


# Models of the atmosphere built 
from fundamental conservation laws 
governing the physical behavior of 
the atmosphere, and use numerical 
methods to obtain the solution to the 
system of coupled governing 
equations.  
 
# Physics in part of GCM calculate 
the forcing terms in governing 
equations (Partial Differential 
Equations). 

GCMs 

What are the difficulties with GCMs? 

Seoul National University general circulation model (SNUGCM) 
http://climate.snu.ac.kr/gcmdocu/GCM_Intro.htm#CES 

General Circulation 
Models 
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Not able to address the hydrological variability and extremes 
well 

 

Dynamical downscaling methods can only run in a short period 
of time and are limited to address single or a few GCM outputs 

Provide initial information for public 
decision makers and cannot be 

applicable for risk /reliability analysis 

http://www.cccsn.ec.gc.ca/images/downsc
aling01.jpg 

Difficulties with Downscaling Methods 

GCM for Climate 
Change Studies 
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Determining the statistical relationship between 
hydrological variables and the Atmospheric /   
Oceanic variables separated by large distances 

 

Teleconnection across a wide region at sub-
continental scale can be hardly analyzed by using 
linear analysis directly. 
 

Existence of non-stationary signals makes the 
identification of teleconnection complicated at a 
local scale. 

 
http://www.sarcs.org/new/issp/Isspoe19.jpg 

Hydroclimatic Teleconnection 

Definition of 
Teleconnection 
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Severe flooding  
Heavy downpours 
Reduction in snow 

cover 
 

Increase in air temperature  
Hurricane intensity 

Storm surge 
Decrease in water availability 

 

Increase in precipitation 
in winter / spring 

Evaporation in summer 
 

Increase in air temperature 
Evaporation and drought 

severity  
 

Decline in springtime snowpack streamflow 
 Increase in sea-level rise 

 

Decrease in water supply 
Increase in temperature, 
drought, and wildfire,  

Increase in frequency of 
flooding 

 

2009 Key Climate Issues - United States Global Change Research Program 
 

Current Prediction of 
Climate Changes  
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Teleconnection Pattern Abbrev. Time scale 

Arctic Oscillation AO decadal time scale 

North Atlantic Oscillation NAO NAO can occur on a yearly basis, or the fluctuations can take place 
decades apart.  

Atlantic Multi-decadal Oscillation AMO decadal time scale 

Pacific Decadal Oscillation PDO decadal time scale 

El Nino – Southern Oscillation ENSO El Nino and La Nina episodes typically occur every 3-5 years. 
However, in the historical record this interval has varied from 2 to 7 
years. 

Indian Ocean dipole IOD Every 30-year period 

Known or Leading 
Teleconnection Patterns 
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Strong years:  
Winter 1982/1983 
Winter 1997/1998 

Widescale climate effects 
Increased tropical cyclone activity in Pacific 

Ocean 
Affects tropical cyclone formation in the Atlantic 
Increasing cooling and precipitation during winter 

months in southern U.S.  

Affects Florida during the winter months 

Comparison of sea surface temperature during El Nino 1997 
(left) and current El Nino (right) images from NOAA 

satellites 
 

EL- NINO 

The Most Well-known 
Teleconnection Pattern 
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Source: National Weather Service Bismarck 

The El- Nino 
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The El- Nino 
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Source: Climate.gov (NOAA) 

El Ninos & Atlantic 
Tropical Cyclones 
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1996-Non El Nino year 1997-El Nino year 

El Nino & Atlantic Tropical Cyclones 

1998-Non El Nino year(post-1997 El Nino) 

El Ninos & Atlantic 
Tropical Cyclones 
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GCMS highly successful at understanding large-scale climate 
processes, but are limited by: 
(1) The inability to find a direct relationship between local terrestrial responses and 
global atmospheric circulation  

(2) Spatial and temporal resolutions of GCMs are too coarse to be applied in a regional 
scale  

 

