m ≤ s do

6: if change() then

7: P
(final)
m := Pm,t

8: m := m+ 1

9: t := 0

10: Maintain memory, tune the MOEA parameters and/or reinitialize the
11: population Pm,t.
12: else

13: Compute Pm,t+1 from Pm,t using a MOEA for one generation.
14: t := t+ 1

15: end if

16: end while

17: return P (final) := {P (final)
1 , ..., P

(final)
s }

particular case, we assume a certain number of expected changes during the opti-
mization process, and also the interest of the decision maker over every value of λ.
There exists a strong relation of the PMOPs and real world applications that is why
some approaches have also been adapted to this context such as [71–80].

2.4 Memetic Algorithms

An important drawback of the multi-objective evolutionary algorithms is their rate of
convergence, which is typically slow. That is why, the idea of exploiting all available
knowledge about a problem is a way to accelerate the search process [81].
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Memetic algorithms (MAs) were introduced by Moscato [82] in 1989, who took
the roots of this term from the word ’meme’ presented by Dawkins in [83]. Speaking
now about evolutionary algorithms, the term refers to improve certain elements into
the population with a local search mechanism.

MAs are defined as population based approaches composed by an evolutionary
computing framework and a set of local search algorithms. The local search strategy
is triggered when over the execution of the evolutionary computing framework. The
local search strategies improve in this case one or some elements during the global
search procedure performed by the MOEA. The combination between a local strategy
and a global search using MOEAs is called memetic evolutionary algorithm. Many
researchers have reported successful results by the hybridization of the MOEAs. In
the recent years different local search techniques have been designed for improving the
performance of some evolutionary algorithms by using first or second order derivative
methods (e.g. see [26,28,84,85]). Nevertheless, in some cases there is no clear objective
of what they are supposed to improve. The integration of an indicator can steer the
local search in better directions and also be more effective for improving points.

2.5 Performance Indicators for MOPs and PMOPs

In order to assess the produced outcome set by a MOEA some performance indicators
have been proposed. In the following, we present several important indicators for
assessing approximation sets produced when solving a given MOP or PMOP.

2.5.1 Hypervolume Indicator

The so-called dominated hypervolume (or S-metric) of a population is a commonly
accepted indicator [2] for assessing the quality of an approximation. This indicator
refers to the size of the space covered or dominated. The hypervolume is described
as the Lebesgue measure L of the union of hypercubes defined by a non-dominated
point y(i) and a reference point r expressed as

⋃
[v(i), r].

Definition 7. Let y(1), . . . ,y(µ) ∈ Rk be a non-dominated set and r ∈ Rk such that
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y(i) ≺ R for all i = 1, . . . , µ. The value

H(y(1), . . . ,y(µ); r) = L

(
µ⋃
i=1

[y(i), r]

)
(2.72)

is termed the dominated hypervolume with respect to reference point r, where L(·)
denotes the Lebesgue measure in Rk.

This measure has a number of appealing properties but determining its value
is getting the more computational expensive the larger the number of objectives is
considered [86]. The hypervolume has some advantages which are presented in the
following:

• If r is given, H(A) can be computed without further knowledge,

• H is Pareto compliant. That is if (b < a) and A1 = {a, a2, . . . , aj} and A2 =

{b, a2, . . . , aj}, it follows that H(A2) ≥ H(A1) [22].

On the other hand, also this indicator has some disadvantages such as:

• H is dependent on the choice of r,

• the computation of H(A) for k > 2 is time consuming, since the complexity was
estimated as O(nk+1) with n being the number of variables in parameter space
and k the number of objectives [87].

• the final distribution according to H is not evenly distributed along the Pareto
front [88].

2.5.2 Hausdorff Distance

The Hausdorff distance [3] can also be used as a performance indicator for MOPs.
The indicator is described in the following four steps:

(a) The distance between two points a,b ∈ Rn is defined as

dist(a,b) := ||a− b||, (2.73)

where || · || is a norm on Rn.
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(b) The distance between a point b ∈ Rn and a set A ⊂ Rn is defined as

dist(b, A) := inf
a∈A
||b− a||. (2.74)

(c) The semi-distance between two sets A, B ⊂ Rn is defined as

dist(B,A) = sup
b∈B

dist(b, A) = inf
a∈A

sup
b∈B
||a− b||. (2.75)

Note that dist(A,B) does not have to be equal to dist(B,A), i.e., dist is not
symmetric. As example consider A ⊂ B, then dist(A,B) = 0 but not necessarily
dist(B,A) = 0.

(d) The Hausdorff distance between A, B ⊂ Rn

dH(A,B) = max(dist(A,B), dist(B,A))

= max(inf
a∈A

sup
b∈B
||a− b||, inf

b∈B
sup
a∈A
||b− a||). (2.76)

One of its principal advantages is that dH defines a metric on the set of compact
subsets. However, it is important to mention that dH is sensitive to single outliers.
Such outliers can be generated when using stochastic method such as MOEAs for the
approximation of the Pareto set/front.

2.5.3 Generational Distance and Inverted Generational Dis-

tance

The Generational Distance (GD) introduced by Van Veldhuizen and Lamont [4] is a
value representing how ’far’ an approximation A of the Pareto front A is from the
true Pareto front Pf . The indicator is defined as follows:

Let

A = {a1, . . . , aj} (2.77)

be an archive with j vectors ai ∈ Rn, then

GD(A,Pf ) :=
1

j
(

j∑
i=1

dpi )
1/p, (2.78)
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where p = 2 and di is the Euclidean distance (in objective space) between the image
of ai and the nearest member of the true Pareto front.

In [5], the Inverted Generational Distance (IGD) is proposed. IGD uses as a
reference a discretization of the true Pareto front Pf , and compares each of its elements
with respect to the approximation A produced by an algorithm. This intends to
reduce some of the problems that occur with the generational distance metric when
an algorithm generates very few non-dominated solutions. IGD is defined as follows:

Let {y1, . . . ,yz} be a discretization of the Pareto front, z ∈ N, and A is defined
as in Equation (2.77), then

IGD(A,Pf ) :=
1

z
(
z∑
i=1

dpi )
1/p, (2.79)

where di denotes the Euclidean distance from yi to A.

The disadvantage of GD and IGD lies over the fact that if we increase j or z
according Equations (2.78) and (2.79) the approximation appears to be ’better’, al-
though the approximation has apparently not change. For more information, we refer
to [6].

2.5.4 Averaged Hausdorff Distance

In [6] , a new performance indicator ∆p is proposed, which can be seen as an ’averaged
Hausdorff distance’ (AHD) between the image of A and the true Pareto front and
the approximation. This new metric is composed by the indicators GD and IGD but
with slightly differences that we describe below:

Given a candidate set A = {a1, . . . , aj} and a discretization of the Pareto front
Pf = {y1, . . . ,yz}, then

GDp(A,Pf ) :=

(
1

j

j∑
i=1

dpi

)1/p

(2.80)

is the averaged semi-distance from the image of A to the discretization of the Pareto
front and

IGDp(A,Pf ) :=

(
1

z

z∑
i=1

dpi

)1/p

(2.81)
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is the averaged semi-distance of the yi’s to the image of A. Finally, we define ∆p as:

∆p := max(GDp(A), IGDp(A)). (2.82)

Hence, it holds ∆∞ = dH and ∆p with p < ∞ can be considered as an averaged
the Hausdorff distance.

2.5.5 Performance Indicators for PMOPs

As we mentioned, for every fixed value of λ the problem stated in Equation (2.14) can
be seen as a classical MOP, in that case, it is possible to use a performance indicator
for MOPs to assess the produced approximations. However, instead of having just one
scalar value, we will have a set of them depending on s which is the number of values
in the discretization of Λ. In order to avoid this, some performance indicators have
been proposed and adapted to the context of PMOPs (see [7–9] and the references
there in for more information).

2.6 Local Search Strategies based on Performance

Indicators

In general, most of the local search strategies integrated mathematical programming
techniques for improving the selected points for local search, however, the improve-
ment not always ensures to have a better value according to a performance indicator.
In the following, we introduce two local search strategies that aim for improving
points according the hypervolume indicator.

2.6.1 Bi-objective HVDS

In [89], the bi-objective hypervolume based directed search method (HVDS) was
presented. This algorithm considers a three-region division of the objective space
to produce the best improvement for a given candidate solution according to the
hypervolume.
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In order to assign a point x into one of the proposed three regions, the algorithm
uses some properties of the descent cone of a MOP stated in [1]:

1. It has been observed in [1] that if x is ’far away’ from the Pareto set, then the
objective gradients nearly point to the same direction.

2. If x is ’near’ or even in the Pareto set, then the objectives gradients point
in opposite directions [1]. Figure 2.8 shows a graphical interpretation of the
previous described properties.

Figure 2.8: Objective gradients and descent cones when x is ’far away’ (left) and
when it is ’near’ (right) [1].

Therefore, for a bi-objective optimization problem, the method can decide where a
point is located within the region division considering the angle between gradients.
Let

gi := ∇fi(x), i = 1, 2 , (2.83)

then the angle between g1 and g2 is defined by

cosα =
gT1 g2

||g1||||g2||
∈ [−1, 1]. (2.84)

The bi-objective HVDS divides the search space into three numerically detected dis-
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tance regions by setting two values a, b ∈ (−1, 1) with b < a where:

x ∈ I :⇔ cosα ≥ a,

x ∈ II :⇔ cosα ∈ (b, a),

x ∈ III :⇔ cosα ≤ b.

(2.85)

Figure 2.9(a) shows the distribution of cosα values and Figure 2.9(b) a possible
region division of the objective space using using a = 0.8 and b = −0.8.

Once a point x is assigned into one of the three regions the local search technique
applies one of the following movements:

• Local search in Region I: the algorithm exploits the fact that larger improve-
ments can be done, since both gradients point into the same direction. Then,
the Averaged Descent Direction is used coupled with an Armijo-like step size
control to move the candidate solution toward the solution set [90].

• Local search in Region II: in the case that the HVDS is applied to one single
point the directed search method is used to produce a movement toward the
Pareto front by using the following direction in objective space

dII = f(x)− r, (2.86)

where f(x) represents the objective values of x and r the selected reference
point to compute the hypervolume value. On the other hand, when more than
one candidate point is considered to apply the HVDS, they have to be sorted
according the value of f1 in ascending order. Then, the reference point rf(xi) is
constructed by

rxi =

(
f1(xi+1)

f2(xi−1)

)
. (2.87)

Hence, for intermediate points (i ∈ {2, ..., l − 1}), where l is the number of
candidate solutions, the direction used in the directed search method is given
by

dII,xi = f(xi)− rxi . (2.88)

Figure 2.10 shows graphically the construction of the reference point for inter-
mediate points.
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Figure 2.9: Values of cosα and possible region division for a bi-objective optimization
problem.

For extreme points i.e., i ∈ {1, l}, the algorithm proceed as the single point case
using Equation (2.86), where the reference point is the one given to measure
the hypervolume indicator.
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Figure 2.10: Local search in Region II for multiple archive entries.

• Local search in Region III: when a candidate point x is already near to the
Pareto front no big improvements can be reached anymore toward this set,
however, movements along it could increase the dominated hypervolume. One
of the most important advantages of the DS is the possibility to performed a
movement in any given direction d. So, by using the DS a movement along the
Pareto front can be performed by solving the minimization problem stated in
Equation (2.39) to set dIII as follows:

dIII =

(
−ã1
−ã2

)
, (2.89)

where α̃ is the solution of the problem stated in Equation (2.39).

The three movements are depicted in Figure 2.11 throughout the whole region
division in objective space.

The integration of the bi-objective HVDS into a MOEA yields a fast and reli-
able memetic algorithm to obtain hypervolume approximations of a given MOP. The
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Figure 2.11: Division of the objective space into distance regions.

MOEA used to be coupled with the bi-objective HVDS was the SMS-EMOA an state-
of-the-art algorithm. This first attempt only applied the HVDS at the beginning of
the optimization process for a certain number of iterations. To be more precise, l
elements are injected into the initial population of the SMS-EMOA, where these l el-
ements were produced by the HVDS. The l elements are, in most of the cases, ’near’
to the solution set, what makes the algorithm converge faster to the Pareto front.
Numerical results showed the advantage of integrating the HVDS into the MOEAs.
However, some possible improvements can be done to increase the applicability of the
method.
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3 | The Hypervolume based Directed

Search Method

During the last years, specialized MOEAs have performed well for the treatment
of a wide range of MOPs. The application of such techniques produces a reliable
approximation of the solution set of a given MOP. Further, algorithms of this type
compute such an approximation in one single run. However, MOEAs present a clear
disadvantage, namely they tend to converge slowly causing the use of a high num-
ber of function evaluations when the approximation is computed. In order to reduce
the number of function evaluations used within the optimization process, researchers
have proposed memetic (or hybrid) strategies [82,85,91–96]. Techniques of this type
hybridize MOEAs using local search strategies to obtain a fast and reliable approxi-
mation of the set of interest (Pareto set and front) of a MOP.

MOEAs have implemented different mechanisms to perform the selection process
during evolution. One of these mechanisms is the integration of a performance indi-
cator [97–99]. As we mentioned in Chapter 2, a performance indicator measures the
quality of an approximation of the Pareto front. Furthermore, it transforms the MOP
into a SOP, since the problem is reduced to minimize (or maximize) the scalar value
given by evaluating the performance indicator over the approximation. The MOEAs
based on a performance indicator aim to generate a set of solutions such that maxi-
mize (or minimize) the indicator value. The hypervolume indicator has been widely
used within this context, for instance, the SMS-EMOA, known as a powerful state-of-
the-art MOEA, maximizes this indicator. The indicator has some desirable properties
(see e.g. [100–103]) for instance strict monotonicity and Pareto compliance. On the
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other hand, approximations obtained by using the hypervolume prefer points in the
knee regions for a convex Pareto front and for concave ones the points are accumulated
in the extremes [88]. Also, a high computational effort is required when computing
the hypervolume value as the number of objectives is increased.

In this chapter, we introduce the Hypervolume based Directed Search Method
(HVDS) for general number of objectives. The HVDS is a local search technique that
aims to maximize the hypervolume. The proposed technique includes a region division
of the objective space applicable to MOPs where their objectives are differentiable.
Such a division allows to perform a specific local search procedure in every region
according to the position of the candidate solution x. We state different regions
according the proximity of the candidate solution x to the Pareto front: ’far away’,
’in between’, and ’near’. The integration of the Directed Search method into the
local search procedure makes possible to performed movements in any direction d

given in objective space. We present the HVDS both as standalone algorithm and
as local search engine within SMS-EMOA leading to the hybrid SMS-EMOA-HVDS.
We present numerical experiments on several benchmark MOPs with two and three
objectives to show the benefit of integrating the HVDS into a MOEA that aims for
hypervolume maximization.

3.1 Motivation

The motivation of the proposed local search strategy comes as follows: in most of the
cases, we can assume that a given point x ∈ S assigned for local search is ’far away’
from the Pareto set which happens in early stages of the search process. Then, it is
desired for the new iteration xnew to get approached as fast as possible to the set of
interest (as a whole) while the position of xnew over this set is rather secondary. On
the contrary, the following discussion shows that a steering of the search (e.g. via
Directed Search) might be even hindering the overall performance: as we mention in
Chapter 2 the work of Brown and Smith [1] stated that the objectives’ gradients of a
given MOP typically point toward similar directions if x is ‘far away’ from the Pareto
set (if existing). Consider for simplicity the extreme case, namely that all gradients
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point into the same direction, i.e., let

∇fi(x) = ϑi∇f1(x), i = 1, . . . , k, (3.1)

where ϑi > 0, i = 1, . . . , k. If xnew is obtained via line search it can be written as

xnew = x + tν, (3.2)

where t ∈ R+ is the step size and ν ∈ Rn the chosen search direction. Note that
ν defines the movement in decision space, and that the related movement in objec-
tive space is given by J(x)ν for infinitesimal small step sizes (this can be seen from
Equation (2.41)). Thus, in case (3.1) holds, we have

J(x)ν =


∇f1(x)Tν

. . .

∇fk(x)Tν

 = ∇f1(x)Tν · ϑ, (3.3)

where ϑ = (ϑ1, . . . , ϑk)
T ∈ Rk. Note that the vector in (3.3) is a multiple of ϑ,

i.e., we obtain a one-dimensional movement regardless of the choice of ν which is
n-dimensional. Though (3.1) and thus (3.3) is apparently only true if the distance of
x to the Pareto set is infinite, the range of directions d = J(x)ν in which the search
can be steered with a satisfactory step size is expected to be small for points x that
are sufficiently far away from the Pareto set. We refer to [28] for a more thorough
discussion. Thus, rather than using DS (or any other steering mechanism) it seems
to be wise to perform a greedy search toward the Pareto set.
Second, we consider the other extreme situation, namely that x is already nearly
optimal which happens in later stages of the search process. In that case no further
significant improvements can be expected when searching along descent directions.
Instead, it seems to be wise to perform the search along the Pareto front.
Finally, points do apparently not have to be ‘far away‘ nor ‘near’ to the Pareto set.
In that case we suggest to search along descent directions that (locally) improve the
hypervolume value.

Similar than the bi-objective HVDS, we suggest to divide the decision space S
into three regions and then, we define them and proposed the best fit movement for
each region:
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• Region I x is ‘far away’ from the Pareto set (denoted by ‘x ∈ I’). In that case,
a greedy search toward the rough location of the Pareto front is desired.

• Region II x is ‘in between’, i.e., neither ‘far away’ nor ‘near’ to the Pareto
front. In that case, a descent direction has to be selected such that a movement
in that direction maximizes the hypervolume.

• Region III x is ‘near’ to the Pareto set. In that case, a search along the Pareto
front will be performed.

The region division remains the same for the bi-objective HVDS, however, in that
first version the mechanism to divide into three regions is restricted to two objectives
(k = 2). In the following, we propose a new way to realize the region division for
general number of objectives and further, we discuss the local search in each region.

3.2 Region Division

In [89], it was proposed to use the angle between gradients to realize the region
division, nevertheless, this mechanism only can be applied when k = 2. Here, a new
strategy is presented in order to perform this region division.