Downscaling Methods 
 

https://depts.washington.edu/nwst/publish/stories/2008-
fall/2008-fall-env-2-downscaling.jpg 

Difficulties with GCMs 
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Often not able to address the hydrological variability and 
extremes well 

 

Dynamical downscaling methods can only run in a short period 
of time and are limited to address single or a few GCM 
outputs 

Provide initial information for public 
decision makers and cannot be 

applicable for risk /reliability analysis 

http://www.cccsn.ec.gc.ca/images/downsca
ling01.jpg 
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General Circulation 
Models 



Courtesy of AGU 

Deductive reasoning works from 
the more general to the     more 
specific. Sometimes this is 
informally called a "top-down" 
approach. 

Inductive reasoning works the 
other way, moving from 
specific observations to broader 
generalizations and theories. 
Informally, we sometimes call 
this a "bottom up" approach. 
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Extract Causality 
from Complexity 
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Science Questions 

• Objective: Develop a hybrid inductive approach to supplement 
the GCM modeling framework with the aid of empirical mode 
decomposition, wavelet analysis, and extreme learning machine 
to quantify the possible impact from the leading and non-leading 
SST teleconnection signals on terrestrial precipitation. 

• Science Question 1: Is there any non-leading teleconnection 
patterns affect terrestrial precipitation more than the known 
leading teleconnection patterns? if so, to what extent? 

• Science Question 2: Is there any commonality among the 
selected four study sites, with different geographical context, 
with respect to their precipitation trends affected by global SST? 



Sites 
Adirondack 

State Park 

Selway-Biterroot 

wilderness 

La Amistad 

International Park 

Weminuche 

Wilderness 

Fe
at

ur
es

 

Elevation (m) 37-1,629 488-3,096  3,300 2,400 - 4,000 

Area (ha) 2,428,000 542,680 207,000 197,600 

Mean Annual 

Precipitation 

(mm) 

914-1,118 1,020-1,520 2,000-6,500 198 - 798 

Temperature(oc) -8 to  20 -8 to 16 -8 to 25 -10.5 to 15 

Location 
Northern New 

York 

Border of Idaho 

and Montana 

State 

 Panama Colorado 

Establishment 

date 
1892 1964 1982 

1975 
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NE: Adirondack Park 
NW: Selway-Bitterroot Wilderness 

SW: Weminuche Wilderness 
Central America: La Amistad International Park 

*AD stands for Adirondack international Park; WE stands for Weminuche 
Wilderness; SL stands for Selway Bitterroot; LA stands for La Amistad 

International Park;  

DRY 

COLD 

WET 

WARM 

AD SL 

LA WE 

Area: 542,680 hectares 
Temperature: -8 to 16 oC 
Precipitation: 1020-1520 mm 
Elevation: 488 to 3096 m  

Area: 2,428,000 hectares 
Temperature: -8 to 20 oC 
Precipitation: 914-1118 mm 
Elevation: 37 to 1629 m  

Area: 197,571 hectares 
Temperature: -1 to 25 oC 
Precipitation: 198 - 798 mm 
Elevation: 2411 to 4292 m  

Area: 207,000 hectares 
Temperature: -8 to 25 oC 
Precipitation: 2000 - 6500 mm 
Elevation: SL to 3300 m  

Study Sites 



Phase I: Identifying the possible index 
regions 

 
Phase II: Screening and ranking the 

identified index regions 
 

GPCC 

Research 
Framework 



Examples of Significant 
Oceanic Indices 
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Data Sources 

Precipitation Data 
 
 Full data product of Global 

Precipitation Climatology Center 
(GPCC-V6) 

 Gridded gauge-analysis products 
based on quality controlled data from 
67,200 stations world-wide for the 
period of 1901-2010. 

 Spatial resolution: 0.5º ×0.5º 
SST Data 
 
 ERA-Interim reanalysis product 
1979-2010 
 Spatial resolution: 1.5º ×1.5º 

1 GPCC 

1 
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2 

Seasonal Data 

 computing every 3 months averages, 
namely MAM, JJA, SON, DJF. 

Precipitation 

SST 
 13 different SST time series are 

computed with time lags from 0 to 12 
months for each season.  

As a result of precipitation regimes, 
and the significant seasonality 
revealed between terrestrial 
precipitation variability and SST 
forcing, seasonal scale was selected 
in this study. 

GPCC 
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Data 
Preprocessing 



Empirical Mode Decomposition  

3 

 EMD approach was first suggested 

by Huang et al. (1998), and it has 

the ability of extracting the intrinsic 

and adaptive trends from non-linear 

and non-stationary time series. 

 Long-term trend causes large 

uncertainty in linear correlation 

analyses 

GPCC 

Data 
Preprocessing 
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Detrending 
Algorithm 
   

IMF:  
Intrinsic Mode Function 

Data Preprocessing Introduction 
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Wavelet Analysis 

Continuous Wavelet 
Transform 

Where: 
s = wavelet scale 
xn = discrete time series sequence 
n = localized time index 
n’ = translated time index  
   = normalized wavelet 
* = complex conjugate 
 

Wavelet 
variability 
(SAWP) 

Time series 

1. Anomalous Time Series Graph 
2. Wavelet Power Spectrum Image 
3. Global Significance Wavelet Spectrum 
4. Scale Average Wavelet Power 

a) Weighted Sum of Wavelet Power 
Over Defined Scales 

b) Converts the original time series to 
a variance plot of the 0.25-1 year 
Frequency Band. 

c) Used to capture nonlinear, spectral 
information. 
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4 

Dominant oscillation of SST and precipitation time 
series was detected in a certain band (2-4 years). 

GPCC 

2
2

2 ( )

s

j
n j

n
j j j

W sj tW
C sδ

δ δ
=

= ∑

The wavelet power spectrum is defined as 
𝑊𝑛 𝑆 2 and the amplitude at each point 
𝑊𝑛 𝑆 .  S is the scale. Cδ is the reconstruction 

factor that takes on values depending on the 
mother wavelet used, δj is a factor for scale 
averaging, j1 and j2 are scales over which the 
averaging takes place, and δt is the sampling 
period 

𝑊�𝑛
2 = 𝛿𝑗 𝛿𝑡

𝐶𝛿
 ∑ 𝑊𝑛 𝑠𝑗

2

𝑠𝑗
𝑗2
𝑗=𝑗𝑠  
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6 

Pixel-wise Linear Lagged 
Correlation 

r =
∑ 𝑥𝑖 − �̅� × 𝑦𝑖+𝑑 − 𝑦�𝑛
𝑖

∑ 𝑥𝑖 − �̅� 2𝑛
𝑖  ×  ∑ 𝑦𝑖+𝑑 − 𝑦� 2𝑛

𝑖
 

r :correlation coefficient, 
n: number of data,  
x : represents the precipitation 
dataset, 
y: represents the SST dataset; 
x� and y� are the mean; 
 d: time lag. 

GPCC 
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Identification of Index 
Regions 



Detrending process has well 
removed the long-term trends 
while reserved the oscillation 
characteristics of original signals.  
 
 
SAWPs are totally different from 
the original and detrended time 
series, as they are reconstructed 
from the significant wavelet power 
at selected frequency band.  

Raw and detrended Precipitation Precipitation SAWP 

Raw and detrended  SST SST SAWP 

Identification of Index 
Regions 
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Adirondack – Winter Season 
Precipitation 

Method of Identifying the Dominant SST 
Teleconnection Regions 

 Shaded colors show 
statistically significant 
correlation at the 95% 
confidence interval. 