Assume we are given an unconstrained MOP with all its objectives differentiable.
Let

RS := {x ∈ S : ∇fi(x) 6= 0, i = 1, . . . , k} (3.4)

and define η : RS → R via

η(x) =

∥∥∥∥∥
k∑
i=1

α̃i
∇fi(x)

||∇fi(x)||2

∥∥∥∥∥
2

2

, (3.5)

where α̃ is a solution of the following optimization problem

min
α∈R


∥∥∥∥∥

k∑
i=1

αi
∇fi(x)

||∇fi(x)||2

∥∥∥∥∥
2

2

: αi ≥ 0, i = 1, . . . , k,
k∑
i=1

αi = 1

 . (3.6)

The following result is the basis for the region division.
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Proposition 10. Let all objectives fi, i = 1, . . . , k, be continuously differentiable in
x ∈ RS, η be as in Equation (3.5) and x ∈ RS. Then

(a) η(x) ∈ [0, 1]

(b) η(x) = 1 ⇔ ∇fi(x) = λi∇f1(x) with λi > 0 for i = 1, . . . , k.

(c) η(x) = 0 ⇔ x ∈ RS is a Karush-Kuhn-Tucker (KKT) point.

(d) η(x) is a continuous mapping.

Proof. (a) Clearly, η(x) ≥ 0. Further, it is

η(x) =

∥∥∥∥∥
k∑
i=1

α̃i
∇fi(x)

||∇fi(x)||2

∥∥∥∥∥
2

2

≤
k∑
i=1

α̃i

∥∥∥∥ ∇fi(x)

||∇fi(x)||2

∥∥∥∥2
2

=
k∑
i=1

α̃i = 1. (3.7)

(b) "⇒": by strict convexity of the function in Equation (3.6) it follows directly
that

∇f1(x)

‖∇f1(x)‖2
= . . . =

∇fk(x)

‖∇fk(x)‖2
(3.8)

which is equivalent to Equation (3.1).
"⇐": let α be a convex weight, then

k∑
i=1

αi
∇fi(x)

||∇fi(x)||2
=

k∑
i=1

αi
λi∇f1(x)

||λi∇f1(x)||2
=

k∑
i=1

αi
∇f1(x)

||∇f1(x)||2
=
∇f1(x)

||∇f1(x)||2
(3.9)

by which it follows that η(x) = 1.

(c) "⇒": let η(x) = 0, then there exists a convex weight α s.t.
k∑
i=1

αi
∇fi(x)

||∇fi(x)||2
=

k∑
i=1

αi
||∇fi(x)||2

∇fi(x) = 0. (3.10)

Thus, choosing w̃i := αi/‖∇fi(x)‖2, i = 1, . . . , k, the vector w := w̃/‖w̃‖1 is a
convex weight with

∑k
i=1wi∇fi(x) = 0, i.e., x is a KKT point.

"⇐": now let x ∈ RS be a KKT point. That is, there exists a convex weight α
s.t.

k∑
i=1

αi∇fi(x) =
k∑
i=1

αi‖∇fi(x)‖2
∇fi(x)

||∇fi(x)||2
. (3.11)

Choosing w̃i := αi‖∇fi(x)‖2, i = 1, . . . , k, then w := w̃/‖w̃‖1 is a convex weight
such that

∑k
i=1wi∇fi(x)/‖∇fi(x)‖2 = 0, i.e., η(x) = 0.
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(d) follows by construction of η.

Thus, by the above result and using the observation made in [1] we can conclude
that (i) x is far away from the Pareto set iff η(x) is close to 1, (ii) x is near to the
Pareto set iff η(x) is close to 0, and (iii) else x is in between. Hence, by determining
two values a, b ∈ (0, 1) with a < b we can make the region division via

x ∈ I ⇔ η(x) ≥ b

x ∈ II ⇔ η(x) ∈ (a, b)

x ∈ III ⇔ η(x) ≤ a.

(3.12)

As example consider the three objective problem MOP3

f1, f2, f3 : R3 → R

fi(x) =
3∑
j=1

(xj − aij)2,
(3.13)

where a1 = (1, 0, 0)T , a2 = (0, 1, 0)T and a3 = (0, 0, 1)T . Figure 3.1(a) shows the
value of η (in objective space for a better visualization) and Figure 3.1(b) a possible
division of the image space into the three regions. For the region division we have
used a = 0.1 and b = 0.5. In the next sections a study to choose a and b is presented
for a set of benchmark functions.

Remark 1. For the important special case k = 2 (i.e., for bi-objective problems)
one can simplify the region division by using alternatively the angle between the two
gradients (see Chapter 2).

3.2.1 Specialized Local Search for every Region Division

Once a given point x for local search is located through the region division, we
propose the following search strategy for each of the three regions. First, we consider
the extreme case an archive a with only one element (|A| = 1) to perform local
search and then, we address the general archive case. The general archive represents
a generalization of the movement applied to a single point.
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(a) Values of η

(b) Region division

Figure 3.1: Values of η and possible region division for MOP (3.13).
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One Element Archives

Given an archive A = {x} with one single element, where x ∈ S is assigned for
local search and a reference point r = (r1, . . . , rk)

T for measuring the hypervolume
indicator, we proposed the following local search movements:

Local search in Region I Within this region explicit steering of the search is
a delicate problem. Thus, it seems to be wise to utilize established multi-objective
descent methods in order to approach the Pareto set/front as fast as possible. Such
methods can be found e.g. in [24,26,104].

For the treatment of points within this region, we decide to incorporate the descent
method proposed in [24] explained in Chapter 2. This method requires to solve an
additional optimization problem to compute the search direction. Nevertheless, the
computation of the Jacobian (J) of x is already done by the region division strategy,
then, we can solve this problem without calculating once again J . Figure 3.2 shows
the performed movement for a given point assigned for local search within Region
I, this movement can be observed in both decision variable and objective space. In
Region I, the reference point r is secondary, since it is more important to approach
to the solution set as a whole. Then, the movement of a x is not affected by the
position of r.

Local search in Region II If x is in Region II, the task is to find a descent direction
dII <p 0 (in objective space) such that a movement in that direction maximizes the
hypervolume. Since the new iterate xnew is performed via DS, we can (idealized)
write its image ynew = f(xnew) as

ynew = f(x) + tdII , (3.14)

where t ∈ R+ is a given (fixed) step size and dII has to be chosen such that it solves
the k-dimensional problem

max
d∈Rk

H(d) =
k∏
i=1

(ri − fi(x)− tdi)

s.t. ||d||22 = 1,

(3.15)
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Figure 3.2: HVDS in Region I.
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which is related to the maximization of the hypervolume (compare to Figure 3.3).
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Figure 3.3: Local search in Region II.

If one replaces the 2-norm by the infinity norm in the constraint of problem stated
in Equation (3.15) (which drops the assumption that the movement is done with an
equal step in objective space) a straightforward computation shows that

dII,∞ = f(x)− r (3.16)

solves the problem (where we assume that f(x) <p r). For our implementations we
have used the direction in Equation (3.16) since it is easier to calculate and since we
observed that it yields no difference in the performance of the algorithm compared
to the solution of problem Equation (3.15). Note, however, that the solution of
Equation (3.15) may come with additional CPU time but not with additional function
evaluations. Figure 3.4 depicts the path followed by a given x ∈ I toward the new
point xnew. In this case, the reference point r is used to produce the direction dII,∞

and then, the DS is applied to produced a sequence of points toward the set of interest.
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Figure 3.4: HVDS in Region II.

CINVESTAV Computer Science Department



62 Chapter 3

Local search in Region III If x is nearly optimal, a search in a descent direction
will not lead to significant improvements any more. Instead, it seems to be wise to
continue the search along the Pareto set. Here, we suggest to perform a search via DS
along the linearized Pareto front (see Figure 3.5). The particular steps of the search
are described in the following for KKT points, the steps for nearly optimal solutions
are the same.
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Pf
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Figure 3.5: Movement along linearized Pareto front in order to improve the hyper-
volume in Region III.

(1) Compute the KKT weight α associated to α. This can be done by solving
Problem (2.39).

(2) It is known that α is orthogonal to the linearized Pareto front at F (x) [29]. Thus,
an orthonormal basis of the tangent space can be obtained as follows: compute a
QU -factorization of α, i.e.,

α = QU = (q1,q2, . . . ,qk)U. (3.17)

Since Q ∈ Rk×k is orthogonal, the vectors q2, . . . , qk span the desired tangent space
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and are thus desired search directions in objective space.

(3) Now we can maximize the hypervolume in objective space similar to (3.15).
The differences here are that (i) we are restricting the search to directions d ∈
span(q2, . . . , qk) and (ii) the optimization will not only yield the optimal direction
but also the optimal step size (i.e., ynew those corresponding decision vector xnew can
be retrieved via DS). The (k− 1)-dimensional unconstrained optimization problem is
given by

max
λ∈Rk−1

H(λ) =
k∏
i=1

(ri − fi(x)− (Q2λ)i), (3.18)

where

Q2 = (q2, . . . ,qk) ∈ Rk×k−1. (3.19)

The search direction is thus given by

dIII = Q2λ
∗, (3.20)

where λ∗ is a solution of Problem (3.18).

(4) Using DS we compute xnew such that ynew ≈ f(x) + Q2λ
∗. If the hypervolume

value is not increased by xnew we perform the Armijo-like backtracking approach as
in [90] using the hypervolume value as objective function.

For the special case k = 2 the solution of (3.18) can be expressed analytically if
all the elements of the KKT weight are positive. Let k = 2 and α = (α1, α2)

T be the
KKT weights associated to x, then the tangent vector of the linearized Pareto front
at f(x) is e.g. given by d = (−α2, α1)

T and problem (3.18) can be stated as

max
λ∈R
H2(λ) = (r1 − f1(x)− λd1)× (r2 − f2(x)− λd2). (3.21)

Proposition 11. Let k = 2 and α >p 0, then the global maximizer of Problem (3.21)
is given by

λ∗ =
d1r2 + d2r1 − d1f2(x)− d2f1(x)

2d1d2
. (3.22)

Proof. If αp >p 0, then it follows that also d1, d2 6= 0. The first derivative of H2 is
given by

H2
′(λ) = 2λd1d2 + d2f1(x)− r1d2 + d1f2(x)− d1r2 (3.23)
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Setting this to zero leads to

λ∗ =
d1r2 + d2r1 − d1f2(x)− d2f1(x)

2d1d2
. (3.24)

Further, the second derivative at λ∗ is given by

vol2
′′(λ∗) = 2d1d2 < 0. (3.25)

The negativity holds since α >p 0 and by construction of d, and the claim follows.

Remark 2. We stress that due to the linearization of the Pareto front at f(x) it
can happen that the new iterate xnew is located in Region II leading to a kind of
oscillating behavior in the sequence of iterates. We have, however, not observed any
instabilities in our computations. Further, if x is already near to the optimal solution,
such oscillations do typically not happen.

Figure 3.6 shows the movement of a point x for local search located in Region
III. The aim is to reach the location over the Pareto front which maximizes the
hypervolume indicator.
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Figure 3.6: HVDS in Region I.
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Algorithm 4 shows the pseudo code of the HVDS as standalone algorithm for one-
element archives which puts together the above discussion. Figure 3.7 shows some
exemplary iterations of HVDS in all three regions of MOP (3.13).

Algorithm 4 HVDS as standalone algorithm for one element archives
Require: x0: starting point, a, b: values for region assignment; r: reference point
Ensure: : sequence {xi} of candidate solutions
i := 0

repeat

Compute η(xi) as in Eq. (2.39)
if η(xi) ≥ b then . xi ∈ I

Compute νI (e.g. as in Eq. (2.37) for k = 2, otherwise solve Problem (2.41))
Compute tI ∈ R+

xi+1 := xi + tIνI

else if η(xi) ∈ (b, a) then . xi ∈ II
dII := f(xi)− r

νII := J(xi)
+dII

Compute tII ∈ R+

xi+1 := xi + tIIνII

else . xi ∈ III
Compute the KKT weight α as in Eq. (2.39)
Compute Q2 as in Eq. (3.19)
Compute λ∗ by solving Problem (3.18)
dIII := Q2λ

∗

Compute tIII ∈ R+

xi+1 := xi + tIIIνIII . compute new iterate
end if

i := i+ 1

until tIII = 0 or a maximum number of iterations is reached

CINVESTAV Computer Science Department



THE HYPERVOLUME BASED DIRECTED SEARCH METHOD 67

1

0.5

x2

0

Px

x0
-0.5-1

-0.8

-0.6

-0.4

-0.2

x1

0x
3

0.2

0.4

0.6

0.8

-1 -0.5 0

x8

0.5 1 1.5

(a) Decision variable space

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f
3

0 Pf

f1

2

f(x8)

r

f(x0)

4 432

f2
10

(b) Objective space

Figure 3.7: HVDS as standalone algorithm for a given point x0 assigned for local
search through each region division.
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The complexity of applying one iteration of the HVDS over one single point is
given by O(k3 + n3) where n represents the dimension of the decision variable space
and k the number of objectives. The term k3 corresponds to the complexity of locating
a point into the region division, since a sequential quadratic programming method
has to be executed for obtaining α. The same term goes for the computation of the
QR-decomposition in the case that the element belongs to Region III. On the other
hand, the term n3 corresponds to the complexity of computing ν in the case that the
element belongs to Regions II or III. The cost in terms of function evaluations is
given by 5 per each iteration.

General Archives

In the following, we describe the adaption of the HVDS for archives with arbitrary
sizes. In the case of Region I the strategy to move points toward the solution set
remains the same , however, movements for Regions II and III has to be adapted to
the context.

Local search in Region I If a point x ∈ A is chosen for local search that is
according to the region division ’far away’ from the Pareto front, an improvement
toward the solution set is desired regardless of the location of the other elements of
A. Hence, we recommend to proceed as the one element archive by choosing a descent
direction from Equation (2.37) in the case of k = 2 or proceed as in [24] for k > 2.

Local search in Region II If a point xi ∈ A is located in the Region II it is
necessary to consider its neighboring solutions in A since the chosen movement in
objective space should ideally increase the contribution of the newly found solutions
xnew computed from x without decreasing the contribution of the other elements in
A. To perform this movement, we have to look for the k neighboring entries of x in A
in order to set a new reference point. For k = 2 the adaption comes straightforward
since the neighborhood from a point x is given by only two points for non-extreme
points (where the archive entries are sorted according to one objective). For the
extreme points we use the updated reference point given by the SMS-EMOA. Figure
3.8 shows the bi-objective case for setting the reference point rxi for a non-extreme

CINVESTAV Computer Science Department



THE HYPERVOLUME BASED DIRECTED SEARCH METHOD 69

0 1 2 3 4 5 6 7 8

f1

0

1

2

3

4

5

6

7

8

f
2

ynew

dII

f(xi)

f(xi+1)

II
rxi

Pf

f(xi−1)

Figure 3.8: Local search in Region II for multiple archive entries.

point.
For k > 2, the problem becomes more complicated since a neighborhood is not well
defined (in the case of k = 2 it is enough only ordering the points in descending order
to define the neighbors, however, for k > 2 it is not the case). To overcome this
problem, we propose to choose such points that minimize the difference between each
objective of f(x) from all non-dominated points in the population. Once having these
points, we are now in the position to construct a new rx and use Equation (3.16) for
obtaining the improvement direction. Algorithm 5 shows the pseudo code to obtain
the reference point.

Local search in Region III For Region III, we proceed to use the new reference
point as stated for Region II. To be more precise, we propose to use the reference
point rx for intermediate points (i.e., i ∈ {2, . . . , l − 1} where l is the number of
elements assigned for local search in the archive A) and the original point r for the
extreme archive entries (i.e., i ∈ {1, l}). In this case, we follow the same process as
the one element archive using the generated reference point.

The complexity of applying one iteration of the HVDS for general archives is
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Algorithm 5 Set reference point for Region II
Require: Point x from A in Region II and the set of non-dominated points M from
the current population.

Ensure: Reference point rx
for i = 1, . . . , k do

Set rx,i = 0

Set Di :=∞
for all points m in M do

aux := fi(m)− fi(x)

if fi(m) > fi(x) and aux < Di then

Di := aux

rx,i := fi(m)

end if

end for

end for

given by O(µk3 + µn3) where µ represents the size of the archive. The cost in terms
of function evaluations is given by 5µ per each iteration.

3.3 Integrating HVDS into SMS-EMOA

In the following, we present the integration of the HVDS for k > 2 into an EMOA. As
base algorithm we have chosen to take SMS-EMOA since it is a state-of-the-art evo-
lutionary algorithm that aims for optimal hypervolume approximations of the Pareto
front. HVDS is integrated into SMS-EMOA as additional generational operator with
a certain probability pHVDS for application (for an empirical evaluation of the values
of pHVDS, a, and b we refer to the next section). As a brief discussion, the bi-objective
HVDS was only integrated at the beginning of the search. Now, the algorithm will
work as a generational operator which improves elements overall the optimization
process. To be more precise, the new hybrid algorithm SMS-EMOA-HVDS starts by
initializing a population P of µ elements at random from the domain S. Once hav-
ing the initialized population the process begins by generating only one offspring x

by genetic operators (crossover and mutation). HVDS is integrated as an additional
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generational operator for the produced new elements in each generation. That is,
after producing a new element the algorithm selects a value p ∈ [0, 1] uniformly at
random. If p is less or equal than the probability pHVDS the local search procedure
will be applied, otherwise the new candidate solution is added to P . It is important to
mention that the probability pHVDS balances the emphasis between global and local
search during the whole run of the algorithm. The aim to apply HVDS is to push
the entire population toward the solution set during the algorithm process. In this
case the produced element can be everywhere within the objective space, however,
thanks to the region division we can make the decision of which LS strategy should
be chosen in order to improve the hypervolume. Each time the HVDS strategy is
called, it executes only one iteration step in our current implementation. Further, we
use the dynamic reference point described in Algorithm 5. Algorithm 6 shows the
pseudo code of the resulting algorithm SMS-EMOA-HVDS.
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Algorithm 6 SMS-EMOA-HVDS
Require: MOP, archive size µ, values a, b for region division, probability pHVDS to
apply the local search operator

Ensure: An approximation P of the Pareto given MOP.
Initialize a population P ⊂ Q with µ elements at random
repeat

generate offspring x ∈ Q from P by variation
choose p ∈ [0, 1] uniformly at random
if p ≤ pHVDS then . Apply HVDS

choose the generated offspring x for local search
x̃ :=HVDS(x, a, b, R)

else

x̃ := x

end if

P := P ∪ {x̃}
build ranking S1, . . . , Sh from P

compute the hypervolume contribution for each x ∈ Sh
denote by x∗ the element with the least hypervolume contribution
P := P \ {x∗}

until stopping criterion fulfilled
return P

3.4 Test Problems

The proposed hybrid algorithm is going to be tested over well-established two-objective
(2D) and three-objective (3D) test function problems. For k = 2 (2D), we consider
the DTLZ and the shifted and unconstrained ZDT (see [105]) test suites. In addition,
two problems with a convex (MOP1) and convex-concave (MOP-DENT) Pareto fronts
are included to the set of test functions. For k = 3 (3D), we select the DTLZ test
suite and a convex Pareto front problem to see the applicability of the HVDS and a
problem with convex Pareto front (MOP3). The previous test function problems were
selected in order to see the behavior of the memetic algorithm within certain charac-
teristics. For instance unimodal (DTLZ2, ZDT1, ZDT2, ZDT3, MOP1, MOP3 and
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MOP-DENT) and multimodal (DTLZ1, DTLZ3, DTLZ7, and ZDT6) test functions.
Also different shapes of the Pareto fronts are considered such as linear (DTLZ1),
convex (ZDT1, ZDT2, ZDT6, MOP1 and MOP3), concave (DTLZ2 and DTLZ3),
disconnected (ZDT3 and DTLZ7), and convex-concave (MOP-DENT) Pareto fronts
(see Appendix A for the definition of the selected MOPs).