 Areas with a consistent 
significant correlation 
(lasting for more than 3 
months) were extracted 
as possible forcing 
regions 

Lag 0 Lag 1 Lag 2 Lag 3 

Lag 4 Lag 5 Lag 6 Lag 7 

Lag 8 Lag 9 Lag 10 Lag 11 

Lag 12 
All Detected  

Oceanic index 
Regions 
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Determining  the corresponding 
times of Maximum and 
Minimum Correlation 

 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12
Time-Lag 

 Associated time lags for each oceanic index regions were also identified by 

selecting the corresponding time lags with the maximum correlation coefficient 

between the oceanic index regions and precipitation.  
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Climate 
Variable 

Lag Time 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Nino3.4 + 

SP * + 

AMO + 

AMO + 

Nino 3 + 

PDO + 

IOD + 

Nino 4 + 

SP* + 

PDO + 

SP* + 

IOD + 

NAO + 

WP + 

SP* + 

Nino4  + 

PDO + 

Climate 
Variable 

Lag Time 

0 1 2 3 4 5 6 7 8 9 10 11 12 

PDO + 

IOD + 

PDO + 

SP* + 

SP* + 

AMO + 

IOD + 

Nino 1+2, 
Nino 3 + 

Nino4  + 

Nino 3.4 + 

SA* + 

SP* + 

Spring Summer 

SP: South Pacific 
SA: South Atlantic 
*: Non-Leading Teleconnection Pattern 

Adirondack 
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Climate 
Variable 

Lag Time 

0 1 2 3 4 5 6 7 8 9 10 11 12 

SP * + 

SP* + 

SP * + 

AMO + 

SA * + 

PDO + 

PDO + 

AO + 

PDO + 

AO + 

NAO + 

SA + 

IOD + 

NAO + 

WP + 

Nino1+2, 
Nino3 + 

PDO + 

IOD + 

SA + 

Nino 4 + 

PDO + 

Adirondack 
Winter 

Climate 
Variable 

Lag Time 

0 1 2 3 4 5 6 7 8 9 10 11 12 

SP* + 

AO + 

NAO + 

IOD + 

Nino3.4, 
Nino3 + 

SA* + 

AMO + 

PDO + 

SA* + 

SP * + 

SP * + 

PDO + 

PDO + 

IOD + 

PDO + 

Fall 

SP: South Pacific 
SA: South Atlantic 
*: Non-Leading Teleconnection Pattern 
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Extreme Learning Machine 

For N arbitrary samples (xi , yi): 

� vig ai ∙ xj + bi = yj                         j = 1, … , N
N

i=1

 

HV = Y 

V =
v1T
⋮

vLT L×m                           

Y =
y1T
⋮

yNT N×m                           

 

H =
g(a1, b1, x1) g(a2, b2, x1) … … g(aL, bL, xL)

⋮ ⋮ ⋮
g(a1, b1, xN) g(a2, b2, xN) … … g(aL, bL, xN)

 

g(.): Activation Function 
ai: the weight vector connecting the ith hidden 
node and input nodes 
vi: the weight vector connecting the ith hidden 
node and output nodes 
bi: is the biases of the ith hidden node 
yj: is the expected value of the jth output node. 
H: Hidden layer output matrix 
V: Output weight matric 

1 

It can be written as 

Sensitivity Analysis  
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Extreme Learning Machine 

(1) Given a training set, activation 
function g(.), and hidden node number 
(L), 
 

(2) Randomly assign input weights aiand 
bias bi, 
 
(3) Calculate the hidden layer output 
matrix H, 
 
(4) Calculate the output weight V from 
V = YH+,  

Train : 70% of samples  
Test: 30% of samples (unseen data) 
Training process will be repeated until 
correlation coefficient reaches to 90%. 

Typical scheme of single layer feedforward neural 
networks (Chang et al., 2010) 

H+: Moore − Penrose matrix inverse  

The ELM was performed using MATLAB, with code 
developed by Nanyang Technological University in 
Singapore. 
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Sensitivity Analysis  



Sensitivity Analysis 

2 

(1) Including all the identified oceanic 
index regions, 
 
(2) Excluding one of the identified oceanic 
index regions and including the rest 
indices, 
 
 
(3) Residuals between the two simulated 
precipitation time series are defined as the 
precipitation responses to the excluded 
index.  
 