3.5 Parameter setting

Over this section, we define the process to set the design parameters of Algorithm 6.
In Table 3.1 the parameters are explained in more detail.

Table 3.1: Design parameters that are required for the realization of the HVDS.
Parameter Description

a Parameter to set the region division a ∈ (0, 1).

b Parameter to set the region division b ∈ (0, 1) ∧ a < b.

pHVDS Probability to apply the HVDS as an operator.

The design parameter configuration task is a time-consuming process which needs
a high computational effort, however, it is necessary to find the best design param-
eters for an algorithm. In this case, we desire to find such parameters which work
properly for the memetic algorithm. To perform this task, we use an adaption of
the sequential parameter optimization (SPO) technique for tunning stochastic opti-
mization algorithms proposed in [106] and extended to multi-objective optimization
problems in [107, 108]. The SPO is adapted in the following to optimized the design
parameters explained in Table 3.1.

3.5.1 Experimental Construction

Unlike the works proposed in [107, 108], we aim to find the best design parameters
for our local search technique HVDS instead of finding the design parameters of the
multi-objective evolutionary algorithm. Tables 3.2 and 3.3 show the setups for the
experiments in 2D and 3D respectively.
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Table 3.2: Setup for experiments in 2D with the SMS-EMOA-HVDS.
Name Description

Problems DTLZ1, DTLZ2, DTLZ3, MOP1, MOP-DENT,
ZDT1, ZDT2, ZDT3, ZDT6.

HVDS parameters a, b, and pHVDS.

Stopping criterion 30,000 function evaluations.

Algorithm initialization Uniform random.

Performance indicator Hypervolume.

Table 3.3: Setup for experiments in 3D with the SMS-EMOA-HVDS.
Name Description

Problems DTLZ1, DTLZ2, DTLZ3, DTLZ7, and MOP3.

HVDS parameters a, b, and pHVDS.

Stopping criterion 50,000 function evaluations.

Algorithm initialization Uniform random.

Performance indicator Hypervolume.

Additionally, in Table 3.4 we determine the region of interest (ROI) of each design
parameter and the discretization of every region to avoid wrong configurations.

Table 3.4: Setup for experiments in 3D with the SMS-EMOA-HVDS.
Parameter ROI Discretization

a [0.05, 0.2] {0.05, 0.1, 0.15, 0.2}
b [0.2, 0.9] {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

pHVDS [0.01, 0.2] {0.005, 0.01, 0.05, 0.1, 0.2}

We perform 20 independent experiments for every test function problem and the
reference point is problem dependent, nevertheless in most of the cases, we take
(11, 11)T for 2D and (11, 11, 11)T for 3D. In total, we have to perform 3,200 exper-
iments for each test function problem. Table 3.5 includes the configuration of the
design parameters of the SMS-EMOA.
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Table 3.5: Configuration values for SMS-EMOA, where DI means “distribution in-
dex”, SBX stands for simulated binary crossover and PM for polynomial mutation.

Description Parameter 2D values 3D values

Crossover Operator SBX DI = 20.0, p = 0.9 DI = 20.0, p = 0.9

Mutation Operator PM DI = 20.0, p = 1/n DI = 20.0, p = 1/n

Population Size µ 100 300

In order to decide which of the configuration is the best, we use boxplots in three
different stages of the evolution process to see the performance of each configuration
against the SMS-EMOA without local search. Then, we select the ones which obtain a
better value than SMS-EMOA. Finally, we select the configuration which outperforms
SMS-EMOA and behaves well in the different test function problems.

3.6 Numerical Results

The algorithm was applied 20 times with population sizes 100 (2D) and 300 (3D),
respectively. The value of the hypervolume indicator (HV) of the final result is used as
basis of comparison to respective runs of the original SMS-EMOA. Based on extensive
systematic investigations performed in the previous section, the settings a = 0.2, b =

0.4 (2D) resp. a = 0.1 (3D) together with pHVDS = 0.005 turned out to be most
stable over all settings while in general algorithm behavior is not extremely sensitive
regarding the respective settings of a and b. A dynamic reference point was used
for Region II (see Algorithm 5). Tables 3.6 and 3.7 provide the detailed algorithm
settings along with the experimental results and thereby allows for the assessment of
the effect of the HVDS operator.

For all test functions, the superior algorithm regarding the average HV is high-
lighted in gray indicating that the sophisticated local search strategy indeed has a
positive effect on algorithm performance. The corresponding ordering regarding me-
dian performance only changes slightly. Moreover, on all considered problems the
percentage of the covered optimal hypervolume is very high while keeping in mind
that the number of function evaluations has not been specifically tuned to gain opti-
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Table 3.6: HV results of SMS-EMOA with HVDS as operator (using the same number
of function evaluations). The values are obtained over 20 independent test runs and
for k = 2, 3.

SMS-EMOA-HVDSMO

Problem # Func n Average Deviation Median Covered HV

DTLZ1 (2D) M 30K 15 118.25014 3.65605 119.61943 97.82947 %

DTLZ2 (2D) U 10K 30 120.20997 0.00055 120.21009 99.99944 %

DTLZ3 (2D) M 30K 15 101.84429 23.49979 105.40498 84.72152 %

MOP1 (2D) U 10K 2 3251.81142 16.40663 3253.60993 99.81105 %

MOP-DENT (2D) U 10K 2 17.34873 0.00220 17.34852 99.88260 %

ZDT1 (2D) U 10K 30 109.53759 0.17000 109.60691 99.88643 %

ZDT2 (2D) U 10K 30 108.61966 1.95078 109.22509 99.35129 %

ZDT3 (2D) U 10K 30 116.73398 1.46083 117.67874 99.11522 %

ZDT6 (2D) M 10K 15 104.81097 0.97200 104.78108 98.40024 %

MOP3 (3D) U 10K 15 21.14882 0.03884 21.16804 99.99858 %

DTLZ1 (3D) M 50K 15 1330.93727 0.07304 1330.97379 99.99723 %

DTLZ2 (3D) U 10K 30 1330.41646 0.00501 1330.41637 99.99920 %

DTLZ3 (3D) M 50K 15 1326.62757 5.85269 1330.17426 99.71441 %

DTLZ7 (3D) M 30K 15 964.42986 57.13546 992.99807 97.10511 %
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Table 3.7: HV results of SMS-EMOA without HVDS as operator (using the same
number of function evaluations). The values are obtained over 20 independent test
runs and for k = 2, 3.

SMS-EMOA

Problem # Func n Average Deviation Median Covered HV

DTLZ1 (2D) M 30K 15 117.40941 5.64543 119.24526 97.13393 %

DTLZ2 (2D) U 10K 30 120.20604 0.00130 120.20637 99.99617 %

DTLZ3 (2D) M 30K 15 105.68880 9.48479 107.17194 87.91967 %

MOP1 (2D) U 10K 2 3248.72641 22.57145 3253.23842 99.71636 %

MOP-DENT (2D) U 10K 2 17.34866 0.00270 17.34891 99.88220 %

ZDT1 (2D) U 10K 30 109.26564 0.63385 109.57209 99.63844 %

ZDT2 (2D) U 10K 30 106.42534 3.45765 109.13577 97.34421 %

ZDT3 (2D) U 10K 30 117.05177 1.27276 117.69188 99.38512 %

ZDT6 (2D) M 10K 15 97.60659 1.49610 97.41107 91.63651 %

MOP3 (3D) U 10K 15 21.10150 0.04299 21.09881 99.77483 %

DTLZ1 (3D) M 50K 15 1330.93127 0.07912 1330.97013 99.99678 %

DTLZ2 (3D) U 10K 30 1330.41083 0.00288 1330.41086 99.99878 %

DTLZ3 (3D) M 50K 15 1325.70533 8.01075 1330.19390 99.64509 %

DTLZ7 (3D) M 30K 15 993.01561 0.02094 993.01893 99.98331 %
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Figure 3.9: Example of the set of boxplots using the hypervolume indicator in three
different stages for the 3-objective: DTLZ1.

mal hypervolume. The optimal HV values for all the problems have been computed
by numerically solving the following (µ · n)-dimensional scalar optimization problem

max
v(1),...,v(µ)∈Rn

H(v(1), . . . , v(µ); r), (3.26)

where µ denotes the population size and H : Rn·µ → R the objective of the population
based hypervolume indicator.

Robustness and statistical significance of the results can be assessed by observing
the algorithms’ behavior along the whole run in Figures 3.10 to 3.16 and section 3.6.
Also SMS-EMOA-HVDS often shows faster convergence in earlier phases of the opti-
mization. The respective boxes range from the lower up to the upper quartile while
the median is higlighted by a horizontal line inside the box. Points are plotted indi-
vidually as outliers if they are larger than box boundaries plus resp. minus 1.5 times
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the interquartile range. The plotted whisker terminates at the adjacent point, which
is the most extreme point that is not an outlier. Results with (LS) and without local
search (WLS) are compared while the horizontal line visualizes the median HV of the
original SMS-EMOA runs.

Figure 3.10: Comparison using boxplots for ZDT1 (2D) during 30,000 function eval-
uations (F).

Figure 3.11: Comparison using boxplots for ZDT2 (2D) during 30,000 function eval-
uations (F).
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Figure 3.12: Comparison using boxplots for ZDT3 (2D) during 30,000 function eval-
uations.

Figure 3.13: Comparison using boxplots for ZDT6 (2D) during 30,000 function eval-
uations (F).

Figure 3.14: Comparison using boxplots for DTLZ1 (3D) during 50,000 function
evaluations (F).
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Figure 3.15: Comparison using boxplots for DTLZ2 (3D) during 50,000 function
evaluations (F).

Figure 3.16: Comparison using boxplots for DTLZ3 (3D) during 50,000 function
evaluations.

Figure 3.17: Comparison using boxplots for DTLZ7 (3D) during 50,000 function
evaluations.
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Figures marked with (F) reflect a statistically significant result based on the
Wilcoxon Rank test using a significance level α = 0.05. It becomes obvious that in
3D the SMS-EMOA supplemented with the HVDS strategy outperforms the original
version for almost all test functions. In the case of ZDT3 and DTLZ7, we detect
that the performed movements in Region III has no positive effect for certain regions
within a disconnected Pareto front. The extremes of every disconnected segment of
the Pareto front could, in this case, produce dominated points, since we performed
a search over the orthogonal vector to the linearization of the Pareto front. Then,
this linearization could point to a dominated region which cause that the generated
point does not improve the hypervolume value. For DTLZ3, we observe that since the
problem is multimodal movement in Region III could occur over local fronts which
cause no improvement to the hypervolume. In 2D, results are comparable for all
test functions and superiority of the local search variant is given for DTLZ3, ZDT1,
ZDT2 and ZDT6. However, also due to the sophisticated strategy in Region III which
searches along the Pareto front, the algorithm in general faces special challenges for
disconnected fronts.
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volume Indicator

Multi-objective optimization problems are predominantly solved by population based
metaheuristics. Based on stochastic search operators they perform robustly, however,
also tend to lack precision in the final stage of the approximation as well as conver-
gence guarantees. In the last decade, the hypervolume indicator has been one of the
most widely used tool to measure the performance in evolutionary multi-objective op-
timization. This indicator has also been integrated into some derivative free evolution-
ary methods that work to maximize the hypervolume value (see [57,84,99,109,110]).
While stochastic methods that aim for maximizing the hypervolume value have re-
ceived considerable attention, research on using deterministic and derivative based
methods is still in its infancy. The use of gradients in multi-objective optimization
has long been considered as a remedy to imprecision [24, 26, 95, 111]. However, the
initially proposed methods were only able to improve the closeness to the Pareto
front, but not the diversity of approximations. In order to include diversity in gradi-
ent based search for Pareto fronts Schütze et al. proposed directed search methods
(see [28, 85]), which allow not only to move towards the Pareto front based on local
gradient information, but also along the Pareto front in order to increase diversity.
Among these contributions to the state-of-the-art, it is not clearly specified how im-
provements can (or should) be measured. The integration of an indicator can steer
the local search in better directions and also be more effective for improving points.

As already mentioned, Emmerich et al. proposed to use the hypervolume gradi-
ent defined on an entire population in order to find diverse set-approximations to the
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Pareto front (see [35, 36]). These first results showed that gradient based methods
can locally improve accuracy of hypervolume maximal sets, however, specialized step
size control strategies has to be coupled with the method to work properly.

In this chapter, we present a full study of the behavior of population based tech-
niques that aim for maximizing the hypervolume value, more specifically the produced
result by following the hypervolume gradient flow. Under this flow, populations evolve
toward a final state (population) whose hypervolume indicator is locally maximal.
Some insights obtained on selected test functions explain to a certain extent obser-
vations made in previous studies and give some possible insights into the application
of mathematical programming techniques to this problem. Next, the hypervolume
Hessian matrix is stated and we present two ways to compute it by using finite dif-
ferences and its exact computation. Based on this, we propose the population based
Hypervolume Newton Method (HNM) for hypervolume maximization. We first ad-
dress unconstrained MOPs and make further on first attempts for the treatment of
constrained problems by including inequality and equality constrained MOPs. Fast
population-based convergence can be observed towards optimal populations, however,
the results indicate that the success depends crucially on the choice of the initial popu-
lation. The resulting method may even converge quadratically, however, this property
is—as for all Newton methods—only of local nature. Also, we propose a hybrid of the
HNM and an evolutionary algorithm in order to obtain a fast and reliable algorithm
for the numerical treatment of such problems. Finally, to show the strengths of both
methods the HNM standalone algorithm and the novel memetic approach, we present
numerical results and comparisons on several benchmark problems.
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4.1 The Hypervolume Gradient Flow

Here, we start by investigating the flow that is induced by the hypervolume gradient.
The aim of this study is to understand the success of failure of using the hypervolume
gradient direction over different MOPs. Recall from Chapter 2 that we can state the
hypervolume function H set-based (i.e., the variables of H are individuals of a given
approximation set) as in Equation (2.53). Then, the hypervolume flow of a given
starting vector X0 can be stated as the following initial value problem:

X(0) = X0 ∈ Rn with |X0| = µ

Ẋ(t) = ∇H(X(t)), t > 0.
(4.1)

By following this flow, we obtain for every initial vector X0 a final vector whose
hypervolume is locally optimal (this is due to the fact that the hypervolume gradient
is zero at every end point of Problem (4.1)). Thus, the geometry of such solution
curves are of particular interest for the understanding of the success or failure of the
related hypervolume gradient-based optimization technique.

For our purpose, we consider the next four bi-objective optimization problems:

1. The generalized Schaffler problems (MOP-GSP) by Emmerich and Deutz (
[112]):

f1, f2 : Rn → R

f1(x) =
(
∑n

i=1 x
2
i )
α

(nα)

f2(x) =
(
∑n

i=1(1− xi)2)α

(nα)

. (4.2)

The Pareto set of this problem family is given by the line segment connecting
the points (0, 0)T and (1, 1)T (including the end points). The Pareto front is
concave for α < 0.5, linear for α = 0.5, and convex for α > 0.5. For α = 0.5 the
hypervolume indicator maximum is known to be an evenly spaced point set on
the efficient set and Pareto front [112].
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2. The next problem is MOP2 ( [16]):

f1, f2 : R2 → R

f1(x) = (x1 − 1)4 + (x2 − 1)2

f2(x) = (x1 + 1)2 + (x2 + 1)2

. (4.3)

The Pareto set is a curve connecting the points m1 = (1, 1)T and m2 =

(−1,−1)T and its Pareto front is convex.

3. We consider also the problem MOP1 stated in (2.13) variant of the above model.
In this case the Pareto set is a line segment connecting m1 and m2, and the
Pareto front is convex.

4. Finally, we will consider the MOP-DENT ( [113]):

f1, f2 : R2 → R

f1(x) =
1

2
· (
√

(1 + (x1 + x2)2) +
√

(1 + (x1 − x2)2) + x1 − x2) + λ · e(−1·(x1−x2)2)

f2(x) =
1

2
· (
√

(1 + (x1 + x2)2) +
√

(1 + (x1 − x2)2)− x1 + x2) + λ · e(−1·(x1−x2)2),

where λ = 0.85

.

(4.4)

For the domain S = [−4, 4]2 the Pareto front is the line segment connecting the
points (4,−4)T and (−4, 4)T and its Pareto front is convex-concave.
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Example 1. To examine the hypervolume flow, we first consider MOP-GSP for
α = 0.5 (see Figure 4.1). The optimal archive in this case are two Pareto optimal
solutions near to the end points of the solution set. Starting with the 2-element
archive

X0 = {x1 = (−0.5,−2.6)T ,x2 = (0.5, 2.6)T}, (4.5)

we can observe that both individuals x1 and x2 directly move toward the nearest
optimal solution. The flow hence yields the desired behavior.
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Figure 4.1: Hypervolume flow on a 2-element population on MOP-GSP for α = 0.5.
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Example 2. Next, we consider MOP1 (see Figure 4.2). Similar to Example 1 the
optimal archive are two Pareto optimal solutions, in this case the optimal points are
not near to the end points of the solution set. Starting with the 2-element archive

X0 = {x1 = (−0.5,−2.3)T ,x2 = (0.3, 2.6)T}, (4.6)

we can observe that both individualsx1 and x2 directly move toward the nearest
optimal solution. The flow hence yields again the desired behavior.
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Figure 4.2: Hypervolume flow on a 2-element population on MOP1.
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Example 3. We consider a 5-element population on MOP-GSP for α = 1.25 (see
Figure 4.3). Similarly to the above two examples, all individuals of the initial popu-
lation

X0 = {x1 = (0.0,−0.6)T ,x2 = (0.1, 0.7)T ,x3 = (0.2, 0.7)T ,x4 = (0.3, 0.8)T ,x5 = (0.5, 1.0)T},
(4.7)

perform a more or less direct movement (both in decision and objective space) toward
the optimal 5-element hypervolume archive for the reference point r = (10, 10)T .
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Figure 4.3: Hypervolume flow on a 5-element population on MOP-GSP for α = 1.25.
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Example 4. Next, we consider the same initial population as before, but consider
MOP-GSP with α = 0.5 and α = 0.25 (i.e., only the value of α in the model has
been changed, the Pareto front is now linear and then concave, respectively). Instead
of a convergent behavior we see in Figures 4.4 and 4.5 that the extreme solutions
x1 and x5 (to be more precise, the solutions such that the images f(xi) are minimal
according to f1 and f2, respectively) perform a movement toward the extreme points
of the Pareto set/front. The other solutions also perform a movement toward the
Pareto set, however, it is apparent that this is done with a much slower ‘speed’.
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Figure 4.4: Hypervolume flow on a 5-element population on MOP-GSP for α = 0.5.
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Figure 4.5: Hypervolume flow on a 5-element population on MOP-GSP for α = 0.25.

The reason for this ‘creepiness’ is certainly the huge difference in the norms of
the sub-gradients. A discretization of (4.1) via the Euler method leads from a given
population Xi to the new one

Xi+1 = Xi + ti∇H(Xi), (4.8)

where ti > 0 is the chosen step size. For every individual xj ∈ Xi it thus holds

x
(new)
j = xj + tigj, (4.9)

where x(new)
j denotes the new individual and gj ∈ Rn the sub-gradient of ∇H and xi.
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For the difference of the two individuals it holds hence

‖x(new)
j − xj‖ = ti‖gj‖. (4.10)

Since ti is equal for all sub-gradients, the speed of the movement is hence entirely
determined by the norm of the sub-gradients. Figure 4.6 shows the evolution of the
norms of the sub-gradients for the populations considered in Examples 3 and 4. In
both cases, there is a significant difference in the norms, namely the norms for the
extreme solutions are much higher than the norms of the other individuals. While
this difference reduces for the first problem until all norms are in the same range,
this does not hold for Example 4. Instead, this difference is nearly stable for the
considered sequence.
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Figure 4.6: Behavior of the norms of the sub-gradients of the populations considered
in Figures 4.3 to 4.5.
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Example 5. Figures 4.7 and 4.8 show two examples of 5-element populations where
domination occurs (using MOP2 and MOP-DENT). To be more precise, it happens
along the gradient flow that solutions in the population start to dominate others.
Strictly dominated solutions have a hypervolume contribution that is constantly zero
in some epsilon environment and their sub-gradients are zero vectors which causes
the points that correspond to these sub-gradients to become stationary. The search
continues with the remaining non-dominated solutions. In both cases, the iterations
converge toward the optimal hypervolume archive, albeit for 3 elements.
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Figure 4.7: Hypervolume flow on a 5-element population on MOP2.
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Figure 4.8: Hypervolume flow on a 5-element population on MOP-DENT.
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As we mention in Chapter 2 a study on the use of the steepest ascent method for
the numerical realization of (4.1) can be found in [35]. Linear set-wise convergence
has been achieved in case of linear Pareto fronts, however, also the loss of certain
elements during the search as a result of domination has been reported. The above
observed creepiness may be an explanation for this phenomenon.

4.2 The Hypervolume Hessian

In this section, we start by approximating the Hessian matrix using finite differences.
Then, we derive the mathematical expression of the Hessian matrix of the hyper-
volume indicator for the general multi-objective optimization scenario. Finally, the
Hessian matrix for bi-objective cases is presented by its mathematical formulation.

4.2.1 Approximating the Hypervolume Hessian

Before, we derive the mathematical expression for computing the Hypervolume Hes-
sian matrix, we use the following finite difference approximation to compute each
member of this matrix:

∇2HF(X)i,j =
HF(X+ hei + hej)−HF(X+ hei − hej)−HF(X− hei + hej)−HF(X− hei − hej)

4h2
(4.11)

where i and j represent the entry of the Hessian matrix ∇2HF(X) ∈ Rµ·n×µ·n and
ei and ej represent the ith-column and the jth-column respectively of the identity
matrix e ∈ Rµ·n×µ·n. We set h = 0.001 for all our computations.

4.2.2 Analytic Formulation of the Hypervolume Hessian

Here, the analytic formulation of the Hypervolume Hessian matrix is presented. For
conciseness, matrix calculus notations are used in the following derivation, which
helps to understand the structure of the Hessian matrix. The hypervolume Hessian
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matrix is the “Jacobian” of the hypervolume gradient defined as follows:

∇2HF(X) =
∂

∂X

(
∂HF(X)

∂X

)
(4.12)

=

 ∂

∂X

(
∂HF(X)

∂x(1)

)
︸ ︷︷ ︸

µ·n×n

, . . . ,
∂

∂X

(
∂HF(X)

∂x(µ)

)

=


∂

∂x(1)

(
∂HF(X)

∂x(1)

)
. . . ∂

∂x(1)

(
∂HF(X)

∂x(µ)

)
... . . . ...

∂
∂x(µ)

(
∂HF(X)

∂x(1)

)
. . . ∂

∂x(µ)

(
∂HF(X)

∂x(µ)

)
 ,

where each sub-gradient is differentiated with respect to X. This results in µ2 block
partitions (n × n) of the Hessian matrix. The (i, j)-block matrix can be further
expressed as follows:

∂

∂x(i)

(
∂HF(X)

∂x(j)

)
=

∂

∂x(i)

(
∂y(j)

∂x(j)

∂HF(X)

∂y(j)

)
=

k∑
z=1

∂

∂x(i)

(
∂fz(x

(j))

∂x(j)

∂HF(X)

∂fz(x(j))

)

=
k∑
z=1

∂

∂x(i)

(
∂HF(X)

∂fz(x(j))

)
∇fz(x(j))

>

︸ ︷︷ ︸
Aij

+
k∑
z=1

∂2fz(x
(j))

∂x(i)∂x(j)

∂HF(X)

∂fz(x(j))︸ ︷︷ ︸
Bij

.

According to the differentiation above, each (i, j)-block matrix is a combination
of two components: Aij and Bij. Note that matrix Aij, ∂

∂x(i)

(
∂HF(X)

∂fz(x(j))

)
is a column

vector of size n and stands for the sub-gradient of ∂HF(X)

∂fz(x(j))
at x(j). In the following,

we abbreviate fz(x(i)) as f (i)
z and its gradient ∇fz(x(i)) as ∇f (i)

z .

4.2.3 The Hypervolume Hessian for k = 2

In the following, we define how to compute the two components Aij and Bij for k = 2.
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First Component Matrix: Aij

Matrix Aij has size n× n and can be expressed as a sum of outer products:

Aij =
k∑
z=1

∂

∂x(i)

(
∂HF(X)

∂f
(j)
z

)
∇f (j)

z

>
. (4.13)

In the following lemma, a detailed expression of Aij is given for the bi-objective
case (k = 2). Without loss of generality, we assume that the objective vectors (and
corresponding decision vectors) are arranged according to the ascending order of the
first objective values.

Lemma 12. Let k = 2 and all vectors x(i), i = 1 . . . , µ, be mutually non-dominated,
the first component Aij is non-zero only if the block matrix is located on the main
diagonal (i = j) or the first diagonal above/below the main diagonal (|i− j| = 1), and
it can be written as:

Aij =



∇f (j)
2 ∇f

(j)
1

>
+∇f (j)

1 ∇f
(j)
2

>
if i = j

−∇f (j+1)
1 ∇f (j)

2

>
if i = j + 1

−∇f (j−1)
2 ∇f (j)

1

>
if i = j − 1

0 otherwise.

(4.14)

Proof. Assume a fixed reference point r = (r1, r2)
>. To simplify the formulation,

we denote f (µ+1)
1 := r1 and f

(0)
2 := r2. The partial derivative of the hypervolume

indicator w.r.t. the objective value is derived in [36], which corresponds to the length
of the steps of the attainment curve:

∂HF(X)

∂f
(j)
1

= f
(j)
2 − f

(j−1)
2 ,

∂HF(X)

∂f
(j)
2

= f
(j)
1 − f

(j+1)
1 . (4.15)

It is clear that ∂HF(X)

∂f
(j)
1

is a function of only x(j) and x(j−1) (similar argument holds

for ∂HF(X)

∂f
(j)
2

). The gradient of the partial derivatives can be given, for example:

∂
∂x(j)

(
∂HF(X)

∂f
(j)
z

)
= ∇f (j)

2 . Such a gradient is nonzero for at least one objective func-
tion, when i = j, i = j + 1 or i = j − 1. By substituting the required gradients into
Equation (4.13), the expression of Aij can be obtained.
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Second Component Matrix: Bij

Bij is a weighted sum of second order derivatives of the objective functions, where the
weights are partial derivatives of the hypervolume indicator at each objective value
(cf. Equation (2.55)). Note that the second order derivative ∂2f

(j)
z

∂x(i)∂x(j) is not zero if
and only if i = j:

H(j)
z :=

∂2f
(j)
z

∂x(j)2

is the Hessian matrix of objective function fz at point x(j). Consequently, matrix Bij

can be written as:

Bij =


∑k

z=1
∂HF(X)

∂f
(j)
z

H
(j)
z if i = j

0 if i 6= j.
(4.16)

Note that ∂HF(X)

∂f
(j)
z

can be obtained from Equation (4.15).

The complexity of computing the hypervolume Hessian matrix is given byO(µ2n2k)

where µ is the number of elements in X, n represents the dimension of the decision
variable space, and k the number of objectives. The term µ2n2k corresponds to the
complexity of constructing both blocks Aij and Bij, since we have to construct µ2

blocks and each block has n2 elements and for each computation of the block Aij we
have to compute a vector of k entries. The cost in terms of function evaluations is
given by (4 + 6n)µ.

4.3 The Hypervolume Newton Method

In this section, we state the population based Newton method for hypervolume max-
imization. This can be done, since we have now the gradient and Hessian of the
hypervolume indicator. For this, we will first consider the unconstrained case and
later on discuss first attempts to treat constrained problems.

4.3.1 Unconstrained Case

Given an unconstrained MOP and a population of µ individuals, the Newton step (or
Newton function) is defined as follows:
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N :Rµ·n → Rµ·n

N(X) : = X−∇2HF (X)−1∇HF (X).
(4.17)

The Newton direction for the entire population is given by

νN := −∇2HF (X)−1∇HF (X) ∈ Rµ·n, (4.18)

and the according directions for each individual x(i) of X are denoted by ν(i)N ∈ Rn,
i = 1, . . . , µ.

Since the hypervolume indicator sub-gradient (Equation 2.55) for the strictly dom-
inated sub-vector x(i) of X is zero also its corresponding Newton direction will be
zero. Consequently, such a point will remain stationary when applying the set-based
Newton method. In the following, we restrict the approximation set X to the set
of mutually non-dominated elements. For this purpose, we define the set X̃ as the
subset of X that contains all its non-dominated elements. The Hypervolume Newton
Method (HNM) is thus defined as

X0 ∈ Rµ·n

Xi+1 = N(X̃i), for i = 0, 1, 2, . . . .
(4.19)

The pseudo code for HNM is shown in Algorithm 7. For the step size control
we suggest to choose the initial step t̃0 = 1 together with quadratic backtracking to
satisfy the Wolfe Conditions [12] on the hypervolume. If automatic differentiation [12]
is used to evaluate the (exact) gradient and the Hessian matrix at the iterate Xi, the
cost for each Newton step is given by 5µ + (4 + 6n)µ function evaluations and the
complexity is given by O(µ2n2) since a linear system of equations has to be solved
by using for instance matrix inversion performing by a Cholesky Decomposition. The
complexity is reduced since in this case the hypervolume Hessian matrix is sparse.
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Algorithm 7 HNM(X0, Imax, tolx)

Require: An initial point X0 ∈ Rµ·n, maximal number of iterations Imax, tolerance
tolx ∈ R+.

Ensure: The best found Newton iteration X(N) according to H.
1: for i = 0 to Imax do
2: Compute X̃i, ∇HF(X̃i), ∇2HF(X̃i)

3: Compute step size ti ∈ R+

4: Xi+1 := X̃i − ti∇2HF (X̃i)
−1∇HF (X̃i)

5: if ||∇HF(Xi+1)|| < tolx then

6: return X(N) := Xi+1

7: end if

8: end for

9: return X(N) := Xi+1

Example 6. In order to demonstrate the performance of the HNM, we consider the
MOP1 (stated in (2.13)) where we choose as reference point r = (20, 20)T .

(a) We choose µ = 5 and the initial population X0 as

X0 = {x(1)
0 ,x

(2)
0 ,x

(3)
0 ,x

(4)
0 ,x

(5)
0 }

=

{(
0

−2

)
,

(
0.5

−1.5

)
,

(
1

−1

)
,

(
1.5

−0.5

)
,

(
2

2

)}
.

(4.20)

Figure 4.9 shows the performance of HNM both in decision and objective space.
As it can be seen, the iterations quickly approach the optimal solution for µ = 5

and a given reference point. This observation is confirmed in Table 4.1, where
the hypervolume values, the norm of the gradients, and the error—measured in
terms of the Hausdorff distance [6] ofXi and the optimal solution—are displayed
for each iteration. The values indicate quadratic convergence.

(b) Next, we consider the same setting but using as initial population

X0 = {x(1)
0 ,x

(2)
0 ,x

(3)
0 ,x

(4)
0 ,x

(5)
0 }

=

{(
−0.12

−1.57

)
,

(
0.48

−1.24

)
,

(
1

−1

)
,

(
1.32

−0.26

)
,

(
1.89

−0.11

)}
.

(4.21)

Figure 4.10 and Table 4.2 show the numerical results of HNM. In step 2, x(1)
2

gets dominated by x
(3)
2 . The iteration thus continues with X̃2 ∈ R4·2, i.e., with
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a set of 4 2-dimensional vectors. HNM converges (again quadratically) toward
the optimal hypervolume population, albeit for population size µ = 4.
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Figure 4.9: Numerical result of HNM on MOP1 using (4.20) as initial population.
Above: the iterations in decision and objective space. Below: the optimal solution
and its image for µ = 5 and r.
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Table 4.1: Hypervolume values, error, and hypervolume gradients for application of
HNM on MOP1 using (4.20) (compare to Figure 4.9).

Iter H Error (HNM) ||∇HF||

0 306.500000000000 76.569536787325 48.826222462934

1 369.562245664015 13.507291123309 21.062836757428

2 379.065240846390 4.004295940935 13.997313947531

3 382.734095975048 0.335440812277 2.879962272550

4 383.068028174229 0.001508613095 0.199992009700

5 383.069536709027 0.000000078297 0.001265863184

6 383.069536787325 0.000000000000 0.000000101250

7 383.069536787325 0.000000000000 0.000000000000

Table 4.2: Hypervolume values, error, and hypervolume gradients for application of
HNM on MOP1 using (4.21) for X0 (compare to Figure 4.10).

Iter H Error (HNM) ||∇HF||

µ = 5

0 321.548361341053 61.521175446272 52.900629002755

1 376.616155150423 6.453381636902 14.685530752574

µ = 4

2 373.544616989121 9.524919798204 2.013226644050

3 380.698229481420 2.371307305905 0.110423150875

4 380.698531798899 2.371004988425 0.000213267251

5 380.698531800725 2.371004986600 0.000000002021

6 380.698531800725 2.371004986600 0.000000000000

7 380.698531800725 2.371004986600 0.000000000000
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Figure 4.10: Numerical result of HNM on MOP1 using (4.21) as initial population.
Above: the iterations in decision and objective space. Below: the optimal solution
and its image for µ = 4 and r.
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4.3.2 Inequality Constraint Case

Next, we consider inequality constrained MOPs of the form

min
x∈Rn

f(x),

s.t gi(x) ≤ 0, i = 1, . . . , p.
(4.22)

For the treatment of such problems, we propose to utilize a penalization approach
that transforms the original (constrained) MOP into an auxiliary unconstrained one.
In the current context, the related unconstrained problem reads as:

min
x∈Rn

f(x) + P (x)c, (4.23)

where c = (c, .., c)> ∈ Rm, c > 0 a given (large) constant, and

p(x) :=

p∑
i=1

max(0, gi(x))2 (4.24)

the penalization function. To solve inequality constrained MOPs of the form (4.22),
HNM is thus applied on the unconstrained problem (4.23) as described above. To
avoid convergence toward spurious solutions, the value of c cannot remain fixed during
the computations. Instead, we need a sequence cu > 0 with limi→∞ cu = ∞. In our
computations, we have chosen c0 := 10 and in each Newton step the value is increased
by a factor of 10, i.e., cu := 10u+1.

Example 7.1. We reconsider again MOP1 but additionally impose the following
box constraint

xi ∈ [−0.5,−0.25], i = 1, 2. (4.25)

We have chosen r = (20, 20)T and µ = 5 as before, and the initial population as

X0 = {x(1)
0 ,x

(2)
0 ,x

(3)
0 ,x

(4)
0 ,x

(5)
0 }

=

{(
−0.46

−0.43

)
,

(
−0.41

−0.38

)
,

(
−0.36

−0.33

)
,

(
−0.31

−0.28

)
,

(
−0.26

−0.23

)}
.

(4.26)

Figure 4.11 shows a numerical result of HNM for this setting. Table 4.3 indicates
that the iterations converge, but that the convergence speed is only linearly which is
due to the penalization approach.
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Figure 4.11: Numerical result of HNM on MOP1 together with the box constraints
(4.25) using (4.26) as initial population. Above: the iterations in decision and objec-
tive space. Below: the optimal solution and its image for µ = 5 and r.
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Table 4.3: Hypervolume values, error, and hypervolume gradients for the application
of HNM on MOP1 with the box constraint (4.25) using (4.26) for X0 (compare to
Figure 4.11).