(4) To reduce the stochastic error, this 
procedure is repeated for 200 times for 
each index, and the average of these results 
is considered as the contribution of each 
index to precipitation at each site. 
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Sensitivity Analysis  



Comparisons between observed and simulated precipitations by ELM in fall 
season  
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1 
2 

3 
4 

6 

5 

7 

8 

Study Area Winter Spring Summer Fall 

Index 1 2 3 4 5 6 7 8 

Adirondack State Park 48% 25% 55% 24% 75% 11% 63% ⃰16% 

Study Area Winter Spring Summer Fall 

Index 1 2 3 4 5 6 7 8 

Adirondack State Park WP IOD EA Nino3.4 IOD PDO PDO SA * 

Contribution of each index on 
precipitation of four sites 

(percentage) 

Indexed regions associated 
with the climate 

teleconnection patterns. 

Adirondack 

 * non-leading teleconnection patterns 

EA: East Atlantic; IOD: Indian Ocean Dipole; PDO: Pacific Decadal Oscillation 
SA: South Atlantic; WP: West Pacific; * non-leading teleconnection patterns 
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Selway-Bitterroot 
Wilderness 

5 6 
2 

1 

3 

8 

7 

4 

Study Area Winter Spring Summer Fall 

Index 1 2 3 4 5 6 7 8 

Selway Bitterroot 

Wilderness 
75% 13% 64% ⃰16% 73% 13% 62% 15% 

Study Area Winter Spring Summer Fall 

Index 1 2 3 4 5 6 7 8 

Selway Bitterroot Wilderness TSA AO WP SP * TNA PDO PDO Nino3 

Contribution of each index on 
precipitation of four sites 

(percentage) 

Indexed regions associated 
with the climate 

teleconnection patterns. 
TSA: Tropical South Atlantic; SP: South Pacific; WP: West Pacific;  
TNA: Tropical North Atlantic; PDO: Pacific Decadal Oscillation 
* non-leading teleconnection patterns 
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Weminuche Wilderness 

1 2 
3 

4 6 

5 
7 

8 

Study Area Winter Spring Summer Fall 

Index 1 2 3 4 5 6 7 8 

Weminuche Wilderness ⃰65% 17% 70% 18% 57% 22% 69% 14% 

Study Area Winter Spring Summer Fall 

Index 1 2 3 4 5 6 7 8 

Weminuche  Wilderness 

 
SP * TSA IOD TNA Nino3.4 TNA PDO TNA 

Contribution of each index on 
precipitation of four sites 

(percentage) 

Indexed regions associated 
with the climate 

teleconnection patterns. 

IOD: Indian Ocean Dipole; TSA: Tropical South Atlantic; SP: South 
Pacific; TNA: Tropical North Atlantic; PDO; Pacific Decadal Oscillation 
* non-leading teleconnection patterns 
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La Amistad 
International Park 

c 

1 

2 

3 

4 

6 

5 

8 

7 

Study Area Winter Spring Summer Fall 

Index 1 2 3 4 5 6 7 8 

Weminuche Wilderness ⃰ 66% 16% 52% 26% 80% 9% 61% 18% 

Study Area Winter Spring Summer Fall 

Index 1 2 3 4 5 6 7 8 

Weminuche  Wilderness 

 
SP* PDO Nino3.4 PDO TSA 

Nino 1+2 

Nino3 
EA Nino3.4 

Contribution of each index on 
precipitation of four sites 

(percentage) 

Indexed regions associated 
with the climate 

teleconnection patterns. 