Iter H Error (HNM) ||∇HF||

1 325.901249212877 0.020663552304 1.212734648416

2 325.920707182928 0.001205582253 0.051243303186

3 325.921835652869 0.000077112312 0.004631644572

4 325.921906470408 0.000006294772 0.000422880099

5 325.921912146183 0.000000618997 0.000039564993

6 325.921912707233 0.000000057948 0.000003700931

7 325.921912759765 0.000000005415 0.000000346099

Example 7.2. Now, consider MOP1 but additionally impose the following linear
inequality constraint

g(x) =
1

3
x1 − x2 + 0.1 ≤ 0. (4.27)

We have chosen r = (20, 20)T and µ = 3 as before, and the initial population as

X0 = {x(1)
0 ,x

(2)
0 ,x

(3)
0 }

=

{(
−0.8

0.15

)
,

(
0.2,

0.2

)
,

(
0.8

0.8

)}
.

(4.28)

Figure 4.12 shows a numerical result of HNM for this setting. Table 4.4 indicates the
performance of the HNM, .
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Figure 4.12: Numerical result of HNM on MOP1 together with a linear inequality
constraint (4.27) using (4.28) as initial population. Above: the iterations in decision
and objective space. Below: the optimal solution and its image for µ = 3.
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Table 4.4: Hypervolume values, error, and hypervolume gradients for the application
of HNM on MOP1 with a linear inequality constraint (4.27) using (4.28) for X0

(compare to Figure 4.12).

Iter H Error (HNM) ||∇HF|| g(X)

0 362.3993062499999951 7.559069633858428 67351173757.57 0.000

1 367.3675725606905758 2.590803323167847 516.6023771346887088 0.000

2 369.0107215873687210 0.947654296489702 447.2025701311123385 0.689

3 369.7444060501622971 0.213969833696126 440.7911478131115928 0.0442

4.3.3 Equality Constraint Case

In the case of having an equality constrained MOP of the following form:

min
x∈Rn

f(x),

s.t hj(x) = 0, j = 1, . . . , q,
(4.29)

we can redefine the previous problem by using the µ · n-vector notation for a given
MOP as follows:

min
X⊂Rn

F(X).

s.t h(X) = 0
(4.30)

Then, related SOP according to the hypervolume indicator is given by

max
X⊂Rn

HF(X),

s.t h(X) = 0
(4.31)

where |X| = µ and X =
(
x(1)T , . . . ,x(µ)T

)T
.
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The constraints h(X) are considered as follows:

h : Rµ·n → Rµ·q

h(X) =


h1(X)

...
hq(X)

 =



h1(x
(1))
...

hq(x
(1))
...
...

h1(x
(µ))
...

hp(x
(µ))


=



¯h1,1(X)
...

¯h1,p(X)
...
...

¯hµ,1(X)
...

¯hµ,q(X)


, (4.32)

where h̄i,j : Rµ·n → R.

To tackle an equality constrained MOP, we propose to use the Lagrange multipliers
and state the problem using the Karush-Kuhn-Tucker equations of (4.31) which read
as follows

∇HF(X) +

µ·q∑
i=1

λi∇h̄i(X) = 0

h(X) = 0

. (4.33)

The KKT equations leads to the root finding problem G : Rµ·(n+q) → Rµ·(n+q)

G(X, λ) =

∇HF(X) +

µ·q∑
i=1

λi∇h̄i(X)

h(X)

 = 0. (4.34)

The derivative of G is given by

DG(X, λ) =

(
∇2HF(X) +

∑µ·q
i=1 λi∇2h̄i(X) H(X)T

H(X) 0

)
∈ Rµ·(n+q)×µ·(n+q), (4.35)

where

H(X) =


∇ ¯h1,1(X)T

...
∇ ¯hµ,q(X)T

 . (4.36)
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Then, the Newton method for G(X, λ) = 0 is given by NG : Rµ·(n+q) → Rµ·(n+q)

where

NG(X, λ) = (X, λ)−DG(X, λ)−1G(X, λ). (4.37)

In the following, we present some example of the performance of the hypervolume
Newton method for equality constrained MOPs (HNMEC).

Example 8. By considering MOP1 but additionally we integrate the following
equality constrained

h(x) = x21 + x22 − 1 = 0. (4.38)

For this problem, we choose r = (20, 20)T , µ = 5, and the initial population from an
infeasible region as

X0 ={x(1)
0 ,x

(2)
0 ,x

(3)
0 ,x

(4)
0 ,x

(5)
0 }

=

{(
0.5

−1.5

)
,

(
0.75

−1.25

)
,

(
1

−1

)
,

(
1.25

−0.75

)
,

(
1.5

−0.5

)}
,

(4.39)

as the initial population X0. Figure 4.13 shows the performance of HNM both in
decision and objective space. We notice that the method quickly approach to the
optimal solution for µ = 5 and the given reference point. Table 4.5 includes the
error—measured in terms of the Hausdorff distance of Xi and the optimal solution—
and the norm of the equality constraints for each iteration.
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Figure 4.13: Numerical result of HNM on MOP1 together with the equality constraint
4.38 using 4.39 as an starting point. Above: the iterations in decision and objective
space. Below: the optimal solution and its image for µ = 5 and r.
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Table 4.5: Iteration, error values, and the norm of the equality constraints for the
application of HNMEC on MOP1 with the equality constraint of Equation (4.38)
using (4.39) for an starting point (compare to Figure 4.13).

Iteration Error ||h(X)||
0 1.4442252032 2.8339460122
1 0.6663222123 1.7481771055
2 0.5674712326 1.4205720349
3 0.2648013579 0.6206272816
4 0.0671014459 0.1157213015
5 0.0053679372 0.0069536261
6 0.0000346286 0.0000411696
7 0.0000000013 0.0000000017
8 0.0000000000 0.0000000000

Example 9. Another example to demonstrate the performance of the HNMEC, it is
considering the following equality constrained MOP constructed by using the ZDT1:

f1(x) = x1

f2(x) = g(x)(2−
√
f1(x)/g(x))

g(x) = 1 +
9

n− 1

n∑
i=1

x2i

s.t.

h(x) = (x1 − 0.5)2 + (x2 − 0.4)2 − 0.25 = 0.

(ECMOP1)

In this case, we choose r = (11, 11)T as the reference point and

X0 =
{
x
(1)
0 ,x

(2)
0 ,x

(3)
0

}
=

{(
0.007

0.316

)
,

(
0.078

0.130

)
,

(
0.7074

−0.05498

)} (4.40)

as the initial population X0. Figure 4.14 shows the performance of HNM both in
decision and objective space. We notice that the method quickly approaches to the
optimal solution for µ = 3 and the given reference point. Table 4.6 includes the
error—measured in terms of the Hausdorff distance of Xi and the optimal solution—
and the norm of the equality constraints for each iteration.
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Figure 4.14: Numerical result of HNM on ZDT1 together with an equality constraint
using (4.40) as an starting point. Above: the iterations in decision and objective
space. Below: the optimal solution and its image for µ = 3 and r.

Example 10. Finally, in order to see the performance of the HNMEC, when the
dimension of the decision space grows (n = 3), we introduced the next equality
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Table 4.6: Iteration, error values, and the norm of the equality constraints for the
application of HNMEC on ZDT1 with an equality constraint using (4.40) for an
starting point (compare to Figure 4.14).

Iteration Error ||h(X)||
0 0.1406683928 0.0009898211
1 0.0744211059 0.0517750630
2 0.0089787918 0.0064097784
3 0.0001241347 0.0001138679
4 0.0000004208 0.0000000222
5 0.0000000000 0.0000000000

constrained MOP:

fj(x) =
n∑
i=1

(xi − aji )2 + (xj − ajj)4

s.t.

h(x) = 0.5x1 − x2 = 0.

(ECMOP2)

For the latter problem, we choose n = 3, r = (30, 30)T as the reference point and

X0 =
{
x
(1)
0 ,x

(2)
0 ,x

(3)
0

}
=
{

(−0.8727,−0.4364,−0.3273)T , (0.4364, 0.2182, 0.3)T , (1.473, 0.7364, 0.709)T
}
,

(4.41)

as the initial population X0. Figure 4.15 shows the performance of HNM both in
decision and objective space.Once again the method quickly approach to the optimal
solution for µ = 3. Table 4.7 includes the error—measured in terms of the Hausdorff
distance of Xi and the optimal solution— and the norm of the equality constraints
for each iteration.

CINVESTAV Computer Science Department



THE NEWTON METHOD FOR HYPERVOLUME INDICATOR 115

-1

-0.5

0

1

0.5

x
3

1

0.5

x2

0
-0.5

x1

1.510.50-0.5-1

(a)

-5 0 5 10 15 20 25
f1

5

10

15

20

25

f
2

(b)

-1

-0.5

0

1

0.5

x
3

1

0.5

x2

0
-0.5

x1

1.510.50-0.5-1

(c)

-5 0 5 10 15 20 25
f1

5

10

15

20

25
f
2

(d)

Figure 4.15: Numerical result of HNM on problem ECMOP2 using 4.41 as an starting
point. Above: the iterations in decision and objective space. Below: the optimal
solution and its image for µ = 3 and r.

4.3.4 Investigation of the Hypervolume Newton Method for

Equality Constraints

A point X∗ ⊂ Rn is optimal for Equation (4.31) if and only if there is a λ∗ ∈ Rµ·p

such that

h(X∗) = 0 (4.42)
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Table 4.7: Iteration, error values, and the norm of the equality constraints for the
application of HNMEC on problem ECMOP2 using (4.41) for an starting point (com-
pare to Figure 4.15).

Iteration Error ||h(X)||
0 0.7915615680 0.0001118034
1 0.1892124982 0.0000000000
2 0.0392555569 0.0000000000
3 0.0009810937 0.0000000000
4 0.0000009242 0.0000000000
5 0.0000000000 0.0000000000
6 0.0000000000 0.0000000000

and
∇HF(X∗) +∇h(X∗)λ∗ = 0. (4.43)

We refer to h(X∗) = 0 as the primal feasibility equations where the equality con-
straints are linear and ∇HF(X∗) +∇h(X∗)λ∗ = 0 as the dual feasibility equation.

The Newton step

In order to define the Newton step, we use a second order approximation. To derive
the Newton step νN for the equality constrained problem stated in Equation (4.31)
at the feasible point X, we replace the objective with its second order Taylor approx-
imation near X

max H̃F(X + νN) = HF(X) +∇HF(X)TνN +
1

2
νN

T∇2HF(X)νN.

s.t.

h(X + νN) = 0.

(4.44)

Equation (4.44) is a convex quadratic maximization problem with equality con-
straints, then the Newton step νN is characterized by(

∇2HF(X) ∇h(X)T

∇h(X) 0

)(
νN

λ

)
=

(
−∇HF(X)

0

)
, (4.45)
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where λ is the associated dual variable for the quadratic problem.

The Newton Decrement

The Newton decrement for the problem stated in Equation (4.31) denoted by ψ(X)

is given by

ψ(X) = (νN
T∇2HF(X)νN)1/2, (4.46)

where ψ(X) is the norm of the Newton step, in the norm determined by the Hyper-
volume Hessian matrix.

Let

H̃F(X + ν) = HF(X) +∇HF(X)Tν +
1

2
νT∇2HF(X)ν︸ ︷︷ ︸

ψ(X)2

(4.47)

be the second-order Taylor approximation ofHF atX. The difference betweenHF (X)

and the minimum of the second-order model satisfies

HF (X)− inf {H̃F(X + ν) | h(X + ν) = 0} = ψ(X)2/2. (4.48)

This means that ψ(X)2/2 gives an estimate of HF(X) − p∗ based on the quadratic
model at X and also that ψ(X) serves as the basis of a good stopping criterion. The
Newton decrement comes up in the line search as well, since the directional derivative
of HF in the direction νN is

d

dt
H̃F(X + tνN)

∣∣∣
t=0

= ∇HF(X)TνN = −ψ(X)2. (4.49)

Feasible ascent direction

Supposing that h(X) = 0. ν ∈ Rµ·n is a feasible direction if ∇h(X)ν = 0. In this
case. every point of the form X + ν is also feasible, i.e., h(X + ν) = 0. ν is a ascent
direction for HF at X, if for a small t > 0, HF(X + tν) > HF(X). The Newton step
is always a feasible descent direction (except when X) is optimal, since νN = 0). The
second set of equations from Equation (4.45) that define νN are ∇h(X)νN = 0, which
shows it i a feasible direction; that it is a ascent direction follows form Equation (4.49).
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Infeasible start Newton method

Here, we generalize the Hypervolume Newton Method for equality constraints where
initial points are not feasible, i.e., for points X such that h(X) 6= 0.

First, we recall the optimality conditions for the equality constrained maximization
problem stated in Equations (4.42) and (4.43).

Let X denote the current point, which we do not assume to be feasible. The goal
is to find a step ν ′ so that X + ν ′ satisfies at least approximately the optimality
conditions, i.e., X + ν ′ ≈ X∗. To do this, we substitute X + ν ′ for X∗ and λ′ for λ∗

in Equations (4.42) and (4.43), and use the first-order approximation

∇HF(X + ν ′) ≈ ∇HF(X) +∇2HF(X)ν ′ (4.50)

for the gradient to obtain

h(X + ν ′) = 0, and ∇HF(X) +∇2HF(X)ν ′ +∇h(X)Tλ′ = 0. (4.51)

This is a set of linear equations for ν ′ and λ′,(
∇2HF(X) ∇h(X)T

∇h(X) 0

)(
νN

λ′

)
= −

(
∇HF(X)

h(X)

)
. (4.52)

The equations are similar to Equation (4.45) but slightly different in the second block
of the right-hand-side that contains h(X), which is the residual vector for the linear
equality constraints. In the case that X is feasible, the residual vanishes, and Equa-
tion (4.52) is reduced to Equation (4.45) that define the standard Newton step at a
feasible point X.

An interpretation (in terms of a primal-dual method for equality constraints) of Equa-
tion (4.52) is given in the following: by a primal-dual, we mean one in which we update
both the primal variable X, and the dual variable λ, in order to approximately sat-
isfy the optimality conditions. We express the optimality conditions as r(X∗, λ∗) = 0,
where r : Rµ·n ×Rµ·q → Rµ·n ×Rµ·q is defined as

r(X, λ) = (rdual(X, λ), rpri(X, λ)). (4.53)
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where

rdual(X, λ) = ∇HF(X) +∇h(X)Tλ (4.54)

and

rpri(X, λ) = h(X) (4.55)

are the dual residual and primal residual, respectively. The first-order Taylor approx-
imation of r, near our current estimate Y, is

r(Y + z) ≈ r̃(Y + z) = r(Y) +Dr(Y)z, (4.56)

where Dr(Y) ∈ R(µ(n+q))×(µ(n+q)) is the derivative of r, evaluated at Y. We define
the primal-dual Newton step νYpd

as the step z for which the Taylor approximation
r̃(Y + z) vanishes, i.e.,

Dr(Y)νYpd
= −r(Y). (4.57)

Note that we consider both X and λ as variables: νYpd
= (νXpd

, νλpd) gives both a
primal and dual step.

Evaluating the derivative of r, we can express Equation (4.57) as(
∇2HF(X) ∇h(X)T

∇h(X) 0

)(
νXpd

νλpd

)
= −

(
rdual

rpri

)
= −

(
∇HF(X) +∇h(X)Tλ

h(X)

)
.

(4.58)
Writing λ+ νλpd as λ+, we can express this as(

∇2HF(X) ∇h(X)T

∇h(X) 0

)(
νXpd

λ+

)
= −

(
∇HF(X)

h(X)

)
, (4.59)

which is exactly the same according Equation (4.52). The solutions of Equations (4.52),
(4.58) and (4.59) are therefore related as

νN = νXpd
and λ′ = λ+ = λ+ νλpd . (4.60)

This shows that the infeasible Newton step is the same as the primal part of the
primal-dual step, and the associated dual vector λ′ is the updated primal-dual vari-
able λ+ = λ+ νλpd .
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The Newton direction, at an infeasible point, is not necessarily a descent direction
for HF. From Equation (4.52), we note that

d

dt
H̃F(X + tν ′)

∣∣∣
t=0

= ∇HF(X)Tν ′

= −ν ′T (∇2HF(X)ν ′ +∇h(X)Tλ)

= −ν ′T∇2HF(X)ν ′ +∇h(X)Tλ,

(4.61)

which is not necessarily negative (unless, of course, X is feasible, i.e., h(X) = 0). The
primal-dual interpretation, however, shows that the norm of the residual decreases in
the Newton direction, i.e.,

d

dt
||r(Y + tνYpd

)||22
∣∣∣
t=0

= 2r(Y)TDr(Y)νYpd
= −2r(Y)T r(Y). (4.62)

Taking the derivative of the square, we obtain

d

dt
||r(Y + tνYpd

)||2
∣∣∣
t=0

= −||r(Y)||2. (4.63)

This allows us to use ||r||2 to measure the progress of an infeasible solution by using
the Newton method.

4.4 The SMS-EMOA-HNM

By the above discussion, we can expect linear convergence for inequality constrained
problems and even quadratic convergence for unconstrained problems. The conver-
gence, however, is only of local nature as it is the case for all Newton methods. Thus,
a carefully chosen starting population is required or else the Newton iteration may
fail to converge. We propose thus in the next step to hybridize the HNM with an
evolutionary algorithm in order to obtain a fast and reliable memetic strategy. As an
evolutionary algorithm we will use the SMS-EMOA which is a state-of-the-art EMOA
that aims for hypervolume maximization ( [57]). Crucial for the effective realization
of the hybrid is to decide when to switch from the evolutionary strategy to HNM.
We suggest to apply the Newton method once (i) the current population of SMS-
EMOA only consists of mutually non-dominated elements and (ii) the difference of
the hypervolume values of two consecutive populations is less than a given threshold.
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More precisely, the hybrid method we propose here, SMS-EMOA-HNM, works
as follows (compare to Algorithm 8): First, an initial population with µ elements is
chosen at random. In each iteration step (Steps 4 to 11), a new offspring is generated
and added to the current archive. Then, the new population is categorized into s
sub-fronts, G1, . . . , Gs, according to the domination grade. Next, the hypervolume
contribution is computed for each individual of the worst front Gs, and the individual
with the least contribution is deleted from the archive (denoted as updated archive).
This iteration is continued until the population consists of only one sub-front and
the difference of the hypervolume value of the current and the updated archive is
less or equal to a threshold tolHNM . Finally, HNM is performed on the best-found
population and the improved result is returned by the algorithm.

Algorithm 8 SMS-EMOA-HNM
Require: A reference point r ∈ Rm, a given tolerance tolHNM ∈ R+ for SMS-EMOA,

and a maximal number of iterations Imax and a tolerance tolx ∈ R+ for HNM.
Ensure: A final population X(F )..
1: Initialize a population X with µ elements at random.
2: Set Hu := H(f(X))

3: do

4: Set Hc := Hu . HV value of current archive
5: Generate an offspring x′ ∈ S from X.
6: Set X := X ∪ {x′}.
7: Build a ranking X = G1 ∪ G2 ∪ . . . ∪ Gs according the grade of dominance,

where Gs denotes the worst sub-front.
8: Compute the hypervolume contribution for each x ∈ Gs.
9: Denote by x∗ the element with least hypervolume contribution in Gs.

10: Set X := X \ {x∗}
11: Set Hu := H(f(X)) . HV value of updated archive
12: while |Hu −Hc| > tolHNM or s > 1

13: Construct a µ · n-vector X from X.
14: Set X̃ := HNM(X, Imax, tolx).
15: return X(F ) constructed from X̃
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4.5 Numerical results

Here, we present some numerical results regarding the use of the proposed hyper-
volume Newton method (HNM). First, a comparison against the gradient-ascent hy-
pervolume method (GAH) is included by using the approximation of the Hessian to
compute the hypervolume Newton method (HNMA). Next, we compare the compu-
tational time in order to calculate both the HNMA and the HNM. Finally, numerical
results are shown regarding the integration of the HNM into the SMS-EMOA.

4.5.1 HNMA vs GAH

The first attempt to use the hypervolume Newton method works by computing the
approximation of the hypervolume Hessian matrix as stated in Equation (4.11). Here,
we first present the performance of the HNMA as a standalone algorithm, and fur-
ther on the HNMA is compared against the GAH [35]. For this purpose, we take
MOP1 and MOP2, then a population of 5 elements is assigned for approaching to the
solution set. Figures 4.16 and 4.17 show the comparison of the performance of the
HNMA against the GAH in both decision variable and objective space. The graphical
comparison shows the speed of the HNMA to get approached to the best hypervolume
approximation for 5 elements in both examples. One of the main advantages of the
HNMA over the GAH is the choice of a correct step size, while in GAH has to be
adapted iteration by iteration in the HNMA we set ti = 1 for every iteration of the
method.
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Figure 4.16: Application of the hypervolume Newton method (HNMA) (a) and (b),
against the application of the gradient-ascent hypervolume method on a 5-element
population on MOP1 in both decision variable (left) and objective (right) space.
The starting population for both methods is X0 = {x1 = (−0.5,−0.9)T ,x2 =

(−0.2,−0.6)T ,x3 = (0.0,−0.2)T ,x4 = (0.3, 0.3)T ,x5 = (0.6, 0.9)T}.
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Figure 4.17: Application of the hypervolume Newton method (HNMA) (a) and (b),
against the application of the gradient-ascent hypervolume method on a 5-element
population on MOP2 in both decision variable (left) and objective (right) space. The
starting population for both methods is X0 = {x1 = (0.9, 0.9)T ,x2 = (0.4, 0.4)T ,x3 =

(0.0, 0.0)T ,x4 = (−0.4,−0.4)T ,x5 = (−0.9,−0.9)T}.

The errors are demonstrated in Tables 4.8 and 4.9, respectively. In both tables, a
comparison is made to the GAH yielding a different convergence rate. In this case,
we see empirically that the use of HNMA even using an approximation to compute
the Hessian matrix can yield quadratic convergence.
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Table 4.8: Errors of the iterations obtained by the HNMA and the GAH on MOP1
(refer to Figure 4.16).

Iteration Error HNMA Error GAH

0 6.3019173538212 6.3019173538212
1 0.3822821410060 1.1256506467367
2 0.0036900401779 0.6345590706760
3 0.0000002871523 0.4247608492216
4 0.0000000000001 0.3043120967485
5 0.0 0.2237221272231
...

...
...

48 0.0 0.0000046743939
49 0.0 0.0000036350798
50 0.0 0.0000028266895

Table 4.9: Errors of the iterations obtained by the HNMA and the GAH on MOP2
(refer to Figure 4.17).

Iteration Error HNMA Error GAH

0 1.548406126519012 1.5484061265190
1 0.462396554222039 0.5448676870680
2 0.000049417729375 0.2211324621996
3 0.000000013384221 0.0937296798889
4 0.000000000000001 0.0400550587705
5 0.0 0.0177895807373
...

...
...

48 0.0 0.0000000000013
49 0.0 0.0000000000007
50 0.0 0.0000000000002
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4.5.2 HNMA vs HNM

In this part, we investigate the HNMA and the hypervolume Newton method using
the mathematical formulation of the Hessian matrix instead of an approximation. One
natural question is how the performance of the HNM is against the version where the
Hessian is approximated via finite differences (HNMA). Performance-wise we have not
observed a noticeable difference in our computations. This changes, however, when
considering the computational times for both methods due to the bandwidth struc-
ture of the Hessian. As an example, Table 4.10 shows the CPU times of the HNM and
HNMA on MOP1 for two different population sizes. The results show average values
over 20 different randomly chosen initial populations with seven iterations each. As
anticipated, the CPU times are significantly less when computing the exact Hessian,
for increasing values of µ and n. In our example, the CPU times differ by 2 orders of
magnitude for µ = 100 where we only have n = 2 decision variables.

Table 4.10: CPU times (in seconds) of HNMA and HNM for different population sizes
using 7 iterations over 20 experiments.

µ Description Time (HNMA) Time (HNM)

20 Mean 52.1808 4.2234

Std 0.5563 0.0274

100 Mean 3710.7411 13.7274

Std 22.1876 0.1342

4.5.3 SMS-EMOA-HNM vs SMS-EMOA vs IBEA

Next, we evaluate the potential of the novel memetic strategy. As test problems we
selected nine bi-objective optimization problems (since the computation of the exact
Hessian matrix is only stated for k = 2) three unconstrained (MOP1, MOP-GSP
(λ = 1.5), Fonseca1) and six box-constrained MOPs (ZDT1, ZDT2, ZDT3, ZDT4,
ZDT6, DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ7, MOP-GSP (λ = 0.5)) that have
different properties such as the shapes of the Pareto front and the modalities of the
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objective functions (see Appendix A for the definition of all considered MOPs). The
dimensions of the decision spaces vary from 2 to 30. For comparison we choose to use
SMS-EMOA, the base algorithm of our memetic strategy, and IBEA ( [114]).

As design parameters we have chosen tolHNM = 1 × 10−4, Imax = 6, tolx =

1× 10−10, and µ = 50. As reference point we have chosen r = (11, 11)T for all prob-
lems and have set a budget of 50,000 function evaluations. All experiments have been
repeated for 20 independent runs. Figures 4.18, 4.19, and 4.20 show the convergence
plots for all three algorithms. The black lines represent the means for every 100
function evaluations of SMS-EMOA-HNM, the red dotted lines the respective means
for the competitor, and the magenta dots the maximal hypervolume values for each
problem. We can observe that the new hybrid reaches the maximal hypervolume
values in all cases while the two other algorithms get stuck in some cases. Further,
even if all algorithms converge toward the maximum, the convergence is significantly
faster for SMS-EMOA-HNM in these cases. Table 4.11 shows the hypervolume val-
ues for all three methods for a budget of 30,000 function evaluations except for the
ZDT problems where the budget is set to 48,000 function evaluations. In all cases,
SMS-EMOA-HNM achieves the best values.

The above mentioned superiority does not only hold when considering the hyper-
volume value but also the approximation quality of the Pareto set which we consider
next. Figure 4.21 shows a numerical result of SMS-EMOA-HNM and its base MOEA
on the Lame Super Sphere problem with n = 2 for a budget of 20,000 function eval-
uations. The Pareto set is the line segment connecting the points (0, 0)T and (1, 1)T .
Apparently, the approximation quality of SMS-EMOA-HNM is much better than the
one from SMS-EMOA. Remarkably, the approximation quality of the latter can not
reach the other one even if the function evaluation budget is increased. This obser-
vation gets confirmed in Table 4.12 where the approximation qualities (measured via
the averaged Hausdorff distance ∆2 [6]) of the final populations for all problems and
algorithms are displayed.
Concluding, one can say that SMS-EMOA-HNM significantly outperforms the two
other MOEAs on our chosen benchmark functions.

Concluding, one can say that SMS-EMOA-HNM significantly outperforms the
two other MOEAs on our chosen benchmark functions. Finally, even considering the
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Table 4.11: Statistical results according hypervolume for IBEA, SMS-EMOA, and
SMS-EMOA-HNM for a budget of 30,000 function evaluations.

Problem Desc. IBEA SMS-EMOA SMS+HNM

MOP 2 Mean 1491.79259 1529.57219 1530.51847

Std 9.07020 0.45207 0.35653

Fonseca 1 Mean 15.05659 15.06154 15.06166

Std 0.00046 0.00016 0.00006

LSS Mean 15.69047 15.94703 15.94728

α = 1.5 Std 0.08453 0.00006 0.00005

ZDT1M Mean 109.59640 109.65720 109.65725

Std 0.03508 0.00013 0.00006

ZDT2M Mean 106.51610 106.51728 106.51762

Std 0.00016 0.00024 0.00011

ZDT3M Mean 116.59622 116.81255 117.77585

Std 1.11096 0.80569 0.00425

ZDT4M Mean 109.00213 109.13230 109.55300

Std 0.98721 0.10023 0.011003

ZDT6M Mean 103.23684 103.88335 103.84285

Std 0.89765 0.38369 0.56432

DTLZ1 Mean 120.74389 120.87222 120.87234

Std 0.14745 0.00019 0.00017

DTLZ2 Mean 120.20350 120.20744 120.20866

Std 0.00037 0.00008 0.00005

DTLZ3 Mean 120.19543 120.20411 120.20043

Std 0.00532 0.00216 0.00422

DTLZ4 Mean 116.02312 116.63485 114.23112

Std 5.73222 4.99513 6.21521

DTLZ7 Mean 92.02387 92.31212 92.70048

Std 5.11123 4.85353 4.764850

LSS Mean 118.48256 118.47451 118.49017

α = 0.5 Std 0.00014 0.00681 0.00409

computational time expended to compute the local search, our algorithm use less time
in most of the cases than the SMS-EMOA (See Table 4.13 ). For this comparison, we
use the implementation provided by jMetal [115].
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Table 4.12: ∆2 values between the final approximations and the Pareto sets for the
three different algorithms. The values are taken from 20 independent runs.

Problem Desc. IBEA SMS-EMOA SMS+HNM

MOP 2 Mean 0.03498 0.03907 0.00274

Std 0.00047 0.00252 0.00081

Fonseca 1 Mean 0.28842 0.01714 0.05033

Std 0.01285 0.00281 0.00693

LSS Mean 0.86807 0.11214 0.06331

α = 1.5 Std 0.01165 0.00346 0.00911

ZDT1M Mean 0.72564 0.55342 0.09236

Std 0.00984 0.00342 0.00023

ZDT2M Mean 0.53948 0.23453 0.12893

Std 0.00748 0.00231 0.00199

ZDT3M Mean 0.61321 0.42948 0.09787

Std 0.00564 0.00234 0.00432

ZDT4M Mean 0.48587 0.36395 0.31012

Std 0.08549 0.02184 0.02342

ZDT6M Mean 0.74125 5.41245 5.98743

Std 0.16352 0.09854 0.062145

DTLZ1 Mean 0.44647 0.04733 0.01037

Std 0.00186 0.00832 0.00781

DTLZ2 Mean 0.18434 0.02867 0.00478

Std 0.00234 0.00032 0.00147

DTLZ3 Mean 0.55874 0.07548 0.09874

Std 0.21487 0.04784 0.24154

DTLZ4 Mean 0.98745 0.54127 0.84741

Std 0.35241 0.24517 0.45147

DTLZ7 Mean 0.74859 0.42151 0.40714

Std 0.34182 0.01987 0.00987

LSS Mean 0.20047 0.20815 0.20270

α = 0.5 Std 0.00221 0.00012 0.01106
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(a) SMS-EMOA MOP2 (b) IBEA MOP2

(c) SMS-EMOA Fonseca (d) IBEA Fonseca

(e) SMS-EMOA LSS α = 1.5 (f) IBEA LSS α = 1.5

Figure 4.18: Convergence plot comparisons over the whole execution of SMS-EMOA,
IBEA, and SMS-EMOA-HNM for the unconstrained problem cases.
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(a) SMS-EMOA ZDT1M (b) IBEA ZDT1M

(c) SMS-EMOA ZDT2M (d) IBEA ZDT2M

(e) SMS-EMOA ZDT3M (f) IBEA ZDT3M

Figure 4.19: Convergence plot comparisons over the whole execution of SMS-EMOA,
IBEA, and SMS-EMOA-HNM for the box-constrained problem cases (Part 1).
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(a) SMS-EMOA DTLZ2 (b) IBEA DTLZ2

(c) SMS-EMOA LSS α = 0.5 (d) IBEA LSS α = 0.5r

Figure 4.20: Convergence plot comparisons over the whole execution of SMS-EMOA,
IBEA, and SMS-EMOA-HNM for the box-constrained problem cases (Part 2).
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Figure 4.21: Final approximation in Parameter space obtained by SMS-EMOA
(above) and SMS-EMOA-HNM (below) in the Lame Super Sphere problem with
n = 2 and µ = 100 after 20,000 function evaluations.
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Table 4.13: Statistical results according time (seconds) for SMS-EMOA, and SMS-
EMOA-HNM during a function evaluations (FE) budget used for applying the HNM.

Problem #FE Desc. SMS-EMOA SMS+HNM

MOP 2 7800 Mean 3.84589 2.35028

Std 0.95642 0.04619

Fonseca 1 7800 Mean 1.25218 0.64951

Std 1.57494 0.00523

LSS 11700 Mean 4.48897 3.69927

α = 1.5 Std 1.93809 0.07537

ZDT1M 9750 Mean 5.08166 3.12735

Std 0.79936 0.04271

ZDT2M 9750 Mean 4.97982 3.75375

Std 2.34125 0.08197

ZDT3M 7800 Mean 5.13236 5.42000

Std 2.29418 0.05670

ZDT4M 7800 Mean 3.914806 5.30775

Std 2.23733 0.23887

ZDT6M 7800 Mean 5.70897 5.40971

Std 1.79426 0.08283

DTLZ1 7800 Mean 3.83354 2.93848

Std 0.96666 0.07112

DTLZ2 9750 Mean 8.08016 3.11715

Std 3.70127 0.05568

DTLZ3 7800 Mean 5.11303 3.11460

Std 2.61293 0.07341

DTLZ4 7800 Mean 6.36661 2.90622

Std 2.36567 0.05611

DTLZ7 7800 Mean 8.54426 2.92156

Std 2.26612 0.06659

LSS 7800 Mean 5.25721 4.63070

α = 0.5 Std 1.30050 0.12503
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5 | On the Treatment of Parameter

dependent Multi-Objective Opti-

mization Problems

Nowadays, in many real world applications, we have in addition to the multiple ob-
jectives to consider the influence of external parameters that can affect the solution
set. For instance, consider the fabrication of an embedded system, which is designed
to report the activity of a volcano. The fabrication aims to reduce the energy con-
sumption and also to increase the accuracy of the measures to report, however, both
objectives are in conflict. In other words for a more accurate measure more is the
energy consumption. Since the embedded system has to work inside a volcano, the
temperature of the environment will change over a certain range causing that the
system consumes more energy to maintain stable its own temperature, in order to
its components could work properly. The previous example fits perfectly into the
context of a PMOP where an external parameter (temperature) cannot be neglected
nor optimized but it has to be considered over the whole optimization process.

As we mentioned in Chapter 2, there is a set of evolutionary techniques that have
been developed for the treatment of a given PMOP ( [60, 60, 61, 61–70]). Examples
of them include several strategies in order to (i) detect a change in the external
parameter and (ii) then to use a mechanism to response to that change. Most of the
evolutionary techniques consider to solve a PMOP as a MOP with a certain value
for the external parameter. However, to solve a PMOP as a whole is not yet well
explored.

In this chapter, we first present the simple neighbourhood search (SNS) in the
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context of PMOPs. The algorithm is based on the observations made in a study [58]
over the behavior of stochastic local search (SLS) for PMOPs contained in Chapter
2. Comparisons show the advantage of considering neighbourhood information to
produce points in order to converge faster toward the solution set. Next to this,
we present an evolutionary framework to tackle PMOPs in a non-sequential way.
This framework aims to find an approximation of the solution set by considering
a discretization of the λ-space. Then, based on this framework, an evolutionary
approach based on decomposition (PMOEA/D) is presented for the treatment of
PMOPs. The algorithm is able to compute the family of Pareto sets and fronts of a
given PMOP in one single run. PMOEA/D incorporate results and knowledge from
the SLS and SNS. We include numerical results and comparisons against modified
versions of MOEA/D adapted to the context of PMOPs.

5.1 Simple Neighborhood Search

In this section, we present the simple neighborhood search in the context of PMOPs.
Our principal objective is to investigate the influence of SNS within set based meth-
ods. In order to prevent interferences with other effects we have thus to omit all other
operators (as, e.g., crossover). The Simple Neighborhood Search for PMOPs takes
this into consideration: initially, a generation A0 ⊂ Rn+l is chosen at random, where
Λ is discretized into Λ̃ = {λ1, . . . , λs}. In the iteration process, for every element
(ax, aλ) ∈ Ai, a new element (bx, bλ) is chosen via SLS, where bλ has to take one of
the values of Λ̃. The given archive Ai and the set of newly created solutions Bi are
the basis for the sequences of candidate solutions Ali, l = 1, . . . , s, and the new archive
Ai+1: for Ali the non-dominated solutions from Ai∪Bi with λ-value λj are taken, and
Ai+1 is the union of these sets (plus the respective λ values). Algorithm 9 shows the
pseudo code of SNS. Hereby, nondom(A) denotes the non-dominated elements of a
set A, π(A, λi) := {a : (a, λi) ∈ A} denotes the x-values of the elements of A with
λ-value λi, and (A, λ) := {(a, λ) : a ∈ A}.