SP: South Pacific; TSA: Tropical South Atlantic; PDO; Pacific Decadal 
Oscillation; EA: East Atlantic 
* non-leading teleconnection patterns 
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Comparisons between the 
identified oceanic indices and 

the known teleconnection 
patterns 
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Phase Task 
CPU time per season 

(Second) 

Total CPU 

time 

(Second) 

Phase I 

Detrending 

SST 39,348 1,888,704 

Precipitation AD(28),WE(7),SL(12),LA(16) ⃰  252 

SAWP 
SST 915 43,920 

Precipitation AD(1),WE(1),SL(1),LA(1) ⃰ 16 

Linear Lagged Correlation 148 2,368 

Phase II ELM and Sensitivity Analysis 7 112 

Introduction 
Problem Statement, Significance, and research contribution 
Research Objectives 
Case Study 
Proposed Methodology and Results 
Conclusions 

Computational Time 
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 Some of these non-leading oceanic 

regions had a much higher contribution 
to variability of precipitation compared 
to these known teleconnection patterns.  
 

 It highlights the importance of 
considering the non-leading 
teleconnection signals as well as the 
known teleconnection patterns for 
precipitation forecasting.  

 
 

NE 
NW 

SW 

Scientific Findings 



Future Work 



http://itsaboutthehudsonvalley.com/Reservoirs/reservoirs.html 

Source waters of New York City water 
supply system: 1) Catskill system, 2) 
Delaware System, 3) Croton System  

provide water for 8 million residents in 
New York City, as well as 1 million 
residents north of the city (Provide 1.3 
billion gallons per day) 

40% is derived from the Catskill 
system, 50% from the Delaware 
System, and 10% from the Croton 
System 

Future Work 

http://itsaboutthehudsonvalley.com/Reservoirs/reservoirs.html


ANN  
Artificial Neural Network Model 

NARXNET  
Nonlinear Autoregressive Neural Network with 

External Input  

𝑦 𝑡 = 𝑓(𝑦 𝑡 − 1 , … … . ,𝑦 𝑡 − 𝑑 , 𝑥 𝑡 − 1 , … . . , 𝑥 𝑡 − 𝑑 ) 

Where y(t) is the predicted time series, x(t) is the 
time series for each of the input variables (i.e. 
spectral reflectance values, meteorological 
parameters, and reservoir elevation), d is the input 
and feedback delay node.  
 

Future Work 



NARXNET precipitation forecasting model was applied to all 39 Adirondack precipitation grids in the 
year 2011. The image on the left displays the spatial correlation (‘R-squared’) contours. The image on 

the right displays the forecast error contours in mm/day. 

Future Work 



Models Scenario R-squared 
RMSE 

Training 

RMSE 

Validation 

ANN 
1 0.41 0.78 1.00 

2 0.50 0.49 0.97 

NARXNET 
1 0.60 0.38 0.95 

2 0.65 0.24 0.88 

R-squared and root-of-mean square error (RSME) of 
NARXNET and ANN models for the proposed scenarios 

Scenario 1: It only includes the known teleconnection patterns,  
Scenario 2: It contains both known and unknown teleconnection patterns.  

Comparison between the model output with observed 
precipitation for scenario 2 using (a) ANN model and (b) 

NARXNET model.  

Future Work 



TELECONNECTION SIGNALS EFFECT  
                    ON TERRESTRIALPRECIPITATION:  
BIG DATA ANALYTICS VS. WAVELET ANALYSIS 

Yahui Di1, Wei Ding1, Sanaz Imen2, Ni-Bin Chang2 
1 Department of Computer Science, University of Massachusetts Boston, Boston MA, USA 
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DISCOVER PHYSICALLY MEANINGFUL 
TELECONNECTION PATTERNS WHICH EFFECT THE 

PRECIPITATION 
 

INPUT 
• 1980-2010 Monthly precipitation 

data 
• 1979-2010 Monthly Sea Surface 

Temperature  data 

Feature Construction 
with Lag Time(0-12 

Months) 

Big Data Analytics 

Empirical Mode 
Decomposition & 

Wavelet Spectral Analysis  

Wavelet Analysis 

Streaming Feature 
Selection 

Pearson Correlation-
based Regression 

Analysis 

OUTPUT 

PROCESS 1 PROCESS 2 
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