For sake of a small comparison we also investigate here the global counterpart of
SNS, the Simple Global Search (GS), where all points are chosen uniformly at ran-
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Algorithm 9 SNS for PMOPs
Require: Neighborhood Ni(x, λ) of a given point (x, λ) in iteration i.
Ensure: Sequence Ali of candidate solutions for Fλl , l = 1, . . . , s

1: Generate A0 ⊂ Rn+l at random
2: for i = 0, 1, 2, . . . do

3: Bl
i := ∅

4: for all (ax, aλ) ∈ Ai do
5: choose (bx, bλ) ∈ Ni(ax, aλ)

6: Bi := Bi ∪ (bx, bλ)

7: end for

8: Ali+1 := nondom(π(Ai ∪Bi, λl)), l = 1, . . . , s

9: Ai+1 :=
⋃s
l=1(A

l
i+1, λl)

10: end for

dom from the entire domain. That is, GS can be viewed as an application of SNS
where the neighborhood Ni in Line 5 of Algorithm 1 is chosen as the entire domain.
In order to reduce the overall number of candidate solutions we have not stored all
non-dominated solutions but have used ArchiveUpdateT ight2 ( [116]) to update the
archives Ami . The archiver ArchiveUpdateT ight2 aims, roughly speaking, for gap free
ε-Pareto sets. In our computations, we have used ε = (0.05, 0.05)T . Further, in each
computation we have used 10 equally spaced divisions in λ-space and have generated
one random element for the initial archive A0 (i.e., |A0| = 10).

Figure 5.1 shows some numerical results by solving PMOP (2.17) in two different
angles. In this example we have used a budget of 3,000 function evaluations (FEs)
for SNS. Figures 5.1, 5.2, and 5.3 show the respective result for GS for a budget of
3,000 and 10,000 FEs. As domain we have chosen S = [−10, 10]2. The superiority
of SNS can be detected visually since those final archives are evenly spread around
the solution sets. Compared to this, the result of GS lacks both in spread and
convergence, though more than 3 times the number of FEs has been spent to get this
result. This observation is confirmed by the values in Tables 5.1 and 5.2 where we
show the distances (measured in terms of ∆2 [6]) between the outcome sets and the
union of the 10 Pareto fronts (i.e., our discretized set of interest).
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Figure 5.1: Numerical result of SNS with a budget of 3,000 FEs for PMOP (2.17).
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Figure 5.2: Numerical result of GS with a budget of 3,000 FEs for PMOP (2.17).
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Figure 5.3: Numerical result of GS with a budget of 10,000 FEs for PMOP (2.17).
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Table 5.1: Comparative results for PMOP(2.17) using ∆2 value between the final
archives and the union of the 10 Pareto fronts for both SNS and GS for a budget of
3,000 FEs. Shown are worst, average, and best value over 20 independent runs.

Algorithm PMOP1

Problem SNS GS

λ-value/Description Worst Average Best Worst Average Best

λ = 0.00 1.934 1.494 1.101 25.342 17.220, 14.425

λ = 0.11 2.434 1.977 1.103 14.349 7.349 7.023

λ = 0.22 2.453 2.126 1.132 24.342 22.440 20.213

λ = 0.33 1.743 1.526 1.341 6.342 5.826 4.342

λ = 0.44 1.234 1.032 0.532 11.433 9.356 9.003

λ = 0.55 1.673 1.402 0.643 7.322 5.963 4.095

λ = 0.66 1.563 1.220 0.992 6.424 3.226 2.657

λ = 0.77 0.984 0.550 0.314 3.221 2.217 2.043

λ = 0.88 0.546 0.381 0.249 9.534 6.241 5.141

λ = 1.00 0.986 0.385 0.148 5.213 3.320 2.134

Next we consider a second PMOP which is again a convex homotopy of two MOPs.
In this case, one of the Pareto fronts is convex while the other one is concave.

fλ : R2 → R2

fλ(x) := (1− λ)f1(x) + λf2(x),
(5.1)

where λ ∈ [0, 1], a1 = 0, a2 = 1 and f1, f2 : R2 → R2,

f1(x) =

(
(x21 + x22)

0.125

((x1 − 0.5)2 + (x2 − 0.5)2)0.25

)
,

f2(x) =

(
x21 + x22

(x1 − a1)2 + (x2 − a2)2

)
.

Figures 5.4, 5.5, and 5.6 show some exemplary numerical results of SNS (5,000
FEs) and GS (5,000 and 10,000 FEs) using S = [−10, 10]2. Again, SNS, though less
FEs were used, is superior with respect to spread and convergence according the in-
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Table 5.2: Comparative results for PMOPs (5.1) using ∆2 value between the final
archives and the union of the 10 Pareto fronts for both SNS and GS for a budget of
5,000 FEs. Shown are worst, average, and best value over 20 independent runs.

Algorithm PMOP2

Problem SNS GS

λ-value/Description Worst Average Best Worst Average Best

λ = 0.00 0.632 0.365 0.242 0.992 0.692 0.432

λ = 0.11 0.567 0.221 0.201 0.832 0.620 0.597

λ = 0.22 0.453 0.136 0.103 0.567 0.454 0.353

λ = 0.33 0.578 0.103 0.098 0.693 0.496 0.394

λ = 0.44 0.375 0.049 0.019 0.700 0.684 0.592

λ = 0.55 0.198 0.047 0.043 0.422 0.329 0.239

λ = 0.66 0.297 0.069 0.034 0.596 0.552 0.539

λ = 0.77 0.246 0.056 0.022 0.834 0.821 0.739

λ = 0.88 0.186 0.077 0.062 0.532 0.446 0.422

λ = 1.00 0.123 0.045 0.032 0.423 0.351 0.311

dicator ∆2 in Table 5.1.

CINVESTAV Computer Science Department



ON THE TREATMENT OF PARAMETER DEPENDENT MULTI-OBJECTIVE
OPTIMIZATION PROBLEMS 143

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x
2

(a) SNS, decision space

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

f1

f 2

(b) SNS, objective space

−2

−1

0

1

2 −2
−1

0
1

2

0

0.2

0.4

0.6

0.8

1

x2
x1

λ
−
s
p
a
c
e

(c) SNS, decision space

−2
−1

0
1

2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

1

f1
f2

λ
−
sp
a
ce

(d) SNS, objective space

Figure 5.4: Numerical results of SNS with a budget of 5,000 FEs for PMOP (5.1).
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Figure 5.5: Numerical results of GS with a budget of 5,000 FEs for PMOP (5.1).
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Figure 5.6: Numerical results of GS (10,000 FEs) for PMOP (5.1).
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From [58], we know that both the movement toward as well as along the set of
interest (in objective space) are inherent in SLS. Further, there is also a kind of
’opening’ of the search in objective space which allows to find in principle all regions
of the solution set Some first tests on a simple set based neighborhood search, called
SNS, confirmed these statements on two PMOPs. Thus, the discussions indicate
that the problem to find an approximation of the entire solution set of a PMOP is a
well-conditioned problem for set based probabilistic algorithms such as evolutionary
algorithms (EAs).

5.2 A General Framework for the Non-Sequential

Treatment of PMOPs

In the following section, we present an evolutionary algorithm for the treatment of
PMOPs. The algorithm is called PMOEA/D which is an approach based on decom-
position. The most frequently used symbols of this section can be found in Table 5.3.
We assume problems with only one single external parameter, i.e., l = 1.

Table 5.3: Symbols.

n number of decision variables

k number of objectives

µs number of individuals per slice

s number of slices in the approximation

µ number of individuals in the whole population

W set of weight vectors

l number of external parameters

Λ = {λ1, . . . , λs} external parameter space discretization

P = {(x(1), λj1), . . . , (x
(µ), λjµ))} population with µ individuals (x(i), λjµ) ∈ R(n+l)

In order to improve the understanding of the proposed approach, we present,
a general scheme to tackle a given PMOP in a non-sequential way. Algorithm 10
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describes, in a straightforward manner, the process to find an approximation of the
family of solution sets of a PMOP as a whole. The algorithm considers a discretization
of the external parameter space Λ = {λ1, . . . , λs} where λji is the corresponding
scalar value to the λj-value within the discretization of Λ with j = 1, ..., s, s is the
number of values in the discretization of Λ and µ is the total number of individuals
in a population Pt. As a first step an initialization process is performed to create
a population P0 = {(x(1), λj1), . . . , (x

(µ), λjµ)} of µ individuals. Then, we select a
MOEA and after a configuration process we start by producing a new generation
Pt+1, such a process is repeated until certain criterion is not fulfilled.

After using the selected MOEA to produce new populations, a projection opera-
tion is computed, in order to obtain the elements associated to each value λj of the
discretization in Λ-space. Finally, a whole approximation of the family of solution
sets is produced.

Algorithm 10 General scheme to tackle a given PMOP in a non-sequential way
Ensure: A final approximation P (final) of the family of Pareto sets and fronts of a

given PMOP.
1: Set Λ := {λ1, . . . , λs}.
2: Set t := 0.
3: Initialize a population Pt = {(x(1), λj1), . . . , (x

(µ), λjµ)} ⊂ Rn+l.
4: Configure MOEA
5: while stopping criterion is not fulfilled do

6: Compute Pt+1 from Pt using a MOEA for one generation.
7: t := t+ 1

8: end while

9: for j = 1, . . . , s do

10: P
(final)
j :=

∏
(Pt, j)

11: end for

12: return P (final) := {P (final)
1 , ..., P

(final)
s }
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5.3 An Evolutionary Approach for the Non-Sequential

Treatment of PMOPs

We describe in Algorithm 10 a general framework for finding an approximation of the
solution set of a given PMOP by avoiding sequential optimization of each λj in Λ. This
framework is still undefined in many senses, for instance a description of the MOEA,
also it is missing to explain a mechanism to balance the number of individuals of
each slice, and finally, a more detail explanation of the generation of Pt+1. Among all
the algorithms within the state of the art MOEA/D ( [56]) is one of the most widely
used approaches to compute a good approximation of the solution set of a given
MOP. The algorithm decomposes a multi-objective optimization problem into a finite
number of scalar optimization sub-problems and then it optimizes them concurrently.
The algorithm requires an initial population P0, a set of weight vectors W , and a
given utility function. So, every time the algorithm produces a trial solution, the
utility function and the associated weight vector decide if the new solution replaces a
solution into the current Pt or not. This process is repeated until a stopping criterion
is reached.

In the following, we propose an adaption of the MOEA/D algorithm to tackle
PMOPs in a non-sequential way. Our algorithm decomposes a PMOP in a finite
number of sub-problems. The number of sub-problems is given by the number of
individuals in the population µ. The algorithm requires a set Wλ of µ well-spread
weight vectors w(i) ∈ R(k+l), over all the slices λj for j = 1, ..., s and also a given
utility function gT . Then, let w(1), . . . ,w(µ) be the weight vectors that belong to Wλ,
an utility function gT and Z = {z(1), . . . , z(s)} a set of s reference points in R(k) a
PMOP can be decomposed into µ scalar optimization sub-problems. In order to make
the decomposition process, we take the Tchebycheff method adapted to the context
of PMOPs as an utility function gT where the i-th sub-problem for a certain λj is
defined as follows:

gT ((x, λj)|w(i), z(j)) = max
1≤r≤k

{w(i)
r |fr(x, λj)− z(j)|}, (5.2)

where w(i) = (w
(i)
1 , . . . , w

(i)
k )T . In order to tackle a given PMOP as a whole the

new algorithm minimizes all the µ sub-problems in one single run. The following
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subsections will explain the different parts of the algorithm.

5.3.1 Reference Points Set

The reference point set Z contains the best found values for each objective function fr
for r = 1, ..., k (considering minimization) according to every slice λj for j = 1, . . . , s.
Algorithm 11 shows the process to construct Z.

Algorithm 11 Generate_Z(P, s, k)
Require: A population P, a number of slices s, a number of objectives k
Ensure: A set of best found values Z for each slice λj for j = 1, ..., s.
1: for j = 1 to s do
2: for r = 1 to k do

3: Set z(j)r = arg min(x,λ)∈Pfr(x, λ) s.t λ = λj.
4: end for

5: end for

6: Return Z.

5.3.2 Weight Vectors Set

The set of well-spread weight vectors can be seen as a surface of weight vectors,
however, for our purpose we treat individually every weight vector wi for i = 1, ..., µ.
Figure 5.7 shows how the surface is. Every slice λj for j = 1, ..., s contains a set of µs
weight vectors generated by a certain method. In our case, we use a low discrepancy
sequence based on lattices proposed in ( [117]). The main reason to use this method
is that the complexity is far lower than the one given by the uniform design method
proposed in ( [118]). Algorithm 12 shows away to construct Wλ.

5.3.3 Types and Construction of the Neighborhoods

For our algorithm, we determine two kinds of neighborhoods: one global and one
local. The global neighborhood contains elements from the complete surface Wλ de-
picted in Figure 5.8(a), while the local neighborhood depicted in 5.8(b) only includes
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Algorithm 12 Generate_Wλ(µs, s)
Require: A number of individuals per slice µs, number of slices s
Ensure: Surface Wλ.
1: Set Wλ := {∅}
2: for j = 1 to s do
3: Generate µs well spread weight vectors v1, . . . ,vµs in Rk.
4: for p = 1 to µs do
5: Set w := (vTp , λj)

T

6: Set Wλ := Wλ ∪ {w}
7: end for

8: end for

9: Return Wλ.
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Figure 5.7: Surface of weight vectors Wλ for k = 2.

elements with the same λ value. In order to assign the global neighborhood and
the local neighborhood for a w(i) weight vector, we need to compute the Euclidean
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distances between each weight vector in Wλ \ {w(i)} and select the T closest weight
vectors (in our computations, we set T equal to 10 as in the original MOEA/D for
more details see [56]). For each i = 1, . . . , µ, set GN(i) = {ig1, . . . , igT}, where
w(ig1), . . . ,w(igT ) are the closest weight vectors in the global neighbourhood to w(i)

and set LN(i) = {il1, . . . , ilT}, where w(il1), . . . ,w(ilT ) are the closest weight vectors
in the local neighbourhood to w(i).
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Figure 5.8: The yellow points represent the considered neighbourhood for a given w(i)

(black triangle) in both cases globally (left) and locally (right).

5.3.4 Generation of a New Element in the Population

For creating a new element, we first select a i− th sub-problem, then randomly select
one index p from GN(i) and generate a new solution y from x(i) and x(p) by using
genetic operators. For this case, we use ’rand/1/bin’ differential evolution crossover
operator with p = 0.9, CR = 1.0, F = 0.5. Since we use a global neighborhood for
producing a new element y, we have the risk to jump to another slice, in order to
avoid this situation, we set the λ value of y equal to the λ value of x(i). Then, we
produce a new element (y, λji).
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5.3.5 Mutation Operator

The neighborhood N (x, λ) is represented by the following expression with center
(x, λ) and two radius rx > 0 in x-space and rλ > 0 in λ-space,

N (x, λ) := {x′ ∈ Rn| ||x− x′|| < rx ∧ λ′ ∈ Rl| ||λ− λ′|| < rλ}. (5.3)

In order to perform mutation over the produced solution (y, λji) to produce
(ỹ, λji), we use the simple neighborhood search (SNS) for PMOPs proposed in ( [58]).
The SNS produces new individuals based on Equation (5.3). In order to set rx and
rλ, we select randomly an index p from the global neighborhood of the i− th element
to compute the Euclidean distance between x(p) and x(i) for setting rx. In this first
approach, we set rλ = 0 to avoid that the number of elements per slice will change.
Equation (5.3) proposed a continuous neighborhood in Λ-space, however, the values
over Λ are discrete. The probability used for this operator is pr = 1/µ. In the case
that one looks for another alternative to perform the mutation operator, one can use
the polynomial mutation adapted to the context.

5.3.6 Update a Sub-problem

For updating the i− th sub-problem, we only use the elements from the local neigh-
borhood LN(i). For each index u ∈ LN(i) if

gT ((ỹ, λji)|w(i), z(j)) ≤ gT ((x(u), λj)|w(i), z(j)), (5.4)

then set x(m) = ỹ and f (m) = fλ(i)(ỹ).

5.3.7 Update of Z

In the case that the produced (ỹ, λji) individual contains a better objective value
than the best found value according each λj in Λ, we have to update zj if

z(j)r > fr((ỹ, λji)), (5.5)

then set z(j)r = fr(ỹ, λji) for r = 1, ..., k. In the case that the condition is not fulfilled
z
(j)
r remains the same.
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5.3.8 The Algorithm

Algorithm 13 unifies every step of the PMOEA/D. It starts by generating a surface of
weight vectorsWλand a set of reference points Z. The surface will represent every slice
λj that belongs to the discretization of the external parameter Λ. Then, we construct
the local and global neighborhoods for each i − th weight in the surface Wλ. Both
neighbors according to the i− th weight will help us to generate and replace elements
into the population every iteration step. Once the initial population is computed the
algorithm starts the decomposition process. Every i − th weight in the surface will
represent a sub-problem which has to be solve concurrently with the others. The
generation process will compute a new element by using the whole information of the
current population. Next, by using an utility function we update the sub-problem.
Algorithm 13 takes as a basis the framework stated in Algorithm 10. Step 4 of
Algorithm 10 comprises steps 3-7 of Algorithm 13 which is the configuration process
of the PMOEA/D. The generation of new populations (steps 5-8) of Algorithm 10 is
done in steps 8-16. The remaining steps remain the same.
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Algorithm 13 PMOEA/D
Require: A PMOP, number of individuals per slice µ, number of slices s, number of

neighbors T , and itermax maximum number function evaluations.
Ensure: Final approximation P (final).
1: Set Λ := {λ1, . . . , λs}.
2: Set t := 0.
3: Set µs = µ/s as the number of individuals in each slice.
4: Generate a surface Wλ of µ weight vectors as Algorithm (12).
5: For each index i = 1, ..., µ, set its global neighborhood GN(i) and its local neigh-

borhood LN(i).
6: Initialize a population Pt = {(x(1), λj1), . . . , (x

(µ), λjµ)} ⊂ Rn+l.
7: Build the reference points set Z as Algorithm (11).
8: for t = 1 to itermax do
9: for i = 1 to µ do

10: Randomly select one index p from GN(i) and generate a new solution
(y, λji) from (x(i), λji) and (x(p), λji) by using genetic operators (DE-crossover
’rand/1/bin’).

11: Apply SNS operator on (y, λji) to produce (ỹ, λji).
12: Evaluate (ỹ, λji) as fλ(i)(ỹ, λji).
13: Update Z with fλ(i)(ỹ, λji) using Equation (5.5).
14: For a random index u ∈ LN(i), if Equation (5.4), then set x(u) = ỹ and

fλ(u) = fλ(ỹ, λji).
15: end for

16: end for

17: for j = 1, . . . , s do

18: P
(final)
j :=

∏
(Pt, j)

19: end for

20: return P (final) := {P (final)
1 , ..., P

(final)
s }

The missing step to define is the projection process in the step 18 which is reduce to
select those elements with the same λ-value. Since the population is already arranged
by slices, we only have to take those elements per each λj.
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Table 5.4: Test function problems 1.

Parameter dependent multi-objective optimization problems

FDA1 (Dynamic PS, static PF, and convex PFs)

f1(xI) = x1

g(xII) = 1 +
∑

xi∈xII (xi −G(λ))2

h(f1, g) = 1−
√

f1

g

G(λ) = sin(0.5πλ)

xI = (x1) ∈ [0, 1], xII = (x2, ..., xn) ∈ [−1, 1], and λ ∈ [0, 2]

FDA2 (Static PS, Dynamic PF, and convex to nonconvex PFs)

f1(xI) = x1

g(xII) = 1 +
∑

xi∈xII x
2
i

h(xIII , f1, g) = 1−
(
f1

g

)(H(λ)+
∑
xi∈xII

(xi−H(λ))2)

H(λ) = 0.75 + 0.7 sin(0.5πλ)

xI = (x1) ∈ [0, 1], xII ,xIII ∈ [−1, 1], and λ ∈ [0, 3]

5.4 Experiments and results

In order to test the proposed algorithm we use the work presented in [119]. The
authors proposed four different types of a PMOPs based on the changes on the Pareto
set and front according the effect that produces a modification of the value of an
external parameter. For experimental purposes the authors also include five different
PMOPs. Tables 5.4 and 5.5 describe the formulation of each of the 5 test problems.

FDA1, FDA2, and FDA3 are bi-objective optimization problems and it second
objective is defined as f2(xI ,xII) = g ∗ h. Figure 5.9 depicts the family of Pareto
fronts of FDA1 to FDA3 in two different angles. In the case of FDA4 and FDA5, we
use k = 3.
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Table 5.5: Test function problems 2.

Parameter dependent multi-objective optimization problems

FDA3 (Dynamic PS, Dynamic PF, and nonconvex PFs)

f1(xI) =
∑

xi∈xi x
D(t)
i

g(xII) = 1 +G(λ) +
∑

xi∈xII (xi −G(λ))2

h(f1, g) = 1−
√

f1

g

G(λ) = | sin(0.5πλ)|

D(λ) = 102 sin(0.5πλ)

xI ∈ [0, 1], xII ∈ [−1, 1], and λ ∈ [0, 2]

FDA4 (Dynamic PS, Static PF, and nonconvex PFs)

f1(x) = (1 + g(xII))
∏k−1

i=1 cos
(
xiπ
2

)
fm(x) = (1 + g(xII))

∏k−m
i=1 cos

(
xiπ
2

)
sin
(xk−m+1π

2

)
, m = 2 : k − 1

fk(x) = (1 + g(xII)) sin
(
x1π
2

)
g(xII) =

∑
xi∈xII (xi −G(λ))2

G(λ) = | sin(0.5πλ)|

xII = (xk, ..., xn), xi ∈ [0, 1] and λ ∈ [0, 2]

FDA5 (Dynamic PS, Dynamic PF, and nonconvex PFs)

f1(x) = (1 + g(xII))
∏k−1

i=1 cos
(
yiπ
2

)
fm(x) = (1 + g(xII))

∏k−m
i=1 cos

(
yiπ
2

)
sin
(yk−m+1π

2

)
, m = 2 : k − 1

fk(x) = (1 + g(xII)) sin
(
y1π
2

)
g(xII) = G(λ) +

∑
xi∈xII (xi −G(λ))2

yi = x
D(t)
i for i = 1, ..., (k − 1)

G(λ) = | sin(0.5πλ)|, D(λ) = 1 + 100 sin4(0.5πλ)

xII = (xk, ..., xn), xi ∈ [0, 1] and λ ∈ [0, 2]
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Figure 5.9: The images refers to the real family of Pareto fronts in 2D and 3D for
FDA1 (first row), FDA2 (second row), and FDA3 (third row).
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Table 5.6: Test function problems.

Parameter dependent multi-objective optimization problems

FDA1 (Dynamic PS, static PF, and convex PFs)

n = 20, |xI | = 1, |xII | = 19, k = 2

FDA2 (Static PS, Dynamic PF, and convex to nonconvex PFs)

n = 21, |xI | = 1, |xII | = 10, |xIII | = 10, k = 2

FDA3 (Dynamic PS, Dynamic PF, and nonconvex PFs)

n = 20, |xI | = 5, |xII | = 15, k = 2

FDA4 (Dynamic PS, Static PF, and nonconvex PFs)

n = 12, |xI | = 2, |xII | = 10, k = 3

FDA5 (Dynamic PS, Dynamic PF, and nonconvex PFs)

n = 12, |xI | = 2, |xII | = 10, k = 3

For the comparison, we use the averaged Hausdorff distance (AHD) for PMOPs
between fλ(Pxλ) and fλ(A) defined as

∆p(fλ(Pxλ), fλ(A)) :=

(
1

s

s∑
i=1

∆q(fλ(π(A)), fλ(Pxλ))p

)1/p

, (5.6)

where A represents the approximation or final population P given by an algorithm,
s is the number of slices, the function π yield the non-dominated individuals from A

and

∆q(fλ(π(A)), fλ(Pxλ)) = max (IGDq(fλ(π(A)), fλ(Pxλ)), GDq(fλ(π(A)), fλ(Pxλ))) .

(5.7)
The q value represents the natural parameter for computing the AHD, while the new
parameter q controls the effect of each slice in the approximation. The configuration
of each of the problems is included in Table 5.6. Tables 5.7, and 5.8 shows the
resulting ∆p (adapted to the context of PMOPs) values for the final approximation
P final produced by:

• PMOEA/D: our algorithm.
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• MOEAD-1250: standard MOEA/D with a budget of N/ξ function evaluations
for each slice, where N is the number of function evaluations used for PMOP-
EMOA to get the entire family of Pareto fronts, and ξ is the number of slices.
For this experiment N = 25000 and ξ = 20 resulting in a budget of 1250
functions evaluations per each slice.

• MOEAD-25000: standard MOEA/D with a budget of N function evaluations
for each slice, where N is the number of function evaluations used for PMOP-
EMOA to get the entire family of Pareto fronts. For this experiment N = 25000.

The references of the family of Pareto fronts are computed by an adaption of
the NBI method (see [20]) for the context of PMOPs. The comparison tables, also
contains the α-value for the Wilcoxon rank sum test. The α-value is obtained compar-
ing the results of PMOEA/D against MOEAD-1250 and MOEAD-25000. Problems
marked with (*) reflect a statistically significant result based on the Wilcoxon Rank
test using a significance level α = 0.05.

Table 5.7: Comparison of PMOEA/DA against MOEAD-1250 and MOEAD-25000
over five test functions. The indicator values are averaged over 20 independent runs
with p = 2 and q = 2.

∆p(fλ(Pxλ), fλ(P
final))

PMOEA/D MOEAD-1250 MOEAD-25000

Problem Mean Std Mean Std Mean Std

FDA1 (*) 0.040048 0.001029 0.071082 0.011025 0.045591 0.000074
α-value 0.00000006 0.00000006

FDA2 (*) 0.041030 0.003328 0.278690 0.036303 0.036819 0.001216
α-value 0.00000007 0.00001807

FDA3 (*) 0.090148 0.015753 0.240333 0.066283 0.146737 0.043556
α-value 0.00000006 0.00019970

FDA4 (*) 0.083534 0.013532 0.412342 0.082342 0.099232 0.059283
α-value 0.00000008 0.00539222

FDA5 (*) 0.073452 0.032345 0.324223 0.102483 0.062452 0.034958
α-value 0.00000002 0.00993422
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Table 5.8: Comparison of PMOEA/D against MOEAD-1250 and MOEAD-25000 over
five test functions. The indicator values are averaged over 20 independent runs with
p = 2 and q =∞.

∆p(fλ(Pxλ), fλ(P
final))

PMOEA/D MOEAD-1250 MOEAD-25000

Problem Mean Std Mean Std Mean Std

FDA1 0.202191 0.004335 0.197318 0.022580 0.227145 0.000261
α-value 0.12643061 0.00000006

FDA2 (*) 0.116906 0.009268 0.534042 0.057807 0.117264 0.002353
α-value 0.00000006 0.031497988

FDA3 (*) 0.920543 0.017751 0.939615 0.042377 0.934756 0.006885
α-value 0.04643094 0.00000006

FDA4 (*) 0.624223 0.023242 0.883431 0.111344 0.735743 0.032958
α-value 0.00424526 0.00352226

FDA5 (*) 0.912322 0.023984 0.935323 0.094232 0.952342 0.064837
α-value 0.00999426 0.00653226
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Figure 5.10: Results for PMOEA/D (first row), MOEAD-1250 (second row), and
MOEAD-25000 (third row) for FDA1.
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Figure 5.11: Results for PMOEA/D (first row), MOEAD-1250 (second row), and
MOEAD-25000 (third row) for FDA2.
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Figure 5.12: Results for PMOEA/D (first row), MOEAD-1250 (second row), and
MOEAD-25000 (third row) for FDA3.
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6 | Conclusions and Future Work

Here, we state the conclusions of the work done within this thesis project. Further,
some paths for possible future work are detected in order to continue this work.

• We presented a new region division for MOPs with k > 2 objectives. The
new region division procedure allows us to divide the whole objective space for
MOPs with k > 2 objectives and it also locates the points assigned for local
search over this region division. We determined three different distance regions
(’far away’, ’in between’, and ’near’). Therefore, given an unconstrained MOP
with all its objectives differentiable, we are able to locate a given point x ∈ Rn

within the proposed three distance regions.

• We presented a new local search strategy called HVDS for k > 2 objectives. This
local search procedure aim to maximize the hypervolume. The strategy includes
the proposed region division of the objective space in order to perform a specific
local movement in every region according to the location of a given solution or
solutions assigned for local search. Then, the HVDS can move points over each
of the distance region aiming for maximizing the hypervolume indicator.

• The HVDS was included into the SMS-EMOA as a generational operator with
a certain probability. The resulted memetic strategy outperformed the basic
version of SMS-EMOA for problems with k = 2, 3 objectives. The SMS-EMOA-
HVDS showed to have better results in eleven of fourteen test problems. Hence,
the proposed memetic algorithm improve results obtained by state-of-the-art
algorithms.

• We observed that the SMS-EMOA-HVDS works properly for problems with
convex, concave, and convex-concave Pareto fronts. However, in the case of
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disconnected Pareto fronts we lost against the SMS-EMOA without local search.
Then, it is needed to analyse more deeply why the local search procedure cannot
outperform the state-of-the-art algorithms.

• In the case of the hypervolume gradient flow, we detected the presence of a
certain ’creepiness’ in the flow coming from the fact that the norms of the sub-
gradients are in different ranges. This behavior was detected over several test
problems. Such a creeping behavior led in some cases to domination of points
in the population. Thus, it is not sufficient for an initial population that its
individuals are mutually non-dominated.

• We proposed the hypervolume Newton method (HNM) for hypervolume max-
imization for the treatment of sufficiently smooth continuous MOPs. In order
to present this method, we first used an approximation of the hypervolume
Hessian matrix. Then, we derived analytically the hypervolume Hessian matrix
for a given MOP and population. This matrix is fully expressed for the case
of two objectives. Thus, the HNM can be applied over population for a given
bi-objective optimization problem.

• The HNM was compared as standalone algorithm against a first order technique
base on the hypervolume gradient the gradient ascent hypervolume method
(GAH). Results showed that the HNM reaches the best hypervolume value
faster than GAH for a given population with a certain number of elements. We
observed empirically quadratic converge rates of the HNM. Then, the HNM can
be the perfect choice to be coupled with an evolutionary technique to designed
a novel memetic algorithm.

• We designed a novel memetic hypervolume based evolutionary algorithm, the
SMS-EMOA-HNM. This algorithm outperformed the basic version of SMS-
EMOA. Different than the SMS-EMOA-HVDS, here we integrated the local
search strategy as a refinement operator. In other words, we applied the HNM
on the best-found population. The results showed that we reached higher hy-
pervolume values than the basic version of the SMS-EMOA using less function
evaluations. Hence, we have successfully adapted the HNM into an evolutionary
algorithm that aims for maximizing the hypervolume indicator.
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• We developed memetic algorithms based on local searches strategies that aims
for improving the hypervolume value. The algorithms shows to have better
numerical results than the state of the art algorithms. We concluded that
the integration of local search strategies improve the performance of a given
evolutionary approach. This improvement can be done over the optimization
process or as a refinement process.

• We developed a simple neighborhood search algorithm in the context of PMOPs.
Such an algorithm shows that both movements toward and along the set of
interest are inherent in stochastic local search. Hence, to approximate the
entire solution set of a given PMOP is well-conditioned for set based stochastic
algorithms.

• We presented a general scheme to tackle a given PMOP in a non-sequential way.
The algorithm starts from the discretization of the external parameter space.
Then, it requires an adaption of a MOEA to produce the whole approximation
of the solution set. Thus, we conclude that it is possible to compute the whole
approximation of the solution set of a PMOP in one single run of an evolutionary
approaches.

• We have seen that decomposition helps to tackle a PMOP as a whole, in this
case, we presented the PMOEA/D for generating a whole approximation of a
given PMOP. The algorithm produced competitive an well-distributed approx-
imation of the family of Pareto sets and fronts.

• The exploitation of the knowledge produced by the SLS and SNS leaded us to
design an algorithm able to compute an approximation of the family of Pareto
sets and fronts. The interaction between elements from different λ-values help
to push the whole approximation slices toward the solution set.

6.1 Future Work

We detected some possible paths for future work:

• In the case of the hypervolume Newton method new strategies to manage con-
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straints are desired. Also, a more detailed analysis of the properties of the HNM
would be helpful.

• Quasi-Newton methods also can be adapted to replace the computation of the
Hessian matrix in order to reduce computational effort an save some function
evaluations.

• For the memetic strategy, we detected that it is also possible to integrated the
HNM as an evolutionary operator and not only as a refinement strategy.

• An extension of the proposed Newton framework for other performance indica-
tors such as ∆p, R2, among others is also desired.

• The development of an evolutionary strategy that aim to solve equality con-
strained MOPs is desired, in order to couple with the HNMEQ. For instance,
the adaption of ELSA to the context of MOPs.

• In the case the PMOEA/D, more comparison are needed, for instance conver-
gence graphs to see the evolution of the algorithm.

• Finally, the design of a memetic algorithm for the treatment of PMOPs is of
our interest. Since, we have both an evolutionary technique (PMOEA/D) and
a local search strategy (λ-DS) for the context of PMOPs.
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A | Test Problems

In the following, we present the definition of the test problems used throughout this
thesis work.

Table A.1: Test problems (part 1).

Fonseca1 (Concave Pareto front) S = [−5, 5]2

f1(x) = 1− exp(−(x1−1)2−(x2+1)2)

f2(x) = 1− exp(−(x1+1)2−(x2−1)2)

Modified ZDT1 (Convex Pareto front) S = [0, 1]× [−1, 1]n−1

f1(x) = x1

f2(x) = g(x)(2−
√
f1(x)/g(x))

g(x) = 1 + 9
n−1

∑n
i=1 x

2
i

Modified ZDT2 (Concave Pareto front) S = [0, 1]× [−1, 1]n−1

f1(x) = x1

f2(x) = g(x)(2− (f1(x)/g(x))2)

g(x) = 1 + 9
n−1

∑n
i=1 x

2
i

Modified ZDT3 (Disconnected Pareto front) S = [0, 1]× [−1, 1]n−1

f1(x) = x1

f2(x) = g(x)(2−
√
f1(x)/g(x))− (f1(x)/g(x)) sin(10πf1(x)))

g(x) = 1 + 9
n−1

∑n
i=1 x

2
i
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Table A.2: Test problems (part 2).

Modified ZDT6 (Concave Pareto front) S = [0, 1]× [−1, 1]n−1

f1(x) = 1− exp−4x1

f2(x) = g(x)(2− (f1(x)/g(x))2)

g(x) = 1 + 9
n−1

∑n
i=1 x

2
i

DTLZ 1 (Linear Pareto front) S = [0, 1]n

f1(x) = (1 + g(x))0.5
∏k−1

i=1 xi

fm=2:k−1(x) = (1 + g(x))0.5(
∏k−m

i=1 xi)(1− xk−m+1)

fk(x) = (1 + g(x))0.5(1− x1)

g(x) = 100(n+
∑n

i=1((xi − 0.5)2 − cos(20π(xi − 0.5))))

DTLZ 2 (Concave Pareto front) S = [0, 1]n

f1(x) = (1 + g(x))
∏k−1

i=1 cos(xi
π
2
)

fm=2:k−1(x) = (1 + g(x))(
∏k−m

i=1 cos(xi
π
2
)) sin(xk−m+1

π
2
)

fk(x) = (1 + g(x)) sin(x1
π
2
)

g(x) =
∑n

i=1(xi − 0.5)2

DTLZ 3 (Concave Pareto front) S = [0, 1]n

f1(x) = (1 + g(x))
∏k−1

i=1 cos(xi
π
2
)

fm=2:k−1(x) = (1 + g(x))(
∏k−m

i=1 cos(xi
π
2
)) sin(xk−m+1

π
2
)

fk(x) = (1 + g(x))sin(x1
π
2
)

g(x) = 100(n+
∑n

i=1((xi − 0.5)2 − cos(20π(xi − 0.5))))

DTLZ 7 (Disconnected Pareto front) S = [0, 1]n

f1(x) = x1

fm=2:k−1(x) = xm

fk(x) = (1 + g(x))(k −
∑k−1

i=1 ( fi
1+g(x)

(1 + sin(3πfi))))

g(x) = 1 + 9
|xk|
∑n

i=1 xi
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